1
|
Isiksel E, Attar A, Ozalp L, Altikatoglu Yapaoz M. A novel controlled release system Au-CuONP/P(MMAcoMAA)/chitosan nanocomposites: Synthesis, characterization, antimicrobial activity and in silico molecular docking. Int J Biol Macromol 2025; 307:141985. [PMID: 40081700 DOI: 10.1016/j.ijbiomac.2025.141985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
The aim of the study is to synthesize antibacterial nanocomposites containing green synthesized bimetal nanoparticles, which offers a low-cost and environmentally friendly application opportunity in order to employ in drug delivery. In the study, cotoneaster (Cotoneaster horizontalis) fruits, laurel (Laurus nobilis) and sage (Salvia officinalis) leaves grown in the natural flora of Turkey were used for the synthesis of Au-CuO nanoparticles. Chitosan/nanochitosan and P(MMAcoMAA) containing nanocomposite material was synthesized with the obtained bimetallic nanoparticles. Characterization of the prepared nanocomposite was performed by FT-IR, XRD, SEM, UV-Vis and DLS. Antibacterial activities against E. coli and S. aureus and antifungal activities against A. niger were investigated. The usability of the developed nanocomposite in controlled release systems was tested in the BSA model. The binding affinities of Au-CuO nanoparticles to E. coli β-lactamase, S. aureus TMK and A. niger Fdc1 enzymes were also determined and possible antibacterial and antifungal mechanisms were simulated by molecular docking analysis. Au-CuO NPs showed absorbance peaks between 273-276 and 542-552 nm corresponding to CuO and Au, respectively in UV-Vis analysis evaluating the presence of bimetallic NPs. The peaks observed between 567 and 602 cm-1 in all samples in FT-IR analysis proves the presence of metal-oxides. In SEM images, it was seen that Au-CuO NPs are between 10 and 90 nm and nanocomposites were homogeneously distributed porous matrix structures. 2θ values in XRD patterns of Au-CuO NPs were 38.2°, 44.5°, 64.7° and 77.7° and corresponded to Au and CuO phases, and peaks from both phases represented successful nanoparticle and nanocomposite formation containing bimetal structure. All synthesized materials showed strong antimicrobial activity, close to commercial antibiotics. Inhibition zone of nanocomposite was measured as 25 mm against E. coli, 26 mm against S. aureus and 28 mm against A. niger. MIC and MBC values of nanoparticles and nanocomposites were higher against Gram (-) bacteria. Controlled drug release was studied on the BSA model for 7 days and while the release of the chitosan-containing nanocomposite was 91 % at the end of the period, the nanochitosan sample released 88 %. The binding energies of the synthesized Au-CuO NPs to β-lactamase, TMK and Fdc1 obtained in the molecular docking analysis, were -1.68, -1.60 and -2.16 kcal/mol, respectively. The results showed that a nanomaterial with controlled release capability, antibacterial and antifungal properties that can contain proteins was produced.
Collapse
Affiliation(s)
- Ecem Isiksel
- Yildiz Technical University, Faculty of Science and Letters, Department of Chemistry, Davutpasa Campus, 34220 Istanbul, Turkey
| | - Azade Attar
- Yildiz Technical University, Faculty of Chemical & Metallurgical Engineering, Department of Bioengineering, Davutpasa Campus, 34220 Istanbul, Turkey.
| | - Lalehan Ozalp
- Gebze Technical University, Biotechnology Institute, 41400 Kocaeli, Turkey
| | - Melda Altikatoglu Yapaoz
- Yildiz Technical University, Faculty of Science and Letters, Department of Chemistry, Davutpasa Campus, 34220 Istanbul, Turkey
| |
Collapse
|
2
|
Venkataramaiah S, Venkatappa MM, Rangappa R, Udagani C, Sannaningaiah D. Green fabricated bimetallic zinc ferrite nanoparticles mitigate oxidative stress-induced pathogenesis. Anal Biochem 2025; 700:115767. [PMID: 39788363 DOI: 10.1016/j.ab.2025.115767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/12/2025]
Abstract
Current study evaluates the beneficial role of bio-functionalized zinc ferrite nanoparticles fabricated from an aqueous extract of Decalepis hamiltonii leaves (DHLE.ZnFe2O4 NPs) on sodium nitrite (NaNO2) and Diclofenac (DFC) induced oxidative stress in RBCs and Sprague Dawley male rat models. DHLE.ZnFe2O4 NPs were characterized using PXRD, FTIR, SEM-EDAX, HR-TEM and VSM. The data suggests that, DHLE.ZnFe2O4 NPs were crystalline, ellipsoidal in shape with an average size of 10.95 nm and super paramagnetic in nature. DHLE.ZnFe2O4 NPs exhibited anti-oxidant properties by scavenging DPPH, H2O2 and reducing ferric to ferrous ions. Furthermore, DHLE.ZnFe2O4 NPs normalized key parameters of oxidative stress such as LPO, PCC, TT and anti-oxidant enzymes (SOD & CAT). Similar to the previous in-vitro results, DHLE.ZnFe2O4 NPs restored all the said stress parameters in homogenates of the liver, kidney, pancreas and heart. In addition, DHLE.ZnFe2O4 NPs repaired Diclofenac induced tissue damage in the liver, kidney, pancreas and heart by regulating all biochemical parameters. Most importantly, DHLE.ZnFe2O4 NPs exhibited anti-inflammatory, anti-diabetic, anti-thrombotic activities and were non-toxic to RBCs. In conclusion, DHLE.ZnFe2O4 NPs through its anti-oxidant potential ameliorate oxidative stress induced pathogenesis such as, inflammation, tissue damage, diabetes and thrombosis.
Collapse
Affiliation(s)
- Shivakumar Venkataramaiah
- Department of Studies and Research in Biochemistry, Tumkur University, Tumkur, 572103, Karnataka, India
| | - Manjula M Venkatappa
- Department of Biochemistry, Kuvempu University, Shankaraghatta, Shimoga, 577451, Karnataka, India
| | - Rajesh Rangappa
- Chromed Biosciences Private Limited, Hirehalli Industrial Area, Tumkur, 572168, Karnataka, India
| | - Chikkappa Udagani
- Department of Physics, University College of Science, Tumkur University, Tumkur, 572103, Karnataka, India
| | - Devaraja Sannaningaiah
- Department of Studies and Research in Biochemistry, Tumkur University, Tumkur, 572103, Karnataka, India.
| |
Collapse
|
3
|
Imchen L, Manisekaran R, Jamir I, Rathore HS, Senthilvelan T. A review on plant-mediated synthesis of AgNPs and their formulations for wound healing application. Mol Biol Rep 2025; 52:419. [PMID: 40266399 DOI: 10.1007/s11033-025-10512-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 04/14/2025] [Indexed: 04/24/2025]
Abstract
Wound healing is a sophisticated and dynamic process carried out by a myriad of cellular activities that work together in a coordinated manner to effectively repair damaged tissue. It involves a cascade process involving hemostasis, inflammation, granulation, maturation, and remodeling. However, in the case of chronic wounds, owing to the delayed wound healing process, various microbes invade the wound area and produce biofilms that hinder the healing process. Owing to rapid advancements in nanotechnology, several nanomaterials with diverse formulations have been investigated for wound healing. Among them, silver nanoparticles (AgNPs) have shown excellent properties, as they have unique physiochemical properties that address the problems associated with wound healing. The antibacterial and antioxidant properties of silver greatly enhance wound-care diagnostics. The use of medicinal plants for green synthesis of AgNPs has been widely researched, with these plants serving as both reducing and stabilizing agents in the nanoparticle formation process. This review focuses on different wound types, problems related to wounds, green-synthesized AgNPs using medicinal plants, and their limitations and advantages in wound dressing formulations. This study aims to provide the scientific community with a directional view in analyzing the role and importance of green-synthesized AgNPs in wound care.
Collapse
Affiliation(s)
- Lolenmenla Imchen
- Department of Biotechnology, School of Engineering and Technology, Nagaland University, Meriema, Kohima, Nagaland, 797004, India
| | - Ravichandran Manisekaran
- Interdisciplinary Research Laboratory (LII), Nanostructures & Biomaterials, Escuela Nacional de Estudios Superiores (ENES) Unidad León-Universidad Nacional Autónoma de México (UNAM), León, Guanajuato, C.P. 37689, Mexico
| | - Imlitoshi Jamir
- Department of Biotechnology, School of Engineering and Technology, Nagaland University, Meriema, Kohima, Nagaland, 797004, India
| | - Hanumant Singh Rathore
- Department of Biotechnology, School of Engineering and Technology, Nagaland University, Meriema, Kohima, Nagaland, 797004, India.
| | - T Senthilvelan
- Department of Bioinformatics, Saveetha School of Engineering (SSE), Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 602105, India.
| |
Collapse
|
4
|
Akyil D, Yeniyol E. Green synthesized zinc oxide nanoparticle with Mentha pulegium L. extracts in A549 cell line, characterization, biological activities, Genotoxicity in comet test and SMART assay in Drosophila melanogaster. Toxicol Res (Camb) 2025; 14:tfaf046. [PMID: 40190380 PMCID: PMC11969665 DOI: 10.1093/toxres/tfaf046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/30/2025] [Accepted: 03/14/2025] [Indexed: 04/09/2025] Open
Abstract
In this study, zinc oxide nanoparticles (ZnO NPs) were obtained by green synthesis method using extracts prepared from Mentha pulegium L. species in order to investigate the cytotoxic, genotoxic and antimicrobial activities of nanoparticles. For the characterization of these nanoparticles, UV-Vis spectrophotometer, FT-IR, XRD and SEM analysis methods were used. For cell culture studies were carried out to determine the cytotoxic and genotoxic activities of ZnO NPs obtained by green synthesis with A549 cell line, which is a lung cancer cell. In the genotoxicity results determined by the Comet method, the highest DNA damage was seen at a concentration of 3.75 mg/mL. The genotoxic activity of different concentrations (0.1, 1, 5, 10 mM) of ZNO NPs were evaluated with SMART assay on Drosophila melanogaster. According to results ZNO NPs applications were found to be similar to the control group in all doses. On the other hand, in order to determine the antimicrobial activity, Escherichia coli (ATTC 25922), Staphylococcus aureus (ATTC 29213), Candida albicans (ATTC 90028), Klebsiella pneumoniae (ATTC 700603) and Salmonella enteritidis (ATTC 13076) microorganisms were cultured and disc diffusion test method was applied. In the disc diffusion test, dose application was made in the range of 15.6-500 mg/mL concentrations and it was observed that inhibition zone was formed at all concentrations.
Collapse
Affiliation(s)
- Dilek Akyil
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey
| | - Edanur Yeniyol
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey
| |
Collapse
|
5
|
Zahra N, Fatima S, Nazir A, Farrukh SY, Anwer A, Sarwar A, Aziz T, Al Asmari F, Nahari AM, Jalal RS, Al-Joufi FA, Alwethaynani MS. In vivo and in silico analysis of anti inflammatory, antipyretic and analgesic activity of methanolic extract of Nigella sativa. J Mol Histol 2025; 56:118. [PMID: 40126708 DOI: 10.1007/s10735-025-10399-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/12/2025] [Indexed: 03/26/2025]
Abstract
Nigella Sativa (N. sativa) belongs to the family of Ranunculaceae and is an annual herb which is also known as black cumin or black seed. Since ancient times N. sativa has been used because of its widespread therapeutic properties which has been proven effective in respiratory, cardiovascular, gastrointestinal, inflammatory conditions and in inflammation. This study investigates the antiinflammatory, antipyretic, and analgesic properties of Nigella sativa (N. sativa) methanol extract using albino rats (n = 36). Diclofenac and paracetamol were used as standard medications in the trial, and the four concentrations of the methanolic extract (250, 500, 1000, and 2000 mg/kg) were tested for their effects on inflammation, pain, and fever. The methanolic extract of N. sativa seeds showed significant inhibition of fever (96%), inflammation (89%), and pain (85%). In addition, bioactive compounds in the seeds, including thymol, p-cymene, and limonene, were examined through in-silico studies. Ligand molecules and proteins associated with anti-inflammatory, analgesic, and antipyretic effects were 1DFN, 1A06, and 3LN0, respectively. The molecular docking results indicated significant binding interactions, with effective binding energy values corresponding to analgesic, antipyretic, and anti-inflammatory properties. Both in-silico and in-vivo results demonstrate the efficacy of N. sativa methanol extract in alleviating pain, inflammation, and fever.
Collapse
Affiliation(s)
- Nureen Zahra
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan.
| | - Saher Fatima
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan
| | - Anum Nazir
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan
| | - Syeda Yumna Farrukh
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan
| | - Ayesha Anwer
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan
| | - Abid Sarwar
- Food and Biotechnology Research Lab, PCSIR Complex Lahore, Lahore 54590 Punjab, Pakistan
| | - Tariq Aziz
- Laboratory of Animal Health Hygiene and Quality, Department of Agriculture, University of Ioannina, Arta, Greece.
| | - Fahad Al Asmari
- Department of Food and Nutrition Sciences, College of Agricultural and Food Sciences, King Faisal University, Al Ahsa, Saudi Arabia
| | - Aziza Mahdy Nahari
- Department of Biological Sciences, College of Sciences, University of Jeddah, 21493, Jeddah, Saudi Arabia
| | - Rewa S Jalal
- Department of Biological Sciences, College of Sciences, University of Jeddah, 21493, Jeddah, Saudi Arabia
| | - Fakhria A Al-Joufi
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Aljouf, Saudi Arabia
| | - Maher S Alwethaynani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Ghasemi M, Govahi M, Litkohi HR. Green synthesis of silver nanoparticles (AgNPs) and chitosan-coated silver nanoparticles (CS-AgNPs) using Ferula gummosa Boiss. gum extract: A green nano drug for potential applications in medicine. Int J Biol Macromol 2025; 291:138619. [PMID: 39667473 DOI: 10.1016/j.ijbiomac.2024.138619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/07/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
In this study, silver nanoparticles (AgNPs) and chitosan-coated silver nanoparticles (CS-AgNPs) were synthesized in a green way using Ferula gummosa Boiss. gum extract. The as-prepared NPs were employed as efficient nanomaterials for developing antimicrobial, antioxidant, and anticancer agents. The AgNPs and the CS-AgNPs were characterized using TEM, EDX, FESEM, UV-Vis, XRD, DLS, and FTIR. The UV-Vis spectra showed the surface plasmon resonance for the AgNPs in the visible range around 420 nm. Also, the TEM images indicated particle sizes ranging from 2 to 20 nm and 5-50 nm for the AgNPs and the CS-AgNPs, respectively. Cytotoxicity of the AgNPs and the CS-AgNPs was assessed through MTT and hemolysis assays on normal and cancer cell lines. The AgNPs and the CS-AgNPs demonstrated significant antibacterial activity against Staphylococcus aureus and Bacillus subtilis. The antioxidant assays revealed substantial free radical scavenging activity, with CS-AgNPs exhibiting superior antioxidant properties. In addition, the hemolysis assay illustrated low hemolytic activity for the AgNPs and CS-AgNPs. Moreover, the MTT assay demonstrated a significant cytotoxic effect for the AgNPs and the CS-AgNPs on the MCF-7 breast cancer cell line. These results provide an effective strategy to prepare the biosynthesized AgNPs and the CS-AgNPs for future pharmaceutical applications.
Collapse
Affiliation(s)
- Mostafa Ghasemi
- Department of Microbial Biotechnology, College of Biotechnology, Amol University of Special Modern Technologies, Amol 46158-63111, Iran
| | - Mostafa Govahi
- Department of Nano Biotechnology, College of Biotechnology, Amol University of Special Modern Technologies, Amol 46158-63111, Iran.
| | - Hajar Rajaei Litkohi
- Department of Nano Biotechnology, College of Biotechnology, Amol University of Special Modern Technologies, Amol 46158-63111, Iran
| |
Collapse
|
7
|
Khalid M, Noreen M. Microbial mediated silver nanoparticles enhance the potential of bioactive metabolites in the medicinal plant Linum usitatissimum. RSC Adv 2025; 15:3172-3182. [PMID: 39896434 PMCID: PMC11783205 DOI: 10.1039/d4ra03104k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 12/31/2024] [Indexed: 02/04/2025] Open
Abstract
Medicinal plants contain phytochemicals that confer therapeutic potentials, allowing plants to perform various biologically significant functions. However, the therapeutic potential of these bioactive metabolites against multidrug-resistant bacteria is limited. Hence, the potential use of rhizopheric bacteria to isolate silver nanoparticles to enhance the potential of bioactive metabolites has been adopted by researchers. Therefore, this research aimed to biogenically produce silver nanoparticles using the rhizospheric soil of Aloe barbadensis miller and to evaluate its impact in regulating the potential of bioactive metabolites produced from the medicinal plant Linum usitatissimum. The powder extract of Linum usitatissimum was macerated under four different environmental conditions including cold maceration, warm maceration, fermented, and unfermented for extraction of metabolites. Macerated extracts were then evaluated for phytochemical detection of bioactive metabolites like alkaloids, steroids, phenols, and saponins. Biogenic AgNPs were primarily confirmed by visible color change from colorless to brown and were further characterized using UV-vis spectroscopy, giving two absorbance peaks at 440 nm and 445 nm. Functional groups attached to biogenic AgNPs were detected by Fourier transform infrared (FTIR) analysis. The crystalline nature of biogenic AgNPs was evaluated by X-ray diffraction (XRD) giving a diffraction peak at angles of around 36°, 46°, 67°, and 77°. The particle size and morphological appearance of biogenic AgNPs were confirmed by Scanning Electron Microscopy (SEM). The total phenolic content of biogenic AgNPs and bioactive metabolites was estimated by the Folin-Ciocalteu (F-C) assay. The antimicrobial efficacy of biogenic AgNPs and bioactive metabolites against MDR bacterial strains was accessed. This research shows that biogenic AgNPs can be used as a strong agent in enhancing the antimicrobial potential of bioactive metabolites against MDR bacteria and they can be investigated for further experimental findings.
Collapse
Affiliation(s)
- Minahil Khalid
- Department of Microbiology and Molecular Genetics, The Women University Multan Mattital Campus Pakistan +92-333-2696900 +92-334-6992613
| | - Mamoona Noreen
- Department of Microbiology and Molecular Genetics, The Women University Multan Mattital Campus Pakistan +92-333-2696900 +92-334-6992613
| |
Collapse
|
8
|
Docrat TF, Eltahir AOE, Hussein AA, Marnewick JL. Green synthesis of metal nanocarriers: A perspective for targeting glioblastoma. Drug Discov Today 2024; 29:104219. [PMID: 39476945 DOI: 10.1016/j.drudis.2024.104219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/05/2024] [Accepted: 10/24/2024] [Indexed: 11/11/2024]
Abstract
Glioblastoma, the most aggressive brain cancer, is challenging to treat owing to the difficulty of crossing the blood-brain barrier, high recurrence rates and significant mortality. This review highlights the potential of green synthesis methods in developing metal nanoparticles (MNPs) as a sustainable solution for drug delivery systems targeting glioblastoma. We explore the unique properties and modes of action of MNPs synthesised through eco-friendly processes by focusing on their bioavailability and precision in brain targeting, and discuss the potential of MNPs to target glioblastoma at the molecular level. Integrating green synthesis into cancer therapeutics represents a novel paradigm shift towards treatments with higher efficacy and lower environmental impact, offering hope in the fight against glioblastoma.
Collapse
Affiliation(s)
- Taskeen F Docrat
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville 7535, South Africa.
| | - Ali O E Eltahir
- Department of Chemistry, Cape Peninsula University of Technology, Bellville 7535, South Africa; Permanent address: Department of Chemistry, Omdurman Islamic University, Omdurman, P.O. Box 382, Khartoum, Sudan
| | - Ahmed A Hussein
- Department of Chemistry, Cape Peninsula University of Technology, Bellville 7535, South Africa
| | - Jeanine L Marnewick
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville 7535, South Africa
| |
Collapse
|
9
|
Yadav S, Mali SN, Pandey A. Biogenic Nanoparticles as Safer Alternatives for Gastric Ulcers: An Update on Green Synthesis Methods, Toxicity, and Their Efficacy in Controlling Inflammation. Biol Trace Elem Res 2024:10.1007/s12011-024-04446-4. [PMID: 39570521 DOI: 10.1007/s12011-024-04446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
Peptic ulcers, affecting approximately 10% of the global population, can result from factors such as stress, alcohol use, smoking, NSAIDs, Helicobacter pylori infection, and genetic predisposition. Plant-based medicines are gaining recognition for their therapeutic potential, including in the treatment of peptic ulcers. Green chemistry methods for the biological synthesis of nanoparticles (NPs) provide a sustainable alternative to traditional chemical techniques. These nanoparticles, particularly metallic NPs and metal oxides synthesized from plant extracts, offer promising anti-ulcer properties. This review highlights research from 2000 to 2024 on the use of green-synthesized nanoparticles and their role in peptic ulcer treatment, focusing on their therapeutic mechanisms and potential benefits. For this purpose, an electronic search of published research and review articles was conducted in PubMed, Scopus, Science Direct, Cochrane databases, and Google Scholar.
Collapse
Affiliation(s)
- Susmita Yadav
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, 835215, India.
| | - Suraj N Mali
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, 835215, India.
| | - Anima Pandey
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, 835215, India.
| |
Collapse
|
10
|
Lanjar SUN, Solangi AR, Batool N, Khand NH, Kamboh M, Malah A, Buledi JA, Khan MM. Strategic electrochemical oxidation of vinblastin sulfate (an anticancer drug) via PVP-functionalized strontium oxide nanoparticles. RSC Adv 2024; 14:31387-31397. [PMID: 39359336 PMCID: PMC11446183 DOI: 10.1039/d4ra05493h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
Cancer is a primary cause of death worldwide, and considerably impacts mortality rates in low- and middle-income countries. The rise in chemotherapeutic patients and toxicity of cytotoxic agents highlight the need for reliable analytical methods to detect these compounds. The current study presents a simple and straightforward method for producing polyvinylpyrrolidone functionalized strontium oxide nanoparticles (PVP-SrO NPs). The synthesized PVP-SrO NPs were applied as a sensitive sensor to detect vinblastin sulfate (VNB) (an anticancer drug). The synthesized PVP-SrO NPs were characterized using different characterization techniques. Fourier transform infrared spectroscopy (FTIR) confirms the functionality of synthesized PVP-SrO NPs. The sharp intense peaks of X-ray diffraction spectroscopy (XRD) confirm the crystalline nature of NPs, scanning electron microscopy (SEM) confirm the nanobeads like morphology, and energy dispersive spectroscopy (EDS) reveals the presence of Sr and O at 68.3% and 23% respectively. The electrochemical impedance spectroscopy and cyclic voltammetry studies revealed that the PVP-SrO/GCE is more conductive than bare GCE with an R ct value of 960.4 Ω compared to 2440 Ω. The sensor exhibited a wide linear dynamic range for VNB (0.05 to 60 μM) with low LOD 0.005 μM, and LOD 0.017 μM. The proposed sensor was successfully used for monitoring VNB in human blood serum samples with a satisfactory percent recovery from 96% to 103%. The fabricated sensor exhibits better performance than the reported sensors in terms of processing, simplicity, cost-effectiveness, energy consumption, and enhanced efficacy in a very short time.
Collapse
Affiliation(s)
- Sana-Ul-Nisa Lanjar
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro 76080 Pakistan
| | - Amber R Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro 76080 Pakistan
| | - Nahjul Batool
- M. A. Kazi Institute of Chemistry, University of Sindh Jamshoro-76080 Sindh Pakistan
| | - Nadir H Khand
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro 76080 Pakistan
| | - Manaza Kamboh
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro 76080 Pakistan
| | - Arfana Malah
- M. A. Kazi Institute of Chemistry, University of Sindh Jamshoro-76080 Sindh Pakistan
| | - Jamil A Buledi
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro 76080 Pakistan
| | - Mir Mehran Khan
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro 76080 Pakistan
| |
Collapse
|
11
|
Khan SS, Kour D, Kaur T, Sharma A, Kumar S, Kumari S, Ramniwas S, Singh S, Negi R, Sharma B, Devi T, Kumari C, Kour H, Kaur M, Rai AK, Singh S, Rasool S, Yadav AN. Microbial Nanotechnology for Precision Nanobiosynthesis: Innovations, Current Opportunities and Future Perspectives for Industrial Sustainability. Curr Microbiol 2024; 81:251. [PMID: 38954017 DOI: 10.1007/s00284-024-03772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024]
Abstract
A new area of biotechnology is nanotechnology. Nanotechnology is an emerging field that aims to develope various substances with nano-dimensions that have utilization in the various sectors of pharmaceuticals, bio prospecting, human activities and biomedical applications. An essential stage in the development of nanotechnology is the creation of nanoparticles. To increase their biological uses, eco-friendly material synthesis processes are becoming increasingly important. Recent years have shown a lot of interest in nanostructured materials due to their beneficial and unique characteristics compared to their polycrystalline counterparts. The fascinating performance of nanomaterials in electronics, optics, and photonics has generated a lot of interest. An eco-friendly approach of creating nanoparticles has emerged in order to get around the drawbacks of conventional techniques. Today, a wide range of nanoparticles have been created by employing various microbes, and their potential in numerous cutting-edge technological fields have been investigated. These particles have well-defined chemical compositions, sizes, and morphologies. The green production of nanoparticles mostly uses plants and microbes. Hence, the use of microbial nanotechnology in agriculture and plant science is the main emphasis of this review. The present review highlights the methods of biological synthesis of nanoparticles available with a major focus on microbially synthesized nanoparticles, parameters and biochemistry involved. Further, it takes into account the genetic engineering and synthetic biology involved in microbial nanobiosynthesis to the construction of microbial nanofactories.
Collapse
Affiliation(s)
- Sofia Sharief Khan
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, Jammu and Kashmir, India
| | - Divjot Kour
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Tanvir Kaur
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Anjali Sharma
- Department of Biotechnology and Genetics, Jain University, Bengaluru, 560069, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, 303012, Rajasthan, India
| | - Sanjeev Kumar
- Department of Genetics and Plant Breeding, Faculty of Agricultural Sciences, GLA University, Mathura, Uttar Pradesh, India
| | - Shilpa Kumari
- Department of Physics, Rayat Bahra University, Mohali, 140105, Punjab, India
| | - Seema Ramniwas
- Department of Biotechnology, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Shaveta Singh
- Dolphin PG College of Life Sciences, Chunni Kalan, Fatehgarh Sahib, Punjab, India
| | - Rajeshwari Negi
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Babita Sharma
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Tishu Devi
- Government College for Women, Parade, Jammu, Jammu and Kashmir, India
| | - Chandresh Kumari
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Vill-Bhajhol, Solan, 173229, Himachal Pradesh, India
| | - Harpreet Kour
- Department of Botany, University of Jammu, Jammu, 180006, Jammu and Kashmir, India
| | - Manpreet Kaur
- Department of Physics, IEC University, Baddi, Solan, 174103, Himachal Pradesh, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sangram Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad, Uttar Pradesh, India
| | - Shafaq Rasool
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, Jammu and Kashmir, India
| | - Ajar Nath Yadav
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India.
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia.
| |
Collapse
|
12
|
Samad N, Ejaz U, Kousar S, Al-Mutairi AA, Khalid A, Amin ZS, Bashir S, Al-Hussain SA, Irfan A, Zaki MEA. A novel approach to assessing the antioxidant and anti-diabetic potential of synthesized calcium carbonate nanoparticles using various extracts of Ailanthus altissima. Front Chem 2024; 12:1345950. [PMID: 38887700 PMCID: PMC11182424 DOI: 10.3389/fchem.2024.1345950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/30/2024] [Indexed: 06/20/2024] Open
Abstract
Calcium carbonate nanoparticles (CaCO3) have been found to exhibit unique properties that show their potential to be used in various therapies. Green synthesis of CaCO3 has been progressively gaining ac-ceptance due to its cost-effectiveness and energy-efficient nature. In the current study, different extracts of Ailanthus altissima were used to synthesize the calcium carbonate nanoparticles the synthesis and characterization of CCNPs were confirmed by using Fourier Transform Infra-Red spectroscopy, UV-Vis spectroscopy, and Scanning Electron Microscopy (SEM). The antioxidant activities (hydrogen peroxide, phosphomolydbenum, and ferric reducing) of calcium carbonate nanoparticles were affirmed by a good range of percentages of inhibition against free radical scavenging. The antidebate assays of CCNPs were observed by in-vitro and in silico approaches in a range at various concentrations while maximum inhibition occurred. In conclusion, the current study depicted that conjugated CaCO3 with A. altissima has a good potential to cure oxidative stress and Type II diabetes and could be used in the future as biogenic nanomedicine for the treatment of other metabolic diseases.
Collapse
Affiliation(s)
- Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, Pakistan
| | - Umer Ejaz
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, Pakistan
| | - Saba Kousar
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, Pakistan
| | - Aamal A. Al-Mutairi
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Arslan Khalid
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, Pakistan
| | - Zeemal Seemab Amin
- Department of Biochemistry, Faculty of Applied Sciences, Minhaj University Lahore, Lahore, Pakistan
| | - Shahzad Bashir
- Department of Biochemistry, Faculty of Applied Sciences, Minhaj University Lahore, Lahore, Pakistan
| | - Sami A. Al-Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Magdi E. A. Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Granja Alvear A, Pineda-Aguilar N, Lozano P, Lárez-Velázquez C, Suppan G, Galeas S, Debut A, Vizuete K, De Lima L, Saucedo-Vázquez JP, Alexis F, López F. Synergistic Antibacterial Properties of Silver Nanoparticles and Its Reducing Agent from Cinnamon Bark Extract. Bioengineering (Basel) 2024; 11:517. [PMID: 38790383 PMCID: PMC11117492 DOI: 10.3390/bioengineering11050517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Synthesis of silver nanoparticles with antibacterial properties using a one-pot green approach that harnesses the natural reducing and capping properties of cinnamon (Cinnamomum verum) bark extract is presented in this work. Silver nitrate was the sole chemical reagent employed in this process, acting as the precursor salt. Gas Chromatography-Mass Spectroscopy (GC-MS), High-Performance Liquid Chromatography (HPLC) analysis, and some phytochemical tests demonstrated that cinnamaldehyde is the main component in the cinnamon bark extract. The resulting bio-reduced silver nanoparticles underwent comprehensive characterization by Ultraviolet-Vis (UV-Vis) and Fourier Transform InfraRed spectrophotometry (FTIR), Dynamic Light Scattering (DLS), Transmission Electron Microscopy, and Scanning Electron Microscopy suggesting that cinnamaldehyde was chemically oxidated to produce silver nanoparticles. These cinnamon-extract-based silver nanoparticles (AgNPs-cinnamon) displayed diverse morphologies ranging from spherical to prismatic shapes, with sizes spanning between 2.94 and 65.1 nm. Subsequently, the antibacterial efficacy of these nanoparticles was investigated against Klebsiella, E. Coli, Pseudomonas, Staphylococcus aureus, and Acinetobacter strains. The results suggest the promising potential of silver nanoparticles obtained (AgNPs-cinnamon) as antimicrobial agents, offering a new avenue in the fight against bacterial infections.
Collapse
Affiliation(s)
- Araceli Granja Alvear
- CATS Research Group, School of Chemical Sciences Engineering, Yachay Tech University, Urcuquí 100119, Ecuador; (A.G.A.); (G.S.); (L.D.L.); (J.P.S.-V.)
| | - Nayely Pineda-Aguilar
- Centro de Investigación de Materiales Avanzados CIMAV-Monterrey, Monterrey 64630, Mexico;
| | - Patricia Lozano
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - Cristóbal Lárez-Velázquez
- Laboratorio de Polímeros, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela;
| | - Gottfried Suppan
- CATS Research Group, School of Chemical Sciences Engineering, Yachay Tech University, Urcuquí 100119, Ecuador; (A.G.A.); (G.S.); (L.D.L.); (J.P.S.-V.)
| | - Salomé Galeas
- Laboratorio de Nuevos Materiales (LANUM), Escuela Politécnica Nacional, Quito 170143, Ecuador;
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolqui 171523, Ecuador; (A.D.); (K.V.)
| | - Karla Vizuete
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolqui 171523, Ecuador; (A.D.); (K.V.)
| | - Lola De Lima
- CATS Research Group, School of Chemical Sciences Engineering, Yachay Tech University, Urcuquí 100119, Ecuador; (A.G.A.); (G.S.); (L.D.L.); (J.P.S.-V.)
| | - Juan Pablo Saucedo-Vázquez
- CATS Research Group, School of Chemical Sciences Engineering, Yachay Tech University, Urcuquí 100119, Ecuador; (A.G.A.); (G.S.); (L.D.L.); (J.P.S.-V.)
| | - Frank Alexis
- Departamento de Ingeniería Química, Colegio de Ciencias e Ingeniería, Instituto de Energía y Materiales, Instituto de Microbiología, Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
| | - Floralba López
- CATS Research Group, School of Chemical Sciences Engineering, Yachay Tech University, Urcuquí 100119, Ecuador; (A.G.A.); (G.S.); (L.D.L.); (J.P.S.-V.)
| |
Collapse
|
14
|
Cifuentes-Jiménez C, Bolaños-Carmona MV, Enrich-Essvein T, Rodríguez-Navarro AB, González-López S, Yamauti M, Álvarez-Lloret P. Green synthesis of chitosan- and fluoride-functionalized silver nanoparticles using Camellia sinensis: Characterization and dental applications. Int J Biol Macromol 2024; 268:131676. [PMID: 38641271 DOI: 10.1016/j.ijbiomac.2024.131676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
The development of new biocompatible and eco-friendly materials is essential for the future of dental practice, especially for the management of dental caries. In this study, a novel and simple method was applied for the green synthesis of silver nanoparticles (AgNPs) from the aqueous extract of Camellia sinensis (WT) and functionalized with chitosan (CHS) and NaF. The effects of WT_AgNPs application on demineralized dentin were evaluated for potential dental applications. The WT_AgNPs showed molecular groups related to organic compounds, potentially acting as reducing and capping agents. All AgNPs presented spherical shapes with crystal sizes of approximately 20 nm. Forty human molars were assigned to control: sound (SD) and demineralised dentine (DD), and experimental groups: WT_AgNPs, WT_AgNPs_NaF, and WT_AgNPs_CHS. Then, the NPs were applied to DD to evaluate the chemical, crystallographic, and microstructural characteristics of treated-dentine. In addition, a three-point bending test was employed to assess mechanical response. The application of WT_AgNPs indicated a higher mineralisation degree and crystallites sizes of hydroxyapatite than the DD group. SEM images showed that WT_AgNPs presented different degrees of aggregation and distribution patterns. The dentine flexural strength was significantly increased in all WT_AgNPs. The application of WT_AgNPs demonstrated remineralising and strengthening potential on demineralised dentine.
Collapse
Affiliation(s)
| | | | | | | | | | - Monica Yamauti
- Department of Restorative Dentistry, Graduate School of Dental Medicine, Hokkaido University, Japan
| | | |
Collapse
|
15
|
Shende SS, Gade AK, Minkina TM, Ingle PU, Rajput VD, Sushkova SN, Mandzhieva SS, Rai M, Wong MH. Exploring sustainable management by using green nano-silver to combat three post-harvest pathogenic fungi in crops. DISCOVER NANO 2024; 19:53. [PMID: 38503968 PMCID: PMC10951150 DOI: 10.1186/s11671-024-03986-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
Global crop protection and food security have become critical issues to achieve the 'Zero Hunger' goal in recent years, as significant crop damage is primarily caused by biotic factors. Applying nanoparticles in agriculture could enhance crop yield. Nano-silver, or AgNPs, have colossal importance in many fields like biomedical, agriculture, and the environment due to their antimicrobial potential. In this context, nano-silver was fabricated by Citrus medica L. (Cm) fruit juice, detected visually and by UV-Vis spectrophotometric analysis. Further, AgNPs were characterized by advanced techniques. UV-Vis spectroscopic analysis revealed absorbance spectra at around 487 nm. The zeta potential measurement value was noted as -23.7 mV. Spectral analysis by FT-IR proved the capping of the acidic groups. In contrast, the XRD analysis showed the Miller indices like the face-centered cubic (fcc) crystalline structure. NTA revealed a mean size of 35 nm for nano-silver with a 2.4 × 108 particles mL-1 concentration. TEM analysis demonstrated spherical Cm-AgNPs with 20-30 nm sizes. The focus of this research was to evaluate the antifungal activity of biogenic AgNPs against post-harvest pathogenic fungi, including Aspergillus niger, A. flavus, and Alternaria alternata. The Cm-AgNPs showed significant antifungal activity in the order of A. niger > A. flavus > A. alternata. The biogenic Cm-AgNPs can be used for the inhibition of toxigenic fungi.
Collapse
Affiliation(s)
- Sudhir S Shende
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia.
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, MS, India.
| | - Aniket K Gade
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, MS, India.
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Mumbai, India.
- Department of Microbiology, Nicolaus Copernicus University, Torun, Poland.
| | - Tatiana M Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Pramod U Ingle
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, MS, India
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Svetlana N Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Saglara S Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Mahendra Rai
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, MS, India
- Department of Chemistry, Federal University of Piaui (UFPI), Teresina, Brazil
| | - Ming H Wong
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
- Consortium On Health, Environment, Education, and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| |
Collapse
|
16
|
Varghese RM, S AK, Shanmugam R. Cytotoxicity and Characterization of Zinc Oxide and Silver Nanoparticles Synthesized Using Ocimum tenuiflorum and Ocimum gratissimum Herbal Formulation. Cureus 2024; 16:e53481. [PMID: 38440033 PMCID: PMC10910189 DOI: 10.7759/cureus.53481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/02/2024] [Indexed: 03/06/2024] Open
Abstract
Background Toxicological assessments of nanoparticles are becoming more and more necessary due to the current rapid increase in interest in them for biomedical applications. This study aimed to synthesize and characterize zinc oxide nanoparticles (ZnONPs) and silver nanoparticles (AgNPs) using Ocimum tenuiflorum (black tulsi) and Ocimum gratissimum (African basil) herbal formulation extracts and to evaluate their cytotoxic effects. Methods The synthesis of AgNPs and ZnONPs was monitored using UV-visible spectra analysis at different time intervals. The nanoparticles' morphology and elemental composition were examined via scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Furthermore, Fourier-transform infrared spectroscopy (FT-IR) spectra analysis was employed to identify the functional groups within the nanoparticles. The cytotoxic effects of the nanoparticles were evaluated using the brine shrimp lethality assay. Results The UV-visible spectra analysis revealed the successful synthesis of AgNPs and ZnONPs, with maximum absorption peaks observed at 430 nm and 380 nm, respectively. SEM images showed that AgNPs were spherical in shape and tended to agglomerate, while ZnONPs displayed a unique rod-like to short prism shape, and EDX analysis confirmed the presence of both silver and zinc in these nanoparticles, alongside other elements from the herbal extracts. FT-IR analysis indicated the existence of diverse functional groups on the nanoparticles' surfaces. The brine shrimp lethality assay results demonstrated a concentration-dependent cytotoxic effect of the nanoparticles. Conclusion The study successfully synthesized and characterized AgNPs and ZnONPs using Ocimum tenuiflorum and Ocimum gratissimum herbal formulation extracts. The nanoparticles exhibited significant cytotoxic effects, suggesting their potential applications in various fields. Our results highlight the need for a more discrete use of nanoparticles for biomedical applications. Further studies are needed to explore their potential uses and ensure their safe and effective application.
Collapse
Affiliation(s)
- Remmiya Mary Varghese
- Orthodontics and Dentofacial Orthopedics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Aravind Kumar S
- Orthodontics and Dentofacial Orthopedics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Rajeshkumar Shanmugam
- Nano-Biomedicine Lab, Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
- Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
17
|
Hazra S, Singh PA. Safety Aspects of Herb Interactions: Current Understanding and Future Prospects. Curr Drug Metab 2024; 25:28-53. [PMID: 38482621 DOI: 10.2174/0113892002289753240305062601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/11/2024] [Accepted: 02/09/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND The use of herbal medicines is on the rise throughout the world due to their perceived safety profile. However, incidences of herb-drug, herb-herb and herb-food interactions considering safety aspects have opened new arenas for discussion. OBJECTIVE The current study aims to provide comprehensive insights into the various types of herb interactions, the mechanisms involved, their assessment, and historical developments, keeping herbal safety at the central point of discussion. METHODS The authors undertook a focused/targeted literature review and collected data from various databases, including Science Direct, Wiley Online Library, Springer, PubMed, and Google Scholar. Conventional literature on herbal remedies, such as those by the WHO and other international or national organizations. RESULTS The article considered reviewing the regulations, interaction mechanisms, and detection of herb-herb, herb-drug and herb-food interactions in commonly used yet vital plants, including Glycyrrhiza glabra, Mentha piperita, Aloe barbadensis, Zingiber officinale, Gingko biloba, Withania somnifera, etc. The study found that healthcare professionals worry about patients not informing them about their herbal prescriptions (primarily used with conventional treatment), which can cause herb-drug/herb-food/herb-herb interactions. These interactions were caused by altered pharmacodynamic and pharmacokinetic processes, which might be explained using in-vivo, in-vitro, in-silico, pharmacogenomics, and pharmacogenetics. Nutrivigilance may be the greatest method to monitor herb-food interactions, but its adoption is limited worldwide. CONCLUSION This article can serve as a lead for clinicians, guiding them regarding herb-drug, herb-food, and herb-herb interactions induced by commonly consumed plant species. Patients may also be counseled to avoid conventional drugs, botanicals, and foods with a restricted therapeutic window.
Collapse
Affiliation(s)
- Subhajit Hazra
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Mohali-140413, Punjab, India
| | - Preet Amol Singh
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Mohali-140413, Punjab, India
| |
Collapse
|
18
|
Saraswat I, Goel A. Cervical Cancer Therapeutics: An In-depth Significance of Herbal and Chemical Approaches of Nanoparticles. Anticancer Agents Med Chem 2024; 24:627-636. [PMID: 38299417 DOI: 10.2174/0118715206289468240130051102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 02/02/2024]
Abstract
Cervical cancer emerges as a prominent health issue, demanding attention on a global level for women's well-being, which frequently calls for more specialized and efficient treatment alternatives. Traditional therapies may have limited tumour targeting and adverse side effects. Recent breakthroughs have induced a transformative shift in the strategies employed against cervical cancer. biocompatible herbal nanoparticles and metallic particles made of gold, silver, and iron have become promising friends in the effort to fight against this serious disease and understand the possibility of these nanoparticles for targeted medication administration. this review article delves into the latest advancements in cervical cancer research. The safety and fabrication of these nanomaterials and their remarkable efficacy against cervical tumour spots are addressed. This review study, in short, provides an extensive introduction to the fascinating field of metallic and herbal nanoparticles in cervical cancer treatment. The information that has been examined points to a bright future in which women with cervical cancer may experience fewer side effects, more effective therapy, and an improved quality of life. This review holds promise and has the potential to fundamentally reshape the future of cervical cancer treatment by addressing urgent issues and unmet needs in the field.
Collapse
Affiliation(s)
- Istuti Saraswat
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Anjana Goel
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
19
|
Malik S, Waheed Y. Emerging Applications of Nanotechnology in Dentistry. Dent J (Basel) 2023; 11:266. [PMID: 37999030 PMCID: PMC10670129 DOI: 10.3390/dj11110266] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/20/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Dentistry is a branch of healthcare where nanobiotechnology is reverberating in multiple ways to produce beneficial outcomes. The purpose of this review is to bring into the awareness of the readers the various practical dimensions of the nano-dental complex (nanodentistry) in healthcare and how novelties linked with the field are revolutionizing dentistry. A methodological approach was adopted to collect the latest data on nanotechnology and dentistry from sources, including PubMed, Google Scholar, Scopus, and official websites like the WHO. Nanodentistry is an emerging field in dentistry that involves the use of nanomaterials, nanorobots, and nanotechnology to diagnose, treat, and prevent dental diseases. The results summarize the descriptive analyses of the uses of nanodentistry within orthodontics, preventive dentistry, prosthodontics, restorative dentistry, periodontics, dental surgeries, dental restoration technologies, and other areas of dentistry. The future directions of nano-industries and nano-healthcare have been included to link them with the oral healthcare sector, treatment plans, and improved medical services which could be explored in the future for advanced healthcare regulation. The major limitations to the use of dental nanoproducts are their cost-effectiveness and accessibility, especially in financially constrained countries. These data will help the readers to experience a detailed analysis and comprehensive covering of the diverse achievements of nanodentistry with past analyses, present scenarios, and future implications.
Collapse
Affiliation(s)
- Shiza Malik
- Bridging Health Foundation, Rawalpindi 46000, Pakistan;
| | - Yasir Waheed
- Office of Research Innovation and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad 44000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon
| |
Collapse
|
20
|
Ishaq M, Numan M, Zeb U, Cui F, Shad S, Hayat SA, Azizullah A, Uddin I, Iqbal M, Rahim F, Khan N, Attia KA, Fiaz S. Facile one-step synthesis of gold nanoparticles using Viscum album and evaluation of their antibacterial potential. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:955-964. [PMID: 37161500 DOI: 10.1071/fp22161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/29/2022] [Indexed: 05/11/2023]
Abstract
Nanostructure gold nanoparticles (Au NPs) are well-known biological active materials, synthesised under different environment-friendly approaches that has gained significant interest in the field of biomedicine. This study investigated a novel, fast, easy, cost-effective and the eco-friendly method to synthesise Au NPs from mediated Viscum album Linn plant extract, where the plant metabolites act as stabilising and reducing agents. The synthesised Au NPs were analysed by UV/Vis spectroscopy that gave strong signals and a sharp absorption peak at 545nm due to the presence of surface plasmon resonance (SPR) bands. In addition, energy dispersive X-ray spectroscopy (EDX) showed that strong signals of Au NPs appeared at 9.7 and 2.3keV, as the rays of light passed. X-ray diffraction recognised the crystalline material and provided information on the cell unit that the synthesised Au NPs are face-centreed cubic in structure. The diffraction of X-ray spectra showed intense peaks at 38.44°, 44.7°, 44.9° and 77.8°. The mediated V. album plant extracts and synthesised Au NPs were screened against gram-positive and gram-negative (Enterobacter , Salmonella typhi , Escheria coli and Bacillus subtilis ) bacterial strains, confirming their antibacterial potential. Au NPs showed strong antibacterial activity due to its unique steric configuration. Au NPs damaged bacterial cell membrane leading to the leakage of the cytoplasm and death of the cell.
Collapse
Affiliation(s)
- Muhammad Ishaq
- Department of Botany, Bacha Khan University, Charsadda, KPK 24631, Pakistan
| | - Muhammad Numan
- Department of Botany, Bacha Khan University, Charsadda, KPK 24631, Pakistan
| | - Umar Zeb
- Faculty of Biological & Biomedical Sciences, Department of Biology, The University of Haripur, Haripur, KPK 22620, Pakistan; and School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Fengjie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Salma Shad
- Faculty of Natural Sciences, Department of Chemistry, The University of Haripur, Haripur, KPK 22620, Pakistan
| | - Syed Adil Hayat
- Department of Botany, Bacha Khan University, Charsadda, KPK 24631, Pakistan
| | - Azizullah Azizullah
- Faculty of Biological & Biomedical Sciences, Department of Biology, The University of Haripur, Haripur, KPK 22620, Pakistan
| | - Imad Uddin
- Faculty of Natural Sciences, Department of Chemistry, The University of Haripur, Haripur, KPK 22620, Pakistan
| | - Muzaffar Iqbal
- Faculty of Natural Sciences, Department of Chemistry, The University of Haripur, Haripur, KPK 22620, Pakistan
| | - Fazli Rahim
- Department of Botany, Bacha Khan University, Charsadda, KPK 24631, Pakistan
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, Florida University, Gainesville, FL 32611, USA
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Riyadh, Saudi Arabia
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur 22620, Pakistan
| |
Collapse
|
21
|
Hussein NN, Al-Azawi K, Sulaiman GM, Albukhaty S, Al-Majeed RM, Jabir M, Al-Dulimi AG, Mohammed HA, Akhtar N, Alawaji R, A Alshammari AA, Khan RA. Silver-cored Ziziphus spina-christi extract-loaded antimicrobial nanosuspension: overcoming multidrug resistance. Nanomedicine (Lond) 2023; 18:1839-1854. [PMID: 37982771 DOI: 10.2217/nnm-2023-0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
Aims: To synthesize a silver-cored nanosuspension utilizing Ziziphus spina-christi fresh-leaf extract and evaluate their antimicrobial activity against multidrug-resistant pathogenic microbes. Materials and Methods: The prepared nanosuspension was analyzed by spectro-analytical techniques and tested for antimicrobial activity and resistance to biofilm formation. The leaf extract and nanosuspension were tested separately and together as a mixture. Results: Constituent nanoparticles were average-sized (∼34 nm) and were active against both Gram-positive and Gram-negative microbes and yeast. Candida albicans showed a 24.50 ± 1.50 mm inhibition zone, followed by Escherichia coli and Staphylococcus aureus. Increased bioactivity with the highest multifold increments, 150%, for erythromycin against all tested microbes was observed. Carbenicillin and trimethoprim showed 166%- and 300%-fold increments for antimicrobial activity against Pseudomonas aeruginosa, respectively. Conclusion: The nanosuspension exhibited strong potential as an antimicrobial agent and overcame multidrug resistance.
Collapse
Affiliation(s)
- Nehia N Hussein
- Department of Applied Sciences, University of Technology, Baghdad, Baghdad 10066, Iraq
| | - Khalida Al-Azawi
- Department of Applied Sciences, University of Technology, Baghdad, Baghdad 10066, Iraq
| | - Ghassan M Sulaiman
- Department of Applied Sciences, University of Technology, Baghdad, Baghdad 10066, Iraq
| | - Salim Albukhaty
- Department of Chemistry, College of Science, University of Misan, Maysan, 62001, Iraq
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, 56001, Karbala, Iraq
| | - Reem Ma Al-Majeed
- Department of Applied Sciences, University of Technology, Baghdad, Baghdad 10066, Iraq
| | - Majid Jabir
- Department of Applied Sciences, University of Technology, Baghdad, Baghdad 10066, Iraq
| | - Ali G Al-Dulimi
- Department of Dentistry, Bilad Alrafidain University College, Diyala, 32001, Iraq
| | - Hamdoon A Mohammed
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Naseem Akhtar
- Department of Pharmaceutics, College of Dentistry and Pharmacy, Buraydah Private Colleges, P.O. Box 31717, Buraydah 51418, Qassim, Saudi Arabia
| | - Razan Alawaji
- Pharmaceutical Care Services, King Salman Medical City, Maternity and Children Hospital, Al Madinah Al Munawwarah 11176, Saudi Arabia
| | - Abdulaziz Arif A Alshammari
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
- Graduate Student
| | - Riaz A Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| |
Collapse
|
22
|
Iravani S. Silica-based nanosystems against antibiotic-resistant bacteria and pathogenic viruses. Crit Rev Microbiol 2023; 49:598-610. [PMID: 35930235 DOI: 10.1080/1040841x.2022.2108309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/19/2022] [Accepted: 07/27/2022] [Indexed: 11/03/2022]
Abstract
Today, with the intensity of antibiotic abuse and self-medication, the need for the use of novel systems with high efficiency and biosafety for targeted drug delivery against antibiotic-resistant bacteria and their infections should be highly considered by researchers. Silica-based nanosystems with unique physicochemical properties such as large surface area, tuneable pore diameter, drug loading capacity, controlled particle size/morphology, and good biocompatibility are attractive candidates against antibiotic-resistant bacteria and pathogenic viruses. They can be loaded with antiviral and antimicrobial drugs or molecules through their exclusive internal porous structures or different surface linkers. In this context, smart nanosystems can be produced via suitable surface functionalization/modification with a variety of functional groups to act against different clinical pathogenic microbes or viruses, offering great opportunities for controlling and treating various infections. However, important criteria such as the ability to degrade, biocompatibility, biodegradability, cytotoxicity, stability, clearance from targeted organs should be systematically analysed to develop nanosystems or nanocarriers with high efficiency and multifunctionality. Herein, recent advancements pertaining to the application of silica-based nanosystems against antibiotic-resistant bacteria and pathogenic viruses are deliberated, focussing on important challenges and future perspectives.
Collapse
Affiliation(s)
- Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
23
|
Sadiq MU, Shah A, Haleem A, Shah SM, Shah I. Eucalyptus globulus Mediated Green Synthesis of Environmentally Benign Metal Based Nanostructures: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2019. [PMID: 37446535 DOI: 10.3390/nano13132019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
The progress in nanotechnology has effectively tackled and overcome numerous global issues, including climate change, environmental contamination, and various lethal diseases. The nanostructures being a vital part of nanotechnology have been synthesized employing different physicochemical methods. However, these methods are expensive, polluting, eco-unfriendly, and produce toxic byproducts. Green chemistry having exceptional attributes, such as cost-effectiveness, non-toxicity, higher stability, environment friendliness, ability to control size and shape, and superior performance, has emerged as a promising alternative to address the drawbacks of conventional approaches. Plant extracts are recognized as the best option for the biosynthesis of nanoparticles due to adherence to the environmentally benign route and sustainability agenda 2030 of the United Nations. In recent decades, phytosynthesized nanoparticles have gained much attention for different scientific applications. Eucalyptus globulus (blue gum) is an evergreen plant belonging to the family Myrtaceae, which is the targeted point of this review article. Herein, we mainly focus on the fabrication of nanoparticles, such as zinc oxide, copper oxide, iron oxide, lanthanum oxide, titanium dioxide, magnesium oxide, lead oxide, nickel oxide, gold, silver, and zirconium oxide, by utilizing Eucalyptus globulus extract and its essential oils. This review article aims to provide an overview of the synthesis, characterization results, and biomedical applications of nanoparticles synthesized using Eucalyptus globulus. The present study will be a better contribution to the readers and the students of environmental research.
Collapse
Affiliation(s)
| | - Afzal Shah
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Abdul Haleem
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Syed Mujtaba Shah
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Iltaf Shah
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
24
|
Uthappa UT, Suneetha M, Ajeya KV, Ji SM. Hyaluronic Acid Modified Metal Nanoparticles and Their Derived Substituents for Cancer Therapy: A Review. Pharmaceutics 2023; 15:1713. [PMID: 37376161 DOI: 10.3390/pharmaceutics15061713] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
The use of metal nanoparticles (M-NPs) in cancer therapy has gained significant consideration owing to their exceptional physical and chemical features. However, due to the limitations, such as specificity and toxicity towards healthy cells, their application in clinical translations has been restricted. Hyaluronic acid (HA), a biocompatible and biodegradable polysaccharide, has been extensively used as a targeting moiety, due to its ability to selectively bind to the CD44 receptors overexpressed on cancer cells. The HA-modified M-NPs have demonstrated promising results in improving specificity and efficacy in cancer therapy. This review discusses the significance of nanotechnology, the state of cancers, and the functions of HA-modified M-NPs, and other substituents in cancer therapy applications. Additionally, the role of various types of selected noble and non-noble M-NPs used in cancer therapy are described, along with the mechanisms involved in cancer targeting. Additionally, the purpose of HA, its sources and production processes, as well as its chemical and biological properties are described. In-depth explanations are provided about the contemporary applications of HA-modified noble and non-noble M-NPs and other substituents in cancer therapy. Furthermore, potential obstacles in optimizing HA-modified M-NPs, in terms of clinical translations, are discussed, followed by a conclusion and future prospects.
Collapse
Affiliation(s)
- Uluvangada Thammaiah Uthappa
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
- Department of Bioengineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, India
| | - Maduru Suneetha
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Kanalli V Ajeya
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-Ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Seong Min Ji
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
25
|
Rana A, Pathak S, Lim DK, Kim SK, Srivastava R, Sharma SN, Verma R. Recent Advancements in Plant- and Microbe-Mediated Synthesis of Metal and Metal Oxide Nanomaterials and Their Emerging Antimicrobial Applications. ACS APPLIED NANO MATERIALS 2023; 6:8106-8134. [DOI: 10.1021/acsanm.3c01351] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Archana Rana
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan
Marg, New Delhi 110012, India
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Saurabh Pathak
- Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, South Korea
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701, South Korea
| | - Sang-Koog Kim
- Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, South Korea
| | - Ritu Srivastava
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan
Marg, New Delhi 110012, India
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Shailesh Narain Sharma
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan
Marg, New Delhi 110012, India
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Rajni Verma
- Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, South Korea
- School of Physics, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
26
|
Malik AQ, Mir TUG, Kumar D, Mir IA, Rashid A, Ayoub M, Shukla S. A review on the green synthesis of nanoparticles, their biological applications, and photocatalytic efficiency against environmental toxins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27437-9. [PMID: 37171732 DOI: 10.1007/s11356-023-27437-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
Green synthesis of nanoparticles (NPs) using plant materials and microorganisms has evolved as a sustainable alternative to conventional techniques that rely on toxic chemicals. Recently, green-synthesized eco-friendly NPs have attracted interest for their potential use in various biological applications. Several studies have demonstrated that green-synthesized NPs are beneficial in multiple medicinal applications, including cancer treatment, targeted drug delivery, and wound healing. Additionally, due to their photodegradation activity, green-synthesized NPs are a promising tool in environmental remediation. Photodegradation is a process that uses light and a photocatalyst to turn a pollutant into a harmless product. Green NPs have been found efficient in degrading pollutants such as dyes, herbicides, and heavy metals. The use of microbes and flora in green synthesis technology for nanoparticle synthesis is biologically safe, cost-effective, and eco-friendly. Plants and microbes can now use and accumulate inorganic metallic ions in the environment. Various NPs have been synthesized via the bio-reduction of biological entities or their extracts. There are several biological and environmental uses for biologically synthesized metallic NPs, such as photocatalysis, adsorption, and water purification. Since the last decade, the green synthesis of NPs has gained significant interest in the scientific community. Therefore, there is a need for a review that serves as a one-stop resource that points to relevant and recent studies on the green synthesis of NPs and their biological and photocatalytic efficiency. This review focuses on the green fabrication of NPs utilizing diverse biological systems and their applications in biological and photodegradation processes.
Collapse
Affiliation(s)
- Azad Qayoom Malik
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411.
| | - Tahir Ul Gani Mir
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Deepak Kumar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Irtiqa Ashraf Mir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Adfar Rashid
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Mehnaz Ayoub
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Saurabh Shukla
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| |
Collapse
|
27
|
Kamal Z, Ebnalwaled AA, Al-Amgad Z, Saied AA, Metwally AA, Said AH. Immunomodulatory and antioxidant effect of green synthesized titanium dioxide nanoparticles on pregnant female albino rats and their fetuses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55455-55470. [PMID: 36892697 DOI: 10.1007/s11356-023-26264-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are one of the various nanoparticles that have been increasingly commonly used in vital sectors. This study was aimed at evaluating the effects of prenatal exposure to the chemical TiO2 NPs (CHTiO2 NPs) and green-synthesized TiO2 NPs (GTiO2 NPs) on immunological and oxidative status as well as lungs and spleen. Fifty pregnant female albino rats were divided into five groups of ten rats each: control, CHTiO2 NPs-treated groups orally received 100 and 300 mg/kg CHTiO2 NPs, and GTiO2 NPs-treated groups received 100 and 300 mg/kg GTiO2 NPs, respectively, daily for 14 days. The serum level of proinflammatory cytokines IL-6, oxidative stress markers (MDA and NO), and antioxidant biomarkers (SOD and GSH-PX) were assayed. Spleen and lungs were collected from pregnant rats and fetuses for histopathological examinations. The results showed a significant increase in IL-6 levels in treated groups. In the CHTiO2 NPs-treated groups, there was a significant increase in MDA activity and a significant decrease in GSH-Px and SOD activities, revealing its oxidative effect, while GSH-Px and SOD activities significantly increased in the 300 GTiO2 NPs-treated group, confirming the antioxidant effect of green-synthesized TiO2 NPs. Histopathological findings of the spleen and lungs of the CHTiO2 NPs-treated group revealed severe congestion and thickening of the blood vessels, while those of the GTiO2 NPs-treated group revealed mild tissue alterations. It could be deduced that green synthesized titanium dioxide nanoparticles have immunomodulatory and antioxidant effects on pregnant female albino rats and their fetuses, with an ameliorated impact on the spleen and lung compared to chemical titanium dioxide nanoparticles.
Collapse
Affiliation(s)
- Zeinab Kamal
- Zoology Department, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - A A Ebnalwaled
- Electronic and Nano Devises Lab, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Zeinab Al-Amgad
- General Authority for Veterinary Services, Qena Veterinary Directorate, Qena, 83523, Egypt
| | - AbdulRahman A Saied
- National Food Safety Authority (NFSA), Aswan Branch, Aswan, 81511, Egypt
- Ministry of Tourism and Antiquities, Aswan Office, Aswan, 81511, Egypt
| | - Asmaa A Metwally
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Aswan University, Aswan, 81528, Egypt.
| | - Alaa H Said
- Electronic and Nano Devises Lab, Faculty of Science, South Valley University, Qena, 83523, Egypt
| |
Collapse
|
28
|
Green-synthesized Nickel oxide nanoparticles: Magnetic and Biomedical applications. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
29
|
Zambonino MC, Quizhpe EM, Mouheb L, Rahman A, Agathos SN, Dahoumane SA. Biogenic Selenium Nanoparticles in Biomedical Sciences: Properties, Current Trends, Novel Opportunities and Emerging Challenges in Theranostic Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:424. [PMID: 36770385 PMCID: PMC9921003 DOI: 10.3390/nano13030424] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Selenium is an important dietary supplement and an essential trace element incorporated into selenoproteins with growth-modulating properties and cytotoxic mechanisms of action. However, different compounds of selenium usually possess a narrow nutritional or therapeutic window with a low degree of absorption and delicate safety margins, depending on the dose and the chemical form in which they are provided to the organism. Hence, selenium nanoparticles (SeNPs) are emerging as a novel therapeutic and diagnostic platform with decreased toxicity and the capacity to enhance the biological properties of Se-based compounds. Consistent with the exciting possibilities offered by nanotechnology in the diagnosis, treatment, and prevention of diseases, SeNPs are useful tools in current biomedical research with exceptional benefits as potential therapeutics, with enhanced bioavailability, improved targeting, and effectiveness against oxidative stress and inflammation-mediated disorders. In view of the need for developing eco-friendly, inexpensive, simple, and high-throughput biomedical agents that can also ally with theranostic purposes and exhibit negligible side effects, biogenic SeNPs are receiving special attention. The present manuscript aims to be a reference in its kind by providing the readership with a thorough and comprehensive review that emphasizes the current, yet expanding, possibilities offered by biogenic SeNPs in the biomedical field and the promise they hold among selenium-derived products to, eventually, elicit future developments. First, the present review recalls the physiological importance of selenium as an oligo-element and introduces the unique biological, physicochemical, optoelectronic, and catalytic properties of Se nanomaterials. Then, it addresses the significance of nanosizing on pharmacological activity (pharmacokinetics and pharmacodynamics) and cellular interactions of SeNPs. Importantly, it discusses in detail the role of biosynthesized SeNPs as innovative theranostic agents for personalized nanomedicine-based therapies. Finally, this review explores the role of biogenic SeNPs in the ongoing context of the SARS-CoV-2 pandemic and presents key prospects in translational nanomedicine.
Collapse
Affiliation(s)
- Marjorie C. Zambonino
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Ernesto Mateo Quizhpe
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Lynda Mouheb
- Laboratoire de Recherche de Chimie Appliquée et de Génie Chimique, Hasnaoua I, Université Mouloud Mammeri, BP 17 RP, Tizi-Ouzou 15000, Algeria
| | - Ashiqur Rahman
- Center for Midstream Management and Science, Lamar University, 211 Redbird Ln., Beaumont, TX 77710, USA
| | - Spiros N. Agathos
- Earth and Life Institute, Catholic University of Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Si Amar Dahoumane
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, QC H3C 3A7, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, 18, Ave Antonine-Maillet, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
30
|
Rasheed A, Hussain S, Mushtaq W, Zubair M, Siddique K, Attia K, Khan N, Fiaz S, Azeem F, Chen Y. Application of silver nanoparticles synthesized through varying biogenic and chemical methods for wastewater treatment and health aspects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-022-24761-4. [PMID: 36622618 DOI: 10.1007/s11356-022-24761-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Nanotechnology uses biological and non-biological materials to create new systems at the nanoscale level. In recent years, the use of silver nanomaterials has attracted worldwide attention thanks to their wide range of applications as catalysts in several environmental processes including the degradation of organic pollutants and medicinal biotechnology. This study reports the synthesis of silver nanoparticles (AgNPs) through different methods including the biogenic methods based on leaf extract of Conocarpus erectus and a bacterial strain Pseudomonas sp. as well as chemically based abiotic method and comparison of their dye degradation potential. The synthesis of AgNPs in all samples was confirmed by UV-visible spectroscopy peaks at 418-420 nm. Using scanning electrom microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray differaction (XRD), and X-ray photoelectron spectroscopy (XPS), the biologically synthesized AgNPs were characterized as spherical shape of material with capping proteins that were involved in the stabilization of nanoparticles (NPs). The biologically synthesized AgNPs showed higher degradation (< 90%) of dyes as compared to chemically synthesized NPs. A prominent reduction of total dissolved solids (TDS), electrical conductivity (EC), pH, and chemical oxygen demand (COD) in textile wastewater spiked with reactive black 5 and reactive red 120 was observed by biologically synthesized AgNPs. AgNPs synthesized by Conocarpus erectus and Pseudomonas sp. also showed better characteristic anticancer and antidiabetic activities as compared to chemically synthesized ones. The results of this study suggested that C. erectus and Pseudomonas sp. based AgNPs can be exploited as an eco-friendly and cost-efficient materials to treat the wastewater and potential other polluted environments as well as to serve the medicinal field.
Collapse
Affiliation(s)
- Asima Rasheed
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, 38000, Pakistan
| | - Sabir Hussain
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan.
| | - Waseem Mushtaq
- Laboratory of Chemistry of Natural Molecules, Liège University, Agrobiotech, Gembloux, Belgium
| | - Muhammad Zubair
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, 38000, Pakistan
| | - Khadija Siddique
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Kotb Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, University of Haripur, Haripur, Pakistan.
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, 38000, Pakistan
| | - Yinglong Chen
- School of Agriculture and Environment, UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
31
|
Yesilot S, Bayram D, Özgöçmen M, Toğay VA. Apoptotic effects of Phlomis armeniaca mediated biosynthesized silver nanoparticles in monolayer (2D) and spheroid (3D) cultures of human breast cancer cell lines. 3 Biotech 2023; 13:4. [PMID: 36514484 PMCID: PMC9741690 DOI: 10.1007/s13205-022-03417-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022] Open
Abstract
The purpose of current research was to assess the apoptotic effects of biofabrication silver nanoparticles (AgNPs) mediated by the aqueous extract of Phlomis armeniaca on human breast cancer cells (MCF-7 and MDA-MB-231) in monolayer (2D) and spheroid (3D) cultures. The biosynthesized AgNPs were characterized by UV-Vis spectrophotometer (the peaks of resonances at 432 nm), scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometry (EDS). 1-20 µM/mL AgNPs were applied to MCF-7 and MDA-MB-231 cell lines to determine IC50 values at 24, 48 and 72nd h and were found to be 10 µM/mL for both cell lines. Immunohistochemical staining results of BrdU, TUNEL, caspase-3 and Endo G in both 2D and 3D cultures and gene expression levels of caspases (caspase-3, -8 and -9) and Endo G were evaluated. Moreover, the total oxidant/antioxidant status (TOS-TAS) due to AgNPs application in both cell culture mediums was evaluated. AgNPs treatment results in both cell lines in both 2D and 3D cultures showed a significant decrease in the BrdU labeling index, while large amounts of cells were labelled with TUNEL and Endo G. In 2D culture, Endo G expression increased in MCF-7 cells at 48 and 72nd hours, while it increased significantly in MDA-MB-231 cells at all hours. OSI results show that ROS production is increased in cell medium treated with AgNPs. In conclusion, AgNPs mediated by Phlomis armeniaca, synthesized by a green method, successfully induced damage to mitochondria, resulting in cell cycle arrest and consequent cell proliferation blockade and death in both MCF-7 and MDA-MB-231 cells.
Collapse
Affiliation(s)
- Sukriye Yesilot
- Department of Health and Biomedical Sciences, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
- Department of Nursing, Bucak School of Health, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Dilek Bayram
- Department of Histology and Embryology, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
| | - Meltem Özgöçmen
- Department of Histology and Embryology, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
| | - Vehbi Atahan Toğay
- Department of Medical Biology, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
| |
Collapse
|
32
|
Sengani M, V B, Banerjee M, Choudhury AA, Chakraborty S, Ramasubbu K, Rajeswari V D, Al Obaid S, Alharbi SA, Subramani B, Brindhadevi K. Evaluation of the anti-diabetic effect of biogenic silver nanoparticles and intervention in PPARγ gene regulation. ENVIRONMENTAL RESEARCH 2022; 215:114408. [PMID: 36154863 DOI: 10.1016/j.envres.2022.114408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/03/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The current study demonstrated a green, friendly, low-cost biosynthesis of silver nanoparticles (AgNPs) from Kigelia africana leaves (Lam.) Benth. extract (KAE) as both a major capping and reducing agent. The produced AgNPs were characterized using a variety of analytical methods, like the X-ray powder diffraction (XRD), HRTEM, Fourier transforms infrared (FTIR), and UV-Vis spectrophotometer. The formation of AgNPs with maximum absorbance at max = 435 nm was endorsed by surface plasmon resonance. FTIR analysis revealed that biological macromolecules of KAE were involved in the stabilization and synthesis of AgNPs. At the same time, HRTEM images revealed that the average particle size of the spherical AgNPs ranged from about 25 nm to 35 nm. Further, cytotoxicity assessment of AgNPs was done using the RINm5F insulinoma cell line with an MTT assay. Followed by, the RINm5F insulinoma cells treated with AgNPs and KAE, the expression of the Peroxisome proliferator-activated receptor gamma (PPARγ) gene was accessed. The results showed gene expression was upregulated in the RINm5F insulinoma cell line thus confirming AgNPs and KAE anti-diabetic efficacy. Furthermore, the findings show that nanotechnology has enhanced the effectiveness of current methodologies in gene expression and regulation which has contributed to the emergence of different forms of advanced regulatory systems.
Collapse
Affiliation(s)
- Manimegalai Sengani
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Ramapuram, Chennai, 600087, India
| | - Bavithra V
- School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Manosi Banerjee
- School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Abbas Alam Choudhury
- School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Shreya Chakraborty
- School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Kanagavalli Ramasubbu
- School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Devi Rajeswari V
- School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India.
| | - Sami Al Obaid
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Baskaran Subramani
- Division of Hematology and Oncology, Department of Medicine, Mays Cancer Center, University of Texas Health, San Antonio, TX, USA
| | - Kathirvel Brindhadevi
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
33
|
New Green Approaches in Nanoparticles Synthesis: An Overview. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196472. [PMID: 36235008 PMCID: PMC9573382 DOI: 10.3390/molecules27196472] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022]
Abstract
Nanotechnology is constantly expanding, with nanomaterials being more and more used in common commercial products that define our modern life. Among all types of nanomaterials, nanoparticles (NPs) occupy an important place, considering the great amount that is produced nowadays and the diversity of their applications. Conventional techniques applied to synthesize NPs have some issues that impede them from being appreciated as safe for the environment and health. The alternative to these might be the use of living organisms or biological extracts that can be involved in the green approach synthesis of NPs, a process that is free of harmful chemicals, cost-effective and a low energy consumer. Several factors, including biological reducing agent concentration, initial precursor salt concentration, agitation, reaction time, pH, temperature and light, can influence the characteristics of biologically synthesized NPs. The interdependence between these reaction parameters was not explored, being the main impediment in the implementation of the biological method on an industrial scale. Our aim is to present a brief review that focuses on the current knowledge regarding how the aforementioned factors can control the size and shape of green-synthesized NPs. We also provide an overview of the biomolecules that were found to be suitable for NP synthesis. This work is meant to be a support for researchers who intend to develop new green approaches for the synthesis of NPs.
Collapse
|
34
|
Gami B, Bloch K, Mohammed SM, Karmakar S, Shukla S, Asok A, Thongmee S, Ghosh S. Leucophyllum frutescens mediated synthesis of silver and gold nanoparticles for catalytic dye degradation. Front Chem 2022; 10:932416. [PMID: 36247678 PMCID: PMC9557002 DOI: 10.3389/fchem.2022.932416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/29/2022] [Indexed: 01/14/2023] Open
Abstract
The application of nanotechnology is gaining worldwide attention due to attractive physico-chemical and opto-electronic properties of nanoparticles that can be also employed for catalytic dye degradation. This study reports a phytogenic approach for fabrication of silver (AgNPs) and gold nanoparticles (AuNPs) using Leucophyllum frutescens (Berl.) I. M. Johnst (Scrophulariaceae) leaf extract (LFLE). Development of intense dark brown and purple color indicated the synthesis of AgNPs and AuNPs, respectively. Further characterization using UV-visible spectroscopy revealed sharp peak at 460 nm and 540 nm for AgNPs and AuNPs, respectively that were associated to their surface plasmon resonance. High resolution transmission electron microscope (HRTEM) revealed the spherical shape of the AgNPs, whereas anisotropic AuNPs were spherical, triangular and blunt ended hexagons. The majority of the spherical AgNPs and AuNPs were ∼50 ± 15 nm and ∼22 ± 20 nm, respectively. Various reaction parameters such as, metal salt concentration, temperature and concentration of the leaf extract were optimized. Maximum synthesis of AgNPs was obtained when 5 mM for AgNO3 reacted with 10% LFLE for 48 h at 50°C. Likewise, AuNPs synthesis was highest when 2 mM HAuCl4 reacted with 10% LFLE for 5 h at 30°C. Energy dispersive spectroscopy (EDS) showed phase purity of both the nanoparticles and confirmed elemental silver and gold in AgNPs and AuNPs, respectively. The average hydrodynamic particles size of AgNPs was 34.8 nm while AuNPs was 140.8 nm as revealed using dynamic light scattering (DLS) that might be due to agglomeration of smaller nanoparticles into larger clusters. ZETA potential of AgNPs and AuNPs were 0.67 mV and 5.70 mV, respectively. X-ray diffraction (XRD) analysis confirmed the crystallinity of the nanoparticles. Fourier transform infrared spectroscopy (FTIR) confirmed that various functional groups from the phytochemicals present in LFLE played a significant role in reduction and stabilization during the biogenic synthesis of the nanoparticles. The bioreduced AgNPs and AuNPs catalytically degraded Rhodamine B dye (RhB) in presence of UV-light with degradation rate constants of 0.0231 s−1 and 0.00831 s−1, respectively. RhB degradation followed a first order rate kinetics with 23.1 % and 31.7% degradation by AgNPs and AuNPs, respectively.
Collapse
Affiliation(s)
- Bansuri Gami
- Department of Microbiology, School of Science, RK University, Rajkot, India
| | - Khalida Bloch
- Department of Microbiology, School of Science, RK University, Rajkot, India
| | - Shahansha M. Mohammed
- Functional Materials Section (FMS), Materials Science and Technology Division (MSTD), CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India
| | - Srikanta Karmakar
- Department of Polymer Science and Technology, Calcutta University, Kolkata, India
| | - Satyajit Shukla
- Functional Materials Section (FMS), Materials Science and Technology Division (MSTD), CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Adersh Asok
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Photosciences and Photonics Section, Chemical Sciences and Technology Division (CSTD), CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India
| | - Sirikanjana Thongmee
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- *Correspondence: Sirikanjana Thongmee, ; Sougata Ghosh,
| | - Sougata Ghosh
- Department of Microbiology, School of Science, RK University, Rajkot, India
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- *Correspondence: Sirikanjana Thongmee, ; Sougata Ghosh,
| |
Collapse
|
35
|
Cytotoxicity and Genotoxicity of Biogenic Silver Nanoparticles in A549 and BEAS-2B Cell Lines. Bioinorg Chem Appl 2022; 2022:8546079. [PMID: 36193250 PMCID: PMC9525761 DOI: 10.1155/2022/8546079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction. Biogenic silver nanoparticles (AgNPs-GA) were successfully synthesised using Garcinia atroviridis leaf extract as a reducing agent, which has ethnopharmacological claims against various diseases including cancer. Aim of the Study. Aim of the study is to discover whether AgNPs-GA has cytotoxic and genotoxic effects on cancerous (A549) and noncancerous (BEAS-2B) human lung cells. Materials and Methods. The cytotoxicity profiles of AgNPs-GA were characterized by MTT assay, intracellular reactive oxygen species (ROS) assay, and DAPI and AOPI double staining, whilst genotoxicity was assessed using Comet Assay analysis. The level of silver ions (Ag+) and cellular uptake of AgNPs-GA were evaluated by ICP-OES and TEM analyses, respectively. Results. A significant cytotoxic effect was observed by AgNPs-GA on both A549 and BEAS-2B cell lines, with IC50 values of 20–28 μg/ml and 12–35 μg/ml, respectively. The cytotoxicity profile of AgNPs-GA was also accompanied by a pronounced increase in ROS production, DNA damage, and apoptosis. Moreover, Ag+ was also detected in cells exposed to AgNPs-GA threefold higher compared to controls. In this study, AgNPs-GA were endocytosed within lysosomes, which may direct to secondary toxicity effects including oxidative stress, impairment of the cell membrane, DNA fragmentation, and cell death. Conclusions. Taken together, novel toxicological-related mechanisms by AgNPs-GA were proposed involving the generation of ROS that causes DNA damage which led to programmed cell death in both A549 and BEAS-2B cells. Therefore, a combination of scientific assessments is constantly needed to ensure that the quality of biosynthesized nanoparticles is controlled and their safe development is promoted.
Collapse
|
36
|
Kirubakaran D, Selvam K, Prakash P, Manimegalai P, Shivakumar MS, SenthilNathan S. Preparation and characterization of biogenic silver nanoparticles using Strobilanthes cordifolia (Vahl) J.R.I.Wood leaves and its Biological applications. Biotechnol Appl Biochem 2022; 70:870-884. [PMID: 36122650 DOI: 10.1002/bab.2406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/10/2022] [Indexed: 11/09/2022]
Abstract
In the present study aqueous leaf extract of Strobilanthes cordifolia J.R.I.Wood was combined with silver nitrate to synthesis silver nanoparticles (AgNPs).The AgNPs was Characterized using visible spectroscopy (UV), X-ray diffraction(XRD), fourier transform infrared spectrophotometer (FTIR), scanning electron microscope (SEM), energy dispersive X-ray (EDaX), particle size analysis and transmission electron microscope (TEM).The UV spectrum absorption peak occurred at 438nm. The FTIR analysis of the AgNPs indicated the presence of functional groups such as aldehyde, alkenes and carboxylic acids.The crystalline structure of AgNPs was confirmed by XRD. The AgNPs have a spherical shape according to SEM. The AgNPs components composition was confirmed by EDaX.The particle size distribution of AgNPs is monodispersion in the range at 42.54nm.TEM demonstrated that the AgNPs size to be between 11.35-34.90nm.The AgNPs exhibited good antibacterial against Escherichia coli and Staphylococcus aureus. The antioxidant activity of the AgNPs was represented by increased DPPH, ABTS and H2 O2 activities.The antidiabetic activity of the AgNPs was indicated by the inhibition of α-amylase and α-glycosidase and anti-inflammatory highest albumin denaturation and HRBC membrane stabilization properties. Further, the AgNPs also significantly inhibited the MCF-7 cell lines. These results clearly suggest that the synthesized AgNPs using S. cordifolia leaves could have several potential biomedical applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dharmalingam Kirubakaran
- Department of Botany, Periyar University, Periyar Palkalai Nagar, Salem-636 011, Tamil Nadu, India
| | - Kuppusamy Selvam
- Department of Botany, Periyar University, Periyar Palkalai Nagar, Salem-636 011, Tamil Nadu, India
| | - Palanisamy Prakash
- Department of Botany, Periyar University, Periyar Palkalai Nagar, Salem-636 011, Tamil Nadu, India
| | - Peraman Manimegalai
- Department of Botany, Periyar University, Periyar Palkalai Nagar, Salem-636 011, Tamil Nadu, India
| | | | - Sengottayan SenthilNathan
- Sri Paramakalyani Centre for Excellence and Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tamil Nadu, 627 412, India
| |
Collapse
|
37
|
Rahimzadeh CY, Barzinjy AA, Mohammed AS, Hamad SM. Green synthesis of SiO2 nanoparticles from Rhus coriaria L. extract: Comparison with chemically synthesized SiO2 nanoparticles. PLoS One 2022; 17:e0268184. [PMID: 35930607 PMCID: PMC9355231 DOI: 10.1371/journal.pone.0268184] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022] Open
Abstract
The usage of the green synthesis method to produce nanoparticles (NPs) has received great acceptance among the scientific community in recent years. This, perhaps, is owing to its eco-friendliness and the utilization of non-toxic materials during the synthesizing process. The green synthesis approach also supplies a reducing and a capping agent, which increases the stability of the NPs through the available phytochemicals in the plant extractions. The present study describes a green synthesis method to produce nano-silica (SiO2) NPs utilizing Rhus coriaria L. extract and sodium metasilicate (Na2SiO3.5H2O) under reflux conditions. Sodium hydroxide (NaOH) is added to the mixture to control the pH of the solution. Then, the obtained NPs have been compared with the chemically synthesized SiO2 NPs. The structure, thermal, and morphological properties of the SiO2 NPs, both green synthesized and chemically synthesized, were characterized using Fourier-transform infrared spectroscopy (FTIR), Ultraviolet-Visible Spectroscopy (UV-Vis), X-ray diffraction (XRD), and Field Emission Scanning Electron Microscopy (FESEM). Also, the elemental compassion distribution was studied by energy-dispersive X-ray spectroscopy (EDX). In addition, the zeta potential, dynamic light scatter (DLS), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) was used to study the stability, thermal properties, and surface area of the SiO2 NPs. The overall results revealed that the green synthesis of SiO2 NPs outperforms chemically synthesized SiO2 NPs. This is expected since the green synthesis method provides higher stability, enhanced thermal properties, and a high surface area through the available phytochemicals in the Rhus coriaria L. extract.
Collapse
Affiliation(s)
- Chiya Yousef Rahimzadeh
- Scientific Research Centre, Soran University, Soran, Kurdistan-Region, Iraq
- Civil Engineering Department, Faculty of Engineering, Soran University, Soran, Kurdistan-Region, Iraq
- * E-mail: (AAB); (CYR)
| | - Azeez Abdullah Barzinjy
- Department of Physics, College of Education, Salahaddin University-Erbil, Erbil, Kurdistan-Region, Iraq
- Department of Physics Education, Faculty of Education, Tishk International University, Erbil, Kurdistan-Region, Iraq
- * E-mail: (AAB); (CYR)
| | - Ahmed Salih Mohammed
- Civil Engineering Department, College of Engineering, University of Sulaimani, Kurdistan, Iraq
| | - Samir Mustafa Hamad
- Scientific Research Centre, Soran University, Soran, Kurdistan-Region, Iraq
- Computer Department, Cihan University-Erbil, Erbil, Iraq
| |
Collapse
|
38
|
Kis B, Moacă EA, Tudoran LB, Muntean D, Magyari-Pavel IZ, Minda DI, Lombrea A, Diaconeasa Z, Dehelean CA, Dinu Ș, Danciu C. Green Synthesis of Silver Nanoparticles Using Populi gemmae Extract: Preparation, Physicochemical Characterization, Antimicrobial Potential and In Vitro Antiproliferative Assessment. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5006. [PMID: 35888477 PMCID: PMC9318049 DOI: 10.3390/ma15145006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/13/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022]
Abstract
Green route is an economic, facile and eco-friendly method, employed for the synthesis of various types of nanoparticles, having it as a starting point biological entity, especially as a plant extract. The present study aims to obtain silver nanoparticles (AgNPs) starting from an ethanolic extract of Populi gemmae (Pg), by adjusting the reaction parameters. The morphological and structural characterization exhibited that both the reaction temperature and the concentration of metal salt, contributes to the obtaining of Pg-AgNPs with adjustable size and shape. The newly synthesized nanoparticles exhibited a good antibacterial activity on Gram-positive bacteria as well as antifungal activity. The in vitro antiproliferative activity of Pg-AgNPs was assessed on two different cancer cell lines (breast cancer cells-MCF7 and lung carcinoma epithelial cells-A549). Results have shown that the green-synthetized Pg-AgNPs_S2 (obtained at 60 °C, using AgNO3 of 5 M) induced a substantial decrease in tumor cell viability in a dose-dependent manner with an IC50 ranging from 5.03 to 5.07 µg/mL on A549 cell line and 3.24 to 4.93 µg/mL on MCF7 cell line.
Collapse
Affiliation(s)
- Brigitta Kis
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (B.K.); (I.Z.M.-P.); (D.I.M.); (A.L.); (C.D.)
| | - Elena-Alina Moacă
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Lucian Barbu Tudoran
- Electron Microscopy Laboratory “Prof. C. Craciun”, Faculty of Biology & Geology, “Babes-Bolyai” University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania;
- Electron Microscopy Integrated Laboratory, National Institute for R & D of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania
| | - Delia Muntean
- Department of Microbiology Faculty of Medicine “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Ioana Zinuca Magyari-Pavel
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (B.K.); (I.Z.M.-P.); (D.I.M.); (A.L.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Daliana Ionela Minda
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (B.K.); (I.Z.M.-P.); (D.I.M.); (A.L.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Adelina Lombrea
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (B.K.); (I.Z.M.-P.); (D.I.M.); (A.L.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Zorita Diaconeasa
- Department of Food Science and Technology, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania;
| | - Cristina Adriana Dehelean
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Ștefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, “Victor Babeș” University of Medicine and Pharmacy, 9 Revolutiei Bulevard, 300041 Timișoara, Romania;
- Pediatric Dentistry Research Center, Faculty of Dental Medicine, “Victor Babeș” University of Medicine and Pharmacy, 9 Revolutiei Bulevard, 300041 Timișoara, Romania
| | - Corina Danciu
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (B.K.); (I.Z.M.-P.); (D.I.M.); (A.L.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
| |
Collapse
|
39
|
Metal nanoparticles: biomedical applications and their molecular mechanisms of toxicity. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02351-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
Biogenic Synthesis of Magnetic Palladium Nanoparticles Decorated Over Reduced Graphene Oxide Using Piper Betle Petiole Extract (Pd-rGO@Fe3O4 NPs) as Heterogeneous Hybrid Nanocatalyst for Applications in Suzuki-Miyaura Coupling Reactions of Biphenyl Compounds. Top Catal 2022. [DOI: 10.1007/s11244-022-01672-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
41
|
Salman G, Pehlivanoglu S, Aydin Acar C, Yesilot S. Anticancer Effects of Vitis vinifera L. Mediated Biosynthesized Silver Nanoparticles and Cotreatment with 5 Fluorouracil on HT-29 Cell Line. Biol Trace Elem Res 2022; 200:3159-3170. [PMID: 34546492 DOI: 10.1007/s12011-021-02923-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022]
Abstract
The aim of this study was to evaluate the anticancer effects of biosynthesized silver nanoparticles (Vv-AgNPs) from grape (Vitis vinifera L.) seed aqueous extract, alone or in combination with 5-Fluorouracil (5-FU) on HT-29 cell line. Vv-AgNPs were characterized by techniques such as UV-vis spectrophotometer (surface plasmon peak 454 nm), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). HT-29 cells were treated with different concentrations (0-80 μg/mL for MTT) and (0-20 μg/mL for BrdU) of Vv-AgNPs alone and combined with (200 μg/mL) 5-FU for 72 h. The cytotoxic effects were analyzed by [3-(4,5-dimethylthiazol-2- yl)-2,5-diphenyl tetrazolium bromide] (MTT) assay (IC50 values 13.74 and 5.35 μg/mL, respectively). Antiproliferative effects were examined 5-bromo-2'-deoxyuridine (BrdU) assay (IC50 values 9.65 and 5.00 μg/mL, respectively). Activation of caspase-3 and protein expression levels of p53 were determined by Western blotting analysis. It was observed that Vv-AgNPs significantly increased the cleavage of the proapoptotic proteins caspase 3 and obviously enhanced the expression of p53 in a dose-dependent manner. The increased amount of total oxidant status (TOS) in the 10 μg/mL Vv-AgNPs + 5-FU treatment group, despite the increasing amount of total antioxidant status (TAS), caused an increase in Oxidative Stress Index (OSI) compared to the control. In this study, it has been shown in vitro that the use of successfully biosynthesized Vv-AgNPs in combination with 5-FU exhibits synergistic cytotoxic, antiproliferative, apoptotic, and oxidative effects against HT-29 cell line.
Collapse
Affiliation(s)
- Giray Salman
- Department of Health and Biomedical Sciences, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Suray Pehlivanoglu
- Department of Molecular Biology and Genetics, Necmettin Erbakan University, Konya, Turkey
| | - Cigdem Aydin Acar
- Department of Health and Biomedical Sciences, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
- Department of Nursing, Bucak School of Health, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Sukriye Yesilot
- Department of Health and Biomedical Sciences, Burdur Mehmet Akif Ersoy University, Burdur, Turkey.
- Department of Nursing, Bucak School of Health, Burdur Mehmet Akif Ersoy University, Burdur, Turkey.
| |
Collapse
|
42
|
Luthfikasari R, Patil TV, Patel DK, Dutta SD, Ganguly K, Espinal MM, Lim KT. Plant-Actuated Micro-Nanorobotics Platforms: Structural Designs, Functional Prospects, and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201417. [PMID: 35801427 DOI: 10.1002/smll.202201417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Plants are anatomically and physiologically different from humans and animals; however, there are several possibilities to utilize the unique structures and physiological systems of plants and adapt them to new emerging technologies through a strategic biomimetic approach. Moreover, plants provide safe and sustainable results that can potentially solve the problem of mass-producing practical materials with hazardous and toxic side effects, particularly in the biomedical field, which requires high biocompatibility. In this review, it is investigated how micro-nanostructures available in plants (e.g., nanoparticles, nanofibers and their composites, nanoporous materials, and natural micromotors) are adapted and utilized in the design of suitable materials for a micro-nanorobot platform. How plants' work on micro- and nanoscale systems (e.g., surface roughness, osmotically induced movements such as nastic and tropic, and energy conversion and harvesting) that are unique to plants, can provide functionality on the platform and become further prospective resources are examined. Furthermore, implementation across organisms and fields, which is promising for future practical applications of the plant-actuated micro-nanorobot platform, especially on biomedical applications, is discussed. Finally, the challenges following its implementation in the micro-nanorobot platform are also presented to provide advanced adaptation in the future.
Collapse
Affiliation(s)
- Rachmi Luthfikasari
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisiplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Dinesh K Patel
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Maria Mercedes Espinal
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisiplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
43
|
In-silico predicting as a tool to develop plant-based biomedicines and nanoparticles: Lycium shawii metabolites. Biomed Pharmacother 2022; 150:113008. [PMID: 35489282 DOI: 10.1016/j.biopha.2022.113008] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION AND PURPOSE In silico approach helps develop biomedicines and is useful for exploring the pharmacology of potential therapeutics using computer-simulated models. In vitro assays were used to determine the anti-microbial and cytotoxic efficacies of silver nanoparticles (AgNPs) synthesized with the shrub Lycium shawii. METHODS In silico predicting was performed to assess the L. shawii metabolites identified using QTOF-LCMS for their pharmacological properties. L. shawii mediated AgNPs were synthesized and characterized (FTIR, TEM, SEM, DLS and EDX). The anti-bacterial efficacies of L. shawii extract, AgNPs, and penicillin-conjugated AgNPs (pen-AgNPs) were determined. The cytotoxicity of the AgNPs was measured against colorectal cancer cell line (HCT116), normal breast epithelium (MCF 10 A), and breast cancer cell line (MDA MB 231). RESULTS AND DISCUSSION Five molecules (costunolide, catechin, emodin, lyciumaside, and aloe emodin 11-O-rhamnoside) were detected in the L. shawii extract. AgNPs (69 nm) were spherical with crystallographic structure. All three agents prepared showed inhibitory activity against the tested bacteria, the most efficacious being pen-AgNPs. High cytotoxicity of AgNPs (IC50 62 μg/ml) was observed against HCT116, IC50 was 78 μg/ml for MCF 10 A, and 250 μg/ml for MDA MB 231, of which cells showed apoptotic features under TEM examination. The in silico approach indicated that the carbonic anhydrase IX enzyme was the target molecule mediating anti-cancer and anti-bacterial activities and that emodin was the metabolite in action. CONCLUSIONS Combining in vitro studies and in silico molecular target prediction helps find novel therapeutic agents. Among L. shawii metabolites, emodin is suggested for further studies as an agent for drug development against pathogenic bacteria and cancer.
Collapse
|
44
|
Ullah A, Lim SI. Plant Extract-Based Synthesis of Metallic Nanomaterials, Their Applications, and Safety Concerns. Biotechnol Bioeng 2022; 119:2273-2304. [PMID: 35635495 DOI: 10.1002/bit.28148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/12/2022] [Accepted: 05/19/2022] [Indexed: 11/06/2022]
Abstract
Nanotechnology has attracted the attention of researchers from different scientific fields because of the escalated properties of nanomaterials compared with the properties of macromolecules. Nanomaterials can be prepared through different approaches involving physical and chemical methods. The development of nanomaterials through plant-based green chemistry approaches is more advantageous than other methods from the perspectives of environmental safety, animal, and human health. The biomolecules and metabolites of plants act as reducing and capping agents for the synthesis of metallic green nanomaterials. Plant-based synthesis is a preferred approach as it is not only cost-effective, easy, safe, clean, and eco-friendly but also provides pure nanomaterials in high yield. Since nanomaterials have antimicrobial and antioxidant potential, green nanomaterials synthesized from plants can be used for a variety of biomedical and environmental remediation applications. Past studies have focused mainly on the overall biogenic synthesis of individual or combinations of metallic nanomaterials and their oxides from different biological sources, including microorganisms and biomolecules. Moreover, from the viewpoint of biomedical applications, the literature is mainly focusing on synthetic nanomaterials. Herein, we discuss the extraction of green molecules and recent developments in the synthesis of different plant-based metallic nanomaterials, including silver, gold, platinum, palladium, copper, zinc, iron, and carbon. Apart from the biomedical applications of metallic nanomaterials, including antimicrobial, anticancer, diagnostic, drug delivery, tissue engineering, and regenerative medicine applications, their environmental remediation potential is also discussed. Furthermore, safety concerns and safety regulations pertaining to green nanomaterials are also discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Aziz Ullah
- Department of Chemical Engineering, Pukyong National University, Busan, 48513, Republic of Korea.,Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University Dera Ismail Khan, 29050, Khyber Pakhtunkhwa, Pakistan
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| |
Collapse
|
45
|
Bajwa HUR, Khan MK, Abbas Z, Riaz R, Rehman TU, Abbas RZ, Aleem MT, Abbas A, Almutairi MM, Alshammari FA, Alraey Y, Alouffi A. Nanoparticles: Synthesis and Their Role as Potential Drug Candidates for the Treatment of Parasitic Diseases. Life (Basel) 2022; 12:life12050750. [PMID: 35629416 PMCID: PMC9145985 DOI: 10.3390/life12050750] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/15/2022] Open
Abstract
Protozoa, helminths and ectoparasites are the major groups of parasites distributed worldwide. Currently, these parasites are treated with chemotherapeutic antiprotozoal drugs, anti-helminthic and anti-ectoparasitic agents, but, with the passage of time, resistance to these drugs has developed due to overuse. In this scenario, nanoparticles are proving to be a major breakthrough in the treatment and control of parasitic diseases. In the last decade, there has been enormous development in the field of nanomedicine for parasitic control. Gold and silver nanoparticles have shown promising results in the treatments of various types of parasitic infections. These nanoparticles are synthesized through the use of various conventional and molecular technologies and have shown great efficacy. They work in different ways, that include damaging the parasite membrane, DNA (Deoxyribonucleic acid) disruption, protein synthesis inhibition and free-radical formation. These agents are effective against intracellular parasites as well. Other nanoparticles, such as iron, nickel, zinc and platinum, have also shown good results in the treatment and control of parasitic infections. It is hoped that this research subject will become the future of modern drug development. This review summarizes the methods that are used to synthesize nanoparticles and their possible mechanisms of action against parasites.
Collapse
Affiliation(s)
| | - Muhammad Kasib Khan
- Department of Parasitology, University of Agriculture, Faisalabad 38040, Pakistan; (M.K.K.); (Z.A.); (R.Z.A.)
| | - Zaheer Abbas
- Department of Parasitology, University of Agriculture, Faisalabad 38040, Pakistan; (M.K.K.); (Z.A.); (R.Z.A.)
| | - Roshan Riaz
- Department of Animal Nutrition and Nutritional Diseases, Ankara University, Ankara 06100, Turkey;
| | - Tauseef ur Rehman
- Department of Parasitology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Correspondence: (T.u.R.); (A.A.)
| | - Rao Zahid Abbas
- Department of Parasitology, University of Agriculture, Faisalabad 38040, Pakistan; (M.K.K.); (Z.A.); (R.Z.A.)
| | - Muhammad Tahir Aleem
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Asghar Abbas
- Faculty of Veterinary and Animal Sciences, MNS-University of Agriculture Multan, Multan 60650, Pakistan;
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Fahdah Ayed Alshammari
- College of Sciences and Literature Microbiology, Arar Northern Border University, Arar 73211, Saudi Arabia;
| | - Yasser Alraey
- Department of Clinical Laboratory Sciences, Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha 62217, Saudi Arabia;
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia
- Correspondence: (T.u.R.); (A.A.)
| |
Collapse
|
46
|
Arokiyaraj C, Parthiban E, Ramanibai R, Janarthanan S. Facile green approach for solar energy assisted biogenic nanoparticles synthesis mediated by seed kernel aqueous extract of Trichosanthes tricupsidata and its potential biomedical applications. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2069121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Binary Effects of Gynostemma Gold Nanoparticles on Obesity and Inflammation via Downregulation of PPARγ/CEPBα and TNF-α Gene Expression. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092795. [PMID: 35566145 PMCID: PMC9104634 DOI: 10.3390/molecules27092795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/23/2022] [Accepted: 04/23/2022] [Indexed: 02/07/2023]
Abstract
Nanoscience is a multidisciplinary skill with elucidated nanoscale particles and their advantages in applications to various fields. Owing to their economical synthesis, biocompatible nature, and widespread biomedical and environmental applications, the green synthesis of metal nanoparticles using medicinal plants has become a potential research area in biomedical research and functional food formulations. Gynostemma pentaphyllum (GP) has been extensively used in traditional Chinese medicine to cure several diseases, including diabetes mellitus (DM). This is the first study in which we examined the efficacy of G. pentaphyllum gold nanoparticles (GP-AuNPs) against obesity and related inflammation. GP extract was used as a capping agent to reduce Au2+ to Au0 to form stable gold nanoparticles. The nanoparticles were characterized by using UV–VIS spectroscopy, and TEM images were used to analyze morphology. In contrast, the existence of the functional group was measured using FTIR, and size and shape were examined using XRD analysis. In vitro analysis on GP-AuNPs was nontoxic to RAW 264.7 cells and 3T3-L1 cells up to a specific concentration. It significantly decreased lipid accumulation in 3T3-L1 obese and reduced NO production in Raw 264.7 macrophage cells. The significant adipogenic genes PPARγ and CEPBα and a major pro-inflammatory cytokine TNF-α expression were quantified using RT-PCR. The GP-AuNPs decreased the face of these genes remarkably, revealing the antiadipogenic and anti-inflammatory activity of our synthesized GP-AuNPs. This study represents thorough research on the antiobesity effect of Gynostemma pentaphyllum gold nanoparticles synthesized using a green approach and the efficacy instead of related inflammatory responses.
Collapse
|
48
|
Yang Y, Du P, Lai W, Yin L, Ding Y, Li Z, Hu H. Changes in primary metabolites and volatile organic compounds in cotton seedling leaves exposed to silver ions and silver nanoparticles revealed by metabolomic analysis. PeerJ 2022; 10:e13336. [PMID: 35474690 PMCID: PMC9035277 DOI: 10.7717/peerj.13336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/05/2022] [Indexed: 01/13/2023] Open
Abstract
In the area of climate change, nanotechnology provides handy tools for improving crop production and assuring sustainability in global agricultural system. Due to excellent physiological and biochemical properties, silver nanoparticles (AgNPs) have been widely studied for potential use in agriculture. However, there are concerns about the mechanism of the toxic effects of the accumulation of AgNPs on crop growth and development. In this study, the impacts of AgNPs on cotton (Gossypium hirsutum) seedlings were evaluated by integrating physiological and comprehensive metabolomic analyses. Potting-soil-grown, two-week-old cotton seedlings were foliar-exposed to 5 mg/plant AgNP or 0.02 mg/plant Ag+ (equivalent to the free Ag+ released from AgNPs). Primary metabolites and volatile organic compounds (VOCs) were identified by gas chromatography-mass spectrometry (GC-MS) and solid-phase microextraction (SPME) GC-MS, respectively. AgNPs inhibited the photosynthetic capacity of the cotton leaves. The metabolic spectrum analysis identified and quantified 73 primary metabolites and 45 VOCs in cotton leaves. Both treatments significantly changed the metabolite profiles of plant leaves. Among the primary metabolites, AgNPs induced marked changes in amino acids, sugars and sugar alcohols. Among the VOCs, 13 volatiles, mainly aldehydes, alkanes and terpenoids, were specifically altered only in response to AgNPs. In summary, our study showed that the comprehensive influence of AgNPs on primary metabolites and VOCs was not merely attributed to the released Ag+ but was caused by AgNP-specific effects on cotton leaves. These results provide important knowledge about the physiological and chemical changes in cotton leaves upon exposure to AgNPs and offer a new insight for supporting the sustainable use of AgNPs in agriculture.
Collapse
|
49
|
Novel synthesis of gold nanoparticles using Parkia speciosa Hassk seed extract for enhanced foam stability in hand soap. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02197-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
50
|
Habeeb Rahuman HB, Dhandapani R, Narayanan S, Palanivel V, Paramasivam R, Subbarayalu R, Thangavelu S, Muthupandian S. Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications. IET Nanobiotechnol 2022; 16:115-144. [PMID: 35426251 PMCID: PMC9114445 DOI: 10.1049/nbt2.12078] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 01/07/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
The alarming effect of antibiotic resistance prompted the search for alternative medicine to resolve the microbial resistance conflict. Over the last two decades, scientists have become increasingly interested in metallic nanoparticles to discover their new dimensions. Green nano synthesis is a rapidly expanding field of interest in nanotechnology due to its feasibility, low toxicity, eco‐friendly nature, and long‐term viability. Some plants have long been used in medicine because they contain a variety of bioactive compounds. Silver has long been known for its antibacterial properties. Silver nanoparticles have taken a special place among other metal nanoparticles. Silver nanotechnology has a big impact on medical applications like bio‐coating, novel antimicrobial agents, and drug delivery systems. This review aims to provide a comprehensive understanding of the pharmaceutical qualities of medicinal plants, as well as a convenient guideline for plant‐based silver nanoparticles and their antimicrobial activity.
Collapse
Affiliation(s)
| | - Ranjithkumar Dhandapani
- Medical Microbiology Unit Department of Microbiology Alagappa University Karaikudi Tamilnadu India
- Chimertech Private Limited Chennai Tamilnadu India
| | - Santhoshini Narayanan
- Medical Microbiology Unit Department of Microbiology Alagappa University Karaikudi Tamilnadu India
| | - Velmurugan Palanivel
- Centre for Materials Engineering and Regenerative Medicine Bharath Institute of Higher Education and Research Chennai Tamilnadu India
| | | | | | - Sathiamoorthi Thangavelu
- Medical Microbiology Unit Department of Microbiology Alagappa University Karaikudi Tamilnadu India
| | - Saravanan Muthupandian
- Division of Biomedical Sciences College of Health Sciences School of Medicine Mekelle Ethiopia
- AMR and Nanotherapeutics Laboratory Department of Pharmacology Saveetha Dental College and Hospital Saveetha Institute of Medical and Technical Sciences (SIMATS) Chennai Tamilnadu India
| |
Collapse
|