1
|
Chen JL, Xiao D, Liu YJ, Wang Z, Chen ZH, Li R, Li L, He RH, Jiang SY, Chen X, Xu LX, Lu FC, Wang JM, Shan ZG. Protein interactions, network pharmacology, and machine learning work together to predict genes linked to mitochondrial dysfunction in hypertrophic cardiomyopathy. Sci Rep 2025; 15:15017. [PMID: 40301504 PMCID: PMC12041389 DOI: 10.1038/s41598-025-97534-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/04/2025] [Indexed: 05/01/2025] Open
Abstract
This study looked at possible targets for hypertrophic cardiomyopathy (HCM), a condition marked by thickening of the ventricular wall, primarily in the left ventricle. We employed differential gene analysis and weighted gene co-expression network analysis (WGCNA) on samples. We then carried out an enrichment analysis. We also investigated the process of immunological infiltration. We employed six machine learning techniques and two protein-protein interaction (PPI) network gene selection approaches to search for the most characteristic gene (MCG). In the validation ladder, we verified the expression of MCG. Furthermore, we examined the MCG expression levels in HCM animal and cell models. Finally, we performed molecular docking and predicted potential medications for HCM treatment. 7975 differentially expressed genes (DEGs) were found in our study. We also identified 236 genes in the blue module using WGCNA. Screening at the transcriptome and protein levels was used to mine MCG. The final result screened CCAAT/Enhancer Binding Protein Delta (CEBPD) as MCG. We confirmed that MCG expression matched the outcomes of the experimental ladder. The level of CEBPD mRNA and protein was lowered in HCM animal and cellular models. Given that Abt-751 had the highest binding affinity to CEBPD, it might be a projected targeted medication. We found a new target gene for HCM called CEBPD, which is probably going to function by mitochondrial dysfunction. An innovative aim for the management or avoidance of HCM is offered by this analysis. Abt-751 may be a predicted targeted drug for HCM that had the greatest binding affinity with CEBPD.
Collapse
Affiliation(s)
- Jia-Lin Chen
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, NO.55, Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, China
| | - Di Xiao
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, NO.55, Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China
| | - Yi-Jiang Liu
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, NO.55, Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China
| | - Zhan Wang
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, NO.55, Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China
| | - Zhi-Huang Chen
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, NO.55, Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China
| | - Rui Li
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, NO.55, Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China
| | - Li Li
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, NO.55, Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China
| | - Rong-Hai He
- Department of Cardiac Surgery, Xiangan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361100, Fujian, China
| | - Shu-Yan Jiang
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, NO.55, Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China
| | - Xin Chen
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, NO.55, Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China
| | - Lin-Xi Xu
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, NO.55, Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China
| | - Feng-Chun Lu
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, China.
| | - Jia-Mao Wang
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, NO.55, Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China.
| | - Zhong-Gui Shan
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, NO.55, Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China.
| |
Collapse
|
2
|
Spek CA, Aberson HL, Butler JM, de Vos AF, Duitman J. CEBPD Potentiates the Macrophage Inflammatory Response but CEBPD Knock-Out Macrophages Fail to Identify CEBPD-Dependent Pro-Inflammatory Transcriptional Programs. Cells 2021; 10:cells10092233. [PMID: 34571881 PMCID: PMC8470509 DOI: 10.3390/cells10092233] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 12/25/2022] Open
Abstract
CCAAT/enhancer-binding protein delta (C/EBPδ) is a member of the C/EBP family of transcription factors. According to the current paradigm, C/EBPδ potentiates cytokine production and modulates macrophage function thereby enhancing the inflammatory response. Remarkably, however, C/EBPδ deficiency does not consistently lead to a reduction in Lipopolysaccharide (LPS)-induced cytokine production by macrophages. Here, we address this apparent discrepancy and show that the effect of C/EBPδ on cytokine production and macrophage function depends on both the macrophage subtype and the LPS concentration used. Using CRISPR-Cas generated macrophages in which the transactivation domain of C/EBPδ was deleted from the endogenous locus (ΔTAD macrophages), we next show that the context-dependent role of C/EBPδ in macrophage biology relies on compensatory transcriptional activity in the absence of C/EBPδ. We extend these findings by revealing a large discrepancy between transcriptional programs in C/EBPδ knock-out and C/EBPδ transactivation dead (ΔTAD) macrophages implying that compensatory mechanisms do not specifically modify C/EBPδ-dependent inflammatory responses but affect overall macrophage biology. Overall, these data imply that knock-out approaches are not suited for identifying the genuine transcriptional program regulated by C/EBPδ, and we suggest that this phenomenon applies for transcription factor families in general.
Collapse
Affiliation(s)
- C. Arnold Spek
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (H.L.A.); (J.M.B.); (A.F.d.V.); (J.D.)
- Correspondence:
| | - Hella L. Aberson
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (H.L.A.); (J.M.B.); (A.F.d.V.); (J.D.)
| | - Joe M. Butler
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (H.L.A.); (J.M.B.); (A.F.d.V.); (J.D.)
| | - Alex F. de Vos
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (H.L.A.); (J.M.B.); (A.F.d.V.); (J.D.)
| | - JanWillem Duitman
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (H.L.A.); (J.M.B.); (A.F.d.V.); (J.D.)
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
3
|
Prakhar P, Holla S, Ghorpade DS, Gilleron M, Puzo G, Udupa V, Balaji KN. Ac2PIM-responsive miR-150 and miR-143 target receptor-interacting protein kinase 2 and transforming growth factor beta-activated kinase 1 to suppress NOD2-induced immunomodulators. J Biol Chem 2015; 290:26576-86. [PMID: 26391398 PMCID: PMC4646315 DOI: 10.1074/jbc.m115.662817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 09/15/2015] [Indexed: 11/06/2022] Open
Abstract
Specific and coordinated regulation of innate immune receptor-driven signaling networks often determines the net outcome of the immune responses. Here, we investigated the cross-regulation of toll-like receptor (TLR)2 and nucleotide-binding oligomerization domain (NOD)2 pathways mediated by Ac2PIM, a tetra-acylated form of mycobacterial cell wall component and muramyl dipeptide (MDP), a peptidoglycan derivative respectively. While Ac2PIM treatment of macrophages compromised their ability to induce NOD2-dependent immunomodulators like cyclooxygenase (COX)-2, suppressor of cytokine signaling (SOCS)-3, and matrix metalloproteinase (MMP)-9, no change in the NOD2-responsive NO, TNF-α, VEGF-A, and IL-12 levels was observed. Further, genome-wide microRNA expression profiling identified Ac2PIM-responsive miR-150 and miR-143 to target NOD2 signaling adaptors, RIP2 and TAK1, respectively. Interestingly, Ac2PIM was found to activate the SRC-FAK-PYK2-CREB cascade via TLR2 to recruit CBP/P300 at the promoters of miR-150 and miR-143 and epigenetically induce their expression. Loss-of-function studies utilizing specific miRNA inhibitors establish that Ac2PIM, via the miRNAs, abrogate NOD2-induced PI3K-PKCδ-MAPK pathway to suppress β-catenin-mediated expression of COX-2, SOCS-3, and MMP-9. Our investigation has thus underscored the negative regulatory role of Ac2PIM-TLR2 signaling on NOD2 pathway which could broaden our understanding on vaccine potential or adjuvant utilities of Ac2PIM and/or MDP.
Collapse
Affiliation(s)
- Praveen Prakhar
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India and
| | - Sahana Holla
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India and
| | - Devram Sampat Ghorpade
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India and
| | - Martine Gilleron
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS and Université de Toulouse, 31077 Toulouse, France
| | - Germain Puzo
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS and Université de Toulouse, 31077 Toulouse, France
| | - Vibha Udupa
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India and
| | | |
Collapse
|
4
|
Homocysteine Induces Collagen I Expression by Downregulating Histone Methyltransferase G9a. PLoS One 2015; 10:e0130421. [PMID: 26192994 PMCID: PMC4508059 DOI: 10.1371/journal.pone.0130421] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/19/2015] [Indexed: 12/22/2022] Open
Abstract
Hyperhomocysteinemia (HHcy) leads to several clinical manifestations including hepatic fibrosis. Excess deposition of extracellular matrix (ECM) components including collagen is the eponymous lesion of liver fibrosis. In this study, we demonstrated that elevated concentration of Hcy induced the expression of collagen type I in cultured human liver cells as well as in liver tissue of HHcy mice. Meanwhile, Hcy inhibited the expression of histone methyltransferase G9a. Mechanistically, silencing endogenous G9a by siRNA enhanced the promoter activity of COL1A1 in LO2 cells. Conversely, overexpressing G9a inhibited the promoter activity of COL1A1. CHIP assay demonstrated that G9a binds to the neuron-restrictive silencer element (NRSE) on the promoter of COL1A1. Hcy treatment decreased the binding of G9a on NRSE, which in turn decreased the level of H3K9me2 on the promoter of COL1A1, led to upregulation of COL1A1. Taken together, these results provide a novel mechanism on explaining how HHcy promotes ECM production.
Collapse
|
5
|
Spiesz EM, Thorpe CT, Chaudhry S, Riley GP, Birch HL, Clegg PD, Screen HR. Tendon extracellular matrix damage, degradation and inflammation in response to in vitro overload exercise. J Orthop Res 2015; 33:889-97. [PMID: 25721513 PMCID: PMC4855636 DOI: 10.1002/jor.22879] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 02/13/2015] [Indexed: 02/04/2023]
Abstract
The role of inflammation in tendon injury is uncertain and a topic of current interest. In vitro studies of tendon accelerated overload damage can serve as a valuable source of information on the early stages of tendinopathy. Viable fascicle bundles from bovine flexor tendons were subjected to cyclic uniaxial loading from 1-10% strain. Immuno-staining for inflammatory markers and matrix degradation markers was performed on the samples after mechanical testing. Loaded samples exhibited visible extracellular matrix damage, with disrupted collagen fibers and fiber kinks, and notable damage to the interfascicular matrix. Inflammatory markers COX-2 and IL-6 were only expressed in the cyclically loaded samples. Collagen degradation markers MMP-1 and C1,2C were colocalized in many areas, with staining occurring in the interfascicular matrix or the fascicular tenocytes. These markers were present in control samples, but staining became increasingly intense with loading. Little MMP-3 or MMP-13 was evident in control sections. In loaded samples, some sections showed intense staining of these markers, again localized to interfascicular regions. This study suggests that inflammatory markers may be expressed rapidly after tendon overload exercise. Interestingly, both inflammation and damage-induced matrix remodeling seem to be concentrated in, or in the vicinity of, the highly cellular interfascicular matrix.
Collapse
Affiliation(s)
- Ewa M. Spiesz
- School of Engineering and Materials Science; Queen Mary University of London; London United Kingdom
| | - Chavaunne T. Thorpe
- School of Engineering and Materials Science; Queen Mary University of London; London United Kingdom
| | - Saira Chaudhry
- School of Engineering and Materials Science; Queen Mary University of London; London United Kingdom
| | - Graham P. Riley
- School of Biological Sciences; University of East Anglia; Norwich United Kingdom
| | - Helen L. Birch
- Institute of Orthopaedics and Musculoskeletal Science; University College London; London United Kingdom
| | - Peter D. Clegg
- Department of Musculoskeletal Biology; University of Liverpool; Liverpool United Kingdom
| | - Hazel R.C. Screen
- School of Engineering and Materials Science; Queen Mary University of London; London United Kingdom
| |
Collapse
|
6
|
Reducing the Foreign Body Reaction by Surface Modification with Collagen/Hyaluronic Acid Multilayered Films. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/718432] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Biological response against foreign implants often leads to encapsulation, possibly resulting in malfunction of implants devices. The aim of this study was to reduce the foreign body reaction by surface modification of biomaterials through layer-by-layer deposition of type I collagen (COL)/hyaluronic acid (HA) multilayer films. Polydimethylsiloxane (PDMS) samples were coated with alternative COL and HA layers with different layers. We found that the in vitro adhesion, proliferation, and activation of macrophage-like cells were greatly decreased by COL/HA multilayered deposition. The PDMS samples modified with 20 bilayers of COL/HA were implanted in rats for 3 weeks, and the thickness of encapsulation surrounding the samples was decreased by 29–57% compared to the control unmodified PDMS. This study demonstrates the potential of COL/HA multilayer films to reduce foreign body reaction.
Collapse
|
7
|
Prostaglandins in cancer cell adhesion, migration, and invasion. Int J Cell Biol 2012; 2012:723419. [PMID: 22505934 PMCID: PMC3299390 DOI: 10.1155/2012/723419] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 10/08/2011] [Indexed: 12/21/2022] Open
Abstract
Prostaglandins exert a profound influence over the adhesive, migratory, and invasive behavior of cells during the development and progression of cancer. Cyclooxygenase-2 (COX-2) and microsomal prostaglandin E2 synthase-1 (mPGES-1) are upregulated in inflammation and cancer. This results in the production of prostaglandin E2 (PGE2), which binds to and activates G-protein-coupled prostaglandin E1–4 receptors (EP1–4). Selectively targeting the COX-2/mPGES-1/PGE2/EP1–4 axis of the prostaglandin pathway can reduce the adhesion, migration, invasion, and angiogenesis. Once stimulated by prostaglandins, cadherin adhesive connections between epithelial or endothelial cells are lost. This enables cells to invade through the underlying basement membrane and extracellular matrix (ECM). Interactions with the ECM are mediated by cell surface integrins by “outside-in signaling” through Src and focal adhesion kinase (FAK) and/or “inside-out signaling” through talins and kindlins. Combining the use of COX-2/mPGES-1/PGE2/EP1–4 axis-targeted molecules with those targeting cell surface adhesion receptors or their downstream signaling molecules may enhance cancer therapy.
Collapse
|
8
|
Angiogenic response of endothelial cells to fibronectin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 749:131-51. [PMID: 22695843 DOI: 10.1007/978-1-4614-3381-1_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
9
|
Wang JY, Chen BK, Wang YS, Tsai YT, Chen WC, Chang WC, Hou MF, Wu YC, Chang WC. Involvement of store-operated calcium signaling in EGF-mediated COX-2 gene activation in cancer cells. Cell Signal 2012; 24:162-169. [PMID: 21924350 DOI: 10.1016/j.cellsig.2011.08.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/17/2011] [Accepted: 08/29/2011] [Indexed: 12/21/2022]
Abstract
Growing evidence shows that chronic inflammation drives the progression of colorectal cancer (CRC). Cyclooxygenase-2 (COX-2) is one of the most important inflammatory genes involved in solid tumor metastasis. Epidermal growth factor receptor (EGFR) also plays a key role in cancer cell development. We compared the expression levels of EGFR and COX-2 between tumor and normal tissues from 20 CRC patients and studied the molecular mechanism of EGFR-mediated COX-2 gene expression in cancer cells. Our results indicated that COX-2 expression was markedly increased after EGF stimulation. COX-2 promoter analysis indicated the involvement of cyclic AMP-responsive element (CRE) and nuclear factor of activated T cells/nuclear factor interleukin-6 (NFAT/NF-IL6)-binding sites in EGF-mediated signaling pathways. Furthermore, EGF-mediated COX-2 activation was prevented by 2-aminoethoxydiphenyl borate (2-APB), a store-operated Ca(2+) channel inhibitor. Transfection of siRNA against ORAI1 or STIM1, the key regulators of store-operated Ca(2+) channels, showed significant inhibitory effects on EGF-mediated COX-2 expression. In conclusion, store-operated Ca(2+) entry is involved in the activation of transcription factors (CREB/NFAT) that are responsible for delivering EGF-mediated signals to evoke inflammatory cascades and is eventually related to CRC tumorigenesis.
Collapse
Affiliation(s)
- Jaw-Yuan Wang
- Division of Gastrointestinal and General Surgery, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Huang WC, Chai CY, Chen WC, Hou MF, Wang YS, Chiu YC, Lu SR, Chang WC, Juo SHH, Wang JY, Chang WC. Histamine regulates cyclooxygenase 2 gene activation through Orai1-mediated NFκB activation in lung cancer cells. Cell Calcium 2011; 50:27-35. [PMID: 21605904 DOI: 10.1016/j.ceca.2011.04.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/21/2011] [Accepted: 04/22/2011] [Indexed: 11/22/2022]
Abstract
Histamine, an important chemical mediator, has been shown to regulate inflammation and allergic responses. Stimulation of histamine receptors results in a significant increase in cytoplasmic Ca(2+), which could be mediated by inositol trisphosphate (IP(3))-dependent store-operated Ca(2+) channels (SOC). However, the link between histamine-mediated signaling and activation of inflammatory genes such as cyclooxygenase 2 (COX-2) is still unknown. Our study indicated that the COX-2 protein was highly expressed in human lung cancer cells. Following stimulation with 10 μM of histamine, both store-operated Ca(2+) entry (SOCE) and COX-2 gene expression were evoked. Histamine-mediated COX-2 activation can be prevented by 2-APB and SKF-96365, SOC channel inhibitors. In addition, deletion analysis of the COX-2 promoter suggested that the region between -80 bp and -250 bp, which contains NFκB binding sites, is the key element for histamine-mediated signaling. Knocking down ORAI1, one of the essential molecules of store-operated calcium channels, attenuated histamine-mediated COX-2 expression and NFκB activation. These results indicated that ORAI1-mediated NFκB activation was an important signaling pathway, responsible for transmitting histamine signals that trigger inflammatory reactions.
Collapse
Affiliation(s)
- Wan-Chen Huang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Alique M, Calleros L, Luengo A, Griera M, Iñiguez MÁ, Punzón C, Fresno M, Rodríguez-Puyol M, Rodríguez-Puyol D. Changes in extracellular matrix composition regulate cyclooxygenase-2 expression in human mesangial cells. Am J Physiol Cell Physiol 2011; 300:C907-18. [DOI: 10.1152/ajpcell.00176.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glomerular diseases are characterized by a sustained synthesis and accumulation of abnormal extracellular matrix proteins, such as collagen type I. The extracellular matrix transmits information to cells through interactions with membrane components, which directly activate many intracellular signaling events. Moreover, accumulating evidence suggests that eicosanoids derived from cyclooxygenase (COX)-2 participate in a number of pathological processes in immune-mediated renal diseases, and it is known that protein kinase B (AKT) may act through different transcription factors in the regulation of the COX-2 promoter. The present results show that progressive accumulation of collagen I in the extracellular medium induces a significant increase of COX-2 expression in human mesangial cells, resulting in an enhancement in PGE2 production. COX-2 overexpression is due to increased COX-2 mRNA levels. The study of the mechanism implicated in COX-2 upregulation by collagen I showed focal adhesion kinase (FAK) activation. Furthermore, we observed that the activation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway by collagen I and collagen I-induced COX-2 overexpression was abolished by PI3K and AKT inhibitors. Additionally, we showed that the cAMP response element (CRE) transcription factor is implicated. Finally, we studied COX-2 expression in an animal model, NG-nitro-l-arginine methyl ester hypertensive rats. In renal tissue and vascular walls, COX-2 and collagen type I content were upregulated. In summary, our results provide evidence that collagen type I increases COX-2 expression via the FAK/PI3K/AKT/cAMP response element binding protein signaling pathway.
Collapse
Affiliation(s)
- Matilde Alique
- Departamento de Fisiología,
- Inststuto Reina Sofía de Investigación Nefrológica, and
| | - Laura Calleros
- Departamento de Fisiología,
- Inststuto Reina Sofía de Investigación Nefrológica, and
| | - Alicia Luengo
- Departamento de Fisiología,
- Inststuto Reina Sofía de Investigación Nefrológica, and
| | - Mercedes Griera
- Departamento de Fisiología,
- Inststuto Reina Sofía de Investigación Nefrológica, and
| | - Miguel Ángel Iñiguez
- Centro de Biología Molecular “Severo Ochoa,” Consejo Superior Investigaciones Científicas-Universidad Autónoma de Mardrid, Madrid, Spain
| | - Carmen Punzón
- Centro de Biología Molecular “Severo Ochoa,” Consejo Superior Investigaciones Científicas-Universidad Autónoma de Mardrid, Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular “Severo Ochoa,” Consejo Superior Investigaciones Científicas-Universidad Autónoma de Mardrid, Madrid, Spain
| | | | - Diego Rodríguez-Puyol
- Inststuto Reina Sofía de Investigación Nefrológica, and
- Nephrology Section of the “Príncipe de Asturias Hospital,” Alcala University, Alcalá de Henares,
| |
Collapse
|
12
|
Liu YW, Wang SA, Hsu TY, Chen TA, Chang WC, Hung JJ. Inhibition of LPS-induced C/EBP delta by trichostatin A has a positive effect on LPS-induced cyclooxygenase 2 expression in RAW264.7 cells. J Cell Biochem 2010; 110:1430-8. [PMID: 20506344 DOI: 10.1002/jcb.22682] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cyclooxygenase 2 (COX-2) is an important inflammatory factor. Previous studies have indicated that COX-2 is induced with lipopolysaccharide (LPS) treatment. Here, we found that an inhibitor of histone deacetylase (HDAC), trichostatin A (TSA), cannot repress LPS-induced COX-2 but it increased the COX-2 level in RAW264.7 cells. We found no significant difference in NF-kappaB activation and ERK1/2 phosphorylation, but LPS-induced C/EBP delta expression was completely abolished after TSA treatment of LPS-treated cells. Interesting, reporter assay of C/EBP delta promoter revealed that Sp1-binding site is important. Although there was no alteration in c-Jun levels, but the phosphorylation of c-Jun at its C-terminus was increased dramatically. A DNA-associated protein assay (DAPA) and chromatin immunoprecipitation assay (ChIP) indicated that c-Jun was recruited via Sp1 to the promoter of C/EBP delta after LPS treatment; this recruitment of c-Jun was repressed by TSA. C/EBP delta inhibition by TSA resulted in increased binding of C/EBP alpha and C/EBP beta to the COX-2 promoter. Therefore, TSA has a positive effect on LPS-induced COX-2 since it decreases the C/EBP delta level by reducing c-Jun recruitment by Sp1 to the C/EBP delta promoter, resulting in increased the recruitment of C/EBP alpha and C/EBP beta to the COX-2 promoter.
Collapse
Affiliation(s)
- Yi-Wen Liu
- College of Life Science, Graduate Institute of Biopharmaceutics, National Chiayi University, Chiayi 600, Taiwan
| | | | | | | | | | | |
Collapse
|
13
|
Han EH, Kim JY, Kim HG, Choi JH, Im JH, Woo ER, Jeong HG. Dihydro-N-caffeoyltyramine down-regulates cyclooxygenase-2 expression by inhibiting the activities of C/EBP and AP-1 transcription factors. Food Chem Toxicol 2010; 48:579-86. [DOI: 10.1016/j.fct.2009.11.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 10/27/2009] [Accepted: 11/11/2009] [Indexed: 01/17/2023]
|
14
|
Cho IJ, Woo NR, Shin IC, Kim SG. H89, an inhibitor of PKA and MSK, inhibits cyclic-AMP response element binding protein-mediated MAPK phosphatase-1 induction by lipopolysaccharide. Inflamm Res 2009; 58:863-72. [PMID: 19547917 DOI: 10.1007/s00011-009-0057-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 05/16/2009] [Accepted: 05/26/2009] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Lipopolysaccharide (LPS) stimulates the production of inflammatory cytokines and the amplification of immune responses via MAPK pathways. MAPK phosphatases (MKPs) feedback-regulate the activities of MAPKs to prevent excessive immunological functions. H89 has been used as an inhibitor of the protein kinase A (PKA) and mitogen- and stress-activated protein kinase (MSK) pathways. In view of the potential roles of PKA and MSK for MKP-1 induction and the ability of H89 to inhibit these kinases, this study examined the effect of H89 on MKP-1 induction by LPS and the role of cyclic-AMP response element binding protein (CREB) in the MKP-1 induction. RESULTS H89 treatment inhibited increases in MKP-1 protein and mRNA levels, and gene transcription by LPS in Raw264.7 cells. Immunoblot, gel-shift, and chromatin-immunoprecipitation assays showed the activation of CREB by LPS, and the ability of H89 to inhibit it, suggesting that H89's inhibition of CREB may affect MKP-1 induction. In addition, H89 prevented the ability of LPS to induce other MKP genes (Dusp-2, 4, 8, and 16). Experiments using MAPK inhibitors showed that MAPKs are involved in CREB phosphorylation and MKP-1 induction, suggesting that CREB-mediated MKP-1 induction serves in part as a feedback-inhibitory loop of MAPKs. CONCLUSION Our results demonstrate that H89 inhibits the activation of CREB and the CREB-mediated MKP-1 induction by LPS, which may result from its inhibition of PKA and MSK.
Collapse
Affiliation(s)
- Il Je Cho
- Seoul National University, Sillim-dong, Kwanak-gu, Korea
| | | | | | | |
Collapse
|
15
|
Viji RI, Kumar VBS, Kiran MS, Sudhakaran PR. Modulation of cyclooxygenase in endothelial cells by fibronectin: relevance to angiogenesis. J Cell Biochem 2008; 105:158-66. [PMID: 18459145 DOI: 10.1002/jcb.21808] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cyclooxygenases (COX), which catalyze the formation of prostaglandins (PGs), have been implicated in angiogenesis. Adhesion of endothelial cells (ECs) to extracellular matrix (ECM) induces the expression of COX-2 and PG production. The present study was carried out to analyze the influence of the adhesive ECM protein, fibronectin (FN), in modulating COX expression and its implications to angiogenesis using in vitro cultures of human umbilical vein ECs. RT-PCR analysis showed that the level of COX-2 mRNA was significantly high while that of COX-1 decreased in ECs maintained on FN. On treatment with p38 MAPK inhibitor and anti-alpha(5)beta(1) integrin antibody, FN dependent effect on COX expression was not observed. Analysis by ELISA and immunoblotting confirmed FN-dependent upregulation of COX-2 protein. The ratio of PG E(2):PG D(2) was significantly high in cells maintained on FN and on treatment with p38 MAPK inhibitor, the relative level of PG D(2) increased and that of PG E(2) decreased. Concomitant with the modulation of COX-2 and changes in PGs, ECs maintained on FN showed angiogenic response in an alpha(5)beta(1) integrin/p38 MAPK dependent manner as evidenced by the expression of angiogenic markers, CD 31 and E-selectin. These results suggest a FN-alpha(5)beta(1)/FAK/p38 MAPK dependent upregulation of COX-2 causing a shift in the relative levels of PGs in HUVECs which contributes to the angiogenic effect of FN.
Collapse
Affiliation(s)
- R I Viji
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala 695 581, India
| | | | | | | |
Collapse
|
16
|
Cho IJ, Kim SG. A novel mitogen-activated protein kinase phosphatase-1 and glucocorticoid receptor (GR) interacting protein-1-dependent combinatorial mechanism of gene transrepression by GR. Mol Endocrinol 2008; 23:86-99. [PMID: 18945810 DOI: 10.1210/me.2008-0257] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Glucocorticoids have major antiinflammatory effects. Because COX-2 is the rate-limiting enzyme for proinflammatory prostaglandins, this study investigated the combinatorial inhibitory role of glucocorticoid receptor (GR) in COX-2 gene induction in macrophages and sought to identify the molecular mechanisms for that inhibition. Glucocorticoid-activated GR repressed COX-2 gene induction by lipopolysaccharide (LPS). Activated GR inhibited LPS-induced activator protein 1 activity, which in turn decreased activating transcription factor 2/c-Jun phosphorylation. The inhibition of MAPK-dependent activating transcription factor 2/c-Jun phosphorylation by GR in COX-2 repression was a result of MAPK phosphatase-1 (MKP-1) induction. Although GR did not inhibit LPS-induced p65 phosphorylation or nuclear factor-kappaB DNA binding activity, deletion of the nuclear factor-kappaB binding site in the COX-2 gene suppressed the ability of glucocorticoid to attenuate COX-2 induction. Chromatin immunoprecipitation and transfection assays revealed that a p65 DNA complex involving GR-bound GR-interacting protein 1 (GRIP1) also contributed to COX-2 repression. Additional knockdown and transfection assays identified other inflammatory genes coordinately regulated by MKP-1 and GRIP1. In summary, activated GR was found to antagonize the LPS-dependent induction of the COX-2 gene via a novel combinatorial mechanism involving MKP-1-mediated activator protein 1 inhibition and GR/GRIP1 recruitment to the p65 DNA complex; moreover, this work facilitated the identification of other GR-responding MKP-1/GRIP1-regulated genes.
Collapse
Affiliation(s)
- Il Je Cho
- Innovative Drug Research Center for Metabolic and Inflammatory Disease, College of Pharmacy, Seoul National University, Sillim-dong, Kwanak-gu, Seoul 151-742, Korea
| | | |
Collapse
|
17
|
Gavala ML, Pfeiffer ZA, Bertics PJ. The nucleotide receptor P2RX7 mediates ATP-induced CREB activation in human and murine monocytic cells. J Leukoc Biol 2008; 84:1159-71. [PMID: 18625910 PMCID: PMC2538603 DOI: 10.1189/jlb.0907612] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2007] [Revised: 06/12/2008] [Accepted: 06/15/2008] [Indexed: 12/12/2022] Open
Abstract
Nucleotide receptors serve as sensors of extracellular ATP and are important for immune function. The nucleotide receptor P2RX7 is a cell-surface, ligand-gated cation channel that has been implicated in many diseases, including arthritis, granuloma formation, sepsis, and tuberculosis. These disorders are often exacerbated by excessive mediator release from activated macrophages in the inflammatory microenvironment. Although P2RX7 activation can modulate monocyte/macrophage-induced inflammatory events, the relevant molecular mechanisms are poorly understood. Previous studies suggest that MAPK cascades and transcriptional control via CREB-linked pathways regulate the inflammatory capacity of monocytic cells. As P2RX7 promotes MAPK activation and inflammatory mediator production, we examined the involvement MAPK-induced CREB activation in P2RX7 action. Our data reveal that stimulation of multiple monocytic cell lines with P2RX7 agonists induces rapid CREB phosphorylation. In addition, we observed a lack of nucleotide-induced CREB phosphorylation in RAW 264.7 cells expressing nonfunctional P2RX7 and a gain of nucleotide-induced CREB phosphorylation in human embryonic kidney-293 cells that heterologously express human P2RX7. Furthermore, our results indicate that P2RX7 agonist-induced CREB phosphorylation is partly mediated via Ca(2+) fluxes and the MEK/ERK system. Mechanistic analyses revealed that macrophage stimulation with a P2RX7 agonist induces CREB/CREB-binding protein complex formation, which is necessary for CREB transcriptional activation. Also, we demonstrate that P2RX7 activation induces a known CREB-dependent gene (c-fos) and that dominant-negative CREB constructs attenuate this response. These studies support the idea that P2RX7 stimulation can directly regulate protein expression that is not dependent on costimulation with other immune modulators such as LPS.
Collapse
Affiliation(s)
- Monica L Gavala
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
18
|
Cho IJ, Woo NR, Kim SG. The identification of C/EBPbeta as a transcription factor necessary for the induction of MAPK phosphatase-1 by toll-like receptor-4 ligand. Arch Biochem Biophys 2008; 479:88-96. [PMID: 18761321 DOI: 10.1016/j.abb.2008.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 08/09/2008] [Accepted: 08/12/2008] [Indexed: 01/18/2023]
Abstract
Toll-like receptor activates mitogen-activated protein kinases (MAPKs), which contributes to inflammatory responses. The activities of MAPKs are counter-balanced by MAPK phosphatases (MKPs). Because the transcriptional regulatory mechanism of mkp-1 has not been completely established, this study investigated the effect of toll-like receptor-4 ligand (TLR4L, lipopolysaccharide) on CCAAT/enhancer binding protein-beta (C/EBP beta)-dependent induction of MKP-1 in Raw264.7 cells. TLR4L treatment induced MKP-1 through gene transcription. Other TLRLs also transactivated mkp-1. Gel-shift, immunoblot and chromatin immunoprecipitation assays identified the activation of C/EBPbeta by TLR4L. Consistently, C/EBP beta transfection promoted mkp-1 transactivation, which was reversed by its dominant-negative mutant (AC/EBP). Experiments using chemical inhibitors or dominant-negative mutants of MAPKs indicated that both C/EBP beta activation and MKP-1 induction depend on the activation of MAPKs. TLR4L activation of C/EBP beta also contributed to the induction of dusp-2,dusp-4,dusp-8 and dusp-16. These results identify C/EBP beta as a transcription factor necessary for the induction of MKP-1 by TLRL.
Collapse
Affiliation(s)
- Il Je Cho
- Innovative Drug Research Center for Metabolic and Inflammatory Disease, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | | | | |
Collapse
|
19
|
Gum SI, Jo SJ, Ahn SH, Kim SG, Kim JT, Shin HM, Cho MK. The potent protective effect of wild ginseng (Panax ginseng C.A. Meyer) against benzo[alpha]pyrene-induced toxicity through metabolic regulation of CYP1A1 and GSTs. JOURNAL OF ETHNOPHARMACOLOGY 2007; 112:568-76. [PMID: 17590295 DOI: 10.1016/j.jep.2007.05.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 04/05/2007] [Accepted: 05/01/2007] [Indexed: 05/16/2023]
Abstract
Wild Panax ginseng C.A. Meyer (WG) is a well-known medicinal herb. In this study, the protective effects of a water extract from the root of WG on benzo[alpha]pyrene (BP)-induced hepatotoxicity and the mechanism of these effects were investigated for the first time. The effects of WG on liver toxicities induced by BP were assessed by blood biochemical and histopathological analyses. BP caused severe liver injury in rats, as indicated by elevated plasma ALT, AST and LPO levels. Pretreatment with WG for 4 weeks completely abrogated increases in the ALT, AST and LPO levels when challenged with BP. Reductions in GSH content and GST activity by BP were reversed by WG. These protective effects of WG against BP-induced toxicity were consistent with the results of histopathological examinations. We next examined the effects of WG on the gene expression of the enzymes that metabolize BP in H4IIE cells. CYP1A1 mRNA and protein expression were increased by BP. WG moderately inhibited BP-induced CYP1A1 gene expression. Moreover, GSTA2, GSTA3 and GSTM2 gene expressions were significantly increased by WG through the Nrf2/antioxidant responsive element pathway for enzyme induction. In summary, WG is efficacious in protecting against BP-induced hepatotoxicity as results of metabolic regulations through both the inhibition of metabolic enzyme activation and the enhancement of electrophilic detoxification, implying that WG should be considered a potential chemopreventive agent.
Collapse
Affiliation(s)
- Sang Il Gum
- College of Oriental Medicine and Research Institute of Oriental Medicine, Dongguk University, Kyungju 780-714, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
20
|
Huang YC, Chang WC, Su JGJ, Cai JL, Chen CC, Hung JJ, Liu YW. Peptidoglycan enhances transcriptional expression of CCAAT/enhancer-binding protein delta gene in mouse macrophages. J Biomed Sci 2007; 14:407-18. [PMID: 17273900 DOI: 10.1007/s11373-007-9146-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 12/26/2006] [Indexed: 10/23/2022] Open
Abstract
Peptidoglycan-activated gene expression is mediated through various transcription factors including CCAAT/enhancer-binding protein delta (C/EBPdelta). The purpose of the present study is to elucidate the mechanism of PGN-activated C/EBPdelta gene. PGN stimulated C/EBPdelta protein and mRNA expression in mouse macrophages RAW 264.7 cells. Analysis of C/EBPdelta promoter activity by luciferase reporter assay indicated that PGN-induced C/EBPdelta gene activation is partially mediated by the -345 to +24 bp of C/EBPdelta gene promoter. The in vitro protein-DNA binding assay showed that Sp1, c-Rel and c-Jun are the major protein binding to this PGN-response element of C/EBPdelta promoter, and the binding of c-Rel and c-Jun is increased after PGN treatment. All of these binding activities were abolished when Sp1-, NF-kappaB/APRE-, CRE-sites were mutated. Furthermore, analysis of this promoter region by site-directed mutants constructed in luciferase reporter vector indicated that two Sp1-sites, one NF-kappaB/APRE-site and one CRE-site are prominent for PGN-induced gene expression. In addition, when Sp1, c-Rel or c-Jun transcription factors were overexpressed in cells, all of them enhanced C/EBPdelta promoter activity. In summary, we suggest that Sp1, c-Rel and c-Jun transcription factors play important roles in activation of C/EBPdelta gene promoter under the stimulation of PGN. Given the importance of C/EBPdelta in inflammatory disease, these results reveal a clue as a potential therapeutic target for suppression of C/EBPdelta expression under PGN stimulation.
Collapse
Affiliation(s)
- Yu-Chiuan Huang
- Graduate Institute of Biopharmaceutics, College of Life Sciences, National Chiayi University, Chiayi, 600, Taiwan
| | | | | | | | | | | | | |
Collapse
|
21
|
Lee B, Dziema H, Lee KH, Choi YS, Obrietan K. CRE-mediated transcription and COX-2 expression in the pilocarpine model of status epilepticus. Neurobiol Dis 2006; 25:80-91. [PMID: 17029965 PMCID: PMC1900429 DOI: 10.1016/j.nbd.2006.08.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Revised: 08/11/2006] [Accepted: 08/23/2006] [Indexed: 01/06/2023] Open
Abstract
Status epilepticus (SE) triggers neuronal death, reactive gliosis and remodeling of synaptic circuitry, thus leading to profound pathological alterations in CNS physiology. These processes are, in part, regulated by the rapid upregulation of both cytotoxic and cytoprotective genes. One pathway that may couple SE to transcriptionally dependent alterations in CNS physiology is the CREB (cAMP response element-binding protein)/CRE (cAMP response element) cascade. Here, we utilized the pilocarpine model of SE on a mouse strain transgenic for a CRE-reporter construct (beta-galactosidase) to begin to characterize how seizure activity regulates the activation state of the CREB/CRE pathway in both glia and neurons of the hippocampus. SE triggered a rapid (4-8 h post-SE) but transient increase in CRE-mediated gene expression in the neuronal sublayers. In contrast to neurons, SE induced a lasting increase (up to 20 days) in CRE-mediated transcription in both reactive astrocytes and microglia. CRE-mediated gene expression correlated with expression of the pro-inflammatory enzyme cyclooxygenase-2 (COX-2). To examine the role of CREB in SE-induced COX-2 expression, we generated a transgenic mouse strain that expresses A-CREB, a potent repressor of CREB-dependent transcription. In these animals, the capacity of SE to stimulate COX-2 expression was markedly attenuated, indicating that CREB is a key intermediate in SE-induced COX-2 expression. Collectively these data show that SE triggers two waves of CREB-mediated gene expression, a transient wave in neurons and a long-lasting wave in reactive glial cells, and that CREB couples SE to COX-2 expression.
Collapse
Affiliation(s)
- Boyoung Lee
- Department of Neuroscience, Ohio State University, Graves Hall, Rm 4118, 333 W. 10th Ave. Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
22
|
Wang JM, Ko CY, Chen LC, Wang WL, Chang WC. Functional role of NF-IL6beta and its sumoylation and acetylation modifications in promoter activation of cyclooxygenase 2 gene. Nucleic Acids Res 2006; 34:217-31. [PMID: 16397300 PMCID: PMC1325205 DOI: 10.1093/nar/gkj422] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
NF-IL6β regulates gene expression and plays function roles in many tissues. The EGF-regulated cyclooxygenase-2 (cox-2) expression is mediated through p38MAPK signaling pathway and positively correlates with NF-IL6β expression in A431 cells. NF-IL6β coordinated with c-Jun on cox-2 transcriptional activation by reporter and small interfering RNA assays. NF-IL6β could directly bind to CCAAT/enhancer-binding protein (C/EBP) and cyclic AMP-response element (CRE) sites of the cox-2 promoter by in vitro-DNA binding assay. The C/EBP site was important for basal and, to a lesser extent, for EGF-regulated cox-2 transcription, while the CRE site was a more specific response to EGF inducibility of cox-2 gene. SUMO1 expression attenuated EGF- and NF-IL6β-induced cox-2 promoter activities. NF-IL6β was found to be sumoylated by in vivo- and in vitro-sumoylation assays, and the SUMO1-NF-IL6β (suNF-IL6β) lost its ability to interact with p300 in in vitro-binding assay. NF-IL6β was also acetylated by p300, and acetylation of NF-IL6β enhanced the cox-2 promoter activity stimulated by NF-IL6β itself. In vivo-DNA binding assay demonstrated that EGF stimulated the recruitment of p300 and NF-IL6β to the cox-2 promoter, yet promoted the dissociation of SUMO1-modificated proteins from the promoter. These results indicated that NF-IL6β plays a pivotal role in the regulation of basal and EGF-induced cox-2 transcription.
Collapse
Affiliation(s)
- Ju-Ming Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Chiung-Yuan Ko
- Department of Pharmacology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Lei-Chin Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
- Department of Medical Nutrition, I-Shou UniversityDashu Township, Kaohsiung County, Taiwan
| | - Wen-Lin Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Wen-Chang Chang
- Department of Pharmacology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
- To whom correspondence should be addressed. Tel: +886 6 235 3535 Ext. 5496; Fax: +886 6 274 9296;
| |
Collapse
|
23
|
Roach SK, Lee SB, Schorey JS. Differential activation of the transcription factor cyclic AMP response element binding protein (CREB) in macrophages following infection with pathogenic and nonpathogenic mycobacteria and role for CREB in tumor necrosis factor alpha production. Infect Immun 2005; 73:514-22. [PMID: 15618191 PMCID: PMC538945 DOI: 10.1128/iai.73.1.514-522.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies in our laboratory have shown a differential activation of the mitogen-activated protein kinases (MAPKs) in primary bone marrow-derived macrophages following infection with pathogenic Mycobacterium avium compared to the activation following infection with nonpathogenic Mycobacterium smegmatis. Additionally, M. smegmatis-infected macrophages produced significantly elevated levels of tumor necrosis factor alpha (TNF-alpha) compared to the levels produced by M. avium-infected macrophages. The TNF-alpha production was dependent on both p38 and extracellular signal-regulated kinase 1/2 (ERK 1/2) activation. However, the macrophage transcription factors downstream of the MAPKs, which were required for TNF-alpha production, remained undefined. In this study we determined that the transcription factor cyclic AMP response element binding protein (CREB) is significantly more activated in M. smegmatis-infected macrophages than in M. avium-infected macrophages. We also found that CREB activation was dependent on p38 and protein kinase A but not on ERK 1/2 or calmodulin kinase II. Moreover, mutating the cAMP-responsive element on the TNF-alpha promoter resulted in significantly diminished promoter activity following M. smegmatis infection but not M. avium infection. The inability of macrophages infected with M. avium to sustain MAPK activation and to produce high levels of TNF-alpha was due, in part, to an increase in serine/threonine phosphatase PP2A activity. Our studies are the first to demonstrate an important role for the transcription factor CREB in TNF-alpha production by mycobacterium-infected macrophages, as well as a role for M. avium's induction of PP2A phosphatase activity as a mechanism to limit macrophage activation.
Collapse
Affiliation(s)
- Shannon K Roach
- Department of Biology, University of Notre Dame, 130 Galvin Life Science Center, Notre Dame, IN 46556, USA
| | | | | |
Collapse
|
24
|
Zaric J, Rüegg C. Integrin-mediated Adhesion and Soluble Ligand Binding Stabilize COX-2 Protein Levels in Endothelial Cells by Inducing Expression and Preventing Degradation. J Biol Chem 2005; 280:1077-85. [PMID: 15525653 DOI: 10.1074/jbc.m410006200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclooxygenase-2 (COX-2), a key enzyme in prostaglandin synthesis, is highly expressed during inflammation and cellular transformation and promotes tumor progression and angiogenesis. We have previously demonstrated that endothelial cell COX-2 is required for integrin alphaVbeta3-dependent activation of Rac-1 and Cdc-42 and for endothelial cell spreading, migration, and angiogenesis (Dormond, O., Foletti, A., Paroz, C., and Ruegg, C. (2001) Nat. Med. 7, 1041-1047; Dormond, O., Bezzi, M., Mariotti, A., and Ruegg, C. (2002) J. Biol. Chem. 277, 45838-45846). In this study, we addressed the question of whether integrin-mediated cell adhesion may regulate COX-2 expression in endothelial cells. We report that cell detachment from the substrate caused rapid degradation of COX-2 protein in human umbilical vein endothelial cells (HUVEC) independent of serum stimulation. This effect was prevented by broad inhibition of cellular proteinases and by neutralizing lysosomal activity but not by inhibiting the proteasome. HUVEC adhesion to laminin, collagen I, fibronectin, or vitronectin induced rapid COX-2 protein expression with peak levels reached within 2 h and increased COX-2-dependent prostaglandin E2 production. In contrast, nonspecific adhesion to poly-L-lysine was ineffective in inducing COX-2 expression. Furthermore, the addition of matrix proteins in solution promoted COX-2 protein expression in suspended or poly-L-lysine-attached HUVEC. Adhesion-induced COX-2 expression was strongly suppressed by pharmacological inhibition of c-Src, phosphatidylinositol 3-kinase, p38, extracellular-regulated kinase 1/2, and, to a lesser extent, protein kinase C and by the inhibition of mRNA or protein synthesis. In conclusion, this work demonstrates that integrin-mediated cell adhesion and soluble integrin ligands contribute to maintaining COX-2 steady-state levels in endothelial cells by the combined prevention of lysosomal-dependent degradation and the stimulation of mRNA synthesis involving multiple signaling pathways.
Collapse
Affiliation(s)
- Jelena Zaric
- Centre Pluridisciplinaire d'Oncologie (CePO) and Swiss Institute for Experimental Cancer Research (ISREC), National Center of Competence in Research (NCCR) Molecular Oncology, CH-1066 Epalinges s/Lausanne, Switzerland
| | | |
Collapse
|
25
|
Cho MK, Suh SH, Lee CH, Kim SG. Bovine type I collagen inhibits Raw264.7 cell proliferation through phosphoinositide 3-kinase- and mitogen-activated protein kinase-dependent down-regulation of cyclins D1, A and B1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1744:47-57. [PMID: 15878397 DOI: 10.1016/j.bbamcr.2004.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 10/09/2004] [Accepted: 11/09/2004] [Indexed: 11/22/2022]
Abstract
Bovine type I collagen (BIC), which is widely used as a fibrous extracellular matrix component in cell culture models, inhibits the progression of melanoma cell cycle via p27 up-regulation. BIC also induces nitric oxide synthase in macrophages through JunB/AP-1 and NF-kappaB activation. Given the previous observations, this study investigates the effect of BIC on the cell cycle progression and regulatory function of Raw264.7 macrophage cells and the responsible signaling pathways. Cell cycle analysis revealed that BIC completely suppressed proliferation of Raw264.7 cells with inhibition of the percentage of cells in the S phase and the reciprocal decrease in the G0/G1 phase. DNA synthesis was also inhibited by BIC, as evidenced by a decrease in the cellular incorporation of [3H]thymidine. The G1/S arrest induced by BIC was reversed by chemical inhibition of phosphatidylinositol 3-kinase (PI3-kinase) or overexpression of the p85 subunit of PI3-kinase. Either PD98059 or stable transfection with mitogen-activated protein kinase kinase-1 [MKK1(-)] or c-Jun N-terminal kinase 1 [JNK1(-)] also released the cell cycle arrest. Immunoblot analyses revealed that the levels of cyclins D1, A and B1 were partly or completely down-regulated by BIC, but cyclin E, p21 and p27 were minimally changed. Chemical inhibition and dominant negative mutant overexpression experiments revealed that either PI3-kinase inhibition or JNK1(-) transfection prevented the decreases in cyclin D1, A and B1 by BIC, indicating that the PI3-kinase and JNK1 pathways were associated with disruption of the cyclins. The pathway involving MKK1-extracellular signal-regulated kinase-1/2 (ERK1/2) was responsible for the suppression of cyclin A and B1, but not that of cyclin D1. The present study showed that BIC inhibited proliferation of Raw264.7 cells and that the pathways involving PI3-kinase and mitogen-activated protein kinases regulate the cell cycle arrest.
Collapse
Affiliation(s)
- Min Kyung Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 151-742, South Korea
| | | | | | | |
Collapse
|