1
|
Alqahtani SM, Al-Kuraishy HM, Al-Gareeb AI, Alexiou A, Fawzy MN, Papadakis M, Al-Botaty BM, Alruwaili M, El-Saber Batiha G. The neuroprotective role of Humanin in Alzheimer's disease: The molecular effects. Eur J Pharmacol 2025; 998:177510. [PMID: 40090538 DOI: 10.1016/j.ejphar.2025.177510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/06/2025] [Accepted: 03/14/2025] [Indexed: 03/18/2025]
Abstract
Humanin (HN) is an endogenous micropeptide also known as a mitochondria-derived peptide. It has a neuroprotective effect against Alzheimer's disease (AD) and other neurodegenerative diseases by improving hippocampal acetylcholine and attenuating the development of oxidative stress and associated neurotoxicity. HN protects the neuron from the toxic effects of amyloid beta (Aβ). HN is regarded as a biomarker of mitochondrial stress. Interestingly, aging reduces brain expression of HN, leading to cognitive impairment and elevating the risk of neurodegeneration, including AD. However, in old subjects and AD patients, circulating HN levels increase as a compensatory mechanism to reduce neurodegeneration and mitochondrial dysfunction in AD. Conversely, other studies demonstrated a reduction in circulating HN levels in AD. These findings indicated controversial points regarding the precise mechanistic role of HN in AD. Therefore, the aim of this review was to discuss the exact role of HN in AD neuropathology and also to discuss the molecular mechanisms of HN in AD.
Collapse
Affiliation(s)
- Saad Misfer Alqahtani
- Department of Pathology, College of Medicine, The University Hospital, Najran University, Najran, Saudi Arabia.
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq.
| | - Ali I Al-Gareeb
- Jabir Ibn Hayyan Medical University, Al-Ameer Qu, PO.Box13, Kufa, Najaf, Iraq.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India; Department of Research & Development, Funogen, Athens, Greece.
| | - Mohamed N Fawzy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University- Arish Branch, Arish, 45511, Egypt.
| | - Marios Papadakis
- University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Basant M Al-Botaty
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ain Helwan, 11795, Cairo, Egypt.
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, Damanhour, 22511, Egypt.
| |
Collapse
|
2
|
Chen YW, Ahn IS, Wang SSM, Majid S, Diamante G, Cely I, Zhang G, Cabanayan A, Komzyuk S, Bonnett J, Arneson D, Yang X. Multitissue single-cell analysis reveals differential cellular and molecular sensitivity between fructose and high-fat high-sucrose diets. Cell Rep 2025; 44:115690. [PMID: 40349341 DOI: 10.1016/j.celrep.2025.115690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/03/2025] [Accepted: 04/21/2025] [Indexed: 05/14/2025] Open
Abstract
Metabolic syndrome (MetS), a conglomerate of dysregulated metabolic traits that vary between individuals, is partially driven by modern diets high in fat, sucrose, or fructose and their interactions with host genes in metabolic tissues. To elucidate the roles of individual tissues and cell types in diet-induced MetS, we performed single-cell RNA sequencing on the hypothalamus, liver, adipose tissue, and small intestine of mice fed high-fat high-sucrose (HFHS) or fructose diets. We found that hypothalamic neurons were sensitive to fructose, while adipose progenitor cells and macrophages were responsive to HFHS. Ligand-receptor analysis revealed lipid metabolism and inflammation networks among peripheral tissues driven by HFHS, while both diets stimulated synaptic remodeling within the hypothalamus. mt-Rnr2, a top responder to both diets, mitigated diet-induced MetS by stimulating thermogenesis. Our study demonstrates that HFHS and fructose diets have differential cell type and network targets but also share regulators such as mt-Rnr2 to affect MetS risk.
Collapse
Affiliation(s)
- Yen-Wei Chen
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA; Interdepartmental Program of Molecular Toxicology, University of California, Los Angeles, Los Angeles, CA, USA
| | - In Sook Ahn
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Susanna Sue-Ming Wang
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sana Majid
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Graciel Diamante
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ingrid Cely
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA; Interdepartmental Program of Molecular Toxicology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Guanglin Zhang
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Angelus Cabanayan
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sergey Komzyuk
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jack Bonnett
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Douglas Arneson
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA; Interdepartmental Program of Bioinformatics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xia Yang
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA; Interdepartmental Program of Molecular Toxicology, University of California, Los Angeles, Los Angeles, CA, USA; Interdepartmental Program of Bioinformatics, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Liu L, Wang H, Wen W, Wang S, Zuo L, Cheng Y, Rao M, Ma Y, Tang L. Humanin alone and in combination with GnRHa therapy attenuates ovarian dysfunction induced by prepubertal cyclophosphamide chemotherapy in female mice. Reprod Toxicol 2025; 132:108824. [PMID: 39793741 DOI: 10.1016/j.reprotox.2024.108824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/01/2024] [Accepted: 12/18/2024] [Indexed: 01/13/2025]
Abstract
Prepubertal chemotherapy induced ovarian damage poses a significant threat to female fertility, particularly following cyclophosphamide (CP) treatment. Humanin (HNG), a small molecule polypeptide encoded by mitochondrial DNA, has a variety of effects, this study aimed to investigate the protective effects of HNG and its combination with conventional Gonadotropin Releasing Hormone Agonist (GnRHa) on ovarian function in a CP-induced damage model. The 21-day-old C57BL/6 J female mice were randomly assigned to six groups: Control, CP model, HNG, HNG+CP, GnRHa+CP, and HNG+GnRHa+CP. Reproductive related parameters were assessed through histopathological examination, follicle counts, serum sex hormone levels, estrous cycle monitoring, and oxidative stress evaluation. Results indicated that CP treatment led to significant reproductive dysfunction especially ovarian dysfunction, evidenced by reduced follicles, hormonal imbalances, prolonged estrous cycles, reduced body weight, and diminished ovarian and uterine weights, alongside pathological alterations. Notably, HNG treatment, both alone and in conjunction with GnRHa, significantly mitigated these adverse effects, however the combination did not provide additional benefits over HNG alone regarding follicles preservation and antioxidant capacity. Transcriptomic analysis revealed significant enrichment in inflammation and immune response pathways following HNG treatment. In conclusion, HNG demonstrates potential as a therapeutic agent to protect against CP-induced ovarian damage, offering insights for future strategies aimed at preserving female fertility during chemotherapy.
Collapse
Affiliation(s)
- Liu Liu
- Reproductive Genetics Department, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Huawei Wang
- Reproductive Genetics Department, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Wen Wen
- Reproductive Genetics Department, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Shunqing Wang
- Reproductive Genetics Department, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Liqin Zuo
- Reproductive Genetics Department, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Yulin Cheng
- Reproductive Genetics Department, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Meng Rao
- Reproductive Genetics Department, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| | - Yuru Ma
- Reproductive Genetics Department, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| | - Li Tang
- Reproductive Genetics Department, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| |
Collapse
|
4
|
Soltany A, Daryanoosh F, Gholampour F, Sadat Hosseini N, Khoramipour K. Potential Role of High-Intensity Interval Training-Induced Increase in Humanin Levels for the Management of Type 2 Diabetes. J Cell Mol Med 2025; 29:e70396. [PMID: 39936487 PMCID: PMC11815479 DOI: 10.1111/jcmm.70396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 02/13/2025] Open
Abstract
This study investigated the effect of 8 weeks of high-intensity interval training (HIIT) on oxidative stress, inflammation, and apoptosis in rats with type 2 diabetes (T2D), focusing on the role of the Humanin (HN). In this study, 28 male Wistar rats were assigned to one of four groups: healthy control (CO), diabetes control (T2D), exercise (EX), and diabetes + exercise (T2D + EX). After diabetes induction (2-month high-fat diet and injection of 35 mg/kg streptozotocin), the animals in the EX and T2D + EX groups underwent an 8-week HIIT protocol (4-10, interval of 80%-100% of maximum speed). HOMA-IR, fasting blood glucose, and HN levels were measured in the serum. The expression of HN, Bax, Bcl-2, CAT, GPx, MDA, TNFα, and IL-10 was measured in the soleus muscle. Our results showed that the serum level of HN and the muscle levels of IL-10, SOD, CAT, and Bax were higher in the T2D + EX group than in the T2D group. However, the HOMA-IR index and the muscle levels of MDA, TNFα, and Bcl-2 were lower in the T2D + EX group than in the T2D group. Muscle levels of HN and GPx showed no significant difference between the T2D + EX and T2D groups. The result of Pearson analysis showed a significant correlation between HN and MDA, SOD, Bax and Bcl-2. This study provides evidence that there is a correlation between serum Humanin levels and HIIT. HIIT benefits T2D rats by reducing inflammation and oxidative stress. Given Humanin's established involvement in inflammation and oxidative stress, it is possible that the benefits of HIIT on T2D rats are mediated by humanin.
Collapse
Affiliation(s)
- Afsaneh Soltany
- Department of Biology, College of ScienceShiraz UniversityShirazIran
| | - Farhad Daryanoosh
- Department of Sports Sciences, Faculty of Educational Sciences and PsychologyShiraz UniversityShirazIran
| | | | - Najmeh Sadat Hosseini
- Physiology and Neuroscience Research Center, Institute of Physiology and PharmacologyKerman University of Medical SciencesKermanIran
| | - Kayvan Khoramipour
- i+HeALTH Strategic Research Group, Department of Health SciencesMiguel de Cervantes European University (UEMC)ValladolidSpain
| |
Collapse
|
5
|
Kütük D, Öner Ç, Başar M, Akcay B, Olcay İO, Çolak E, Selam B, Cincik M. Comparison of the Mitophagy and Apoptosis Related Gene Expressions in Waste Embryo Culture Medium of Female Infertility Types. Life (Basel) 2024; 14:1507. [PMID: 39598305 PMCID: PMC11595419 DOI: 10.3390/life14111507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/25/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Mitochondria is an important organelle for the oocyte-to-embryo transition in the early embryonic development period. The oocyte uses mitochondria functionally and its mitochondrial DNA (mtDNA) content as the main energy source in the embryo development at the preimplantation stage. The aim of this study is to compare mitophagic, apoptotic and humanin gene expressions from the culture medium fluid in which embryos are developed and monitored among normoresponder (NOR), polycystic ovary syndrome (PCOS), young and older patients with poor ovarian reserve (POR). The study groups consisted of infertile patients who applied to the Bahçeci Umut IVF Center as NOR (Control), PCOS, POR-Advanced (POR-A) and POR-Young (POR-Y). After the isolation of total RNA from the collected samples, MFN1, MFN2, PINK1, PARKIN, SMN1, SMN2, p53 and Humanin gene expressions were determined by Real Time-PCR. The average age of only the POR-A was determined to be higher than the NOR (p < 0.001). The MFN1, SMN2 (p < 0.05), Humanin and p53 gene expressions (p < 0.001) increased, while PINK1 gene expression decreased (p < 0.05), in the POR-Y compared to the NOR. A decrease in MFN2, PARKIN (p < 0.05) and PINK1 gene expressions was determined in the PCOS compared to the NOR (p < 0.001). Furthermore, a decrease was observed in MFN2, PINK1 (p < 0.001) and Humanin gene expressions compared to the NOR (p < 0.05). The current data are the first in the literature determining the apoptotic and mitophagic status of the oocyte. The current results prove that waste embryo culture fluid may provide a non-invasive profile for important cellular parameters such as mitochondrial dysfunction in female infertility. The evaluation of significant cellular parameters can be performed much earlier without any intervention into the embryo.
Collapse
Affiliation(s)
- Duygu Kütük
- Department of Histology and Embryology, Medical Faculty, Maltepe University, 34858 İstanbul, Turkey
- IVF Laboratory, Bahçeci Umut Assisted Reproduction Center, 34662 İstanbul, Turkey
| | - Çağrı Öner
- Department of Medical Biology, Medical Faculty, Kırklareli University, 39100 Kırklareli, Turkey;
| | - Murat Başar
- Department of Obstetrics, Gynecology & Reproductive Sciences, Medical Faculty, Yale University, New Haven, CT 06520, USA
| | - Berkay Akcay
- IVF Laboratory, Bahçeci Umut Assisted Reproduction Center, 34662 İstanbul, Turkey
| | - İbrahim Orçun Olcay
- IVF Laboratory, Bahçeci Umut Assisted Reproduction Center, 34662 İstanbul, Turkey
| | - Ertuğrul Çolak
- Department of Biostatistics, Medical Faculty, Eskişehir Osmangazi University, 26040 Eskişehir, Turkey
| | - Belgin Selam
- Department of Obstetrics and Gynecology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 İstanbul, Turkey
| | - Mehmet Cincik
- Department of Histology and Embryology, Medical Faculty, Maltepe University, 34858 İstanbul, Turkey
| |
Collapse
|
6
|
Amman AM, Wolfe V, Piraino G, Ziady A, Zingarelli B. Humanin-G Ameliorates Hemorrhage-Induced Acute Lung Injury in Mice Through AMPKα1-Dependent and -Independent Mechanisms. Biomedicines 2024; 12:2615. [PMID: 39595179 PMCID: PMC11592305 DOI: 10.3390/biomedicines12112615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: The severity of acute lung injury is significantly impacted by age and sex in patients with hemorrhagic shock. AMP-activated protein kinase (AMPK) is a crucial regulator of energy metabolism but its activity declines with aging. Humanin is a mitochondrial peptide that exerts cytoprotective effects in response to oxidative stressors and is associated with longevity. Using a mouse model of hemorrhagic shock that mimics the clinical condition of adult patients, we investigated whether treatment with a humanin analog, humanin-G, mitigates lung injury and whether its mechanisms of action are dependent on the catalytic AMPKα1 subunit activation. Methods: Male and female AMPKα1 wild-type (WT) and knock-out (KO) mice (8-13 months old) were subjected to hemorrhagic shock by blood withdrawal, followed by resuscitation with shed blood and lactated Ringer's solution. The mice were treated with PEGylated humanin-G or vehicle and euthanized 3 h post-resuscitation. Results: Sex- and genotype-related differences were observed after hemorrhagic shock as lung neutrophil infiltration was more pronounced in the male AMPKα1 WT mice than the female WT mice; also, the male AMPKα1 KO mice experienced a significant decline in mean arterial blood pressure when compared to the male WT mice after resuscitation. The scores of histological lung injury were similarly elevated in all the male and female AMPKα1 WT and KO mice when compared to the control mice. At molecular analysis, acute lung injury was associated with the downregulation of AMPKα1/α2 catalytic subunits in the WT mice, whereas an increased activation of the signal transducer and activator of transcription-3 (STAT3) was observed in all the vehicle-treated groups. The in vivo administration of humanin-G ameliorated histological lung damage in all the groups of animals and ameliorated mean arterial blood pressure in the male AMPKα1 KO mice. The in vivo administration of humanin-G lowered lung neutrophil infiltration in the male and female AMPKα1 WT mice only but not in the KO mice. The beneficial results of humanin-G correlated with the lung cytosolic and nuclear activation of AMPKα in the male and female AMPKα1 WT groups, whereas STAT3 activation was not modified. Conclusions: In adult age, hemorrhage-induced acute lung injury manifests with sex-dependent characteristics. Humanin-G has therapeutic potential and the AMPKα1subunit is an important requisite for its inhibitory effects on lung leucosequestration, but not for the amelioration of lung alveolar structure or the hemodynamic effects of the peptide.
Collapse
Affiliation(s)
- Allison M. Amman
- Department of Surgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA;
| | - Vivian Wolfe
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; (V.W.); (G.P.)
| | - Giovanna Piraino
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; (V.W.); (G.P.)
| | - Assem Ziady
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Bone Marrow Transplantation & Immune Deficiency, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA;
| | - Basilia Zingarelli
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; (V.W.); (G.P.)
| |
Collapse
|
7
|
Shi Q, Xiao Z, Cai W, Chen Y, Liang H, Ye Z, Li Z, Liang X. Quantitative proteomics analysis reveals the protective role of S14G-humanin in septic acute kidney injury using 4D-label-free and PRM Approaches. Biochem Biophys Res Commun 2024; 733:150630. [PMID: 39332154 DOI: 10.1016/j.bbrc.2024.150630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/29/2024]
Abstract
Mitochondrial dysfunction contributes to septic acute kidney injury (S-AKI), making mitochondrial protection a potential therapeutic strategy. This study investigates the effects of S14G-humanin (HNG) in S-AKI, utilizing 4D-label-free and parallel reaction monitoring (PRM) techniques for proteomic analysis. An S-AKI model was created in male C57BL/6 mice using lipopolysaccharide (LPS) injection, followed by HNG administration. After 24 h, kidney tissues were analyzed for histology, biochemistry, mitochondrial function, and proteomics. HNG treatment improved renal function, reduced tubular injury, and decreased pro-inflammatory cytokines and oxidative stress markers. Proteomic analysis identified 5900 proteins, with 5111 quantifiable. HNG altered the expression of 132 proteins, with 18 selected for PRM validation. Ten of these proteins were linked to key pathways, including fatty acid degradation and PPAR signaling. This study is the first to show HNG's protective effects in S-AKI, providing insights into its mechanisms through advanced proteomic techniques.
Collapse
Affiliation(s)
- Qingying Shi
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106th, Zhongshan Road II, Guangzhou, 510080, China
| | - Zhenmeng Xiao
- Blood Purification Center, the People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, 450003, China
| | - Wenjing Cai
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106th, Zhongshan Road II, Guangzhou, 510080, China
| | - Yuanhan Chen
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106th, Zhongshan Road II, Guangzhou, 510080, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, 106th, Zhongshan Road II, Guangzhou, 510080, China
| | - Huaban Liang
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106th, Zhongshan Road II, Guangzhou, 510080, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, 106th, Zhongshan Road II, Guangzhou, 510080, China
| | - Zhiming Ye
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106th, Zhongshan Road II, Guangzhou, 510080, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, 106th, Zhongshan Road II, Guangzhou, 510080, China
| | - Zhilian Li
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106th, Zhongshan Road II, Guangzhou, 510080, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, 106th, Zhongshan Road II, Guangzhou, 510080, China.
| | - Xinling Liang
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106th, Zhongshan Road II, Guangzhou, 510080, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, 106th, Zhongshan Road II, Guangzhou, 510080, China.
| |
Collapse
|
8
|
Li Y, Li Z, Ren Y, Lei Y, Yang S, Shi Y, Peng H, Yang W, Guo T, Yu Y, Xiong Y. Mitochondrial-derived peptides in cardiovascular disease: Novel insights and therapeutic opportunities. J Adv Res 2024; 64:99-115. [PMID: 38008175 PMCID: PMC11464474 DOI: 10.1016/j.jare.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Mitochondria-derived peptides (MDPs) represent a recently discovered family of peptides encoded by short open reading frames (ORFs) found within mitochondrial genes. This group includes notable members including humanin (HN), mitochondrial ORF of the 12S rDNA type-c (MOTS-c), and small humanin-like peptides 1-6 (SHLP1-6). MDPs assume pivotal roles in the regulation of diverse cellular processes, encompassing apoptosis, inflammation, and oxidative stress, which are all essential for sustaining cellular viability and normal physiological functions. Their emerging significance extends beyond this, prompting a deeper exploration into their multifaceted roles and potential applications. AIM OF REVIEW This review aims to comprehensively explore the biogenesis, various types, and diverse functions of MDPs. It seeks to elucidate the central roles and underlying mechanisms by which MDPs participate in the onset and development of cardiovascular diseases (CVDs), bridging the connections between cell apoptosis, inflammation, and oxidative stress. Furthermore, the review highlights recent advancements in clinical research related to the utilization of MDPs in CVD diagnosis and treatment. KEY SCIENTIFIC CONCEPTS OF REVIEW MDPs levels are diminished with aging and in the presence of CVDs, rendering them potential new indicators for the diagnosis of CVDs. Also, MDPs may represent a novel and promising strategy for CVD therapy. In this review, we delve into the biogenesis, various types, and diverse functions of MDPs. We aim to shed light on the pivotal roles and the underlying mechanisms through which MDPs contribute to the onset and advancement of CVDs connecting cell apoptosis, inflammation, and oxidative stress. We also provide insights into the current advancements in clinical research related to the utilization of MDPs in the treatment of CVDs. This review may provide valuable information with MDPs for CVD diagnosis and treatment.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Zhuozhuo Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Yuanyuan Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Ying Lei
- School of Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Silong Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Yuqi Shi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Han Peng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Weijie Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Tiantian Guo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Yi Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China; School of Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China.
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, 710018 Xi'an, Shaanxi, PR China.
| |
Collapse
|
9
|
Ha CP, Hua TNM, Vo VTA, Om J, Han S, Cha SK, Park KS, Jeong Y. Humanin activates integrin αV-TGFβ axis and leads to glioblastoma progression. Cell Death Dis 2024; 15:464. [PMID: 38942749 PMCID: PMC11213926 DOI: 10.1038/s41419-024-06790-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/30/2024]
Abstract
The role of mitochondria peptides in the spreading of glioblastoma remains poorly understood. In this study, we investigated the mechanism underlying intracranial glioblastoma progression. Our findings demonstrate that the mitochondria-derived peptide, humanin, plays a significant role in enhancing glioblastoma progression through the intratumoral activation of the integrin alpha V (ITGAV)-TGF beta (TGFβ) signaling axis. In glioblastoma tissues, humanin showed a significant upregulation in the tumor area compared to the corresponding normal region. Utilizing multiple in vitro pharmacological and genetic approaches, we observed that humanin activates the ITGAV pathway, leading to cellular attachment and filopodia formation. This process aids the subsequent migration and invasion of attached glioblastoma cells through intracellular TGFβR signaling activation. In addition, our in vivo orthotopic glioblastoma model provides further support for the pro-tumoral function of humanin. We observed a correlation between poor survival and aggressive invasiveness in the humanin-treated group, with noticeable tumor protrusions and induced angiogenesis compared to the control. Intriguingly, the in vivo effect of humanin on glioblastoma was significantly reduced by the treatment of TGFBR1 inhibitor. To strengthen these findings, public database analysis revealed a significant association between genes in the ITGAV-TGFβR axis and poor prognosis in glioblastoma patients. These results collectively highlight humanin as a pro-tumoral factor, making it a promising biological target for treating glioblastoma.
Collapse
Affiliation(s)
- Cuong P Ha
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
| | - Tuyen N M Hua
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Department of Pharmacology - Clinical Pharmacy, Faculty of Pharmacy, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Vu T A Vo
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
| | - Jiyeon Om
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
| | - Sangwon Han
- Department of Ophthalmology, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
| | - Seung-Kuy Cha
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Institutes of Lifestyle Medicine, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Mitochondrial Medicine, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
| | - Kyu-Sang Park
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Institutes of Lifestyle Medicine, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Mitochondrial Medicine, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
| | - Yangsik Jeong
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Institutes of Lifestyle Medicine, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Mitochondrial Medicine, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
| |
Collapse
|
10
|
Atakan MM, Türkel İ, Özerkliğ B, Koşar ŞN, Taylor DF, Yan X, Bishop DJ. Small peptides: could they have a big role in metabolism and the response to exercise? J Physiol 2024; 602:545-568. [PMID: 38196325 DOI: 10.1113/jp283214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024] Open
Abstract
Exercise is a powerful non-pharmacological intervention for the treatment and prevention of numerous chronic diseases. Contracting skeletal muscles provoke widespread perturbations in numerous cells, tissues and organs, which stimulate multiple integrated adaptations that ultimately contribute to the many health benefits associated with regular exercise. Despite much research, the molecular mechanisms driving such changes are not completely resolved. Technological advancements beginning in the early 1960s have opened new avenues to explore the mechanisms responsible for the many beneficial adaptations to exercise. This has led to increased research into the role of small peptides (<100 amino acids) and mitochondrially derived peptides in metabolism and disease, including those coded within small open reading frames (sORFs; coding sequences that encode small peptides). Recently, it has been hypothesized that sORF-encoded mitochondrially derived peptides and other small peptides play significant roles as exercise-sensitive peptides in exercise-induced physiological adaptation. In this review, we highlight the discovery of mitochondrially derived peptides and newly discovered small peptides involved in metabolism, with a specific emphasis on their functions in exercise-induced adaptations and the prevention of metabolic diseases. In light of the few studies available, we also present data on how both single exercise sessions and exercise training affect expression of sORF-encoded mitochondrially derived peptides. Finally, we outline numerous research questions that await investigation regarding the roles of mitochondrially derived peptides in metabolism and prevention of various diseases, in addition to their roles in exercise-induced physiological adaptations, for future studies.
Collapse
Affiliation(s)
- Muhammed M Atakan
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - İbrahim Türkel
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Berkay Özerkliğ
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Şükran N Koşar
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Dale F Taylor
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - Xu Yan
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
- Sarcopenia Research Program, Australia Institute for Musculoskeletal Sciences (AIMSS), Melbourne, Victoria, Australia
| | - David J Bishop
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Kal S, Mahata S, Jati S, Mahata SK. Mitochondrial-derived peptides: Antidiabetic functions and evolutionary perspectives. Peptides 2024; 172:171147. [PMID: 38160808 PMCID: PMC10838678 DOI: 10.1016/j.peptides.2023.171147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Mitochondrial-derived peptides (MDPs) are a novel class of bioactive microproteins encoded by short open-reading frames (sORF) in mitochondrial DNA (mtDNA). Currently, three types of MDPs have been identified: Humanin (HN), MOTS-c (Mitochondrial ORF within Twelve S rRNA type-c), and SHLP1-6 (small Humanin-like peptide, 1 to 6). The 12 S ribosomal RNA (MT-RNR1) gene harbors the sequence for MOTS-c, whereas HN and SHLP1-6 are encoded by the 16 S ribosomal RNA (MT-RNR2) gene. Special genetic codes are used in mtDNA as compared to nuclear DNA: (i) ATA and ATT are used as start codons in addition to the standard start codon ATG; (ii) AGA and AGG are used as stop codons instead of coding for arginine; (iii) the standard stop codon UGA is used to code for tryptophan. While HN, SHLP6, and MOTS-c are encoded by the H (heavy owing to high guanine + thymine base composition)-strand of the mtDNA, SHLP1-5 are encoded by the L (light owing to less guanine + thymine base composition)-strand. MDPs attenuate disease pathology including Type 1 diabetes (T1D), Type 2 diabetes (T2D), gestational diabetes, Alzheimer's disease (AD), cardiovascular diseases, prostate cancer, and macular degeneration. The current review will focus on the MDP regulation of T2D, T1D, and gestational diabetes along with an emphasis on the evolutionary pressures for conservation of the amino acid sequences of MDPs.
Collapse
Affiliation(s)
- Satadeepa Kal
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sumana Mahata
- Department of Anesthesiology, Riverside University Health System, Moreno Valley, CA, USA
| | - Suborno Jati
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Sushil K Mahata
- Department of Medicine, University of California San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
12
|
Zhao Y, Mäkitie O, Laakso S, Fedosova V, Sävendahl L, Zaman F. A novel link between chronic inflammation and humanin regulation in children. Front Endocrinol (Lausanne) 2024; 14:1142310. [PMID: 38322155 PMCID: PMC10844658 DOI: 10.3389/fendo.2023.1142310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 12/14/2023] [Indexed: 02/08/2024] Open
Abstract
Objective Children with inflammatory bowel disease (IBD) often suffer from poor bone growth and impaired bone health. Humanin is a cytoprotective factor expressed in bone and other tissues and we hypothesized that humanin levels are suppressed in conditions of chronic inflammation. To address this, humanin levels were analyzed in serum samples from IBD patients and in ex vivo cultured human growth plate tissue specimens exposed to IBD serum or TNF alone. Methods Humanin levels were measured by ELISA in serum from 40 children with IBD and 40 age-matched healthy controls. Growth plate specimens obtained from children undergoing epiphysiodesis surgery were cultured ex vivo for 48 hours while being exposed to IBD serum or TNF alone. The growth plate samples were then processed for immunohistochemistry staining for humanin, PCNA, SOX9 and TRAF2 expression. Dose-response effect of TNF was studied in the human chondrocytic cell line HCS-2/8. Ex vivo cultured fetal rat metatarsal bones were used to investigate the therapeutic effect of humanin. Results Serum humanin levels were significantly decreased in children with IBD compared to healthy controls. When human growth plate specimens were cultured with IBD serum, humanin expression was significantly suppressed in the growth plate cartilage. When cultured with TNF alone, the expression of humanin, PCNA, SOX9, and TRAF2 were all significantly decreased in the growth plate cartilage. Interestingly, treatment with the humanin analog HNG prevented TNF-induced bone growth impairment in cultured metatarsal bones. Conclusion Our data showing suppressed serum humanin levels in IBD children with poor bone health provides the first evidence for a potential link between chronic inflammation and humanin regulation. Such a link is further supported by the novel finding that serum from IBD patients suppressed humanin expression in ex vivo cultured human growth plates.
Collapse
Affiliation(s)
- Yunhan Zhao
- Department of Women’s and Children’s Health, Karolinska Institutet and Pediatric Endocrinology Unit, Karolinska University Hospital, Solna, Sweden
| | - Outi Mäkitie
- Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Saila Laakso
- Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Vera Fedosova
- Department of Women’s and Children’s Health, Karolinska Institutet and Pediatric Endocrinology Unit, Karolinska University Hospital, Solna, Sweden
| | - Lars Sävendahl
- Department of Women’s and Children’s Health, Karolinska Institutet and Pediatric Endocrinology Unit, Karolinska University Hospital, Solna, Sweden
| | - Farasat Zaman
- Department of Women’s and Children’s Health, Karolinska Institutet and Pediatric Endocrinology Unit, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
13
|
Ansari MA, Chauhan W, Shoaib S, Alyahya SA, Ali M, Ashraf H, Alomary MN, Al-Suhaimi EA. Emerging therapeutic options in the management of diabetes: recent trends, challenges and future directions. Int J Obes (Lond) 2023; 47:1179-1199. [PMID: 37696926 DOI: 10.1038/s41366-023-01369-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/04/2023] [Accepted: 08/17/2023] [Indexed: 09/13/2023]
Abstract
Diabetes is a serious health issue that causes a progressive dysregulation of carbohydrate metabolism due to insufficient insulin hormone, leading to consistently high blood glucose levels. According to the epidemiological data, the prevalence of diabetes has been increasing globally, affecting millions of individuals. It is a long-term condition that increases the risk of various diseases caused by damage to small and large blood vessels. There are two main subtypes of diabetes: type 1 and type 2, with type 2 being the most prevalent. Genetic and molecular studies have identified several genetic variants and metabolic pathways that contribute to the development and progression of diabetes. Current treatments include gene therapy, stem cell therapy, statin therapy, and other drugs. Moreover, recent advancements in therapeutics have also focused on developing novel drugs targeting these pathways, including incretin mimetics, SGLT2 inhibitors, and GLP-1 receptor agonists, which have shown promising results in improving glycemic control and reducing the risk of complications. However, these treatments are often expensive, inaccessible to patients in underdeveloped countries, and can have severe side effects. Peptides, such as glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), are being explored as a potential therapy for diabetes. These peptides are postprandial glucose-dependent pancreatic beta-cell insulin secretagogues and have received much attention as a possible treatment option. Despite these advances, diabetes remains a major health challenge, and further research is needed to develop effective treatments and prevent its complications. This review covers various aspects of diabetes, including epidemiology, genetic and molecular basis, and recent advancements in therapeutics including herbal and synthetic peptides.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia.
| | - Waseem Chauhan
- Department of Hematology, Duke University, Durham, NC, 27710, USA
| | - Shoaib Shoaib
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Sami A Alyahya
- Wellness and Preventive Medicine Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Mubashshir Ali
- USF Health Byrd Alzheimer's Center and Neuroscience Institute, Department of Molecular Medicine, Tampa, FL, USA
| | - Hamid Ashraf
- Rajiv Gandhi Center for Diabetes and Endocrinology, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia.
| | - Ebtesam A Al-Suhaimi
- King Abdulaziz & his Companions Foundation for Giftedness & Creativity, Riyadh, Saudi Arabia.
| |
Collapse
|
14
|
Domingues I, Leclercq IA, Beloqui A. Nonalcoholic fatty liver disease: Current therapies and future perspectives in drug delivery. J Control Release 2023; 363:415-434. [PMID: 37769817 DOI: 10.1016/j.jconrel.2023.09.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 08/27/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) affects approximately 25% of the adult population worldwide. This pathology can progress into end-stage liver disease with life-threatening complications, and yet no pharmacologic therapy has been approved. NAFLD is commonly characterized by excessive fat accumulation in the liver and is in closely associated with insulin resistance and metabolic disorders, which suggests that NAFLD is the hepatic manifestation of metabolic syndrome. Regarding treatment options, the current validated strategy relies on lifestyle modifications (exercise and diet restrictions). Although there are no approved drug-based treatments, several clinical trials are ongoing. Novel targets are being discovered, and the repurposing of drugs that show promising effects in NAFLD is starting to gain more interest. The field of nanotechnology has been growing at an increasing rate, with new and more efficient drug delivery strategies being developed for NAFLD treatment. Nanocarriers can easily encapsulate drugs that need to be better protected from the organism to exert their effect or that need help at reaching their target, thereby helping achieve a better bioavailability. Drug delivery systems can also be designed to target the site of the disease, in this case, the liver. In this review, we focus on the current knowledge of NAFLD pathology, the targets being considered for clinical trials, and the current guidelines and ongoing clinical trials, with a specific focus on potential oral treatments for NAFLD using promising drug delivery strategies.
Collapse
Affiliation(s)
- Inês Domingues
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Group, Avenue Emmanuel Mounier 73, 1200 Brussels, Belgium
| | - Isabelle A Leclercq
- UCLouvain, Université catholique de Louvain, Institute of Experimental and Clinical Research, Laboratory of Hepato-Gastroenterology, Avenue Emmanuel Mounier 53, 1200 Brussels, Belgium.
| | - Ana Beloqui
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Group, Avenue Emmanuel Mounier 73, 1200 Brussels, Belgium; WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium.
| |
Collapse
|
15
|
Lee HI, Turkyilmaz A, Lee MK. Anti-Hyperglycemic Effects of Fermented Mealworm Extract on Type 2 Diabetic Mice. JOURNAL OF THE KOREAN SOCIETY OF FOOD SCIENCE AND NUTRITION 2023; 52:431-436. [DOI: 10.3746/jkfn.2023.52.4.431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 04/21/2025]
Affiliation(s)
- Hae-In Lee
- Department of Food and Nutrition, Sunchon National University
| | - Asli Turkyilmaz
- Department of Food and Nutrition, Sunchon National University
| | - Mi-Kyung Lee
- Department of Food and Nutrition, Sunchon National University
| |
Collapse
|
16
|
Cho W, Choi SW, Oh H, Abd El-Aty AM, Hacimuftuoglu A, Jeong JH, Song JH, Shin YK, Jung TW. Oroxylin-A alleviates hepatic lipid accumulation and apoptosis under hyperlipidemic conditions via AMPK/FGF21 signaling. Biochem Biophys Res Commun 2023; 648:59-65. [PMID: 36736092 DOI: 10.1016/j.bbrc.2023.01.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023]
Abstract
Oroxylin-A (OA) is an O-methylated flavone that has been demonstrated to have anti-inflammatory properties in various disease models. However, the roles of OA in hepatic lipid metabolism and the specific molecular mechanisms by which it exerts these effects are not yet fully understood. In the current study, we aimed to investigate the effects of OA on hepatic lipid deposition and apoptosis, which play a pivotal role in the development of nonalcoholic fatty liver disease (NAFLD) in obesity in vitro models. We found that treatment with OA attenuated lipid accumulation, the expression of lipogenesis-associated proteins and apoptosis in palmitate-treated primary mouse hepatocytes. OA treatment suppressed phosphorylated NFκB and IκB expression in as well as TNFα and MCP-1 release from hepatocytes treated with palmitate. Treatment of hepatocytes with OA augmented AMPK phosphorylation and FGF21 expression. siRNA of AMPK or FGF21 abolished the effects of OA on inflammation as well as lipid accumulation and apoptosis in hepatocytes under palmitate treatment conditions. In conclusion, OA improves inflammation through the AMPK/FGF21 pathway, thereby attenuating lipid accumulation and apoptosis in hepatocytes. This study may help identify new targets for developing treatments for NAFLD.
Collapse
Affiliation(s)
- Wonjun Cho
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Sung Woo Choi
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Heeseung Oh
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, 25240, Turkey.
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, 25240, Turkey; Vaccine Development Application and Research Center, Ataturk University, Erzurum, 25240, Turkey
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Jin-Ho Song
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Yong Kyoo Shin
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Youth versus adult-onset type 2 diabetic kidney disease: Insights into currently known structural differences and the potential underlying mechanisms. Clin Sci (Lond) 2022; 136:1471-1483. [PMID: 36326718 PMCID: PMC10175439 DOI: 10.1042/cs20210627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/22/2022] [Accepted: 09/12/2022] [Indexed: 11/05/2022]
Abstract
Abstract
Type 2 diabetes (T2D) is a global health pandemic with significant humanitarian, economic, and societal implications, particularly for youth and young adults who are experiencing an exponential rise in incident disease. Youth-onset T2D has a more aggressive phenotype than adult-onset T2D, and this translates to important differences in rates of progression of diabetic kidney disease (DKD). We hypothesize that youth-onset DKD due to T2D may exhibit morphometric, metabolic, and molecular characteristics that are distinct from adult-onset T2D and develop secondary to inherent differences in renal energy expenditure and substrate metabolism, resulting in a central metabolic imbalance. Kidney structural changes that are evident at the onset of puberty also serve to exacerbate the organ’s baseline high rates of energy expenditure. Additionally, the physiologic state of insulin resistance seen during puberty increases the risk for kidney disease and is exacerbated by both concurrent diabetes and obesity. A metabolic mismatch in renal energetics may represent a novel target for pharmacologic intervention, both for prevention and treatment of DKD. Further investigation into the underlying molecular mechanisms resulting in DKD in youth-onset T2D using metabolomics and RNA sequencing of kidney tissue obtained at biopsy is necessary to expand our understanding of early DKD and potential targets for therapeutic intervention. Furthermore, large-scale clinical trials evaluating the duration of kidney protective effects of pharmacologic interventions that target a metabolic mismatch in kidney energy expenditure are needed to help mitigate the risk of DKD in youth-onset T2D.
Collapse
|
18
|
Wang SX, Yan JS, Chan YS. Advancements in MAFLD Modeling with Human Cell and Organoid Models. Int J Mol Sci 2022; 23:11850. [PMID: 36233151 PMCID: PMC9569457 DOI: 10.3390/ijms231911850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolic (dysfunction) associated fatty liver disease (MAFLD) is one of the most prevalent liver diseases and has no approved therapeutics. The high failure rates witnessed in late-phase MAFLD drug trials reflect the complexity of the disease, and how the disease develops and progresses remains to be fully understood. In vitro, human disease models play a pivotal role in mechanistic studies to unravel novel disease drivers and in drug testing studies to evaluate human-specific responses. This review focuses on MAFLD disease modeling using human cell and organoid models. The spectrum of patient-derived primary cells and immortalized cell lines employed to model various liver parenchymal and non-parenchymal cell types essential for MAFLD development and progression is discussed. Diverse forms of cell culture platforms utilized to recapitulate tissue-level pathophysiology in different stages of the disease are also reviewed.
Collapse
Affiliation(s)
- Shi-Xiang Wang
- Guangzhou Laboratory, No. 9 Xing Dao Huan Bei Road, Guangzhou International Bio Island, Guangzhou 510005, China
| | - Ji-Song Yan
- Guangzhou Laboratory, No. 9 Xing Dao Huan Bei Road, Guangzhou International Bio Island, Guangzhou 510005, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Yun-Shen Chan
- Guangzhou Laboratory, No. 9 Xing Dao Huan Bei Road, Guangzhou International Bio Island, Guangzhou 510005, China
| |
Collapse
|
19
|
Yeon Park S, Cho W, Abd El-Aty A, Hacimuftuoglu A, Hoon Jeong J, Woo Jung T. Valdecoxib attenuates lipid-induced hepatic steatosis through autophagy-mediated suppression of endoplasmic reticulum stress. Biochem Pharmacol 2022; 199:115022. [DOI: 10.1016/j.bcp.2022.115022] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/09/2023]
|
20
|
Kim SJ, Devgan A, Miller B, Lee SM, Kumagai H, Wilson KA, Wassef G, Wong R, Mehta HH, Cohen P, Yen K. Humanin-induced autophagy plays important roles in skeletal muscle function and lifespan extension. Biochim Biophys Acta Gen Subj 2022; 1866:130017. [PMID: 34624450 PMCID: PMC8595716 DOI: 10.1016/j.bbagen.2021.130017] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Autophagy, a highly conserved homeostatic mechanism, is essential for cell survival. The decline of autophagy function has been implicated in various diseases as well as aging. Although mitochondria play a key role in the autophagy process, whether mitochondrial-derived peptides are involved in this process has not been explored. METHODS We developed a high through put screening method to identify potential autophagy inducers among mitochondrial-derived peptides. We used three different cell lines, mice, c.elegans, and a human cohort to validate the observation. RESULTS Humanin, a mitochondrial-derived peptide, increases autophagy and maintains autophagy flux in several cell types. Humanin administration increases the expression of autophagy-related genes and lowers accumulation of harmful misfolded proteins in mice skeletal muscle, suggesting that humanin-induced autophagy potentially contributes to the improved skeletal function. Moreover, autophagy is a critical role in humanin-induced lifespan extension in C. elegans. CONCLUSIONS Humanin is an autophagy inducer. GENERAL SIGNIFICANCE This paper presents a significant, novel discovery regarding the role of the mitochondrial derived peptide humanin in autophagy regulation and as a possible therapeutic target for autophagy in various age-related diseases.
Collapse
Affiliation(s)
- Su-Jeong Kim
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Anjali Devgan
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Brendan Miller
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Sam Mool Lee
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Hiroshi Kumagai
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | | | - Gabriella Wassef
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Richard Wong
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Hemal H Mehta
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Pinchas Cohen
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| | - Kelvin Yen
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
21
|
Urban C, Hayes HV, Piraino G, Wolfe V, Lahni P, O'Connor M, Phares C, Zingarelli B. Colivelin, a synthetic derivative of humanin, ameliorates endothelial injury and glycocalyx shedding after sepsis in mice. Front Immunol 2022; 13:984298. [PMID: 36119052 PMCID: PMC9478210 DOI: 10.3389/fimmu.2022.984298] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/15/2022] [Indexed: 11/19/2022] Open
Abstract
Endothelial dysfunction plays a central role in the pathogenesis of sepsis-mediated multiple organ failure. Several clinical and experimental studies have suggested that the glycocalyx is an early target of endothelial injury during an infection. Colivelin, a synthetic derivative of the mitochondrial peptide humanin, has displayed cytoprotective effects in oxidative conditions. In the current study, we aimed to determine the potential therapeutic effects of colivelin in endothelial dysfunction and outcomes of sepsis in vivo. Male C57BL/6 mice were subjected to a clinically relevant model of polymicrobial sepsis by cecal ligation and puncture (CLP) and were treated with vehicle or colivelin (100-200 µg/kg) intraperitoneally at 1 h after CLP. We observed that vehicle-treated mice had early elevation of plasma levels of the adhesion molecules ICAM-1 and P-selectin, the angiogenetic factor endoglin and the glycocalyx syndecan-1 at 6 h after CLP when compared to control mice, while levels of angiopoietin-2, a mediator of microvascular disintegration, and the proprotein convertase subtilisin/kexin type 9, an enzyme implicated in clearance of endotoxins, raised at 18 h after CLP. The early elevation of these endothelial and glycocalyx damage biomarkers coincided with lung histological injury and neutrophil inflammation in lung, liver, and kidneys. At transmission electron microscopy analysis, thoracic aortas of septic mice showed increased glycocalyx breakdown and shedding, and damaged mitochondria in endothelial and smooth muscle cells. Treatment with colivelin ameliorated lung architecture, reduced organ neutrophil infiltration, and attenuated plasma levels of syndecan-1, tumor necrosis factor-α, macrophage inflammatory protein-1α and interleukin-10. These therapeutic effects of colivelin were associated with amelioration of glycocalyx density and mitochondrial structure in the aorta. At molecular analysis, colivelin treatment was associated with inhibition of the signal transducer and activator of transcription 3 and activation of the AMP-activated protein kinase in the aorta and lung. In long-term outcomes studies up to 7 days, co-treatment of colivelin with antimicrobial agents significantly reduced the disease severity score when compared to treatment with antibiotics alone. In conclusion, our data support that damage of the glycocalyx is an early pathogenetic event during sepsis and that colivelin may have therapeutic potential for the treatment of sepsis-associated endothelial dysfunction.
Collapse
Affiliation(s)
- Catherine Urban
- Division of Pediatric Critical Care, Stony Brook Children's, Stony Brook University, Stony Brook, NY, United States
| | - Hannah V Hayes
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Giovanna Piraino
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Vivian Wolfe
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Patrick Lahni
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Michael O'Connor
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Ciara Phares
- Department of Systems Biology and Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Basilia Zingarelli
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
22
|
Pyun DH, Kim TJ, Park SY, Lee HJ, Abd El-Aty AM, Jeong JH, Jung TW. Patchouli alcohol ameliorates skeletal muscle insulin resistance and NAFLD via AMPK/SIRT1-mediated suppression of inflammation. Mol Cell Endocrinol 2021; 538:111464. [PMID: 34601002 DOI: 10.1016/j.mce.2021.111464] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 02/06/2023]
Abstract
Obesity-induced chronic low-grade inflammation and thus causes various metabolic diseases, such as insulin resistance and non-alcoholic fatty liver disease (NAFLD). Patchouli alcohol (PA), an active component extracted from patchouli, displayed anti-inflammatory effects on different cell types. However, the impact of PA on skeletal muscle insulin signaling and hepatic lipid metabolism remains unclear. This study aimed to investigate whether PA would affect insulin signaling impairment in myocytes and lipid metabolism in hepatocytes. Treatment with PA ameliorated palmitate-induced inflammation and aggravation of insulin signaling in C2C12 myocytes and lipid accumulation in HepG2 hepatocytes. Treatment of C2C12 myocytes and HepG2 cells with PA augmented AMP-activated protein kinase (AMPK) phosphorylation and Sirtuin 1 (SIRT1) expression in a dose-dependent manner. siRNA-mediated suppression of AMPK or SIRT1 mitigated the effects of PA on palmitate-induced inflammation and insulin resistance in C2C12 myocytes and lipid accumulation in HepG2 cells. Animal experiments demonstrated that PA administration increased AMPK phosphorylation and SIRT1 expression, and ameliorated inflammation, thereby attenuating skeletal muscle insulin resistance and hepatic steatosis in high-fat diet-fed mice. These results denote that PA alleviates skeletal muscle insulin resistance and hepatic steatosis through AMPK/SIRT1-dependent signaling. This study might provide a novel therapeutic approach for treating obesity-related insulin resistance and NAFLD.
Collapse
Affiliation(s)
- Do Hyeon Pyun
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Tae Jin Kim
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Seung Yeon Park
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Hyun Jung Lee
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea; Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey; Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Dabravolski SA, Nikiforov NG, Starodubova AV, Popkova TV, Orekhov AN. The Role of Mitochondria-Derived Peptides in Cardiovascular Diseases and Their Potential as Therapeutic Targets. Int J Mol Sci 2021; 22:ijms22168770. [PMID: 34445477 PMCID: PMC8396025 DOI: 10.3390/ijms22168770] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria-derived peptides (MDPs) are small peptides hidden in the mitochondrial DNA, maintaining mitochondrial function and protecting cells under different stresses. Currently, three types of MDPs have been identified: Humanin, MOTS-c and SHLP1-6. MDPs have demonstrated anti-apoptotic and anti-inflammatory activities, reactive oxygen species and oxidative stress-protecting properties both in vitro and in vivo. Recent research suggests that MDPs have a significant cardioprotective role, affecting CVDs (cardiovascular diseases) development and progression. CVDs are the leading cause of death globally; this term combines disorders of the blood vessels and heart. In this review, we focus on the recent progress in understanding the relationships between MDPs and the main cardiovascular risk factors (atherosclerosis, insulin resistance, hyperlipidaemia and ageing). We also will discuss the therapeutic application of MDPs, modified and synthetic MDPs, and their potential as novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], 7/11 Dovatora Str., 210026 Vitebsk, Belarus
- Correspondence:
| | - Nikita G. Nikiforov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (N.G.N.); (A.N.O.)
- Laboratory of Angiopathology, The Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
| | - Antonina V. Starodubova
- Federal Research Centre for Nutrition, Biotechnology and Food Safety, 2/14 Ustinsky Passage, 109240 Moscow, Russia;
- Therapy Faculty, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, 117997 Moscow, Russia
| | - Tatyana V. Popkova
- V.A. Nasonova Institute of Rheumatology, 34A Kashirskoye Shosse, 115522 Moscow, Russia;
| | - Alexander N. Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (N.G.N.); (A.N.O.)
- Laboratory of Angiopathology, The Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
| |
Collapse
|
24
|
Wang Y, Zeng Z, Zhao S, Tang L, Yan J, Li N, Zou L, Fan X, Xu C, Huang J, Xia W, Zhu C, Rao M. Humanin Alleviates Insulin Resistance in Polycystic Ovary Syndrome: A Human and Rat Model-Based Study. Endocrinology 2021; 162:bqab056. [PMID: 33693742 DOI: 10.1210/endocr/bqab056] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Indexed: 11/19/2022]
Abstract
Polycystic ovary syndrome (PCOS), the most common endocrine disorder in women of reproductive age, is characterized by hyperandrogenism and insulin resistance (IR); however, the pathogenesis of local ovarian IR in PCOS remains largely unclear. Humanin, a mitochondria-derived peptide, has been reported to be associated with IR. Our previous study confirmed that humanin is expressed in multiple cell types in the ovary and is present in follicular fluid. However, it remains unknown whether humanin participates in the pathogenesis of local ovarian IR or whether humanin supplementation can improve IR in PCOS patients. In this study, we compared humanin concentrations in follicular fluid from PCOS patients with and without IR. We further investigated the effect of humanin analogue (HNG) supplementation on IR in a rat model of dehydroepiandrosterone-induced PCOS. Humanin concentrations in the follicular fluid were found to be significantly lower in PCOS patients with IR than in those without IR. HNG supplementation attenuated both the increases in the levels of fasting plasma glucose and fasting insulin in rats with PCOS and the decreases in phosphorylation of IRS1, PI3K, AKT, and GLUT4 proteins in the granulosa cells of these rats. Combined supplementation with HNG and insulin significantly improved glucose consumption in normal and humanin-siRNA-transfected COV434 cells. In conclusion, downregulated humanin in the ovaries may be involved in the pathogenesis of IR in PCOS, and exogenous supplementation with HNG improved local ovarian IR through modulation of the IRS1/PI3K/Akt signaling pathway in a rat model. This finding supports the potential future use of HNG as a therapeutic drug for PCOS.
Collapse
Affiliation(s)
- Yingying Wang
- Reproductive Health Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhengyan Zeng
- Department of General Medicine, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Shuhua Zhao
- Department of Reproduction and Genetics, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Li Tang
- Department of Reproduction and Genetics, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Jin Yan
- Department of Reproduction and Genetics, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Nianyu Li
- Reproductive Health Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liping Zou
- Reproductive Health Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaorong Fan
- Reproductive Health Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chengcheng Xu
- Reproductive Health Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jin Huang
- Reproductive Health Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Xia
- Reproductive Health Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Reproductive Medicine Centre, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Changhong Zhu
- Reproductive Health Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Reproductive Medicine Centre, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meng Rao
- Department of Reproduction and Genetics, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| |
Collapse
|
25
|
Flores-León M, Alcaraz N, Pérez-Domínguez M, Torres-Arciga K, Rebollar-Vega R, De la Rosa-Velázquez IA, Arriaga-Canon C, Herrera LA, Arias C, González-Barrios R. Transcriptional Profiles Reveal Deregulation of Lipid Metabolism and Inflammatory Pathways in Neurons Exposed to Palmitic Acid. Mol Neurobiol 2021; 58:4639-4651. [PMID: 34155583 DOI: 10.1007/s12035-021-02434-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022]
Abstract
The effects of the consumption of high-fat diets (HFD) have been studied to unravel the molecular pathways they are altering in order to understand the link between increased caloric intake, metabolic diseases, and the risk of cognitive dysfunction. The saturated fatty acid, palmitic acid (PA), is the main component of HFD and it has been found increased in the circulation of obese and diabetic people. In the central nervous system, PA has been associated with inflammatory responses in astrocytes, but the effects on neurons exposed to it have not been largely investigated. Given that PA affects a variety of metabolic pathways, we aimed to analyze the transcriptomic profile activated by this fatty acid to shed light on the mechanisms of neuronal dysfunction. In the current study, we profiled the transcriptome response after PA exposition at non-toxic doses in primary hippocampal neurons. Gene ontology and Reactome pathway analysis revealed a pattern of gene expression which is associated with inflammatory pathways, and importantly, with the activation of lipid metabolism that is considered not very active in neurons. Validation by quantitative RT-PCR (qRT-PCR) of Hmgcs2, Angptl4, Ugt8, and Rnf145 support the results obtained by RNAseq. Overall, these findings suggest that neurons are able to respond to saturated fatty acids changing the expression pattern of genes associated with inflammatory response and lipid utilization that may be involved in the neuronal damage associated with metabolic diseases.
Collapse
Affiliation(s)
- M Flores-León
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - N Alcaraz
- The Bioinformatics Centre. Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200, Copenhagen N, Denmark
- Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, Tlalpan, CP 14610, Mexico City, Mexico
| | - M Pérez-Domínguez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - K Torres-Arciga
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - R Rebollar-Vega
- Genomics Laboratory, Red de Apoyo a La Investigación - CIC, Universidad Nacional Autónoma de México, INMCNSZ, Vasco de Quiroga 15, Belisario Domínguez Secc. 16, Tlalpan, 14080, Mexico City, Mexico
| | - I A De la Rosa-Velázquez
- Genomics Laboratory, Red de Apoyo a La Investigación - CIC, Universidad Nacional Autónoma de México, INMCNSZ, Vasco de Quiroga 15, Belisario Domínguez Secc. 16, Tlalpan, 14080, Mexico City, Mexico
- Next Generation Sequencing Core Facility, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr 1, 85754, Neuherberg, Germany
| | - C Arriaga-Canon
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - L A Herrera
- Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, Tlalpan, CP 14610, Mexico City, Mexico
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México.
| | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico.
| |
Collapse
|
26
|
Ahn SH, Lee HJ, Pyun DH, Kim TJ, Abd El-Aty AM, Song JH, Shin YK, Jeong JH, Park ES, Jung TW. Capmatinib attenuates lipogenesis in 3T3-L1 adipocytes through an adenosine monophosphate-activated protein kinase-dependent pathway. Biochem Biophys Res Commun 2021; 553:30-36. [PMID: 33756343 DOI: 10.1016/j.bbrc.2021.03.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/11/2021] [Indexed: 01/01/2023]
Abstract
Recently, there is a rapid increase in the incidence of obesity, a condition for which there are no effective therapeutic agents. Capmatinib (CAP), a novel mesenchymal-to-epithelial transition inhibitor, is reported to attenuate pro-inflammatory mediators and oxidative stress. In this study, the effects of CAP on lipogenesis in the adipocytes were examined. Treatment with CAP dose-dependently suppressed lipid accumulation in, and differentiation of, and increased lipolysis in, 3T3-L1 adipocytes. Additionally, CAP treatment augmented adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and FNDC5 expression in the adipocytes. Transfection with si-AMPK or si-FNDC5 mitigated the CAP-induced suppression of lipogenesis and enhanced lipolysis. Furthermore, transfection with si-FNDC5 mitigated the CAP-induced phosphorylation of AMPK. These results suggest that the anti-obesity effect of CAP is mediated through the irisin/AMPK pathway and that CAP is a novel therapeutic agent for obesity.
Collapse
Affiliation(s)
- Sung Ho Ahn
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Hyun Jung Lee
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea; Department of Anatomy and Cell Biology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Do Hyeon Pyun
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Tae Jin Kim
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey.
| | - Jin-Ho Song
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Yong Kyoo Shin
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea; Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Eon Sub Park
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Kim J, Choi JW, Namkung J. Expression Profile of Mouse Gm20594, Nuclear-Encoded Humanin-Like Gene. J Lifestyle Med 2021; 11:13-22. [PMID: 33763338 PMCID: PMC7957044 DOI: 10.15280/jlm.2021.11.1.13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/29/2020] [Indexed: 12/21/2022] Open
Abstract
Background Mitochondrial-derived peptides (MDPs) such as MOTS-c and humanin have been studied for their cytoprotective functions. In mice, humanin-encoding Mtrnr2 is a mitochondrial pseudogene, and the humanin-like peptide is encoded by the nuclear Gm20594 gene. However, endogenous tissue-specific expression profiles of Gm20594 have not yet been identified. Methods Mtrnr1 and Gm20594 expression was profiled via reverse transcription using only oligo(dT) primers from tissues of C57BL6/J mice. To analyze altered expression upon mitochondrial biogenesis, C2C12 myocytes and brown adipocytes were differentiated. Mitochondrial DNA copy numbers were quantified for normalization. Results Both Mtrnr1 and Gm20594 were highly expressed in brown adipose tissue. When normalized against mitochondrial content, Mtrnr1 was identified as being highly expressed in the duodenum, followed by the jejunum. In models of mitochondrial biogenesis, both Mtrnr1 and Gm20594 were upregulated during myocyte and brown adipocyte differentiation. Increased Mtrnr1 expression during brown adipocyte differentiation remained significant after normalization against mitochondrial DNA copy number, whereas myocyte differentiation exhibited biphasic upregulation and downregulation in early and late phases, respectively. Conclusion Nuclear-encoded Gm20594 showed similar expression patterns of mitochondrial-encoded Mtrnr1. Brown adipose tissue presented the highest basal expression levels of Gm20594 and Mtrnr1. When normalized against mitochondrial DNA copy number, gut tissues exhibited the highest expression of Mtrnr1. Upregulation of Mtrnr1 during mitochondrial biogenesis is independent of mitochondrial content.
Collapse
Affiliation(s)
- Jihye Kim
- Department of Biochemistry, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jong-Whan Choi
- Department of Biochemistry, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jun Namkung
- Department of Biochemistry, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
28
|
Wu Y, Sun L, Zhuang Z, Hu X, Dong D. Mitochondrial-Derived Peptides in Diabetes and Its Complications. Front Endocrinol (Lausanne) 2021; 12:808120. [PMID: 35185787 PMCID: PMC8851315 DOI: 10.3389/fendo.2021.808120] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022] Open
Abstract
The changes of mitochondrial function are closely related to diabetes and its complications. Here we describe the effects of mitochondrial-derived peptides (MDPs), short peptides formed by transcription and translation of the open reading frame site in human mitochondrial DNA (mtDNA), on diabetes and its complications. We mainly focus on MDPs that have been discovered so far, such as Humanin (HN), mitochondrial open reading frame of the 12S rRNA-c (MOTS-c) and Small humanin-like peptides (SHLP 1-6), and elucidated the role of MDPs in diabetes and its major complications stroke and myocardial infarction by improving insulin resistance, inhibiting inflammatory response and anti-apoptosis. It provides more possibilities for the clinical application of mitochondrial derived peptides.
Collapse
Affiliation(s)
- Ying Wu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Liankun Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zhoudao Zhuang
- Clinical Medical College of Jilin University, The First Hospital of Jilin University, Changchun, China
| | - Xiaoqing Hu
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Xiaoqing Hu, ; Delu Dong,
| | - Delu Dong
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
- *Correspondence: Xiaoqing Hu, ; Delu Dong,
| |
Collapse
|
29
|
Cai H, Liu Y, Men H, Zheng Y. Protective Mechanism of Humanin Against Oxidative Stress in Aging-Related Cardiovascular Diseases. Front Endocrinol (Lausanne) 2021; 12:683151. [PMID: 34177809 PMCID: PMC8222669 DOI: 10.3389/fendo.2021.683151] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Physiological reactive oxygen species (ROS) are important regulators of intercellular signal transduction. Oxidative and antioxidation systems maintain a dynamic balance under physiological conditions. Increases in ROS levels destroy the dynamic balance, leading to oxidative stress damage. Oxidative stress is involved in the pathogenesis of aging-related cardiovascular diseases (ACVD), such as atherosclerosis, myocardial infarction, and heart failure, by contributing to apoptosis, hypertrophy, and fibrosis. Oxidative phosphorylation in mitochondria is the main source of ROS. Increasing evidence demonstrates the relationship between ACVD and humanin (HN), an endogenous peptide encoded by mitochondrial DNA. HN protects cardiomyocytes, endothelial cells, and fibroblasts from oxidative stress, highlighting its protective role in atherosclerosis, ischemia-reperfusion injury, and heart failure. Herein, we reviewed the signaling pathways associated with the HN effects on redox signals, including Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2), chaperone-mediated autophagy (CMA), c-jun NH2 terminal kinase (JNK)/p38 mitogen-activated protein kinase (p38 MAPK), adenosine monophosphate-activated protein kinase (AMPK), and phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)-Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3). Furthermore, we discussed the relationship among HN, redox signaling pathways, and ACVD. Finally, we propose that HN may be a candidate drug for ACVD.
Collapse
|
30
|
Hazafa A, Batool A, Ahmad S, Amjad M, Chaudhry SN, Asad J, Ghuman HF, Khan HM, Naeem M, Ghani U. Humanin: A mitochondrial-derived peptide in the treatment of apoptosis-related diseases. Life Sci 2021; 264:118679. [PMID: 33130077 DOI: 10.1016/j.lfs.2020.118679] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/19/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023]
Abstract
Humanin (HN) is a small mitochondrial-derived cytoprotective polypeptide encoded by mtDNA. HN exhibits protective effects in several cell types, including leukocytes, germ cells, neurons, tissues against cellular stress conditions and apoptosis through regulating various signaling mechanisms, such as JAK/STAT pathway and interaction of BCL-2 family of protein. HN is an essential cytoprotective peptide in the human body that regulates mitochondrial functions under stress conditions. The present review aims to evaluate HN peptide's antiapoptotic activities as a potential therapeutic target in the treatment of cancer, diabetes mellitus, male infertility, bone-related diseases, cardiac diseases, and brain diseases. Based on in vitro and in vivo studies, HN significantly suppressed the apoptosis during the treatment of bone osteoporosis, cardiovascular diseases, diabetes mellitus, and neurodegenerative diseases. According to accumulated data, it is concluded that HN exerts the proapoptotic activity of TNF-α in cancer, which makes HN as a novel therapeutic agent in the treatment of cancer and suggested that along with HN, the development of another mitochondrial-derived peptide could be a viable therapeutic option against different oxidative stress and apoptosis-related diseases.
Collapse
Affiliation(s)
- Abu Hazafa
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Ammara Batool
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Saeed Ahmad
- Centre of Biotechnology & Microbiology, University of Peshawar, Pakistan
| | - Muhammad Amjad
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Sundas Nasir Chaudhry
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Jamal Asad
- Department of Biochemistry, University of Health Sciences Lahore, Pakistan
| | - Hasham Feroz Ghuman
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | | | - Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Usman Ghani
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
31
|
Effects of Bitter Melon Saponin on the Glucose and Lipid Metabolism in HepG2 Cell and C. elegans. J FOOD QUALITY 2020. [DOI: 10.1155/2020/8860356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
This study tried to explore how saponins from bitter melon (BMS) affect the glucose and lipid metabolism in palmitic acid-treated HepG2 cell and glucose-treated Caenorhabditis elegans (C. elegans). Results showed that BMS could effectively accelerate glucose consumption and elevate the levels of glycogen and ATP in palmitic acid-treated HepG2 cell, while significantly decreasing the triglyceride (TG) content. qRT-PCR data indicated that BMS might promote fatty acid β-oxidation by AMPK-ACC2-CPT1 pathway and glucose uptake by upregulating GLUT4 expression. In the model of glucose-treated C. elegans, we observed that BMS obviously inhibited fat accumulation, along with no toxicity towards some physical activities. The potential mechanism of BMS in the metabolism involved the suppression of synthesis of polyunsaturated fatty acids and enhancement of fatty acid β-oxidation. Taken together, BMS exhibited ability of regulating energy metabolism in HepG2 cell line and C. elegans.
Collapse
|