1
|
Meng Y, Zhou Q, Dian Y, Zeng F, Deng G, Chen X. Ferroptosis: A Targetable Vulnerability for Melanoma Treatment. J Invest Dermatol 2025; 145:1323-1344. [PMID: 39797894 DOI: 10.1016/j.jid.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 01/13/2025]
Abstract
Melanoma is a devastating form of skin cancer characterized by a high mutational burden, limited treatment success, and dismal prognosis. Although immunotherapy and targeted therapies have significantly revolutionized melanoma treatment, the majority of patients fail to achieve durable responses, highlighting the urgent need for novel therapeutic strategies. Ferroptosis, an iron-dependent form of regulated cell death driven by the overwhelming accumulation of lipid peroxides, has emerged as a promising therapeutic approach in preclinical melanoma models. A deeper understanding of the ferroptosis landscape in melanoma based on its biology characteristics, including phenotypic plasticity, metabolic state, genomic alterations, and epigenetic changes, as well as the complex role and mechanisms of ferroptosis in immune cells could provide a foundation for developing effective treatments. In this review, we outline the molecular mechanisms of ferroptosis, decipher the role of melanoma biology in ferroptosis regulation, reveal the therapeutic potential of ferroptosis in melanoma, and discuss the pressing questions that should guide future investigations into ferroptosis in melanoma.
Collapse
Affiliation(s)
- Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Qian Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Yating Dian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| |
Collapse
|
2
|
Sutanto H, Pratiwi L, Fetarayani D. Exploring Ferroptosis in Allergic Inflammatory Diseases: Emerging Mechanisms and Therapeutic Perspectives. Cell Biol Int 2025. [PMID: 40260476 DOI: 10.1002/cbin.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/29/2025] [Accepted: 04/11/2025] [Indexed: 04/23/2025]
Abstract
Ferroptosis, a unique form of regulated cell death driven by iron accumulation and lipid peroxidation, has emerged as a critical process in various diseases. Recent evidence suggests its involvement in the pathogenesis of allergic diseases, including asthma, allergic rhinitis, and atopic dermatitis. These conditions are characterized by chronic inflammation, oxidative stress, and immune dysregulation, all of which intersect with the molecular mechanisms of ferroptosis. Key regulators, such as glutathione peroxidase 4 (GPX4), the cystine/glutamate antiporter system Xc-, and iron metabolism pathways, play pivotal roles in ferroptotic processes and their contribution to allergic disease progression. This review explores the mechanistic link between ferroptosis and allergic diseases, emphasizing how oxidative damage and iron overload exacerbate inflammation and tissue injury. We also highlight emerging diagnostic biomarkers, including lipid peroxidation products and iron regulators, which could improve disease monitoring and stratification. Therapeutic strategies targeting ferroptosis, such as GPX4 activators, iron chelators, and lipid peroxidation inhibitors, show promise in preclinical\ studies, offering potential new avenues for treating allergic diseases. However, challenges remain in translating these findings into clinical applications. By integrating current knowledge, this review underscores the need for further research into ferroptosis as both a biomarker and therapeutic target in allergic diseases.
Collapse
Affiliation(s)
- Henry Sutanto
- Internal Medicine Study Program, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Laras Pratiwi
- Internal Medicine Study Program, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Deasy Fetarayani
- Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
3
|
Jinson S, Zhang Z, Lancaster GI, Murphy AJ, Morgan PK. Iron, lipid peroxidation, and ferroptosis play pathogenic roles in atherosclerosis. Cardiovasc Res 2025; 121:44-61. [PMID: 39739567 DOI: 10.1093/cvr/cvae270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/22/2024] [Accepted: 12/05/2024] [Indexed: 01/02/2025] Open
Abstract
Oxidation of lipids, excessive cell death, and iron deposition are prominent features of human atherosclerotic plaques. While extensive research has established the detrimental roles of lipid oxidation and apoptosis in atherosclerosis development, the involvement of iron in atherogenesis is not yet fully understood. With the emergence of an iron-dependent form of cell death termed ferroptosis, new attention has been brought to the complex inter-play among iron, ferroptosis, and atherosclerosis. Mechanistically, ferroptosis is caused by the lethal accumulation of iron-mediated lipid peroxides. Emerging studies have underscored ferroptosis as a contributor to worsened atherosclerosis. Herein, we review the evidence that oxidative damage and iron overload in the context of atherosclerosis may promote ferroptosis within plaques. Furthermore, we summarize recent findings of lipid peroxidation, thereby potentially ferroptosis, in various plaque cell types-such as endothelial cells, macrophages, dendritic cells, T cells, and vascular smooth muscle cells-across different stages of atherosclerosis. Understanding how these processes influence atherosclerotic plaque progression may permit targeting stage-dependent ferroptosis in each cell population and could provide a rationale for developing cell type-specific intervention strategies to mitigate atherogenic ferroptosis effectively.
Collapse
Affiliation(s)
- Swetha Jinson
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Ziyang Zhang
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Graeme I Lancaster
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Andrew J Murphy
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Pooranee K Morgan
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| |
Collapse
|
4
|
Lu L, Wang L, Yang M, Wang H. Role of METTL16 in PPARγ methylation and osteogenic differentiation. Cell Death Dis 2025; 16:271. [PMID: 40210616 PMCID: PMC11986173 DOI: 10.1038/s41419-025-07527-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 02/11/2025] [Accepted: 03/12/2025] [Indexed: 04/12/2025]
Abstract
Osteoporosis, a prevalent bone disease, is characterized by the deterioration of bone tissue microstructure and imbalanced osteogenesis. The regulatory role of PPARγ m6A methylation mediated by METTL16 remains poorly elucidated. This study utilized advanced single-cell RNA sequencing (scRNA-seq) and Bulk RNA-seq techniques to explore how METTL16 influences the osteogenic differentiation of Bone Marrow-Derived Mesenchymal Stem Cells (BMSCs) and its implication in osteoporosis. The research revealed that METTL16 enhances the suppression of osteogenic differentiation in BMSCs, while PPARγ is associated with BMSC ferroptosis. Mechanistically, METTL16 facilitates the m6A modification of PPARγ transcription, thereby promoting ferroptosis in BMSCs and impeding their osteogenic differentiation. The in vivo animal experiments confirmed the pivotal role of the METTL16-PPARγ axis in osteoporosis development in mice. These findings suggest that the regulation of PPARγ m6A methylation by METTL16, leading to ferroptosis, is a critical mechanism impacting BMSC osteogenic differentiation and the pathogenesis of osteoporosis.
Collapse
Affiliation(s)
- Liangjie Lu
- Department of Orthopedics, Ningbo Medical Center Li Huili Hospital, Li Huili Hospital Affiliated to Ningbo University, Ningbo, China.
| | - Lijun Wang
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Minjie Yang
- Department of Orthopaedics, Jiu jiang NO.1 People's Hospital, Jiu jiang, China
| | - Huihan Wang
- Department of Orthopaedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Song X, Zhou Z, Liu J, Li J, Yu C, Zeh HJ, Klionsky DJ, Stockwell BR, Wang J, Kang R, Kroemer G, Tang D. Cytosolic cytochrome c represses ferroptosis. Cell Metab 2025:S1550-4131(25)00149-4. [PMID: 40233758 DOI: 10.1016/j.cmet.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/08/2025] [Accepted: 03/20/2025] [Indexed: 04/17/2025]
Abstract
The release of cytochrome c, somatic (CYCS) from mitochondria to the cytosol is an established trigger of caspase-dependent apoptosis. Here, we unveil an unexpected role for cytosolic CYCS in inhibiting ferroptosis-a form of oxidative cell death driven by uncontrolled lipid peroxidation. Mass spectrometry and site-directed mutagenesis revealed the existence of a cytosolic complex composed of inositol polyphosphate-4-phosphatase type I A (INPP4A) and CYCS. This CYCS-INPP4A complex is distinct from the CYCS-apoptotic peptidase activating factor 1 (APAF1)-caspase-9 apoptosome formed during mitochondrial apoptosis. CYCS boosts INPP4A activity, leading to increased formation of phosphatidylinositol-3-phosphate, which prevents phospholipid peroxidation and plasma membrane rupture, thus averting ferroptotic cell death. Unbiased screening led to the identification of the small-molecule compound 10A3, which disrupts the CYCS-INPP4A interaction. 10A3 sensitized cultured cells and tumors implanted in immunocompetent mice to ferroptosis. Collectively, these findings redefine our understanding of cytosolic CYCS complexes that govern diverse cell death pathways.
Collapse
Affiliation(s)
- Xinxin Song
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhuan Zhou
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China; Department of Critical Care Medicine, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Jingbo Li
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chunhua Yu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Herbert J Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brent R Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94800 Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France.
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
6
|
Wang L, ChenLiu Z, Wang D, Tang D. Cross-talks of GSH, mitochondria, RNA m6A modification, NRF2, and p53 between ferroptosis and cuproptosis in HCC: A review. Int J Biol Macromol 2025; 302:140523. [PMID: 39894098 DOI: 10.1016/j.ijbiomac.2025.140523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor with high morbidity and mortality, as well as poor prognosis. Therefore, it is imperative to explore alternative therapeutic targets for HCC treatment. Ferroptosis and cuproptosis have recently been identified as metal-dependent cell death mechanisms that play significant roles in HCC treatment. This study identified potential cross-talk between ferroptosis and cuproptosis, including the common hub glutathione, common site of occurrence, mitochondria, shared epigenetic modification mode, RNA N6 methyladenosine modification, mutual inhibitor, nuclear factor erythroid 2-related factor 2, and dual regulator, p53. These findings provide a theoretical foundation for the joint induction of HCC cell death and effective inhibition of HCC progression. However, some immune cells are susceptible to ferroptosis or cuproptosis, which may impair or enhance anti-cancer immune function. We propose strategies to target specific targets molecules such as tripartite motif containing 25, ferroptosis suppressor protein 1, and peroxisome proliferator-activated receptor gamma or exploit the unique acidic environment surrounding cancer cells to precisely induce ferroptosis in cancer cells. This approach aims to advance the development of precision medicine for HCC treatment.
Collapse
Affiliation(s)
- Leihan Wang
- Clinical Medical College, Yangzhou University, Yangzhou 225000, People's Republic of China
| | - Zhenni ChenLiu
- Clinical Medical College, Yangzhou University, Yangzhou 225000, People's Republic of China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Northern Jiangsu People's Hospital, The Yangzhou Clinical Medical College of Xuzhou Medical University, The Yangzhou School of Clinical Medicine of Dalian Medical University, The Yangzhou School of Clinical Medicine of Nanjing Medical University, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou 225000, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Northern Jiangsu People's Hospital, The Yangzhou Clinical Medical College of Xuzhou Medical University, The Yangzhou School of Clinical Medicine of Dalian Medical University, The Yangzhou School of Clinical Medicine of Nanjing Medical University, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou 225000, China.
| |
Collapse
|
7
|
Lan J, Cai D, Gou S, Bai Y, Lei H, Li Y, Chen Y, Zhao Y, Shen J, Wu X, Li M, Chen M, Li X, Sun Y, Gu L, Li W, Wang F, Cho CH, Zhang Y, Zheng X, Xiao Z, Du F. The dynamic role of ferroptosis in cancer immunoediting: Implications for immunotherapy. Pharmacol Res 2025; 214:107674. [PMID: 40020885 DOI: 10.1016/j.phrs.2025.107674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/14/2025] [Accepted: 02/23/2025] [Indexed: 03/03/2025]
Abstract
Currently, cancer immunotherapy strategies are primarily formulated based on the patient's present condition, representing a "static" treatment approach. However, cancer progression is inherently "dynamic," as the immune environment is not fixed but undergoes continuous changes. This dynamism is characterized by the ongoing interactions between tumor cells and immune cells, which ultimately lead to alterations in the tumor immune microenvironment. This process can be effectively elucidated by the concept of cancer immunoediting, which divides tumor development into three phases: "elimination," "equilibrium," and "escape." Consequently, adjusting immunotherapy regimens based on these distinct phases may enhance patient survival and improve prognosis. Targeting ferroptosis is an emerging area in cancer immunotherapy, and our findings reveal that the antioxidant systems associated with ferroptosis possess dual roles, functioning differently across the three phases of cancer immunoediting. Therefore, this review delve into the dual role of the ferroptosis antioxidant system in tumor development and progression. It also propose immunotherapy strategies targeting ferroptosis at different stages, ultimately aiming to illuminate the significant implications of targeting ferroptosis at various phases for cancer immunotherapy.
Collapse
Affiliation(s)
- Jiarui Lan
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China
| | - Dan Cai
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China
| | - Shuang Gou
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China
| | - Yulin Bai
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China
| | - Huaqing Lei
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China
| | - Yan Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Li Gu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Fang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yan Zhang
- Department of Oncology, Luzhou People's Hospital, Luzhou, Sichuan 646000, China
| | - Xin Zheng
- Department of Oncology, Luzhou People's Hospital, Luzhou, Sichuan 646000, China.
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China.
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China.
| |
Collapse
|
8
|
Duan H, Gao L, Asikaer A, Liu L, Huang K, Shen Y. Prognostic Model Construction of Disulfidptosis-Related Genes and Targeted Anticancer Drug Research in Pancreatic Cancer. Mol Biotechnol 2025; 67:1463-1482. [PMID: 38575817 DOI: 10.1007/s12033-024-01131-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/19/2024] [Indexed: 04/06/2024]
Abstract
Pancreatic cancer stands as one of the most lethal malignancies, characterized by delayed diagnosis, high mortality rates, limited treatment efficacy, and poor prognosis. Disulfidptosis, a recently unveiled modality of cell demise induced by disulfide stress, has emerged as a critical player intricately associated with the onset and progression of various cancer types. It has emerged as a promising candidate biomarker for cancer diagnosis, prognosis assessment, and treatment strategies. In this study, we have effectively established a prognostic risk model for pancreatic cancer by incorporating multiple differentially expressed long non-coding RNAs (DElncRNAs) closely linked to disulfide-driven cell death. Our investigation delved into the nuanced relationship between the DElncRNA-based predictive model for disulfide-driven cell death and the therapeutic responses to anticancer agents. Our findings illuminate that the high-risk subgroup exhibits heightened susceptibility to the small molecule compound AZD1208, positioning it as a prospective therapeutic agent for pancreatic cancer. Finally, we have elucidated the underlying mechanistic potential of AZD1208 in ameliorating pancreatic cancer through its targeted inhibition of the peroxisome proliferator-activated receptor-γ (PPARG) protein, employing an array of comprehensive analytical methods, including molecular docking and molecular dynamics (MD) simulations. This study explores disulfidptosis-related genes, paving the way for the development of targeted therapies for pancreatic cancer and emphasizing their significance in the field of oncology. Furthermore, through computational biology approaches, the drug AZD1208 was identified as a potential treatment targeting the PPARG protein for pancreatic cancer. This discovery opens new avenues for exploring targets and screening drugs for pancreatic cancer.
Collapse
Affiliation(s)
- Hongtao Duan
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, People's Republic of China
| | - Li Gao
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, People's Republic of China
| | - Aiminuer Asikaer
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, People's Republic of China
| | - Lingzhi Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, People's Republic of China
| | - Kuilong Huang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, People's Republic of China
| | - Yan Shen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, People's Republic of China.
| |
Collapse
|
9
|
Liang Y, Zhao Y, Qi Z, Li X, Zhao Y. Ferroptosis: CD8 +T cells' blade to destroy tumor cells or poison for self-destruction. Cell Death Discov 2025; 11:128. [PMID: 40169575 PMCID: PMC11962101 DOI: 10.1038/s41420-025-02415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/19/2025] [Accepted: 03/19/2025] [Indexed: 04/03/2025] Open
Abstract
Ferroptosis represents an emerging, iron-dependent form of cell death driven by lipid peroxidation. In recent years, it has garnered significant attention in the realm of cancer immunotherapy, particularly in studies involving immune checkpoint inhibitors. This form of cell death not only enhances our comprehension of the tumor microenvironment but is also considered a promising therapeutic strategy to address tumor resistance, investigate immune activation mechanisms, and facilitate the development of cancer vaccines. The combination of immunotherapy with ferroptosis provides innovative targets and fresh perspectives for advancing cancer treatment. Nevertheless, tumor cells appear to possess a wider array of ferroptosis evasion strategies compared to CD8+T cells, which have been conclusively shown to be more vulnerable to ferroptosis. Furthermore, ferroptosis in the TME can create a favorable environment for tumor survival and invasion. Under this premise, both inducing tumor cell ferroptosis and inhibiting T cell ferroptosis will impact antitumor immunity to some extent, and even make the final result run counter to our therapeutic purpose. This paper systematically elucidates the dual-edged sword role of ferroptosis in the antitumor process of T cells, briefly outlining the complexity of ferroptosis within the TME. It explores potential side effects associated with ferroptosis-inducing therapies and critically considers the combined application of ferroptosis-based therapies with ICIs. Furthermore, it highlights the current challenges faced by this combined therapeutic approach and points out future directions for development.
Collapse
Affiliation(s)
- Yuan Liang
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Yixin Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhaoyang Qi
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Xinru Li
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Yuguang Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
10
|
Guo D, Cai S, Deng L, Xu W, Fu S, Lin Y, Jiang T, Li Q, Shen Z, Zhang J, Luo P, Tang B, Wang L. Ferroptosis in Pulmonary Disease and Lung Cancer: Molecular Mechanisms, Crosstalk Regulation, and Therapeutic Strategies. MedComm (Beijing) 2025; 6:e70116. [PMID: 39991627 PMCID: PMC11847630 DOI: 10.1002/mco2.70116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 02/25/2025] Open
Abstract
Ferroptosis is a distinct form of iron-dependent programmed cell death characterized primarily by intracellular iron accumulation and lipid peroxidation. Multiple cellular processes, including amino acid metabolism, iron metabolism, lipid metabolism, various signaling pathways, and autophagy, have been demonstrated to influence the induction and progression of ferroptosis. Recent investigations have elucidated that ferroptosis plays a crucial role in the pathogenesis of various pulmonary disorders, including lung injury, chronic obstructive pulmonary disease, pulmonary fibrosis, and asthma. Ferroptosis is increasingly recognized as a promising novel strategy for cancer treatment. Various immune cells within the tumor microenvironment, including CD8+ T cells, macrophages, regulatory T cells, natural killer cells, and dendritic cells, have been shown to induce ferroptosis in tumor cells and modulate the process through the regulation of iron and lipid metabolism pathways. Conversely, ferroptosis can reciprocally alter the metabolic environment, leading to the activation or inhibition of immune cell functions, thereby modulating immune responses. This paper reviews the molecular mechanism of ferroptosis and describes the tumor immune microenvironment, discusses the connection between ferroptosis and the tumor microenvironment in lung cancer and pulmonary diseases, and discusses the development prospect of their interaction in the treatment of lung cancer and pulmonary diseases.
Collapse
Affiliation(s)
- Dandan Guo
- The Department of OncologyFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Songhua Cai
- Department of Thoracic SurgeryNational Cancer CenterNational Clinical Research Center for CancerCancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenGuangdongChina
| | - Lvdan Deng
- The Department of OncologyFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Wangting Xu
- Department of RespiratoryFirst Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Sentao Fu
- The Department of OncologyFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Yaling Lin
- The Department of OncologyFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Tong Jiang
- The Department of OncologyFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Qing Li
- The Department of OncologyFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Zhijun Shen
- The Department of OncologyFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Jian Zhang
- The Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Peng Luo
- The Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Bufu Tang
- Department of Radiation OncologyZhongshan HospitalFudan UniversityShanghaiShanghaiChina
| | - Ling Wang
- The Department of OncologyFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| |
Collapse
|
11
|
Chacon J, Faizuddin F, McKee JC, Sheikh A, Vasquez VM, Gadad SS, Mayer G, Siby S, McCabe M, Dhandayuthapani S. Unlocking the Microbial Symphony: The Interplay of Human Microbiota in Cancer Immunotherapy Response. Cancers (Basel) 2025; 17:813. [PMID: 40075661 PMCID: PMC11899421 DOI: 10.3390/cancers17050813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
INTRODUCTION The emergence of cancer immunotherapy has revolutionized cancer treatment, offering remarkable outcomes for patients across various malignancies. However, the heterogeneous response to immunotherapy underscores the necessity of understanding additional factors influencing treatment efficacy. Among these factors, the human microbiota has garnered significant attention for its potential role in modulating immune response. Body: This review explores the intricate relationship between the human microbiota and cancer immunotherapy, highlighting recent advances and potential mechanisms underlying microbial influence on treatment outcomes. CONCLUSION Insights into the microbiome's impact on immunotherapy response not only deepen our understanding of cancer pathogenesis but also hold promise for personalized therapeutic strategies aimed at optimizing patient outcomes.
Collapse
Affiliation(s)
- Jessica Chacon
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Farah Faizuddin
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Jack C. McKee
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Aadil Sheikh
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Victor M. Vasquez
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Shrikanth S. Gadad
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Ghislaine Mayer
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Sharon Siby
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Molly McCabe
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Subramanian Dhandayuthapani
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
12
|
Zhu Z, Huang Z, Zhang C, Xu B, Chen H, Pei S, Zhang B, Jie L, Shi X, Liu Y, Li Y, Shen X. Gallic acid protects intervertebral disc cells from ferroptosis and alleviates intervertebral disc degeneration by regulating key factors of oxidative stress. Front Pharmacol 2025; 16:1501725. [PMID: 39963245 PMCID: PMC11830718 DOI: 10.3389/fphar.2025.1501725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/17/2025] [Indexed: 02/20/2025] Open
Abstract
Background Intervertebral disc degeneration (IDD) is a chronic degenerative disease and one of the main causes of low back pain (LBP). Currently, there is no effective treatment. Ferroptosis is a cell-regulated process that depends on iron deposition and lipid peroxidation. Inhibiting ferroptosis in nucleus pulposus cells is considered a potential strategy for the treatment of IDD. Gallic acid (GA) is naturally present in a variety of plants and has anti-inflammatory, antioxidant and analgesic effects. It has been shown to alleviate ferroptosis. However, the role of GA in IDD ferroptosis remains unclear. Methods This study explored the pathological mechanism of GA in IDD in relation to ferroptosis: (1) to identify ferroptosis-related targets for GA treatment of IDD using network pharmacology and molecular docking technology, (2) to evaluate the therapeutic effect of GA in an IDD rat model and changes in ferroptosis-related targets, (3) to investigate the changes of oxidative stress and lipid peroxidation products in NP cells after GA intervention, and (4) to study the changes of ferroptosis-related proteins and iron ions in cells and mitochondria after GA intervention. Results Experimental results confirmed that GA can treat IDD by reducing the degradation of extracellular matrix (ECM) and pathological changes in IDD. GA can also mitigate ferroptosis by reducing oxidative stress and lipid peroxidation in rat nucleus pulposus (NP) cells. Conclusion The alleviation of disc degeneration ferroptosis by GA may be closely associated with the key ferroptosis proteins P53 and NRF2.
Collapse
Affiliation(s)
- Zaishi Zhu
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Zeling Huang
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Chaofeng Zhang
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Bo Xu
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Hua Chen
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Shuai Pei
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Baofei Zhang
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Lishi Jie
- Jiangsu Province Hospital of TCM Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiaoqing Shi
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Yujiang Liu
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Yuwei Li
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
- Orthopaedic Traumatology Institute, Suzhou Academy of Wumen Chinese Medicine, Suzhou, Jiangsu, China
| | - Xiaofeng Shen
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
- Orthopaedic Traumatology Institute, Suzhou Academy of Wumen Chinese Medicine, Suzhou, Jiangsu, China
| |
Collapse
|
13
|
Jang N, Kim IK, Jung D, Chung Y, Kang YP. Regulation of Ferroptosis in Cancer and Immune Cells. Immune Netw 2025; 25:e6. [PMID: 40078787 PMCID: PMC11896659 DOI: 10.4110/in.2025.25.e6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 03/14/2025] Open
Abstract
Ferroptosis, an iron-dependent form of regulated cell death, is driven by lipid peroxidation and shaped by metabolic and antioxidant pathways. In immune cells, ferroptosis susceptibility varies by cell types, lipid composition, and metabolic demands, influencing immune responses in cancer, infections, and autoimmune diseases. Therapeutically, targeting ferroptosis holds promise in cancer immunotherapy by enhancing antitumor immunity or inhibiting immunosuppressive cells. This review highlights the metabolic pathways underlying ferroptosis, its regulation in immune cells, its dual role in tumor progression and antitumor immunity, and its context-dependent therapeutic implications for optimizing cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Yeonseok Chung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Yun Pyo Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
14
|
Alves F, Lane D, Nguyen TPM, Bush AI, Ayton S. In defence of ferroptosis. Signal Transduct Target Ther 2025; 10:2. [PMID: 39746918 PMCID: PMC11696223 DOI: 10.1038/s41392-024-02088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/10/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Rampant phospholipid peroxidation initiated by iron causes ferroptosis unless this is restrained by cellular defences. Ferroptosis is increasingly implicated in a host of diseases, and unlike other cell death programs the physiological initiation of ferroptosis is conceived to occur not by an endogenous executioner, but by the withdrawal of cellular guardians that otherwise constantly oppose ferroptosis induction. Here, we profile key ferroptotic defence strategies including iron regulation, phospholipid modulation and enzymes and metabolite systems: glutathione reductase (GR), Ferroptosis suppressor protein 1 (FSP1), NAD(P)H Quinone Dehydrogenase 1 (NQO1), Dihydrofolate reductase (DHFR), retinal reductases and retinal dehydrogenases (RDH) and thioredoxin reductases (TR). A common thread uniting all key enzymes and metabolites that combat lipid peroxidation during ferroptosis is a dependence on a key cellular reductant, nicotinamide adenine dinucleotide phosphate (NADPH). We will outline how cells control central carbon metabolism to produce NADPH and necessary precursors to defend against ferroptosis. Subsequently we will discuss evidence for ferroptosis and NADPH dysregulation in different disease contexts including glucose-6-phosphate dehydrogenase deficiency, cancer and neurodegeneration. Finally, we discuss several anti-ferroptosis therapeutic strategies spanning the use of radical trapping agents, iron modulation and glutathione dependent redox support and highlight the current landscape of clinical trials focusing on ferroptosis.
Collapse
Affiliation(s)
- Francesca Alves
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Darius Lane
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | | | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.
| | - Scott Ayton
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
15
|
Yi J, Zhang W, Li Y, Ren H, Xiang Y, Qiao C. Recent advances in crosstalk between immune cells and cancer cells with ferroptosis. Life Sci 2025; 360:123279. [PMID: 39608446 DOI: 10.1016/j.lfs.2024.123279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/12/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Ferroptosis, a regulated form of cell death distinct from apoptosis and necrosis. Key hallmarks include iron-dependent lipid peroxidation, glutathione depletion, and intracellular iron accumulation, all of which are counteracted by specific cellular defenses. However, the immunosuppressive effects of ferroptosis induction in cancer immunotherapy remain unresolved. This review summarizes the recent advancements in ferroptosis research, focusing on its defensive mechanisms. It analyzes how ferroptosis affects both cancer and immune cells, highlighting its potential inhibitory effects on anti-tumor immunity and possible promotion of pro-tumor immune responses. Finally, this review briefly introduces case studies that combined ferroptosis induction with immunotherapy, offering novel perspectives for cancer treatment.
Collapse
Affiliation(s)
- Jinfeng Yi
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Wanting Zhang
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yingpu Li
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China; NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - He Ren
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Yuhang Xiang
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Cong Qiao
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
16
|
Ji Y, Li P, Ning T, Yang D, Shi H, Dong X, Zhu S, Li P, Zhang S. PANoptosis-related genes: Molecular insights into immune dysregulation in ulcerative colitis. J Gastroenterol Hepatol 2025; 40:177-191. [PMID: 39568189 DOI: 10.1111/jgh.16804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/10/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND AND AIM Ulcerative colitis (UC) is a chronic inflammatory disease driven by immune dysregulation. PANoptosis, a novel form of programmed cell death, has been implicated in inflammatory diseases, but its specific role in UC remains unclear. This study aimed to identify PANoptosis-related genes (PRGs) that may contribute to immune dysregulation in UC. METHODS Using bioinformatics analysis of the GEO databases, we identified seven hub PRGs. Based on these genes, we developed a predictive model to differentiate UC patients from healthy controls, and evaluated its diagnostic performance using ROC curve analysis. We further conducted functional enrichment, GSVA, and immune infiltration analyses. Immunohistochemistry (IHC) was used to validate the expression of hub genes in UC patients. RESULTS The prediction model, based on the seven hub genes, exhibited diagnostic ability in discriminating UC patients from controls. Furthermore, these hub PRGs were found to be associated with immune cells, including dendritic cells, NK cells, macrophages, regulatory T cells (Tregs), and CD8+ T cells. They were also linked to key signaling pathways implicated in UC pathogenesis, such as IFNγ, TNFα, IL6-and JAK-STAT3, as well as hypoxia and apoptosis. Immunohistochemistry analysis validated the expression levels of hub PRGs in UC patients using paraffin sections of intestinal biopsy specimens. CONCLUSIONS This study identified PANoptosis-related genes with potential diagnostic value for UC and suggest that PANoptosis may contribute to the pathogenesis of UC by regulating specific immune cells and interacting with key signaling pathways. This highlights the potential importance of PANoptosis-related genes as therapeutic targets in UC management.
Collapse
Affiliation(s)
- Yuxiao Ji
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, China
| | - Pengchong Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, China
| | - Tingting Ning
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, China
| | - Deyi Yang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, China
| | - Haiyun Shi
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, China
| | - Xueyu Dong
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, China
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, China
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, China
| |
Collapse
|
17
|
Gao C, Zhang H, Wang X. Current advances on the role of ferroptosis in tumor immune evasion. Discov Oncol 2024; 15:736. [PMID: 39621177 PMCID: PMC11612115 DOI: 10.1007/s12672-024-01573-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/11/2024] [Indexed: 12/06/2024] Open
Abstract
Ferroptosis is a non-apoptotic form of regulated cell death characterized by iron accumulation and uncontrolled lipid peroxidation, leading to plasma membrane rupture and intracellular content release. Cancer immunotherapy, especially immune checkpoint inhibitors (ICIs) targeting PD-1 and PD-L1, has been considered a breakthrough in cancer treatment, achieving encouraging clinical anti-tumor effects in a variety of cancers. However, tumor immune evasion is indispensable to immunotherapy failure. The mechanisms of tumor immune evasion are quite complex, and its occurrence is inseparable from the ferroptosis in tumor microenvironment (TME). Thus, a comprehensive understanding of the role of ferroptosis in tumor immune evasion is crucial to enhance the efficacy of immunotherapy. In this review, we provide an overview of the recent advancements in understanding ferroptosis in cancer, covering molecular mechanisms and interactions with the TME. We also summarize the potential applications of ferroptosis induction in immunotherapy, as well as ferroptosis inhibition for cancer treatment in various conditions. We finally discuss ferroptosis as a double-edged sword, including the current challenges and future directions regarding its potential for cancer treatment.
Collapse
Affiliation(s)
- Changlin Gao
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Haoran Zhang
- Central Hospital Affiliated to Dalian University of Technology, Dalian, 116000, Liaoning, China
- Graduate School of Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Xianwei Wang
- Central Hospital Affiliated to Dalian University of Technology, Dalian, 116000, Liaoning, China.
| |
Collapse
|
18
|
Huang S, Deng H, Zhao X, Zhang R, Zhang Z, Li N, Zhang J. Effect of particle size on dissolution of different chemical components in Codonopsis pilosula. Biomed Chromatogr 2024; 38:e6026. [PMID: 39440830 DOI: 10.1002/bmc.6026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024]
Abstract
Codonopsis pilosula (Franch.) Nannf. is a traditional herb for treating immunosuppression. C. pilosula boiling powder (CP-BP) contains particles of a small size made from C. pilosula decoction pieces (CP-DP). It is still unclear how changes in particle size during the decoction process affect the dissolution of various chemical components in C. pilosula. Herein, an ultra-high-performance liquid chromatography-quadrupole-Exactive Orbitrap mass spectrometry technique was established to characterize the components of CP-BP and CP-DP decoctions. The contents of the components were evaluated based on the relative peak area, extract yield, and alcohol solubility rate. A total of 71 compounds were finally identified, and their content in the CP-BP decoction was generally higher than that in the CP-DP decoction. Alkaloids had the highest average content, whereas terpenoids were the most affected by changes in particle size. In addition, immunosuppression was used as model to investigate whether these changes have practical significance. The results of network pharmacology suggested that the phosphoinositide 3-kinase (PI3K)-Akt pathway may be a potential pathway of C. pilosula for treating immunosuppression. The results of molecular docking indicated that compounds with large content variations have good docking affinity with key targets (epidermal growth factor receptor [EGFR], prostaglandin-endoperoxide synthase 2 [PTGS2], and peroxisome proliferator-activated receptor gamma [PPARG]). These results provide an important reference for further development and use of C. pilosula.
Collapse
Affiliation(s)
| | | | - Xue Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | | | - Zhonglei Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ning Li
- KMHD GeneTech Co. Ltd., Shenzhen, China
| | | |
Collapse
|
19
|
Li S, Shang X, Lou H, Wang Z, Qiu Y, Xiang S, Yu F, Yuan H. Cascade Bilateral Regulation of Ferroptosis and Immune Activation Conducted by the Electron-Accepting-Inspired Glycopolymer-Based Nanoreactor. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39569915 DOI: 10.1021/acsami.4c13257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The immunosuppressive tumor environment, characterized by elevated redox levels, significantly impairs the effectiveness of oxidation and the immune response. Here, an electron-accepting-inspired glycopolymer-based nanoreactor (chitosan-grafted nitrobenzene nanoparticles) CNP employing hypoxia-activated group nitrobenzene was constructed to realize cascade bilateral regulation of ferroptosis and immune activation by intervening antioxidant systems. The as-prepared CNP could consume nicotinamide adenine dinucleotide phosphate (NADPH) in the hypoxia-response process, allowing it to be involved in the recycling of glutathione (GSH) and thioredoxin (Trx). This ultimately affects redox homeostasis, leading to reduced GSH levels, increased reactive oxygen species (ROS), and inhibition of (glutathione peroxidase 4) Gpx4. By taking advantage of the sensitivity difference between tumor cells and dendritic cells (DCs) to the ferroptosis inducer erastin (Er) based on varying xCT expression levels, we developed Er-loaded nanoparticles CNP/Er. These nanoparticles not only enhance ferroptosis in 4T1 cells through Gpx4 inhibition by CNP but also promote DC maturation by utilizing CNP's hypoxia-responsive mechanism to increase ROS levels. The CNP/Er was believed to be an ideal candidate for bilateral regulation of ferroptosis and immune activation in one nanoreactor.
Collapse
Affiliation(s)
- Shiyan Li
- Department of Diagnostic Ultrasound and Echocardiography, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Xuwei Shang
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Haiya Lou
- Department of Diagnostic Ultrasound and Echocardiography, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Zixu Wang
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Yihe Qiu
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Shanshan Xiang
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Fangying Yu
- Department of Diagnostic Ultrasound and Echocardiography, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Hong Yuan
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| |
Collapse
|
20
|
Jiang X, Yu M, Wang WK, Zhu LY, Wang X, Jin HC, Feng LF. The regulation and function of Nrf2 signaling in ferroptosis-activated cancer therapy. Acta Pharmacol Sin 2024; 45:2229-2240. [PMID: 39020084 PMCID: PMC11489423 DOI: 10.1038/s41401-024-01336-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/04/2024] [Indexed: 07/19/2024]
Abstract
Ferroptosis is an iron-dependent programmed cell death process that involves lipid oxidation via the Fenton reaction to produce lipid peroxides, causing disruption of the lipid bilayer, which is essential for cellular survival. Ferroptosis has been implicated in the occurrence and treatment response of various types of cancer, and targeting ferroptosis has emerged as a promising strategy for cancer therapy. However, cancer cells can escape cellular ferroptosis by activating or remodeling various signaling pathways, including oxidative stress pathways, thereby limiting the efficacy of ferroptosis-activating targeted therapy. The key anti-oxidative transcription factor, nuclear factor E2 related factor 2 (Nrf2 or NFE2L2), plays a dominant role in defense machinery by reprogramming the iron, intermediate, and glutathione peroxidase 4 (GPX4)-related network and the antioxidant system to attenuate ferroptosis. In this review, we summarize the recent advances in the regulation and function of Nrf2 signaling in ferroptosis-activated cancer therapy and explore the prospect of combining Nrf2 inhibitors and ferroptosis inducers as a promising cancer treatment strategy.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Min Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, School of Medicine, Zhejiang University, Jinhua, 321000, China
| | - Wei-Kai Wang
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Li-Yuan Zhu
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Xian Wang
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Hong-Chuan Jin
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| | - Li-Feng Feng
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
21
|
Li H, Fang G, Tian W, Liao Y, Xiang J, Hu Y, Luo L. Asiatic acid induces lung cancer toxicity by triggering SRC-mediated ferroptosis. Toxicol Appl Pharmacol 2024; 492:117097. [PMID: 39251043 DOI: 10.1016/j.taap.2024.117097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/12/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Ferroptosis is a recently discovered form of regulated cell death that shows promise as a novel approach for inducing tumor cell death in cancer treatment, with significant research potential. Asiatic acid (AA), a key component of the traditional Chinese medicine Centella asiatica, has been identified as having potential therapeutic benefits for various diseases, particularly cancer. Non-small cell lung cancer (NSCLC) is a challenging and prevalent form of cancer to treat. In our study, we utilized network pharmacology, molecular docking, and experimental methods to investigate the potential of AA in treating NSCLC and to elucidate its role in inhibiting cancer through the ferroptosis pathway. Through network pharmacology analysis, we identified that AA targets the core NSCLC protein SRC through the ferroptosis pathway. Our experiments demonstrated that treatment with AA led to increased iron accumulation, mitochondrial membrane potential, and expression of ferroptosis markers glutathione peroxidase 4 (GPX4), ferritin heavy chain 1 (FTH1), and acyl-CoA synthetase long chain family member 4 (ACSL4) in NSCLC cells, confirming the induction of ferroptosis. In conclusion, AA has the potential to target SRC and induce NSCLC cell death through the ferroptosis pathway, offering a promising approach for cancer treatment.
Collapse
Affiliation(s)
- Huizhen Li
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Guixuan Fang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Wen Tian
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Yinglin Liao
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Jing Xiang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Yingying Hu
- Department of Pathophysiology, Guangdong Medical University, Zhanjiang 524002, Guangdong, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| |
Collapse
|
22
|
Lin Q, Zhou H, Zeng J, Zeng M, Kraithong S, Xia X, Kuang W, Zhang X, Zhong S, Huang R. Bioactive polysaccharides mediate ferroptosis to modulate tumor immunotherapy. Int J Biol Macromol 2024; 279:135147. [PMID: 39214195 DOI: 10.1016/j.ijbiomac.2024.135147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Polysaccharides from diverse origins exhibit notable bioactivities, particularly their capacity to exert antitumor and immune-enhancing effects. Concurrently, ferroptosis emerges as a distinctive form of regulated cell death characterized by iron-dependent lipid peroxidation, potentially influencing the demise of specific tumor cells and organismal homeostasis. Recent scholarly attention has increasingly focused on utilizing polysaccharides to modulate tumor cell ferroptosis and manipulate cellular immune responses. This article provides an in-depth analysis of contemporary research concerning using polysaccharides to augment antitumor immunity and combat malignancies. Central to our discourse is examining the pivotal role of polysaccharides in mediating ferroptosis, bolstering immune surveillance, and elucidating the interplay between polysaccharides and antitumor immunity. Furthermore, a comprehensive synthesis of the multifaceted roles of polysaccharides in antitumor and immunomodulatory contexts is provided. Recent advances in understanding how polysaccharides enhance immune function by inducing ferroptosis cell death are explained. Lastly, unresolved inquiries are outlined, and potential avenues for future research are proposed, focusing on the translational applications of polysaccharides in antitumor immunotherapy.
Collapse
Affiliation(s)
- Qianmin Lin
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Heying Zhou
- Department of Pharmacy, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Jinzi Zeng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Mei Zeng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Supaluck Kraithong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xuewei Xia
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Weiyang Kuang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China; Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
23
|
Zeng C, Nie D, Wang X, Zhong S, Zeng X, Liu X, Qiu K, Peng X, Zhang W, Chen S, Zha X, Chen C, Chen Z, Wang W, Li Y. Combined targeting of GPX4 and BCR-ABL tyrosine kinase selectively compromises BCR-ABL+ leukemia stem cells. Mol Cancer 2024; 23:240. [PMID: 39465372 PMCID: PMC11514791 DOI: 10.1186/s12943-024-02162-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND In the ongoing battle against BCR-ABL+ leukemia, despite significant advances with tyrosine kinase inhibitors (TKIs), the persistent challenges of drug resistance and the enduring presence of leukemic stem cells (LSCs) remain formidable barriers to achieving a cure. METHODS In this study, we demonstrated that Disulfiram (DSF) induces ferroptosis to synergize with TKIs in inhibiting BCR-ABL+ cells, particularly targeting resistant cells and LSCs, using cell models, mouse models, and primary cells from patients. We elucidated the mechanism by which DSF promotes GPX4 degradation to induce ferroptosis through immunofluorescence, co-immunoprecipitation (CO-IP), RNA sequencing, lipid peroxidation assays, and rescue experiments. RESULTS Here, we present compelling evidence elucidating the sensitivity of DSF, an USA FDA-approved drug for alcohol dependence, towards BCR-ABL+ cells. Our findings underscore DSF's ability to selectively induce a potent cytotoxic effect on BCR-ABL+ cell lines and effectively inhibit primary BCR-ABL+ leukemia cells. Crucially, the combined treatment of DSF with TKIs selectively eradicates TKI-insensitive stem cells and resistant cells. Of particular note is DSF's capacity to disrupt GPX4 stability, elevate the labile iron pool, and intensify lipid peroxidation, ultimately leading to ferroptotic cell death. Our investigation shows that BCR-ABL expression induces alterations in cellular iron metabolism and increases GPX4 expression. Additionally, we demonstrate the indispensability of GPX4 for LSC development and the initiation/maintenance of BCR-ABL+ leukemia. Mechanical analysis further elucidates DSF's capacity to overcome resistance by reducing GPX4 levels through the disruption of its binding with HSPA8, thereby promoting STUB1-mediated GPX4 ubiquitination and subsequent proteasomal degradation. Furthermore, the combined treatment of DSF with TKIs effectively targets both BCR-ABL+ blast cells and drug-insensitive LSCs, conferring a significant survival advantage in mouse models. CONCLUSION In summary, the dual inhibition of GPX4 and BCR-ABL presents a promising therapeutic strategy to synergistically target blast cells and drug-insensitive LSCs in patients, offering potential avenues for advancing leukemia treatment.
Collapse
MESH Headings
- Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism
- Phospholipid Hydroperoxide Glutathione Peroxidase/genetics
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/pathology
- Humans
- Animals
- Mice
- Protein Kinase Inhibitors/pharmacology
- Disulfiram/pharmacology
- Ferroptosis/drug effects
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Cell Line, Tumor
- Drug Resistance, Neoplasm/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Chengwu Zeng
- Guangzhou First People's Hospital, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510700, China.
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Dingrui Nie
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Department of Hematology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xianfeng Wang
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Shuxin Zhong
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiangbo Zeng
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xin Liu
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Kangjie Qiu
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xueting Peng
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Wenyi Zhang
- Guangdong Key Laboratory of Bioactive Drug Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shengting Chen
- Department of Hematology, Department of clinical laboratory, First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Xianfeng Zha
- Department of Hematology, Department of clinical laboratory, First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Cunte Chen
- Guangzhou First People's Hospital, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510700, China.
| | - Zhenhua Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA.
| | - Weizhang Wang
- Guangdong Key Laboratory of Bioactive Drug Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Yangqiu Li
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
24
|
Tang D, Kang R. NFE2L2 and ferroptosis resistance in cancer therapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:41. [PMID: 39534872 PMCID: PMC11555182 DOI: 10.20517/cdr.2024.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
NFE2-like basic leucine zipper transcription factor 2 (NFE2L2, also known as NRF2), is a key transcription factor in the cellular defense against oxidative stress, playing a crucial role in cancer cell survival and resistance to therapies. This review outlines the current knowledge on the link between NFE2L2 and ferroptosis - a form of regulated cell death characterized by iron-dependent lipid peroxidation - within cancer cells. While NFE2L2 activation can protect normal cells from oxidative damage, its overexpression in cancer cells contributes to drug resistance by upregulating antioxidant defenses and inhibiting ferroptosis. We delve into the molecular pathways of ferroptosis, highlighting the involvement of NFE2L2 and its target genes, such as NQO1, HMOX1, FTH1, FTL, HERC2, SLC40A1, ABCB6, FECH, PIR, MT1G, SLC7A11, GCL, GSS, GSR, GPX4, AIFM2, MGST1, ALDH1A1, ALDH3A1, and G6PD, in ferroptosis resistance. Understanding the delicate balance between NFE2L2's protective and deleterious roles could pave the way for novel therapeutic strategies targeting NFE2L2 to enhance the efficacy of ferroptosis inducers in cancer therapy.
Collapse
Affiliation(s)
- Daolin Tang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TA 75390, USA
| | - Rui Kang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TA 75390, USA
| |
Collapse
|
25
|
Swords E, Kennedy BN, Tonelotto V. Assessment of ferroptosis as a promising candidate for metastatic uveal melanoma treatment and prognostication. Front Pharmacol 2024; 15:1466896. [PMID: 39411069 PMCID: PMC11473310 DOI: 10.3389/fphar.2024.1466896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Uveal melanoma (UM) is the most common primary intraocular tumour in adults. Local resection, radiation therapy, and enucleation are the current first-line, primary UM treatments. However, regardless of the treatment received, around 50% of UM patients will develop metastatic disease within five to 7 years. In the largest published series of unselected patients with metastatic UM (mUM), the median survival time after diagnosis of metastasis was 3.6 months, with less than 1% of patients surviving beyond 5 years. Approved drugs for treatment of mUM include systemic treatment with tebentafusp-tebn or isolated hepatic perfusion (IHP) with melphalan. However, these drugs are only available to a subset of patients and improve survival by only a few months, highlighting the urgent need for new mUM treatments. Accurately predicting which patients are at high risk for metastases is also crucial. Researchers are developing gene expression signatures in primary UM to create reliable prognostic models aimed at improving patient follow-up and treatment strategies. In this review we discuss the evidence supporting ferroptosis, a non-apoptotic form of cell death, as a potential novel treatment target and prognosticator for UM.
Collapse
Affiliation(s)
- Ellie Swords
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Breandán N. Kennedy
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Valentina Tonelotto
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
26
|
Shi JX, Zhang ZC, Yin HZ, Piao XJ, Liu CH, Liu QJ, Zhang JC, Zhou WX, Liu FC, Yang F, Wang YF, Liu H. RNA m6A modification in ferroptosis: implications for advancing tumor immunotherapy. Mol Cancer 2024; 23:213. [PMID: 39342168 PMCID: PMC11437708 DOI: 10.1186/s12943-024-02132-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
The pursuit of innovative therapeutic strategies in oncology remains imperative, given the persistent global impact of cancer as a leading cause of mortality. Immunotherapy is regarded as one of the most promising techniques for systemic cancer therapies among the several therapeutic options available. Nevertheless, limited immune response rates and immune resistance urge us on an augmentation for therapeutic efficacy rather than sticking to conventional approaches. Ferroptosis, a novel reprogrammed cell death, is tightly correlated with the tumor immune environment and interferes with cancer progression. Highly mutant or metastasis-prone tumor cells are more susceptible to iron-dependent nonapoptotic cell death. Consequently, ferroptosis-induction therapies hold the promise of overcoming resistance to conventional treatments. The most prevalent post-transcriptional modification, RNA m6A modification, regulates the metabolic processes of targeted RNAs and is involved in numerous physiological and pathological processes. Aberrant m6A modification influences cell susceptibility to ferroptosis, as well as the expression of immune checkpoints. Clarifying the regulation of m6A modification on ferroptosis and its significance in tumor cell response will provide a distinct method for finding potential targets to enhance the effectiveness of immunotherapy. In this review, we comprehensively summarized regulatory characteristics of RNA m6A modification on ferroptosis and discussed the role of RNA m6A-mediated ferroptosis on immunotherapy, aiming to enhance the effectiveness of ferroptosis-sensitive immunotherapy as a treatment for immune-resistant malignancies.
Collapse
Affiliation(s)
- Jun-Xiao Shi
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Zhi-Chao Zhang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Hao-Zan Yin
- The Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China
| | - Xian-Jie Piao
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Cheng-Hu Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Qian-Jia Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Jia-Cheng Zhang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Wen-Xuan Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Fu-Chen Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Fu Yang
- The Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China.
- Key Laboratory of Biosafety Defense, Ministry of Education, Shanghai, 200433, China.
- Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China.
| | - Yue-Fan Wang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China.
| | - Hui Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China.
| |
Collapse
|
27
|
Li Y, Bi Y, Li W, Piao Y, Piao J, Wang T, Ren X. Research progress on ferroptosis in colorectal cancer. Front Immunol 2024; 15:1462505. [PMID: 39359721 PMCID: PMC11444962 DOI: 10.3389/fimmu.2024.1462505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Ferroptosis is a new form of cell death that differs from traditional forms of death. It is ferroptosis-dependent lipid peroxidation death. Colorectal cancer(CRC) is the most common tumor in the gastrointestinal tract with a long occultation period and a poor five-year prognosis. Exploring effective systemic treatments for CRC remains a great challenge worldwide. Numerous studies have demonstrated that ferroptosis can participate in the biological malignant process of various tumor, including CRC, so understanding the role and regulatory mechanisms of ferroptosis in CRC plays a crucial role in the treatment of CRC. In this paper, we reviews the mechanisms of ferroptosis in CRC, the associated regulatory factors and their interactions with various immune cells in the immune microenvironment. In addition, targeting ferroptosis has emerged as an encouraging strategy for CRC treatment. Finally, to inform subsequent research and clinical diagnosis and treatment, we review therapeutic approaches to CRC radiotherapy, immunotherapy, and herbal therapy targeting ferroptosis.
Collapse
Affiliation(s)
- Yuan Li
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Pathology & Cancer Research Center, Yanbian University, Yanji, China
| | - Yao Bi
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Pathology & Cancer Research Center, Yanbian University, Yanji, China
| | - Wenjing Li
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Pathology & Cancer Research Center, Yanbian University, Yanji, China
- Department of Anesthesia, Yanbian University Hospital, Yanji, China
| | - Yingshi Piao
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Gynecology, Yanbian University Hospital, Yanji, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, China
| | - Junjie Piao
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Gynecology, Yanbian University Hospital, Yanji, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, China
| | - Tong Wang
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Gynecology, Yanbian University Hospital, Yanji, China
| | - Xiangshan Ren
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Pathology & Cancer Research Center, Yanbian University, Yanji, China
- Department of Gynecology, Yanbian University Hospital, Yanji, China
| |
Collapse
|
28
|
Dai E, Chen X, Linkermann A, Jiang X, Kang R, Kagan VE, Bayir H, Yang WS, Garcia-Saez AJ, Ioannou MS, Janowitz T, Ran Q, Gu W, Gan B, Krysko DV, Zhu X, Wang J, Krautwald S, Toyokuni S, Xie Y, Greten FR, Yi Q, Schick J, Liu J, Gabrilovich DI, Liu J, Zeh HJ, Zhang DD, Yang M, Iovanna J, Kopf M, Adolph TE, Chi JT, Li C, Ichijo H, Karin M, Sankaran VG, Zou W, Galluzzi L, Bush AI, Li B, Melino G, Baehrecke EH, Lotze MT, Klionsky DJ, Stockwell BR, Kroemer G, Tang D. A guideline on the molecular ecosystem regulating ferroptosis. Nat Cell Biol 2024; 26:1447-1457. [PMID: 38424270 PMCID: PMC11650678 DOI: 10.1038/s41556-024-01360-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/18/2024] [Indexed: 03/02/2024]
Abstract
Ferroptosis, an intricately regulated form of cell death characterized by uncontrolled lipid peroxidation, has garnered substantial interest since this term was first coined in 2012. Recent years have witnessed remarkable progress in elucidating the detailed molecular mechanisms that govern ferroptosis induction and defence, with particular emphasis on the roles of heterogeneity and plasticity. In this Review, we discuss the molecular ecosystem of ferroptosis, with implications that may inform and enable safe and effective therapeutic strategies across a broad spectrum of diseases.
Collapse
Affiliation(s)
- Enyong Dai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rui Kang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Valerian E Kagan
- Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hülya Bayir
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Wan Seok Yang
- Department of Biological Sciences, St. John's University, New York, NY, USA
| | - Ana J Garcia-Saez
- Institute for Genetics, CECAD, University of Cologne, Cologne, Germany
| | - Maria S Ioannou
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Qitao Ran
- Department of Cell Systems and Anatomy, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Wei Gu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy (CDIT) Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Xiaofeng Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital and College of Medical Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Stefan Krautwald
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Shinya Toyokuni
- Department of Pathology and Biological Response, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Center for Low-Temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Yangchun Xie
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Qing Yi
- Houston Methodist Neal Cancer Center/Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - Joel Schick
- Genetics and Cellular Engineering Group, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | - Jinbao Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Herbert J Zeh
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Minghua Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Clinical Research Center of Pediatric Cancer, Changsha, China
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille, France
| | - Manfred Kopf
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology Center for Applied Genomic Technologies, Duke University, Durham, NC, USA
| | - Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Weiping Zou
- Departments of Surgery and Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Ashley I Bush
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Binghui Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Department of Cancer Cell Biology and National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Gerry Melino
- Department of Experimental Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Michael T Lotze
- Departments of Surgery, Immunology and Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Brent R Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA.
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Daolin Tang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
29
|
Berndt C, Alborzinia H, Amen VS, Ayton S, Barayeu U, Bartelt A, Bayir H, Bebber CM, Birsoy K, Böttcher JP, Brabletz S, Brabletz T, Brown AR, Brüne B, Bulli G, Bruneau A, Chen Q, DeNicola GM, Dick TP, Distéfano A, Dixon SJ, Engler JB, Esser-von Bieren J, Fedorova M, Friedmann Angeli JP, Friese MA, Fuhrmann DC, García-Sáez AJ, Garbowicz K, Götz M, Gu W, Hammerich L, Hassannia B, Jiang X, Jeridi A, Kang YP, Kagan VE, Konrad DB, Kotschi S, Lei P, Le Tertre M, Lev S, Liang D, Linkermann A, Lohr C, Lorenz S, Luedde T, Methner A, Michalke B, Milton AV, Min J, Mishima E, Müller S, Motohashi H, Muckenthaler MU, Murakami S, Olzmann JA, Pagnussat G, Pan Z, Papagiannakopoulos T, Pedrera Puentes L, Pratt DA, Proneth B, Ramsauer L, Rodriguez R, Saito Y, Schmidt F, Schmitt C, Schulze A, Schwab A, Schwantes A, Soula M, Spitzlberger B, Stockwell BR, Thewes L, Thorn-Seshold O, Toyokuni S, Tonnus W, Trumpp A, Vandenabeele P, Vanden Berghe T, Venkataramani V, Vogel FCE, von Karstedt S, Wang F, Westermann F, Wientjens C, Wilhelm C, Wölk M, Wu K, Yang X, Yu F, Zou Y, Conrad M. Ferroptosis in health and disease. Redox Biol 2024; 75:103211. [PMID: 38908072 PMCID: PMC11253697 DOI: 10.1016/j.redox.2024.103211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/24/2024] Open
Abstract
Ferroptosis is a pervasive non-apoptotic form of cell death highly relevant in various degenerative diseases and malignancies. The hallmark of ferroptosis is uncontrolled and overwhelming peroxidation of polyunsaturated fatty acids contained in membrane phospholipids, which eventually leads to rupture of the plasma membrane. Ferroptosis is unique in that it is essentially a spontaneous, uncatalyzed chemical process based on perturbed iron and redox homeostasis contributing to the cell death process, but that it is nonetheless modulated by many metabolic nodes that impinge on the cells' susceptibility to ferroptosis. Among the various nodes affecting ferroptosis sensitivity, several have emerged as promising candidates for pharmacological intervention, rendering ferroptosis-related proteins attractive targets for the treatment of numerous currently incurable diseases. Herein, the current members of a Germany-wide research consortium focusing on ferroptosis research, as well as key external experts in ferroptosis who have made seminal contributions to this rapidly growing and exciting field of research, have gathered to provide a comprehensive, state-of-the-art review on ferroptosis. Specific topics include: basic mechanisms, in vivo relevance, specialized methodologies, chemical and pharmacological tools, and the potential contribution of ferroptosis to disease etiopathology and progression. We hope that this article will not only provide established scientists and newcomers to the field with an overview of the multiple facets of ferroptosis, but also encourage additional efforts to characterize further molecular pathways modulating ferroptosis, with the ultimate goal to develop novel pharmacotherapies to tackle the various diseases associated with - or caused by - ferroptosis.
Collapse
Affiliation(s)
- Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Hamed Alborzinia
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM GGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Vera Skafar Amen
- Rudolf Virchow Zentrum, Center for Integrative and Translational Bioimaging - University of Würzburg, Germany
| | - Scott Ayton
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Australia
| | - Uladzimir Barayeu
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ) Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany; Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Alexander Bartelt
- Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany; Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany; German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Hülya Bayir
- Department of Pediatrics, Columbia University, New York City, NY, USA
| | - Christina M Bebber
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Translational Genomics, Cologne, Germany; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Kivanc Birsoy
- Laboratory of Metabolic Regulation and Genetics, Rockefeller University, New York City, NY, USA
| | - Jan P Böttcher
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich (TUM), Germany
| | - Simone Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Ashley R Brown
- Department of Biological Sciences, Columbia University, New York City, NY, USA
| | - Bernhard Brüne
- Institute of Biochemistry1-Pathobiochemistry, Goethe-Universität, Frankfurt Am Main, Germany
| | - Giorgia Bulli
- Department of Physiological Genomics, Ludwig-Maximilians-University, Munich, Germany
| | - Alix Bruneau
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | - Quan Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Gina M DeNicola
- Department of Metabolism and Physiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Tobias P Dick
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ) Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Ayelén Distéfano
- Instituto de Investigaciones Biológicas, CONICET, National University of Mar Del Plata, Argentina
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Jan B Engler
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Germany
| | | | - Maria Fedorova
- Center of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus and Faculty of Medicine of TU Dresden, Germany
| | - José Pedro Friedmann Angeli
- Rudolf Virchow Zentrum, Center for Integrative and Translational Bioimaging - University of Würzburg, Germany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Germany
| | - Dominic C Fuhrmann
- Institute of Biochemistry1-Pathobiochemistry, Goethe-Universität, Frankfurt Am Main, Germany
| | - Ana J García-Sáez
- Institute for Genetics, CECAD, University of Cologne, Germany; Max Planck Institute of Biophysics, Frankfurt/Main, Germany
| | | | - Magdalena Götz
- Department of Physiological Genomics, Ludwig-Maximilians-University, Munich, Germany; Institute of Stem Cell Research, Helmholtz Center Munich, Germany
| | - Wei Gu
- Institute for Cancer Genetics, And Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Linda Hammerich
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | | | - Xuejun Jiang
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Aicha Jeridi
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Germany, Member of the German Center for Lung Research (DZL)
| | - Yun Pyo Kang
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, Republic of Korea
| | | | - David B Konrad
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Stefan Kotschi
- Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Peng Lei
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Marlène Le Tertre
- Center for Translational Biomedical Iron Research, Heidelberg University, Germany
| | - Sima Lev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Deguang Liang
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Germany; Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
| | - Carolin Lohr
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Svenja Lorenz
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Axel Methner
- Institute of Molecular Medicine, Johannes Gutenberg-Universität Mainz, Germany
| | - Bernhard Michalke
- Research Unit Analytical Biogeochemistry, Helmholtz Center Munich, Germany
| | - Anna V Milton
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Junxia Min
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Eikan Mishima
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany
| | | | - Hozumi Motohashi
- Department of Gene Expression Regulation, Tohoku University, Sendai, Japan
| | | | - Shohei Murakami
- Department of Gene Expression Regulation, Tohoku University, Sendai, Japan
| | - James A Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Gabriela Pagnussat
- Instituto de Investigaciones Biológicas, CONICET, National University of Mar Del Plata, Argentina
| | - Zijan Pan
- School of Life Sciences, Westlake University, Hangzhou, China
| | | | | | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Canada
| | - Bettina Proneth
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany
| | - Lukas Ramsauer
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich (TUM), Germany
| | | | - Yoshiro Saito
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Felix Schmidt
- Institute of Molecular Medicine, Johannes Gutenberg-Universität Mainz, Germany
| | - Carina Schmitt
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Almut Schulze
- Division of Tumour Metabolism and Microenvironment, DKFZ Heidelberg and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Annemarie Schwab
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Anna Schwantes
- Institute of Biochemistry1-Pathobiochemistry, Goethe-Universität, Frankfurt Am Main, Germany
| | - Mariluz Soula
- Laboratory of Metabolic Regulation and Genetics, Rockefeller University, New York City, NY, USA
| | - Benedikt Spitzlberger
- Department of Immunobiology, Université de Lausanne, Switzerland; Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York City, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA; Department of Chemistry, Columbia University, New York, NY, USA
| | - Leonie Thewes
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | | | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan; Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan; Center for Integrated Sciences of Low-temperature Plasma Core Research (iPlasma Core), Tokai National Higher Education and Research System, Nagoya, Japan
| | - Wulf Tonnus
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM GGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Peter Vandenabeele
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- Department of Biomedical Sciences, University of Antwerp, Belgium; VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Vivek Venkataramani
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Germany
| | - Felix C E Vogel
- Division of Tumour Metabolism and Microenvironment, DKFZ Heidelberg and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Silvia von Karstedt
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Translational Genomics, Cologne, Germany; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, Germany
| | - Fudi Wang
- School of Medicine, Zhejiang University, Hangzhou, China
| | | | - Chantal Wientjens
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, Germany
| | - Christoph Wilhelm
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, Germany
| | - Michele Wölk
- Center of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus and Faculty of Medicine of TU Dresden, Germany
| | - Katherine Wu
- Department of Pathology, Grossman School of Medicine, New York University, NY, USA
| | - Xin Yang
- Institute for Cancer Genetics, And Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Fan Yu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yilong Zou
- School of Life Sciences, Westlake University, Hangzhou, China; Westlake Four-Dimensional Dynamic Metabolomics (Meta4D) Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany.
| |
Collapse
|
30
|
Li Y, Cheng X. Enhancing Colorectal Cancer Immunotherapy: The Pivotal Role of Ferroptosis in Modulating the Tumor Microenvironment. Int J Mol Sci 2024; 25:9141. [PMID: 39273090 PMCID: PMC11395055 DOI: 10.3390/ijms25179141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant challenge in oncology, with increasing incidence and mortality rates worldwide, particularly among younger adults. Despite advancements in treatment modalities, the urgent need for more effective therapies persists. Immunotherapy has emerged as a beacon of hope, offering the potential for improved outcomes and quality of life. This review delves into the critical interplay between ferroptosis, an iron-dependent form of regulated cell death, and immunotherapy within the CRC context. Ferroptosis's influence extends beyond tumor cell fate, reshaping the tumor microenvironment (TME) to enhance immunotherapy's efficacy. Investigations into Ferroptosis-related Genes (OFRGs) reveal their pivotal role in modulating immune cell infiltration and TME composition, closely correlating with tumor responsiveness to immunotherapy. The integration of ferroptosis inducers with immunotherapeutic strategies, particularly through novel approaches like ferrotherapy and targeted co-delivery systems, showcases promising avenues for augmenting treatment efficacy. Furthermore, the expression patterns of OFRGs offer novel prognostic tools, potentially guiding personalized and precision therapy in CRC. This review underscores the emerging paradigm of leveraging ferroptosis to bolster immunotherapy's impact, highlighting the need for further research to translate these insights into clinical advancements. Through a deeper understanding of the ferroptosis-immunotherapy nexus, new therapeutic strategies can be developed, promising enhanced efficacy and broader applicability in CRC treatment, ultimately improving patient outcomes and quality of life in the face of this formidable disease.
Collapse
Affiliation(s)
- Yanqing Li
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;
| | - Xiaofei Cheng
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
31
|
Yang J, Zhang M, Zhang X, Zhou Y, Ma T, Liang J, Zhang J. Glioblastoma-derived exosomes promote lipid accumulation and induce ferroptosis in dendritic cells via the NRF2/GPX4 pathway. Front Immunol 2024; 15:1439191. [PMID: 39192971 PMCID: PMC11347305 DOI: 10.3389/fimmu.2024.1439191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Glioblastoma-derived exosomes (GDEs), containing nucleic acids, proteins, fatty acids and other substances, perform multiple important functions in glioblastoma microenvironment. Tumor-derived exosomes serve as carriers of fatty acids and induce a shift in metabolism towards oxidative phosphorylation, thus driving immune dysfunction of dendritic cells (DCs). Lipid peroxidation is an important characteristic of ferroptosis. Nevertheless, it remains unclear whether GDEs can induce lipid accumulation and lipid oxidation to trigger ferroptosis in DCs. In our study, we investigate the impact of GDEs on lipid accumulation and oxidation in DCs by inhibiting GDEs secretion through knocking down the expression of Rab27a using a rat orthotopic glioblastoma model. The results show that inhibiting the secretion of GDEs can reduce lipid accumulation in infiltrating DCs in the brain and decrease mature dendritic cells (mDCs) lipid peroxidation levels, thereby suppressing glioblastoma growth. Mechanistically, we employed in vitro treatments of bone marrow-derived dendritic cells (BMDCs) with GDEs. The results indicate that GDEs decrease the viability of mDCs compared to immature dendritic cells (imDCs) and trigger ferroptosis in mDCs via the NRF2/GPX4 pathway. Overall, these findings provide new insights into the development of immune-suppressive glioblastoma microenvironment through the interaction of GDEs with DCs.
Collapse
Affiliation(s)
- Jian Yang
- Institution of Life Science, Jinzhou Medical University, Jinzhou, China
| | - Mingqi Zhang
- Institution of Life Science, Jinzhou Medical University, Jinzhou, China
| | - Xuying Zhang
- Institution of Life Science, Jinzhou Medical University, Jinzhou, China
| | - Yue Zhou
- Institution of Life Science, Jinzhou Medical University, Jinzhou, China
| | - Tingting Ma
- Institution of Life Science, Jinzhou Medical University, Jinzhou, China
| | - Jia Liang
- Institution of Life Science, Jinzhou Medical University, Jinzhou, China
- Liaoning Provincial Key Laboratory of Neurodegenerative Diseases, Jinzhou Medical University, Jinzhou, China
| | - Jinyi Zhang
- Institution of Life Science, Jinzhou Medical University, Jinzhou, China
- Liaoning Technology and Engineering Center for Tumor Immunology and Molecular Theranotics, Jinzhou Medical University, Jinzhou, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China
| |
Collapse
|
32
|
He XQ, Wu YJ. Engineered small extracellular vesicle-mediated ferroptosis: A new frontier in cancer immunotherapy. Int Immunopharmacol 2024; 139:112621. [PMID: 39013216 DOI: 10.1016/j.intimp.2024.112621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024]
Abstract
Ferroptosis is a novel iron-dependent form of cell death discovered in recent years, characterized by the accumulation of ferrous iron, the production of reactive oxygen species (ROS) through the Fenton reaction, and lipid peroxidation, ultimately leading to the disruption of the antioxidant system and cell membrane damage. Extensive research has found that ferroptosis plays a significant role in regulating tumor cell immune evasion, tumor development, and remodeling the tumor microenvironment. Small Extracellular vesicles (sEVs), carrying various bioactive molecules (ncRNA, DNA, proteins), are key nanoscale mediators of intercellular communication. Increasing evidence confirms that EVs can regulate the ferroptosis pathway in tumors, promoting tumor cell immune evasion and reshaping the tumor microenvironment. This article aims to comprehensively review the key mechanisms by which sEVs mediate ferroptosis in cancer and provide new insights into targeting tumor immunotherapy.
Collapse
Affiliation(s)
- Xiao-Qi He
- Department of Pharmacy, Hangzhou Ninth People's Hospital, 98 Yilong Road, Hangzhou 311225, Zhejiang Province, China
| | - Ya-Jun Wu
- Department of Pharmacy, Hangzhou Ninth People's Hospital, 98 Yilong Road, Hangzhou 311225, Zhejiang Province, China.
| |
Collapse
|
33
|
Le Y, Liu Q, Yang Y, Wu J. The emerging role of nuclear receptor coactivator 4 in health and disease: a novel bridge between iron metabolism and immunity. Cell Death Discov 2024; 10:312. [PMID: 38961066 PMCID: PMC11222541 DOI: 10.1038/s41420-024-02075-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024] Open
Abstract
Nuclear receptor coactivator 4 (NCOA4) has recently been recognized as a selective cargo receptor of ferritinophagy participating in ferroptosis. However, NCOA4 is also a coactivator that modulates the transcriptional activity of many vital nuclear receptors. Recent novel studies have documented the role of NCOA4 in healthy and pathogenic conditions via its modulation of iron- and non-iron-dependent metabolic pathways. NCOA4 exhibits non-ferritinophagic and iron-independent features such as promoting tumorigenesis and erythropoiesis, immunomodulation, regulating autophagy, and participating in DNA replication and mitosis. Full-length human-NCOA4 is composed of 614 amino acids, of which the N-terminal (1-237) contains nuclear-receptor-binding domains, while the C-terminal (238-614) principally contains a ferritin-binding domain. The exploration of the protein structure of NCOA4 suggests that NCOA4 possesses additional significant and complex functions based on its structural domains. Intriguingly, another three isoforms of NCOA4 that are produced by alternative splicing have been identified, which may also display disparate activities in physiological and pathological processes. Thus, NCOA4 has become an important bridge that encompasses interactions between immunity and metabolism. In this review, we outline the latest advances in the important regulating mechanisms underlying NCOA4 actions in health and disease conditions, providing insights into potential therapeutic interventions.
Collapse
Affiliation(s)
- Yue Le
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Qinjie Liu
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.
| | - Jie Wu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.
- Research Center of Surgery, BenQ Medical Center, the Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210021, China.
| |
Collapse
|
34
|
Escuder-Rodríguez JJ, Liang D, Jiang X, Sinicrope FA. Ferroptosis: Biology and Role in Gastrointestinal Disease. Gastroenterology 2024; 167:231-249. [PMID: 38431204 PMCID: PMC11193643 DOI: 10.1053/j.gastro.2024.01.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Ferroptosis is a form of nonapoptotic cell death that involves iron-dependent phospholipid peroxidation induced by accumulation of reactive oxygen species, and results in plasma membrane damage and the release of damage-associated molecular patterns. Ferroptosis has been implicated in aging and immunity, as well as disease states including intestinal and liver conditions and cancer. To date, several ferroptosis-associated genes and pathways have been implicated in liver disease. Although ferroptotic cell death is associated with dysfunction of the intestinal epithelium, the underlying molecular basis is poorly understood. As the mechanisms regulating ferroptosis become further elucidated, there is clear potential to use ferroptosis to achieve therapeutic benefit.
Collapse
Affiliation(s)
- Juan-José Escuder-Rodríguez
- Department of Medicine, Gastrointestinal Research Unit, Mayo Clinic Alix School of Medicine, Rochester, Minnesota
| | - Deguang Liang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York.
| | - Frank A Sinicrope
- Department of Medicine, Gastrointestinal Research Unit, Mayo Clinic Alix School of Medicine, Rochester, Minnesota.
| |
Collapse
|
35
|
Zhang T, Zeng X, Zeng E, Wang H. Ferroptosis in antitumor therapy: Unraveling regulatory mechanisms and immunogenic potential. Int Immunopharmacol 2024; 134:112203. [PMID: 38705030 DOI: 10.1016/j.intimp.2024.112203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/17/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
Ferroptosis, a recently discovered form of non-apoptotic cell death, has the potential to revolutionize anti-tumor therapy. This review highlights the regulatory mechanisms and immunogenic properties of ferroptosis, and how it can enhance the effectiveness of radio and immunotherapies in overcoming tumor resistance. However, tumor metabolism and the impact of ferroptosis on the tumor microenvironment present challenges in completely realizing its therapeutic potential. A deeper understanding of the effects of ferroptosis on tumor cells and their associated immune cells is essential for developing more effective tumor treatment strategies. This review offers a comprehensive overview of the relationship between ferroptosis and tumor immunity, and sheds new light on its application in tumor immunotherapy.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China; First Clinical Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xiaoping Zeng
- Medical College, Jinhua Polytechnic, Jinhua 321017, Zhejiang Province, China; School of Basic Medical Sciences, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Erming Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China.
| | - Hongmei Wang
- Medical College, Jinhua Polytechnic, Jinhua 321017, Zhejiang Province, China; School of Basic Medical Sciences, Nanchang University, Nanchang 330006, Jiangxi Province, China.
| |
Collapse
|
36
|
Zhou H, Cheng Y, Huang Q, Xiao J. Regulation of ferroptosis by nanotechnology for enhanced cancer immunotherapy. Expert Opin Drug Deliv 2024; 21:921-943. [PMID: 39014916 DOI: 10.1080/17425247.2024.2379937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
INTRODUCTION This review explores the innovative intersection of ferroptosis, a form of iron-dependent cell death, with cancer immunotherapy. Traditional cancer treatments face limitations in efficacy and specificity. Ferroptosis as a new paradigm in cancer biology, targets metabolic peculiarities of cancer cells and may potentially overcome such limitations, enhancing immunotherapy. AREA COVERED This review centers on the regulation of ferroptosis by nanotechnology to augment immunotherapy. It explores how nanoparticle-modulated ferroptotic cancer cells impact the TME and immune responses. The dual role of nanoparticles in modulating immune response through ferroptosis are also discussed. Additionally, it investigates how nanoparticles can be integrated with various immunotherapeutic strategies, to optimize ferroptosis induction and cancer treatment efficacy. The literature search was conducted using PubMed and Google Scholar, covering articles published up to March 2024. EXPERT OPINION The manuscript underscores the promising yet intricate landscape of ferroptosis in immunotherapy. It emphasizes the need for a nuanced understanding of ferroptosis' impact on immune cells and the TME to develop more effective cancer treatments, highlighting the potential of nanoparticles in enhancing the efficacy of ferroptosis and immunotherapy. It calls for deeper exploration into the molecular mechanisms and clinical potential of ferroptosis to fully harness its therapeutic benefits in immunotherapy.
Collapse
Affiliation(s)
- Haohan Zhou
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, PR China
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Quan Huang
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, PR China
| | - Jianru Xiao
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, PR China
| |
Collapse
|
37
|
Li Y, Tuerxun H, Zhao Y, Liu X, Li X, Wen S, Zhao Y. The new era of lung cancer therapy: Combining immunotherapy with ferroptosis. Crit Rev Oncol Hematol 2024; 198:104359. [PMID: 38615871 DOI: 10.1016/j.critrevonc.2024.104359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/12/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Ferroptosis is an unconventional programmed cell death mode caused by phospholipid peroxidation dependent on iron. Emerging immunotherapies (especially immune checkpoint inhibitors) have the potential to enhance lung cancer patients' long-term survival. Although immunotherapy has yielded significant positive applications in some patients, there are still many mechanisms that can cause lung cancer cells to evade immunity, thus leading to the failure of targeted therapies. Immune-tolerant cancer cells are insensitive to conventional death pathways such as apoptosis and necrosis, whereas mesenchymal and metastasis-prone cancer cells are particularly vulnerable to ferroptosis, which plays a vital role in mediating immune tolerance resistance by tumors and immune cells. As a result, triggering lung cancer cell ferroptosis holds significant therapeutic potential for drug-resistant malignancies. Here, we summarize the mechanisms underlying the suppression of ferroptosis in lung cancer, highlight its function in the lung cancer immune microenvironment, and propose possible therapeutic strategies.
Collapse
Affiliation(s)
- Yawen Li
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Halahati Tuerxun
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yixin Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xingyu Liu
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xi Li
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Shuhui Wen
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yuguang Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
38
|
Diao J, Jia Y, Dai E, Liu J, Kang R, Tang D, Han L, Zhong Y, Meng L. Ferroptotic therapy in cancer: benefits, side effects, and risks. Mol Cancer 2024; 23:89. [PMID: 38702722 PMCID: PMC11067110 DOI: 10.1186/s12943-024-01999-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/10/2024] [Indexed: 05/06/2024] Open
Abstract
Ferroptosis is a type of regulated cell death characterized by iron accumulation and uncontrolled lipid peroxidation, leading to plasma membrane rupture and intracellular content release. Originally investigated as a targeted therapy for cancer cells carrying oncogenic RAS mutations, ferroptosis induction now exhibits potential to complement chemotherapy, immunotherapy, and radiotherapy in various cancer types. However, it can lead to side effects, including immune cell death, bone marrow impairment, liver and kidney damage, cachexia (severe weight loss and muscle wasting), and secondary tumorigenesis. In this review, we discuss the advantages and offer an overview of the diverse range of documented side effects. Furthermore, we examine the underlying mechanisms and explore potential strategies for side effect mitigation.
Collapse
Affiliation(s)
- Jiandong Diao
- 2nd Inpatient Area of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Yuanyuan Jia
- 2nd Inpatient Area of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Enyong Dai
- 2nd Inpatient Area of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Jiao Liu
- DAMP laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Rui Kang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daolin Tang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | - Leng Han
- 2nd Inpatient Area of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China.
| | - Yingjie Zhong
- Department of Pediatrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China.
| | - Lingjun Meng
- 2nd Inpatient Area of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China.
| |
Collapse
|
39
|
Liu J, Kang R, Tang D. Adverse effects of ferroptotic therapy: mechanisms and management. Trends Cancer 2024; 10:417-429. [PMID: 38246792 DOI: 10.1016/j.trecan.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
Ferroptosis, a nonapoptotic form of cell death characterized by iron accumulation and uncontrolled lipid peroxidation, holds promise as a therapeutic approach in cancer treatment, alongside established modalities, such as chemotherapy, immunotherapy, and radiotherapy. However, recent research has raised concerns about its side effects, including damage to immune cells, hematopoietic stem cells, liver, and kidneys, the development of cachexia, and the risk of secondary tumor formation. In this review, we provide an overview of these emerging findings, with a specific emphasis on elucidating the underlying mechanisms, and underscore the critical significance of effectively managing side effects associated with targeted ferroptosis-based therapy.
Collapse
Affiliation(s)
- Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
40
|
Catanzaro E, Demuynck R, Naessens F, Galluzzi L, Krysko DV. Immunogenicity of ferroptosis in cancer: a matter of context? Trends Cancer 2024; 10:407-416. [PMID: 38368244 DOI: 10.1016/j.trecan.2024.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/19/2024]
Abstract
Ferroptosis is a variant of regulated cell death (RCD) elicited by an imbalance of cellular redox homeostasis that culminates with extensive lipid peroxidation and rapid plasma membrane breakdown. Since other necrotic forms of RCD, such as necroptosis, are highly immunogenic, ferroptosis inducers have attracted considerable attention as potential tools to selectively kill malignant cells while eliciting therapeutically relevant tumor-targeting immune responses. However, rather than being consistently immunogenic, ferroptosis mediates context-dependent effects on anticancer immunity. The inability of ferroptotic cancer cells to elicit adaptive immune responses may arise from contextual deficiencies in intrinsic aspects of the process, such as adjuvanticity and antigenicity, or from microenvironmental defects imposed by ferroptotic cancer cells themselves or elicited by the induction of ferroptosis in immune cells.
Collapse
Affiliation(s)
- Elena Catanzaro
- Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Robin Demuynck
- Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Faye Naessens
- Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent University, Ghent, Belgium.
| |
Collapse
|
41
|
Zhou Q, Meng Y, Li D, Yao L, Le J, Liu Y, Sun Y, Zeng F, Chen X, Deng G. Ferroptosis in cancer: From molecular mechanisms to therapeutic strategies. Signal Transduct Target Ther 2024; 9:55. [PMID: 38453898 PMCID: PMC10920854 DOI: 10.1038/s41392-024-01769-5] [Citation(s) in RCA: 159] [Impact Index Per Article: 159.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/21/2024] [Accepted: 02/03/2024] [Indexed: 03/09/2024] Open
Abstract
Ferroptosis is a non-apoptotic form of regulated cell death characterized by the lethal accumulation of iron-dependent membrane-localized lipid peroxides. It acts as an innate tumor suppressor mechanism and participates in the biological processes of tumors. Intriguingly, mesenchymal and dedifferentiated cancer cells, which are usually resistant to apoptosis and traditional therapies, are exquisitely vulnerable to ferroptosis, further underscoring its potential as a treatment approach for cancers, especially for refractory cancers. However, the impact of ferroptosis on cancer extends beyond its direct cytotoxic effect on tumor cells. Ferroptosis induction not only inhibits cancer but also promotes cancer development due to its potential negative impact on anticancer immunity. Thus, a comprehensive understanding of the role of ferroptosis in cancer is crucial for the successful translation of ferroptosis therapy from the laboratory to clinical applications. In this review, we provide an overview of the recent advancements in understanding ferroptosis in cancer, covering molecular mechanisms, biological functions, regulatory pathways, and interactions with the tumor microenvironment. We also summarize the potential applications of ferroptosis induction in immunotherapy, radiotherapy, and systemic therapy, as well as ferroptosis inhibition for cancer treatment in various conditions. We finally discuss ferroptosis markers, the current challenges and future directions of ferroptosis in the treatment of cancer.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Daishi Li
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Lei Yao
- Department of General Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Jiayuan Le
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yihuang Liu
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yuming Sun
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| |
Collapse
|
42
|
Zhang Y, Xiao B, Liu Y, Wu S, Xiang Q, Xiao Y, Zhao J, Yuan R, Xie K, Li L. Roles of PPAR activation in cancer therapeutic resistance: Implications for combination therapy and drug development. Eur J Pharmacol 2024; 964:176304. [PMID: 38142851 DOI: 10.1016/j.ejphar.2023.176304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/09/2023] [Accepted: 12/21/2023] [Indexed: 12/26/2023]
Abstract
Therapeutic resistance is a major obstacle to successful treatment or effective containment of cancer. Peroxisome proliferator-activated receptors (PPARs) play an essential role in regulating energy homeostasis and determining cell fate. Despite of the pleiotropic roles of PPARs in cancer, numerous studies have suggested their intricate relationship with therapeutic resistance in cancer. In this review, we provided an overview of the roles of excessively activated PPARs in promoting resistance to modern anti-cancer treatments, including chemotherapy, radiotherapy, targeted therapy, and immunotherapy. The mechanisms through which activated PPARs contribute to therapeutic resistance in most cases include metabolic reprogramming, anti-oxidant defense, anti-apoptosis signaling, proliferation-promoting pathways, and induction of an immunosuppressive tumor microenvironment. In addition, we discussed the mechanisms through which activated PPARs lead to multidrug resistance in cancer, including drug efflux, epithelial-to-mesenchymal transition, and acquisition and maintenance of the cancer stem cell phenotype. Preliminary studies investigating the effect of combination therapies with PPAR antagonists have suggested the potential of these antagonists in reversing resistance and facilitating sustained cancer management. These findings will provide a valuable reference for further research on and clinical translation of PPAR-targeting treatment strategies.
Collapse
Affiliation(s)
- Yanxia Zhang
- School of Medicine, The South China University of Technology, Guangzhou, 510006, China; Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Bin Xiao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Yunduo Liu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Shunhong Wu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Qin Xiang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Yuhan Xiao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Junxiu Zhao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Ruanfei Yuan
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Keping Xie
- School of Medicine, The South China University of Technology, Guangzhou, 510006, China.
| | - Linhai Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
| |
Collapse
|
43
|
Zhang YY, Han Y, Li WN, Xu RH, Ju HQ. Tumor iron homeostasis and immune regulation. Trends Pharmacol Sci 2024; 45:145-156. [PMID: 38212195 DOI: 10.1016/j.tips.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/13/2024]
Abstract
Abnormal iron metabolism has long been regarded as a key metabolic hallmark of cancer. As a critical cofactor, iron contributes to tumor progression by participating in various processes such as mitochondrial electron transport, gene regulation, and DNA synthesis or repair. Although the role of iron in tumor cells has been widely studied, recent studies have uncovered the interplay of iron metabolism between tumor cells and immune cells, which may affect both innate and adaptive immune responses. In this review, we discuss the current understanding of the regulatory networks of iron metabolism between cancer cells and immune cells and how they contribute to antitumor immunity, and we analyze potential therapeutics targeting iron metabolism. Also, we highlight several key challenges and describe potential therapeutic approaches for future investigations.
Collapse
Affiliation(s)
- Yan-Yu Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Yi Han
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Wen-Ning Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Rui-Hua Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510060, P. R. China.
| | - Huai-Qiang Ju
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510060, P. R. China.
| |
Collapse
|
44
|
Li Y, Pan Y, Zhao X, Wu S, Li F, Wang Y, Liu B, Zhang Y, Gao X, Wang Y, Zhou H. Peroxisome proliferator-activated receptors: A key link between lipid metabolism and cancer progression. Clin Nutr 2024; 43:332-345. [PMID: 38142478 DOI: 10.1016/j.clnu.2023.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/26/2023]
Abstract
Lipids represent the essential components of membranes, serve as fuels for high-energy processes, and play crucial roles in signaling and cellular function. One of the key hallmarks of cancer is the reprogramming of metabolic pathways, especially abnormal lipid metabolism. Alterations in lipid uptake, lipid desaturation, de novo lipogenesis, lipid droplets, and fatty acid oxidation in cancer cells all contribute to cell survival in a changing microenvironment by regulating feedforward oncogenic signals, key oncogenic functions, oxidative and other stresses, immune responses, or intercellular communication. Peroxisome proliferator-activated receptors (PPARs) are transcription factors activated by fatty acids and act as core lipid sensors involved in the regulation of lipid homeostasis and cell fate. In addition to regulating whole-body energy homeostasis in physiological states, PPARs play a key role in lipid metabolism in cancer, which is receiving increasing research attention, especially the fundamental molecular mechanisms and cancer therapies targeting PPARs. In this review, we discuss how cancer cells alter metabolic patterns and regulate lipid metabolism to promote their own survival and progression through PPARs. Finally, we discuss potential therapeutic strategies for targeting PPARs in cancer based on recent studies from the last five years.
Collapse
Affiliation(s)
- Yunkuo Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yujie Pan
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiaodong Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Shouwang Wu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Faping Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuxiong Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yanghe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Xin Gao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
45
|
Lin Z, Zou S, Wen K. The crosstalk of CD8+ T cells and ferroptosis in cancer. Front Immunol 2024; 14:1255443. [PMID: 38288118 PMCID: PMC10822999 DOI: 10.3389/fimmu.2023.1255443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 12/28/2023] [Indexed: 01/31/2024] Open
Abstract
Ferroptosis is an iron-dependent, novel form of programmed cell death characterized by lipid peroxidation and glutathione depletion and is widespread in a variety of diseases. CD8+ T cells are the most important effector cells of cytotoxic T cells, capable of specifically recognizing and killing cancer cells. Traditionally, CD8+ T cells are thought to induce cancer cell death mainly through perforin and granzyme, and Fas-L/Fas binding. In recent years, CD8+ T cell-derived IFN-γ was found to promote cancer cell ferroptosis by multiple mechanisms, including upregulation of IRF1 and IRF8, and downregulation of the system XC-, while cancer cells ferroptosis was shown to enhance the anti-tumor effects of CD8+ T cell by heating the tumor immune microenvironment through the exposure and release of tumor-associated specific antigens, which results in a positive feedback pathway. Unfortunately, the intra-tumoral CD8+ T cells are more sensitive to ferroptosis than cancer cells, which limits the application of ferroptosis inducers in cancer. In addition, CD8+ T cells are susceptible to being regulated by other immune cell ferroptosis in the TME, such as tumor-associated macrophages, dendritic cells, Treg, and bone marrow-derived immunosuppressive cells. Together, these factors build a complex network of CD8+ T cells and ferroptosis in cancer. Therefore, we aim to integrate relevant studies to reveal the potential mechanisms of crosstalk between CD8+ T cells and ferroptosis, and to summarize preclinical models in cancer therapy to find new therapeutic strategies in this review.
Collapse
Affiliation(s)
- Zhengjun Lin
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- The First People's Hospital of Zunyi, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Songzhu Zou
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Kunming Wen
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
46
|
Xiao L, Xian M, Zhang C, Guo Q, Yi Q. Lipid peroxidation of immune cells in cancer. Front Immunol 2024; 14:1322746. [PMID: 38259464 PMCID: PMC10800824 DOI: 10.3389/fimmu.2023.1322746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Growing evidence indicates that cellular metabolism is a critical determinant of immune cell viability and function in antitumor immunity and lipid metabolism is important for immune cell activation and adaptation to the tumor microenvironment (TME). Lipid peroxidation is a process in which oxidants attack lipid-containing carbon-carbon double bonds and is an important part of lipid metabolism. In the past decades, studies have shown that lipid peroxidation participates in signal transduction to control cell proliferation, differentiation, and cell death, which is essential for cell function execution and human health. More importantly, recent studies have shown that lipid peroxidation affects immune cell function to modulate tumor immunity and antitumor ability. In this review, we briefly overview the effect of lipid peroxidation on the adaptive and innate immune cell activation and function in TME and discuss the effectiveness and sensitivity of the antitumor ability of immune cells by regulating lipid peroxidation.
Collapse
Affiliation(s)
| | | | | | | | - Qing Yi
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston Methodist, Houston, TX, United States
| |
Collapse
|
47
|
Tang D, Kroemer G, Kang R. Ferroptosis in immunostimulation and immunosuppression. Immunol Rev 2024; 321:199-210. [PMID: 37424139 DOI: 10.1111/imr.13235] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/11/2023]
Abstract
Ferroptosis is a form of iron-dependent regulated cell death characterized by the accumulation of toxic lipid peroxides, particularly in the plasma membrane, leading to lytic cell death. While it plays a crucial role in maintaining the overall health and proper functioning of multicellular organisms, it can also contribute to tissue damage and pathological conditions. Although ferroptotic damage is generally recognized as an immunostimulatory process associated with the release of damage-associated molecular patterns (DAMPs), the occurrence of ferroptosis in immune cells or the release of immunosuppressive molecules can result in immune tolerance. Consequently, there is ongoing exploration of targeting the upstream signals or the machinery of ferroptosis to therapeutically enhance or inhibit the immune response. In addition to introducing the core molecular mechanisms of ferroptosis, we will focus on the immune characteristics of ferroptosis in pathological conditions, particularly in the context of infection, sterile inflammation, and tumor immunity.
Collapse
Affiliation(s)
- Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
48
|
Larsen MC, Rondelli CM, Almeldin A, Song YS, N’Jai A, Alexander DL, Forsberg EC, Sheibani N, Jefcoate CR. AhR and CYP1B1 Control Oxygen Effects on Bone Marrow Progenitor Cells: The Enrichment of Multiple Olfactory Receptors as Potential Microbiome Sensors. Int J Mol Sci 2023; 24:16884. [PMID: 38069208 PMCID: PMC10706615 DOI: 10.3390/ijms242316884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Polycyclic aromatic hydrocarbon (PAH) pollutants and microbiome products converge on the aryl hydrocarbon receptor (AhR) to redirect selective rapid adherence of isolated bone marrow (BM) cells. In young adult mice, Cyp1b1-deficiency and AhR activation by PAH, particularly when prolonged by Cyp1a1 deletion, produce matching gene stimulations in these BM cells. Vascular expression of Cyp1b1 lowers reactive oxygen species (ROS), suppressing NF-κB/RelA signaling. PAH and allelic selectivity support a non-canonical AhR participation, possibly through RelA. Genes stimulated by Cyp1b1 deficiency were further resolved according to the effects of Cyp1b1 and Cyp1a1 dual deletions (DKO). The adherent BM cells show a cluster of novel stimulations, including select developmental markers; multiple re-purposed olfactory receptors (OLFR); and α-Defensin, a microbial disruptor. Each one connects to an enhanced specific expression of the catalytic RNA Pol2 A subunit, among 12 different subunits. Mesenchymal progenitor BMS2 cells retain these features. Cyp1b1-deficiency removes lymphocytes from adherent assemblies as BM-derived mesenchymal stromal cells (BM-MSC) expand. Cyp1b1 effects were cell-type specific. In vivo, BM-MSC Cyp1b1 expression mediated PAH suppression of lymphocyte progenitors. In vitro, OP9-MSC sustained these progenitors, while Csf1 induced monocyte progenitor expansion to macrophages. Targeted Cyp1b1 deletion (Cdh5-Cre; Cyp1b1fl/fl) established endothelium control of ROS that directs AhR-mediated suppression of B cell progenitors. Monocyte Cyp1b1 deletion (Lyz2-Cre; Cyp1b1fl/fl) selectively attenuated M1 polarization of expanded macrophages, but did not enhance effects on basal M2 polarization. Thus, specific sources of Cyp1b1 link to AhR and to an OLFR network to provide BM inflammatory modulation via diverse microbiome products.
Collapse
Affiliation(s)
- Michele C. Larsen
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (M.C.L.); (A.A.)
| | | | - Ahmed Almeldin
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (M.C.L.); (A.A.)
| | - Yong-Seok Song
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| | - Alhaji N’Jai
- Department of Pathobiological Sciences, University of Wisconsin, Madison, WI 53706, USA;
| | - David L. Alexander
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA 95064, USA; (D.L.A.); (E.C.F.)
| | - E. Camilla Forsberg
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA 95064, USA; (D.L.A.); (E.C.F.)
| | - Nader Sheibani
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (M.C.L.); (A.A.)
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| | - Colin R. Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (M.C.L.); (A.A.)
| |
Collapse
|
49
|
Liu J, Li J, Kang R, Tang D. Cell type-specific induction of ferroptosis to boost antitumor immunity. Oncoimmunology 2023; 12:2282252. [PMID: 38126037 PMCID: PMC10732610 DOI: 10.1080/2162402x.2023.2282252] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 12/23/2023] Open
Abstract
Traditional ferroptosis activators typically suppress antitumor immunity. Our discovery shows that N6F11, a small molecule compound, can selectively induce ferroptosis by targeting TRIM25-mediated GPX4 degradation in cancer cells while sparing immune cells. This breakthrough establishes a safe and effective strategy to enhance ferroptosis-driven antitumor immunity.
Collapse
Affiliation(s)
- Jiao Liu
- DAMP Lab, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jingbo Li
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
50
|
Li J, Liu J, Zhou Z, Wu R, Chen X, Yu C, Stockwell B, Kroemer G, Kang R, Tang D. Tumor-specific GPX4 degradation enhances ferroptosis-initiated antitumor immune response in mouse models of pancreatic cancer. Sci Transl Med 2023; 15:eadg3049. [PMID: 37910602 DOI: 10.1126/scitranslmed.adg3049] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 09/26/2023] [Indexed: 11/03/2023]
Abstract
Lipid peroxidation-dependent ferroptosis has become an emerging strategy for tumor therapy. However, current strategies not only selectively induce ferroptosis in malignant cells but also trigger ferroptosis in immune cells simultaneously, which can compromise anti-tumor immunity. Here, we used In-Cell Western assays combined with an unbiased drug screening to identify the compound N6F11 as a ferroptosis inducer that triggered the degradation of glutathione peroxidase 4 (GPX4), a key ferroptosis repressor, specifically in cancer cells. N6F11 did not cause the degradation of GPX4 in immune cells, including dendritic, T, natural killer, and neutrophil cells. Mechanistically, N6F11 bound to the RING domain of E3 ubiquitin ligase tripartite motif containing 25 (TRIM25) in cancer cells to trigger TRIM25-mediated K48-linked ubiquitination of GPX4, resulting in its proteasomal degradation. Functionally, N6F11 treatment caused ferroptotic cancer cell death that initiated HMGB1-dependent antitumor immunity mediated by CD8+ T cells. N6F11 also sensitized immune checkpoint blockade that targeted CD274/PD-L1 in advanced cancer models, including genetically engineered mouse models of pancreatic cancer driven by KRAS and TP53 mutations. These findings may establish a safe and efficient strategy to boost ferroptosis-driven antitumor immunity.
Collapse
Affiliation(s)
- Jingbo Li
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiao Liu
- DAMP Laboratory, Third Affiliated Hospital, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Zhuan Zhou
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Runliu Wu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xin Chen
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chunhua Yu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brent Stockwell
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94800 Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, F-75015 Paris, France
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|