1
|
Lin CI, Chen ZC, Chen CH, Chang YH, Lee TC, Tang TT, Yu TW, Yang CM, Tsai MC, Huang CC, Yang TW, Lin CC, Wang RH, Chiou GY, Jong YJ, Chao JI. Co-inhibition of Aurora A and Haspin kinases enhances survivin blockage and p53 induction for mitotic catastrophe and apoptosis in human colorectal cancer. Biochem Pharmacol 2022; 206:115289. [PMID: 36241092 DOI: 10.1016/j.bcp.2022.115289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is a leading cause and mortality worldwide. Aurora A and haspin kinases act pivotal roles in mitotic progression. However, the blockage of Aurora A and Haspin for CRC therapy is still unclear. Here we show that the Haspin and p-H3T3 protein levels were highly expressed in CRC tumor tissues of clinical patients. Overexpression of Haspin increased the protein levels of p-H3T3 and survivin in human CRC cells; conversely, the protein levels of p-H3T3 and survivin were decreased by the Haspin gene knockdown. Moreover, the gene knockdown of Aurora A induced abnormal chromosome segregation, mitotic catastrophe, and cell growth inhibition. Combined targeted by co-treatment of CHR6494, a Haspin inhibitor, and MLN8237, an Aurora A inhibitor, enhanced apoptosis and CRC tumor inhibition. MLN8237 and CHR6494 induced abnormal chromosome segregation and mitotic catastrophe. Meanwhile, MLN8237 and CHR6494 inhibited survivin protein levels but conversely induced p53 protein expression. Ectopic survivin expression by transfection with a survivin-expressed vector resisted the cell death in the MLN8237- and CHR6494-treated cells. In contrast, the existence of functional p53 increased the apoptotic levels by treatment with MLN8237 and CHR6494. Co-treatment of CHR6494 and MLN8237 enhanced the blockage of human CRC xenograft tumors in nude mice. Taken together, co-inhibition of Aurora A and Haspin enhances survivin inhibition, p53 pathway induction, mitotic catastrophe, apoptosis and tumor inhibition that may provide a potential strategy for CRC therapy.
Collapse
Affiliation(s)
- Chien-I Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Zan-Chu Chen
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Chien-Hung Chen
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yun-Hsuan Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Tsai-Chia Lee
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Tsai-Tai Tang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Tzu-Wei Yu
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Chih-Man Yang
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Ming-Chang Tsai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chi-Chou Huang
- Division of Colon and Rectum, Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Tzu-Wei Yang
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chun-Che Lin
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Rou-Hsin Wang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Guang-Yuh Chiou
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yuh-Jyh Jong
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Departments of Pediatrics and Laboratory Medicine, and Translational Research Center of Neuromuscular Diseases, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Jui-I Chao
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; Center For Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.
| |
Collapse
|
2
|
Li J, Hu X, Zhang H, Peng Y, Li S, Xiong Y, Jiang W, Wang Z. N-2-(Phenylamino) Benzamide Derivatives as Dual Inhibitors of COX-2 and Topo I Deter Gastrointestinal Cancers via Targeting Inflammation and Tumor Progression. J Med Chem 2022; 65:10481-10505. [PMID: 35868003 DOI: 10.1021/acs.jmedchem.2c00635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Given the close association between inflammation and cancer, combining anti-inflammation therapy is prominent to improve the anticancer effect. Based on I-1, a series of agents targeting COX-2 and Topo I were designed by combining fenamates and phenols. The optimal compound 1H-30 displayed an enhanced inhibitory effect on COX-2 compared to tolfenamic acid and I-1 and showed better inhibition of Topo I than I-1. Importantly, 1H-30 showed potential anticancer effects and suppressed the activation of the NF-κB pathway in cancer cells. 1H-30 inhibited the nuclear translocation of NF-κB and suppressed the production of NO, COX-2, and IL-1β in RAW264.7. In vivo, 1H-30 showed acceptable pharmacokinetic parameters, decreased the tumor growth without affecting the body weight, down-regulated COX-2 and MMP-9, and induced apoptosis in the CT26.WT tumor-bearing mice. Accordingly, 1H-30 as a potential Topo I/COX-2 inhibitor which possessed anti-inflammatory and anticancer effects, with inhibition of the NF-κB pathway, is promising for gastrointestinal cancer therapy.
Collapse
Affiliation(s)
- Junfang Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.,State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiaoling Hu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.,State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.,State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yan Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Shuang Li
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Yongxia Xiong
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Weifan Jiang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.,School of Pharmacy, Lanzhou University, Lanzhou 730000, China.,State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
Design, synthesis and biological evaluation of antitumor platinum(II) agents conjugated with non-steroidal anti-inflammatory drug species. Bioorg Chem 2022; 120:105633. [DOI: 10.1016/j.bioorg.2022.105633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/06/2022] [Accepted: 01/16/2022] [Indexed: 12/12/2022]
|
4
|
Peng K, Liang BB, Liu W, Mao ZW. What blocks more anticancer platinum complexes from experiment to clinic: Major problems and potential strategies from drug design perspectives. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214210] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Wang SP, Hsu YP, Chang CJ, Chan YC, Chen CH, Wang RH, Liu KK, Pan PY, Wu YH, Yang CM, Chen C, Yang JM, Liang MC, Wong KK, Chao JI. A novel EGFR inhibitor suppresses survivin expression and tumor growth in human gefitinib-resistant EGFR-wild type and -T790M non-small cell lung cancer. Biochem Pharmacol 2021; 193:114792. [PMID: 34597670 DOI: 10.1016/j.bcp.2021.114792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/14/2022]
Abstract
Tyrosine kinase inhibitors of epidermal growth factor receptor (EGFR-TKIs) are currently used therapy for non-small cell lung cancer (NSCLC) patients; however, drug resistance during cancer treatment is a critical problem. Survivin is an anti-apoptosis protein, which promotes cell proliferation and tumor growth that highly expressed in various human cancers. Here, we show a novel synthetic compound derived from gefitinib, do-decyl-4-(4-(3-(4-(3-chloro-4-fluorophenylamino)-7-methoxyquinazolin-6-yloxy)propyl) piper-azin-1-yl)-4-oxobutanoate, which is named as SP101 that inhibits survivin expression and tumor growth in both the EGFR-wild type and -T790M of NSCLC. SP101 blocked EGFR kinase activity and induced apoptosis in the A549 (EGFR-wild type) and H1975 (EGFR-T790M) lung cancer cells. SP101 reduced survivin proteins and increased active caspase 3 for inducing apoptosis. Ectopic expression of survivin by a survivin-expressed vector attenuated the SP101-induced cell death in lung cancer cells. Moreover, SP101 inhibited the gefitinib-resistant tumor growth in the xenograft human H1975 lung tumors of nude mice. SP101 substantially reduced survivin proteins but conversely elicited active caspase 3 proteins in tumor tissues. Besides, SP101 exerted anticancer abilities in the gefitinib resistant cancer cells separated from pleural effusion of a clinical lung cancer patient. Consistently, SP101 decreased the survivin proteins and the patient-derived xenografted lung tumor growth in nude mice. Anti-tumor ability of SP101 was also confirmed in the murine lung cancer model harboring EGFR T790M-L858R. Together, SP101 is a new EGFR inhibitor with inhibiting survivin that can be developed for treating EGFR wild-type and EGFR-mutational gefitinib-resistance in human lung cancers.
Collapse
Affiliation(s)
- Su-Pei Wang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ya-Ping Hsu
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chien-Jen Chang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Yu-Chi Chan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chien-Hung Chen
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Rou-Hsin Wang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Kuang-Kai Liu
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Pei-Ying Pan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ya-Hui Wu
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chih-Man Yang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chinpiao Chen
- Department of Chemistry, National Dong Hwa University, Hualien, Taiwan
| | - Jinn-Moon Yang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Mei-Chih Liang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Kwok-Kin Wong
- Department of Medicine, Harvard Medical School, Boston, MA, United States; Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, United States
| | - Jui-I Chao
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Center For Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
6
|
Abstract
Survivin is one of the rare proteins that is differentially expressed in normal and cancer cells and is directly or indirectly involved in numerous pathways required for tumor maintenance. It is expressed in almost all cancers and its expression has been detected at early stages of cancer. These traits make survivin an exceptionally attractive target for cancer therapeutics. Even with these promising features to be an oncotherapeutic target, there has been limited success in the clinical trials targeting survivin. Only recently it has emerged that survivin was not being specifically targeted which could have resulted in the negative clinical outcome. Also, focus of research has now shifted from survivin expression in the overall heterogeneous tumor cell populations to survivin expression in cancer stem cells as these cells have proved to be the major drivers of tumors. Therefore, in this review we have analyzed the expression of survivin in normal and cancer cells with a particular focus on its expression in cancer stem cell compartment. We have discussed the major signaling pathways involved in regulation of survivin. We have explored the current development status of various types of interventions for inhibition of survivin. Furthermore, we have discussed the challenges involving the development of potent and specific survivin inhibitors for cancer therapeutics. Finally we have given insights for some of the promising future anticancer treatments.
Collapse
|
7
|
Yu C, Wang Z, Sun Z, Zhang L, Zhang W, Xu Y, Zhang JJ. Platinum-Based Combination Therapy: Molecular Rationale, Current Clinical Uses, and Future Perspectives. J Med Chem 2020; 63:13397-13412. [PMID: 32813515 DOI: 10.1021/acs.jmedchem.0c00950] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Platinum drugs are common in chemotherapy, but their clinical applications have been limited due to drug resistance and severe toxic effects. The combination of platinum drugs with other drugs with different mechanisms of anticancer action, especially checkpoint inhibitors, is increasingly popular. This combination is the leading strategy to improve the therapeutic efficiency and minimize the side effects of platinum drugs. In this review, we focus on the mechanistic basis of the combinations of platinum-based drugs with other drugs to inspire the development of more promising platinum-based combination regimens in clinical trials as well as novel multitargeting platinum drugs overcoming drug resistance and toxicities resulting from current platinum drugs.
Collapse
Affiliation(s)
- Chunqiu Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhibin Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zeren Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Wanwan Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yungen Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.,Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Jing-Jing Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.,Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
8
|
Abo Aasy NK, Ragab D, Sallam MA, Abdelmonsif DA, Aly RG, Elkhodairy KA. A comparative study: the prospective influence of nanovectors in leveraging the chemopreventive potential of COX-2 inhibitors against skin cancer. Int J Nanomedicine 2019; 14:7561-7581. [PMID: 31571864 PMCID: PMC6756578 DOI: 10.2147/ijn.s218905] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/18/2019] [Indexed: 01/01/2023] Open
Abstract
Introduction This study was conducted to elucidate the chemopreventive potential, cytotoxic, and suppression of cellular metastatic activity of etodolac (ETD)-loaded nanocarriers. Methods To esteem the effect of charge and composition of the nanovectors on their performance, four types of vectors namely, negative lipid nanovesicles; phosalosomes (N-Phsoms), positive phosalosomes (P-Phsoms), nanostructured lipid carriers (NLCs) and polymeric alginate polymer (AlgNPs) were prepared and compared. ETD was used as a model cyclo-oxygenase-2 (COX-2) inhibitor to evaluate the potency of these nanovectors to increase ETD permeation and retention through human skin and cytotoxicity against squamous cell carcinoma cell line (SCC). Moreover, the chemopreventive activity of ETD nanovector on mice skin cancer model was evaluated. Results Among the utilized nanovectors, ETD-loaded N-Phsoms depicted spherical vesicles with the smallest particle size (202.96±2.37 nm) and a high zeta potential of −24.8±4.16 mV. N-Phsoms exhibited 1.5, and 3.6 folds increase in the ETD amount deposited in stratum corneum, epidermis and dermis. Moreover, cytotoxicity studies revealed a significant cytotoxic potential of such nanovector with IC50=181.76 compared to free ETD (IC50=982.75), correlated to enhanced cellular internalization. Its efficacy extended to a reduction in the relative tumor weight with 1.70 and 1.51-fold compared to positive control and free ETD, that manifested by a 1.72-fold reduction in both COX-2 and proliferating cell nuclear antigen mRNA (PCNA-mRNA) levels and 2.63-fold elevation in caspase-3 level in skin tumors relative to the positive control group with no hepato-and nephrotoxicity. Conclusion Encapsulation of ETD in nanovector enhances its in-vitro and in-vivo anti-tumor activity and opens the door for encapsulation of more relevant drugs.
Collapse
Affiliation(s)
- Noha Khalifa Abo Aasy
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Doaa Ragab
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.,Department of Chemical and Biochemical Engineering, Faculty of Engineering, University of Western Ontario, London, Ontario, Canada
| | - Marwa Ahmed Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt.,Molecular Biology and Nanomedicine Labs, Centre of Excellence for Regenerative Medicine Research & Applications, University of Alexandria, Alexandria, Egypt
| | - Rania G Aly
- Department of Surgical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Kadria A Elkhodairy
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
9
|
Noordhuis P, Laan AC, van de Born K, Honeywell RJ, Peters GJ. Coexisting Molecular Determinants of Acquired Oxaliplatin Resistance in Human Colorectal and Ovarian Cancer Cell Lines. Int J Mol Sci 2019; 20:3619. [PMID: 31344863 PMCID: PMC6696456 DOI: 10.3390/ijms20153619] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/05/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Oxaliplatin (OHP) treatment of colorectal cancer (CRC) frequently leads to resistance. OHP resistance was induced in CRC cell lines LoVo-92 and LoVo-Li and a platinum-sensitive ovarian cancer cell line, A2780, and related to cellular platinum accumulation, platinum-DNA adducts, transporter expression, DNA repair genes, gene expression arrays, and array-CGH profiling. Pulse (4 h, 4OHP) and continuous exposure (72 h, cOHP) resulted in 4.0 to 7.9-fold and 5.0 to 11.8-fold drug resistance, respectively. Cellular oxaliplatin accumulation and DNA-adduct formation were decreased and related to OCT1-3 and ATP7A expression. Gene expression profiling and pathway analysis showed significantly altered p53 signaling, xenobiotic metabolism, role of BRCA1 in DNA damage response, and aryl hydrocarbon receptor signaling pathways, were related to decreased ALDH1L2, Bax, and BBC3 (PUMA) and increased aldo-keto reductases C1 and C3. The array-CGH profiles showed focal aberrations. In conclusion, OHP resistance was correlated with total platinum accumulation and OCT1-3 expression, decreased proapoptotic, and increased anti-apoptosis and homologous repair genes.
Collapse
Affiliation(s)
- Paul Noordhuis
- Department of 1Medical Oncology, Amsterdam UMC, Location VU University Medical Center (VUmc), CCA 1.52, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Adrianus C Laan
- Department of 1Medical Oncology, Amsterdam UMC, Location VU University Medical Center (VUmc), CCA 1.52, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Kasper van de Born
- Department of 1Medical Oncology, Amsterdam UMC, Location VU University Medical Center (VUmc), CCA 1.52, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Richard J Honeywell
- Department of 1Medical Oncology, Amsterdam UMC, Location VU University Medical Center (VUmc), CCA 1.52, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Godefridus J Peters
- Department of 1Medical Oncology, Amsterdam UMC, Location VU University Medical Center (VUmc), CCA 1.52, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Ravera M, Zanellato I, Gabano E, Perin E, Rangone B, Coppola M, Osella D. Antiproliferative Activity of Pt(IV) Conjugates Containing the Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) Ketoprofen and Naproxen †. Int J Mol Sci 2019; 20:E3074. [PMID: 31238499 PMCID: PMC6627341 DOI: 10.3390/ijms20123074] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/20/2019] [Accepted: 06/22/2019] [Indexed: 02/06/2023] Open
Abstract
Cisplatin and several non-steroidal anti-inflammatory drugs (NSAIDs) have been proven to act synergistically or at least additively on several tumor cell lines. Dual-action cisplatin-based Pt(IV) combos containing ketoprofen and naproxen offer good antiproliferative performance on a panel of human tumor cell lines, including a malignant pleural mesothelioma (MPM) one, a very chemoresistant tumor. The main reason of the increased activity relies on the enhanced lipophilicity of these Pt(IV) conjugates that in turn promotes increased cellular accumulation. A quick Pt(IV)→Pt(II) reduction generates the active cisplatin metabolite. The NSAID adjuvant action seems to be almost independent from cyclooxygenase-2 (COX-2) expression in the tumor cells under investigation (lung A-549, colon HT-29, HCT 116, SW480, ovarian A2780, and biphasic MPM MSTO-211H), but it seems to rely (at least in part) on the activation of the NSAID activated gene, NAG-1 (a member of the transforming growth factor beta, TGF-β, superfamily), which has been suggested to be involved in NSAID antiproliferative activity.
Collapse
Affiliation(s)
- Mauro Ravera
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy.
| | - Ilaria Zanellato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy.
| | - Elisabetta Gabano
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy.
| | - Elena Perin
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy.
| | - Beatrice Rangone
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy.
| | - Marco Coppola
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy.
| | - Domenico Osella
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy.
| |
Collapse
|
11
|
Huang H, Aladelokun O, Ideta T, Giardina C, Ellis LM, Rosenberg DW. Inhibition of PGE 2/EP4 receptor signaling enhances oxaliplatin efficacy in resistant colon cancer cells through modulation of oxidative stress. Sci Rep 2019; 9:4954. [PMID: 30894570 PMCID: PMC6427013 DOI: 10.1038/s41598-019-40848-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 02/22/2019] [Indexed: 12/15/2022] Open
Abstract
The platinum-based chemotherapeutic agent, oxaliplatin, is used to treat advanced colorectal cancer (CRC). Unfortunately, nearly all patients acquire resistance to oxaliplatin after long-term use, limiting its therapeutic efficacy. Since COX-2 and PGE2 signaling can impact colon cancer cell proliferation and survival, we examined how this pathway was affected in an oxaliplatin resistant colon cancer cell line. PGE2 levels were significantly elevated in oxaliplatin-resistant HT29 cells (OXR) compared to naïve parental HT29 cells (PAR). This increase was associated with elevated COX-2 (17.9-fold; P = 0.008) and reduced 15-hydroxyprostaglandin dehydrogenase (2.9-fold; P < 0.0001) expression. RNAi knockdown of microsomal prostaglandin E synthase-1, the rate-limiting enzyme in PGE2 synthesis, sensitized OXR cells to oxaliplatin. Downstream effects of PGE2 in OXR cells were also examined. Selective inhibition of the EP4 PGE2 receptor by the small molecule inhibitor, L-161,982 enhanced oxaliplatin-induced apoptosis in OXR cells. L-161,982 also reduced expression of the colonic stem cell markers, CD133 and CD44, and inhibited tumor sphere formation. The accumulation of intracellular reactive oxygen species (ROS), a key component of oxaliplatin cytotoxicity, was significantly increased by EP4 inhibition (2.4 -fold; P < 0.0001). Overall, our findings uncover an important role for the COX-2/PGE2/EP4 signaling axis in oxaliplatin resistance via regulation of oxidative stress.
Collapse
Affiliation(s)
- Huakang Huang
- Center for Molecular Oncology, University of Connecticut Health, 263 Farmington Ave, Farmington, CT, USA
| | - Oladimeji Aladelokun
- Center for Molecular Oncology, University of Connecticut Health, 263 Farmington Ave, Farmington, CT, USA
| | - Takayasu Ideta
- Center for Molecular Oncology, University of Connecticut Health, 263 Farmington Ave, Farmington, CT, USA
| | - Charles Giardina
- Department of Cell and Molecular Biology, University of Connecticut, Storrs, CT, USA
| | - Lee M Ellis
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Holcombe Boulevard, Houston, Texas, USA
| | - Daniel W Rosenberg
- Center for Molecular Oncology, University of Connecticut Health, 263 Farmington Ave, Farmington, CT, USA.
| |
Collapse
|
12
|
Song XQ, Ma ZY, Wu YG, Dai ML, Wang DB, Xu JY, Liu Y. New NSAID-Pt(IV) prodrugs to suppress metastasis and invasion of tumor cells and enhance anti-tumor effect in vitro and in vivo. Eur J Med Chem 2019; 167:377-387. [PMID: 30784875 DOI: 10.1016/j.ejmech.2019.02.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/10/2019] [Accepted: 02/10/2019] [Indexed: 01/09/2023]
Abstract
The great interest in epithelial-to-mesenchymal transition (EMT) programme lies in its association with process of metastasis and invasion, which is a crucial cause of cancer-related death. Herein, we designed and reported three new NSAID-Pt(IV) prodrugs, taking Non-Steroid Anti-Inflammatory Drugs (NSAIDs) to disrupt EMT programme and assist genotoxic platinum-based drugs as a cytotoxicity booster, to offer a class of potential anticarcinogens with a multi-functional action mechanism. The NSAID-Pt(IV) prodrugs, especially Eto-Pt(IV), highly enhanced cellular uptake with amount up to 42-fold at 3 h compared with CDDP, and greatly increased DNA damage and cell apoptosis, showing much higher cytotoxicity than cisplatin in the tested cancer cells even in A549/cis cells. Among of them, Eto-Pt(IV) and Car-Pt(IV) exhibited more excellent activity than Sul-Pt(IV), arising from their reduction-labile and favorable lipophilicity. Most strikingly, Eto-Pt(IV) markedly inhibited metastasis and invasion of MCF-7 cells, owing to its COX-2 suppression that down-regulated active MMP-2, vimentin protein and up-regulated E-cadherin. In vivo, Eto-Pt(IV) displayed potent antitumor activity and no observable toxicity in BALB/c nude mice bearing MCF-7 tumors.
Collapse
Affiliation(s)
- Xue-Qing Song
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Zhong-Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Yi-Gang Wu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Miao-Liang Dai
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Dong-Bo Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Jing-Yuan Xu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| | - Yangzhong Liu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
13
|
Martínez-García D, Manero-Rupérez N, Quesada R, Korrodi-Gregório L, Soto-Cerrato V. Therapeutic strategies involving survivin inhibition in cancer. Med Res Rev 2018; 39:887-909. [PMID: 30421440 DOI: 10.1002/med.21547] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/13/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023]
Abstract
Survivin is a small protein that belongs to the inhibitor of apoptosis protein family. It is abundantly expressed in tumors compared with adult differentiated tissues, being associated with poor prognosis in many human neoplasms. This apoptotic inhibitor has a relevant role in both the promotion of cancer cell survival and in the inhibition of cell death. Consequently, aberrant survivin expression stimulates tumor progression and confers resistance to several therapeutic strategies in a variety of tumors. In fact, efficient survivin downregulation or inhibition results in spontaneous apoptosis or sensitization to chemotherapy and radiotherapy. Therefore, all these features make survivin an attractive therapeutic target to treat cancer. Currently, there are several survivin inhibitors under clinical evaluation, although more specific and efficient survivin inhibitors are being developed. Moreover, novel combination regimens targeting survivin together with other therapeutic approaches are currently being designed and assessed. In this review, recent progress in the therapeutic options targeting survivin for cancer treatment is analyzed. Direct survivin inhibitors and their current development status are explored. Besides, the major signaling pathways implicated in survivin regulation are described and different therapeutic approaches involving survivin indirect inhibition are evaluated. Finally, promising novel inhibitors under preclinical or clinical evaluation as well as challenges of developing survivin inhibitors as a new therapy for cancer treatment are discussed.
Collapse
Affiliation(s)
- David Martínez-García
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Noemí Manero-Rupérez
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Hospital del Mar Medical Research Institute, Barcelona Biomedical Research Park, Barcelona, Spain
| | - Roberto Quesada
- Department of Chemistry, Universidad de Burgos, Burgos, Spain
| | - Luís Korrodi-Gregório
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Vanessa Soto-Cerrato
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| |
Collapse
|
14
|
Xu Y, Yang X, Wang T, Yang L, He YY, Miskimins K, Qian SY. Knockdown delta-5-desaturase in breast cancer cells that overexpress COX-2 results in inhibition of growth, migration and invasion via a dihomo-γ-linolenic acid peroxidation dependent mechanism. BMC Cancer 2018; 18:330. [PMID: 29587668 PMCID: PMC5870477 DOI: 10.1186/s12885-018-4250-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 03/19/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Cyclooxygenase-2 (COX-2), the inducible COX form, is a bi-functional membrane-bound enzyme that typically metabolizes arachidonic acid (downstream ω-6 fatty acid) to form 2-series of prostaglandins known to be involved in cancer development. Overexpression of COX-2 has been found in a majority of breast carcinomas, and has also been associated with increased severity and the development of the metastasis. Our lab recently demonstrated that COX-2 can also metabolize dihomo-γ-linolenic acid (DGLA, a precursor of ω-6 arachidonic acid) to produce an anti-cancer byproduct, 8-hydroxyoctanoic acid (8-HOA) that can inhibit growth and migration of colon and pancreatic cancer cells. We thus tested whether our strategy of knocking down delta-5-desaturase (D5D, the key enzyme that converts DGLA to arachidonic acid) in breast cancer cells overexpressing COX-2 can also be used to promote 8-HOA formation, thereby suppressing cancer growth, migration, and invasion. METHODS SiRNA and shRNA transfection were used to knock down D5D expression in MDA-MB 231 and 4 T1 cells (human and mouse breast cancer cell lines expressing high COX-2, respectively). Colony formation assay, FITC Annexin V/PI double staining, wound healing and transwell assay were used to assess the effect of our strategy on inhibition of cancer growth, migration, and invasion. GC/MS was used to measure endogenous 8-HOA, and western blotting was performed to evaluate the altered key protein expressions upon the treatments. RESULTS We demonstrated that D5D knockdown licenses DGLA to inhibit growth of breast cancer cells via promoting formation of 8-HOA that can inhibit histone deacetylase and activate cell apoptotic proteins, such as procaspase 9 and PARP. Our strategy can also significantly inhibit cancer migration and invasion, associated with altered expression of MMP-2/- 9, E-cadherin, vimentin and snail. In addition, D5D knockdown and DGLA supplementation greatly enhanced the efficacy of 5-fluorouracil on breast cancer growth and migration. CONCLUSIONS Consistent to our previous studies on colon and pancreatic cancer, here we demonstrate again that the high level of COX-2 in breast cancer cells can be capitalized on inhibiting cancer growth and migration. The outcome of this translational research could guide us to develop new anti-cancer strategy and/or to improve current chemotherapy for breast cancer treatment.
Collapse
Affiliation(s)
- Yi Xu
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58108 USA
| | - Xiaoyu Yang
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58108 USA
| | - Tao Wang
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58108 USA
| | - Liu Yang
- Department of Transplantation, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, USA
| | - Keith Miskimins
- Cancer Biology Research Center, Sanford Research, Sioux Falls, SD 57104 USA
| | - Steven Y. Qian
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58108 USA
| |
Collapse
|
15
|
Saber-Samandari S, Saber-Samandari S. Biocompatible nanocomposite scaffolds based on copolymer-grafted chitosan for bone tissue engineering with drug delivery capability. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:721-732. [PMID: 28415522 DOI: 10.1016/j.msec.2017.02.112] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/23/2016] [Accepted: 02/21/2017] [Indexed: 10/20/2022]
Abstract
Significant efforts have been made to develop a suitable biocompatible scaffold for bone tissue engineering. In this work, a chitosan-graft-poly(acrylic acid-co-acrylamide)/hydroxyapatite nanocomposite scaffold was synthesized through a novel multi-step route. The prepared scaffolds were characterized for crystallinity, morphology, elemental analysis, chemical bonds, and pores size in their structure. The mechanical properties (i.e. compressive strength and elastic modulus) of the scaffolds were examined. Further, the biocompatibility of scaffolds was determined by MTT assays on HUGU cells. The result of cell culture experiments demonstrated that the prepared scaffolds have good cytocompatibility without any cytotoxicity, and with the incorporation of hydroxyapatite in their structure improves cell viability and proliferation. Finally, celecoxib as a model drug was efficiently loaded into the prepared scaffolds because of the large specific surface area. The in vitro release of the drug displayed a biphasic pattern with a low initial burst and a sustained release of up to 14days. Furthermore, different release kinetic models were employed for the description of the release process. The results suggested that the prepared cytocompatible and non-toxic nanocomposite scaffolds might be efficient implants and drug carriers in bone-tissue engineering.
Collapse
Affiliation(s)
- Samaneh Saber-Samandari
- Department of Chemistry, Eastern Mediterranean University, Gazimagusa, TRNC via Mersin 10, Turkey.
| | | |
Collapse
|
16
|
Liu B, Yan S, Qu L, Zhu J. Celecoxib enhances anticancer effect of cisplatin and induces anoikis in osteosarcoma via PI3K/Akt pathway. Cancer Cell Int 2017; 17:1. [PMID: 28053596 PMCID: PMC5209942 DOI: 10.1186/s12935-016-0378-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/25/2016] [Indexed: 11/10/2022] Open
Abstract
Background COX-2, an inducible enzyme, is associated with inflammatory diseases and carcinogenesis. Overexpression of COX-2 occurs in many human malignancies, including osteosarcoma. COX-2 positivity is form 67 to 92% in osteosarcoma, and COX-2 expresses 141-fold more in cancer stem cell spheres than daughter adherent cells. In our study, we have reported that celecoxib, a cyclooxygenase-2 inhibitor, induces apoptosis in human osteosarcoma cell line MG-63 via down-regulation of PI3K/Akt. It has been confirmed that celecoxib enhances apoptosis and cytotoxic effect of cisplatin, although the mechanism remains unclear. Methods We have attempted to identify the anti-proliferation of celecoxib, a selective COX-2 inhibitor, and the combination of celecoxib and cisplatin in MG-63 cells, and to explore the potential molecular mechanisms involved. MG-63 cells were treated with the combination of celecoxib and cisplatin or either agent alone for 48 h in serum-supplemented medium. Results MDR1, MRP1, BCRP and Trkb, E-cadherin, β-catenin were significantly downregulated in cells treated with the combination of celecoxib and cisplatin, and decreased β-catenin level was found in cells with wortmannin, a specific PI3K inhibitor. Conclusion Therefore, celecoxib enhances anticancer effect of cisplatin and induces anoikis in osteosarcoma, which may be PI3K/Akt-dependent, and MDR and β-catenin-related. PI3K may be at the center of the celecoxib effects, which play an essential role in the regulation of MDR and anoikis.
Collapse
Affiliation(s)
- Bing Liu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou, 310009 Zhejiang People's Republic of China
| | - Shigui Yan
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou, 310009 Zhejiang People's Republic of China
| | - Liyan Qu
- Clinical Laboratory Centre, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou, 310009 Zhejiang People's Republic of China ; Clinical Laboratory Centre, Binjiang Hospital of Hangzhou, Hangzhou, Zhejiang People's Republic of China
| | - Jian Zhu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou, 310009 Zhejiang People's Republic of China
| |
Collapse
|
17
|
Xu Y, Yang X, Zhao P, Yang Z, Yan C, Guo B, Qian SY. Knockdown of delta-5-desaturase promotes the anti-cancer activity of dihomo-γ-linolenic acid and enhances the efficacy of chemotherapy in colon cancer cells expressing COX-2. Free Radic Biol Med 2016; 96:67-77. [PMID: 27101738 PMCID: PMC4912402 DOI: 10.1016/j.freeradbiomed.2016.04.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 04/04/2016] [Accepted: 04/16/2016] [Indexed: 11/26/2022]
Abstract
Cyclooxygenase (COX), commonly overexpressed in cancer cells, is a major lipid peroxidizing enzyme that metabolizes polyunsaturated fatty acids (ω-3s and ω-6s). The COX-catalyzed free radical peroxidation of arachidonic acid (ω-6) can produce deleterious metabolites (e.g. 2-series prostaglandins) that are implicated in cancer development. Thus, COX inhibition has been intensively investigated as a complementary therapeutic strategy for cancer. However, our previous study has demonstrated that a free radical-derived byproduct (8-hydroxyoctanoic acid) formed from COX-catalyzed peroxidation of dihomo-γ-linolenic acid (DGLA, the precursor of arachidonic acid) can inhibit colon cancer cell growth. We thus hypothesize that the commonly overexpressed COX in cancer (~90% of colon cancer patients) can be taken advantage to suppress cell growth by knocking down delta-5-desaturase (D5D, a key enzyme that converts DGLA to arachidonic acid). In addition, D5D knockdown along with DGLA supplement may enhance the efficacy of chemotherapeutic drugs. After knocking down D5D in HCA-7 colony 29 cells and HT-29 cells (human colon cancer cell lines with high and low COX levels, respectively), the antitumor activity of DGLA was significantly enhanced along with the formation of a threshold range (~0.5-1.0μM) of 8-hydroxyoctanoic acid. In contrast, DGLA treatment did not inhibit cell growth when D5D was not knocked down and only limited amount of 8-hydroxyoctanoic acid was formed. D5D knockdown along with DGLA treatment also enhanced the cytotoxicities of various chemotherapeutic drugs, including 5-fluorouracil, regorafenib, and irinotecan, potentially through the activation of pro-apoptotic proteins, e.g. p53 and caspase 9. For the first time, we have demonstrated that the overexpressed COX in cancer cells can be utilized in suppressing cancer cell growth. This finding may provide a new option besides COX inhibition to optimize cancer therapy. The outcome of this translational research will guide us to develop a novel ω-6-based diet-care strategy in combination with current chemotherapy for colon cancer prevention and treatment.
Collapse
Affiliation(s)
- Yi Xu
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Xiaoyu Yang
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Pinjing Zhao
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108, USA
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108, USA
| | - Changhui Yan
- Department of Computer Science, North Dakota State University, Fargo, ND 58108, USA
| | - Bin Guo
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Steven Y Qian
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
18
|
Nebulizable colloidal nanoparticles co-encapsulating a COX-2 inhibitor and a herbal compound for treatment of lung cancer. Eur J Pharm Biopharm 2016; 103:1-12. [DOI: 10.1016/j.ejpb.2016.03.025] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 11/23/2022]
|
19
|
Celecoxib antagonizes the cytotoxicity of oxaliplatin in human esophageal cancer cells by impairing the drug influx. Eur J Pharm Sci 2016; 81:137-48. [DOI: 10.1016/j.ejps.2015.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 09/29/2015] [Accepted: 10/10/2015] [Indexed: 11/24/2022]
|
20
|
Shahabi S, Treccani L, Dringen R, Rezwan K. Utilizing the protein corona around silica nanoparticles for dual drug loading and release. NANOSCALE 2015; 7:16251-16265. [PMID: 26377025 DOI: 10.1039/c5nr04726a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A protein corona forms spontaneously around silica nanoparticles (SNPs) in serum-containing media. To test whether this protein corona can be utilized for the loading and release of anticancer drugs we incorporated the hydrophilic doxorubicin, the hydrophobic meloxicam as well as their combination in the corona around SNPs. The application of corona-covered SNPs to osteosarcoma cells revealed that drug-free particles did not affect the cell viability. In contrast, SNPs carrying a protein corona with doxorubicin or meloxicam lowered the cell proliferation in a concentration-dependent manner. In addition, these particles had an even greater antiproliferative potential than the respective concentrations of free drugs. The best antiproliferative effects were observed for SNPs containing both doxorubicin and meloxicam in their corona. Co-localization studies revealed the presence of doxorubicin fluorescence in the nucleus and lysosomes of cells exposed to doxorubicin-containing coated SNPs, suggesting that endocytotic uptake of the SNPs facilitates the cellular accumulation of the drug. Our data demonstrate that the protein corona, which spontaneously forms around nanoparticles, can be efficiently exploited for loading the particles with multiple drugs for therapeutic purposes. As drugs are efficiently released from such particles they may have a great potential for nanomedical applications.
Collapse
Affiliation(s)
- Shakiba Shahabi
- Advanced Ceramics, University of Bremen, Am Biologischen Garten 2, 28359 Bremen, Germany.
| | | | | | | |
Collapse
|
21
|
Probing of the interaction between β-lactoglobulin and the anticancer drug oxaliplatin. Appl Biochem Biotechnol 2014; 175:974-87. [PMID: 25351630 DOI: 10.1007/s12010-014-1341-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 10/15/2014] [Indexed: 01/26/2023]
Abstract
The potential carrier role of β-lactoglobulin (β-LG) and its interactions with oxaliplatin were studied using various spectroscopic techniques (fluorescence, UV-visible, and circular dichroism (CD)) in an aqueous medium at two temperatures of 25 and 37 °C in combination with a molecular docking study. Fluorescence measurements have shown that the observed quenching is a combination of static and dynamic quenching with a predominant contribution of static mode. The presence of a single binding site located in the internal cavity of the β-barrel of β-LG was confirmed by molecular docking calculations. Thermodynamic data as well as molecular docking indicated that the hydrophobic interactions dominate in the binding site. Results of fluorescence resonance energy transfer (FRET) measurements in combination with docking results imply that resonance energy transfer occurs between β-LG and its ligand oxaliplatin. Additionally, CD results revealed that oxaliplatin binding has no influence on the β-LG structure. The molecular docking results indicate that docking may be an appropriate method for the prediction and confirmation of experimental results. Complementary molecular docking results may be useful for the determination of the binding mechanism of proteins such as β-LG in pharmaceutical and biophysical studies providing new insight in the novel pharmacology and new solutions in the formulation of advanced oral drug delivery systems.
Collapse
|
22
|
Wiglusz K, Trynda-Lemiesz L. Platinum drugs binding to human serum albumin: Effect of non-steroidal anti-inflammatory drugs. J Photochem Photobiol A Chem 2014. [DOI: 10.1016/j.jphotochem.2014.05.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Wang L, Yu K, Zhou BB, Su ZH, Gao S, Chu LL, Liu JR. The inhibitory effects of a new cobalt-based polyoxometalate on the growth of human cancer cells. Dalton Trans 2014; 43:6070-6078. [PMID: 24463531 DOI: 10.1039/c3dt53030b] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A new cobalt-based polyoxometalate, (Himi)2[Bi(2)W2(0)O(66)(OH)(4)Co2(H2O)(6)Na(4) (H2O)14] · 17H2O (imi = iminazole) (BWCN) has been synthesized and structurally characterized. The inhibitory activities against selected human cancer lines were also determined in this study. The cell viability and chemoresistance of BWCN on human colon carcinoma HT-29 cells were assessed by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazoliumbromide), cell morphology changes, a comet assay and western blot analysis. The typical morphologic changes of apoptosis and DNA damage indicated that BWCN could have a distinct proliferation inhibitory effect on cancer cells. BWCN as a chemotherapeutic agent also induced apoptosis on HT-29 cells and showed a significant expression of cleaved-caspase-3. These results suggested that the active site of BWCN is the polymeric anion based on the basic tectonic block {BiW(9)}, and the possible mechanism is related to the interference of DNA synthesis in cancer cells.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Synthesis of Functional Materials and Green Catalysis Colleges of Heilongjiang Province, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, the People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
24
|
Fluorescent imaging of acidic compartments in living cells with a high selective novel one-photon ratiometric and two-photon acidic pH probe. Biosens Bioelectron 2013; 50:42-9. [DOI: 10.1016/j.bios.2013.05.060] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/30/2013] [Accepted: 05/31/2013] [Indexed: 11/17/2022]
|
25
|
Hwang KE, Park C, Kwon SJ, Kim YS, Park DS, Lee MK, Kim BR, Park SH, Yoon KH, Jeong ET, Kim HR. Synergistic induction of apoptosis by sulindac and simvastatin in A549 human lung cancer cells via reactive oxygen species-dependent mitochondrial dysfunction. Int J Oncol 2013; 43:262-70. [PMID: 23661227 DOI: 10.3892/ijo.2013.1933] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/15/2013] [Indexed: 11/05/2022] Open
Abstract
Prevention of lung cancer is more feasible and holds greater promise when different agents are used in combination to target multiple processes during carcinogenesis. The mechanisms by which non-steroidal anti-inflammatory drugs and statins inhibit cancer cell growth and induce apoptosis are not fully understood. This study was designed to investigate lung cancer chemoprevention through a mechanism-based approach using sulindac at low doses in combination with simvastatin. We found that sulindac-induced cytotoxicity was significantly enhanced in the presence of simvastatin. The combination of sulindac and simvastatin induced more extensive caspase-dependent apoptosis in A549 cells compared to that induced with either drug alone. The combination of sulindac and simvastatin also increased the loss of mitochondrial transmembrane potential (∆Ψm) and the cytosolic release of cytochrome c. In addition, ROS generation in cells treated with both sulindac and simvastatin was markedly increased compared to cells treated with either sulindac or simvastatin alone. The enhancement of ROS generation by sulindac and simvastatin was abrogated by pretreatment with NAC, which also prevented apoptosis and mitochondrial dysfunction induced by sulindac and simvastatin. These results suggest that sulindac and simvastatin-induced ROS generation in A549 lung cancer cells causes their accumulation in mitochondria, triggering the release of apoptogenic molecules from the mitochondria to the cytosol, and thus leading to caspase activation and cell death.
Collapse
Affiliation(s)
- Ki-Eun Hwang
- Department of Internal Medicine, Institute of Wonkwang Medical Science, Wonkwang University, School of Medicine, Iksan, Jeonbuk 570-749, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Que W, Li S, Chen J. NS-398 enhances the efficacy of bortezomib against RPMI8226 human multiple myeloma cells. Mol Med Rep 2013; 7:1641-5. [PMID: 23545701 DOI: 10.3892/mmr.2013.1394] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/15/2013] [Indexed: 11/05/2022] Open
Abstract
Bortezomib is commonly used in treating multiple myeloma (MM). However, a number of patients develop resistance to bortezomib over time. Cox-2 is overexpressed in MM cells and contributes to apoptosis resistance and MM development. In the present study, RPMI8226 MM cells were treated with the Cox-2 inhibitor NS-398 to investigate whether it enhanced the effect of bortezomib on MM. The results showed that NS-398 and bortezomib acted synergistically to inhibit growth, arrest the cell cycle at the G1 phase and to induce the apoptosis of MM cells. NS-398 inhibited the NF-κB p65 protein levels and the expression of various NF-κB target genes, including cyclin D1, c-Myc, survivin and Bcl-2. In conclusion, NS-398 enhanced the efficacy of bortezomib against MM cells in vitro and this was associated with the inhibition of NF-κB signaling. These findings suggest that the combined use of NS-398 and bortezomib may constitute a promising novel treatment protocol for MM patients.
Collapse
Affiliation(s)
- Wenzhong Que
- Department of Hematology and Rheumatology, The Third Affiliated Hospital of Fujian Medical University, Fuzhou 350003, PR China
| | | | | |
Collapse
|
27
|
Yin H, Zhou Y, Zhu M, Hou S, Li Z, Zhong H, Lu J, Meng T, Wang J, Xia L, Xu Y, Wu Y. Role of mitochondria in programmed cell death mediated by arachidonic acid-derived eicosanoids. Mitochondrion 2012; 13:209-24. [PMID: 23063711 DOI: 10.1016/j.mito.2012.10.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 09/24/2012] [Accepted: 10/02/2012] [Indexed: 01/28/2023]
Abstract
Arachidonic acid-derived eicosanoids from cyclooxygenases, lipoxygenases, and cytochrome P450 are important lipid mediators involved in numerous homeostatic and pathophysiological processes. Most eicosanoids act primarily on their respective cell surface G-protein coupled receptors to elicit downstream signaling in an autocrine and paracrine fashion. Emerging evidence indicates that these hormones are also critical in apoptosis in a cell/tissue specific manner. In this review, we summarize the formation of eicosanoids and their roles as mediators in apoptosis, specifically on the roles of mitochondria in mediating these events and the signaling pathways involved. The biological relevance of eicosanoid-mediated apoptosis is also discussed.
Collapse
Affiliation(s)
- Huiyong Yin
- Laboratory of Lipid Metabolism in Human Nutrition and Related Diseases, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Venkatesan P, Bhutia SK, Singh AK, Das SK, Dash R, Chaudhury K, Sarkar D, Fisher PB, Mandal M. AEE788 potentiates celecoxib-induced growth inhibition and apoptosis in human colon cancer cells. Life Sci 2012; 91:789-99. [DOI: 10.1016/j.lfs.2012.08.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 07/23/2012] [Accepted: 08/14/2012] [Indexed: 10/28/2022]
|
29
|
Duncan K, Uwimpuhwe H, Czibere A, Sarkar D, Libermann TA, Fisher PB, Zerbini LF. NSAIDs induce apoptosis in nonproliferating ovarian cancer cells and inhibit tumor growth in vivo. IUBMB Life 2012; 64:636-43. [DOI: 10.1002/iub.1035] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/02/2012] [Indexed: 12/28/2022]
|
30
|
Bhattacharyya J, Mihara K, Ohtsubo M, Yasunaga S, Takei Y, Yanagihara K, Sakai A, Hoshi M, Takihara Y, Kimura A. Overexpression of BMI-1 correlates with drug resistance in B-cell lymphoma cells through the stabilization of survivin expression. Cancer Sci 2012; 103:34-41. [PMID: 21999765 PMCID: PMC11164169 DOI: 10.1111/j.1349-7006.2011.02121.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The expression of BMI-1 is correlated with disease progression in cancer patients. We showed that ectopic expression of BMI-1 in B-cell lymphoma cell lines, HT and RL, conferred resistance to etoposide and oxaliplatin, known to enhance sensitivity by targeting the survivin gene, but not to irinotecan, which is not relevant to the downregulation of survivin expression. The expression of survivin was not only augmented in cells transduced with BMI-1, but persisted in the presence of etoposide in cells overexpressing BMI-1. By contrast, the mock-transduced cells succumbed in the medium with anticancer drugs, with an accompanying decrease in BMI-1 and survivin expression. BMI-1 overexpression stabilized survivin post-translationally without an accompanying rise in the mRNA, suggesting survivin as a potential target for BMI-1. Knockdown of either BMI-1 or survivin restored sensitivity to etoposide in the BMI-1-overexpressing lymphoma cells. An analysis of six patients with B-cell lymphoma showed that in the drug-resistant patients, levels of BMI-1 and survivin were maintained even after drug administration. However, downregulation of both BMI-1 and survivin expression was observed in the drug-sensitive patients. Therefore, BMI-1 might facilitate drug resistance in B-cell lymphoma cells through the regulation of survivin. BMI-1 could be an important prognostic marker as well as a future therapeutic target in the treatment of drug-resistant lymphomas.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Blotting, Western
- Camptothecin/analogs & derivatives
- Camptothecin/pharmacology
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Etoposide/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Inhibitor of Apoptosis Proteins/chemistry
- Inhibitor of Apoptosis Proteins/genetics
- Inhibitor of Apoptosis Proteins/metabolism
- Irinotecan
- Lymphoma, B-Cell/drug therapy
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/metabolism
- Nuclear Proteins/antagonists & inhibitors
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Organoplatinum Compounds/pharmacology
- Oxaliplatin
- Polycomb Repressive Complex 1
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Repressor Proteins/antagonists & inhibitors
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Survivin
- Tumor Cells, Cultured
Collapse
|
31
|
Yu YL, Su KJ, Chen CJ, Wei CW, Lin CJ, Yiang GT, Lin SZ, Harn HJ, Chen YLS. Synergistic anti-tumor activity of isochaihulactone and paclitaxel on human lung cancer cells. J Cell Physiol 2011; 227:213-22. [PMID: 21391217 DOI: 10.1002/jcp.22719] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Drug resistance frequently develops in tumors during chemotherapy. Therefore, to improve the clinical outcome, more effective and tolerable combination treatment strategies are needed. Here, we show that isochaihulactone (K8) enhanced paclitaxel-induced apoptotic death in human lung cancer cells, and the enhancing effect was related to increased NSAID-activated gene-1 (NAG-1) expression. CalcuSyn software was used to evaluate the synergistic interaction of K8 and paclitaxel on human lung cancer cells; the synergistic effect of K8 in combination with paclitaxel was increased more than either of these drugs alone. Furthermore, the activity of ERK1/2 was enhanced by the combination of K8 and paclitaxel, and an ERK1/2 inhibitor dramatically inhibited NAG-1 expression in human lung cancer cells. Therefore, this synergistic apoptotic effect in human lung cancer cells may be directly associated with K8-induced NAG-1 expression through ERK1/2 activation. Moreover, over-expression of NAG-1 enhanced K8/paclitaxel-induced apoptosis in human lung cancer cells. In addition, treatment of nude mice with K8 combined with paclitaxel induced phospho-ERK1/2 and NAG-1 expression in vivo. Targeting of NAG-1 signaling could enhance therapeutic efficacy in lung cancer. Our results reveal that activation of NAG-1 by K8 enhanced the therapeutic efficacy of paclitaxel in human lung cancer cells via the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Yung-Luen Yu
- The PhD Program for Cancer Biology and Drug Discovery, China Medical University, Taichung, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Chaudhary A, Sutaria D, Huang Y, Wang J, Prabhu S. Chemoprevention of colon cancer in a rat carcinogenesis model using a novel nanotechnology-based combined treatment system. Cancer Prev Res (Phila) 2011; 4:1655-64. [PMID: 21914855 DOI: 10.1158/1940-6207.capr-11-0129] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Colorectal cancer (CRC) is the third most common cause of cancer death in the United States, accounting for approximately 51,000 deaths each year. We have previously shown in vitro chemopreventive effects of mixtures of aspirin, folic acid, and calcium (AFAC) on colon cancer cell lines. The objective of the present study was to evaluate the in vivo effects of orally administered, colon targeted chemopreventive combination regimens on the inhibition of aberrant crypt foci (ACF) in a rat model of colon carcinogenesis using (i) unmodified (free drug) combinations of AFAC and (ii) nanoparticle-encapsulated combinations of the same agents. A 14-week animal study was conducted in three phases to determine an optimal effective dose from AFAC combinations and evaluate the efficacy of nanotechnology-based chemopreventive regimens administered in combined (mixtures) and individual (single entity) forms. ACF inhibition when compared with azoxymethane-treated rat control group was significant in both the unmodified and the modified nanoparticle-mediated chemopreventive regimens, showing a range of 31% to 38% (P < 0.05) and 50% to 75% (P < 0.001) reduction, respectively, in the number of ACFs. In addition, the nanoparticulate combination regimens of AFAC showed a 2-fold increase in suppression of ACF compared with free drug mixtures. Individual administration of nanoparticle-encapsulated drugs showed no significant effect on the reduction of ACF. Histochemical analysis provided further confirmation of chemopreventive effects, showing a significant reduction in cell nuclear proliferation. Overall, our results provide a strong proof of concept using nanoparticle-mediated combination treatment in the chemoprevention of colon cancer.
Collapse
Affiliation(s)
- Abhishek Chaudhary
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | | | | | | | | |
Collapse
|
33
|
Kanneganti M, Mino-Kenudson M, Mizoguchi E. Animal models of colitis-associated carcinogenesis. J Biomed Biotechnol 2011; 2011:342637. [PMID: 21274454 PMCID: PMC3025384 DOI: 10.1155/2011/342637] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 12/08/2010] [Accepted: 12/10/2010] [Indexed: 12/25/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a group of chronic inflammatory disorders that affect individuals throughout life. Although the etiology and pathogenesis of IBD are largely unknown, studies with animal models of colitis indicate that dysregulation of host/microbial interactions are requisite for the development of IBD. Patients with long-standing IBD have an increased risk for developing colitis-associated cancer (CAC), especially 10 years after the initial diagnosis of colitis, although the absolute number of CAC cases is relatively small. The cancer risk seems to be not directly related to disease activity, but is related to disease duration/extent, complication of primary sclerosing cholangitis, and family history of colon cancer. In particular, high levels and continuous production of inflammatory mediators, including cytokines and chemokines, by colonic epithelial cells (CECs) and immune cells in lamina propria may be strongly associated with the pathogenesis of CAC. In this article, we have summarized animal models of CAC and have reviewed the cellular and molecular mechanisms underlining the development of carcinogenic changes in CECs secondary to the chronic inflammatory conditions in the intestine. It may provide us some clues in developing a new class of therapeutic agents for the treatment of IBD and CAC in the near future.
Collapse
Affiliation(s)
- Manasa Kanneganti
- Gastrointestinal Unit, Department of Medicine, Harvard Medical School, Massachusetts General Hospital, GRJ 702, 55 Fruit Street, Boston, MA 02114, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Harvard Medical School, Massachusetts General Hospital, GRJ 702, 55 Fruit Street, Boston, MA 02114, USA
| | - Emiko Mizoguchi
- Gastrointestinal Unit, Department of Medicine, Harvard Medical School, Massachusetts General Hospital, GRJ 702, 55 Fruit Street, Boston, MA 02114, USA
- Center for the Study of Inflammatory Bowel Disease, Harvard Medical School, Massachusetts General Hospital, GRJ 702, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
34
|
Liu HF, Hu HC, Chao JI. Oxaliplatin down-regulates survivin by p38 MAP kinase and proteasome in human colon cancer cells. Chem Biol Interact 2010; 188:535-45. [PMID: 20708607 DOI: 10.1016/j.cbi.2010.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/24/2010] [Accepted: 08/05/2010] [Indexed: 11/19/2022]
Abstract
Oxaliplatin, a platinum derivative cancer drug, has been used for treating human colorectal cancers. Survivin has been proposed as a cancer target, which highly expressed in most cancer cells but not normal adult cells. In this study, we investigated the regulation of survivin expression by exposure to oxaliplatin in human colon cancer cells. Oxaliplatin (3-9μM for 24h) markedly induced cytotoxicity, proliferation inhibition and apoptosis in the human RKO colon cancer cells. The survivin protein expression of RKO cells is dramatically reduced by oxaliplatin; however, the survivin gene expression is slightly altered. The survivin blockage of oxaliplatin elevated caspase-3 activation and apoptosis in RKO cells. Over-expression of survivin proteins by transfection with a survivin-expressed vector resisted the oxaliplatin-induced cancer cell death. Meantime, oxaliplatin elicited the phosphorylation of p38 mitogen-activated protein (MAP) kinase. SB202190, a specific p38 MAP kinase inhibitor, restored the survivin protein level and attenuated oxaliplatin-induced cancer cell death. In addition, oxaliplatin increased the levels of phospho-p53 (Ser-15) and total p53 proteins. Inhibition of p53 expression by a specific p53 inhibitor pifithrin-α reduced the phosphorylated p38 MAP kinase and active caspase-3 proteins in the oxaliplatin-exposed RKO cells. In contrast, SB202190 did not alter the oxaliplatin-induced p53 protein level. Furthermore, treatment with a specific proteasome inhibitor MG132 restored survivin protein level in the oxaliplatin-treated colon cancer cells. Taken together, our results demonstrate for the first time that survivin is down-regulated by p38 MAP kinase and proteasome degradation pathway after treatment with oxaliplatin in the human colon cancer cells.
Collapse
Affiliation(s)
- Huei-Fang Liu
- Department of Biological Science and Technology, National Chiao Tung University, Taiwan, Republic of China
| | | | | |
Collapse
|
35
|
Elahian F, Kalalinia F, Behravan J. Evaluation of indomethacin and dexamethasone effects on BCRP-mediated drug resistance in MCF-7 parental and resistant cell lines. Drug Chem Toxicol 2010; 33:113-9. [PMID: 20307139 DOI: 10.3109/01480540903390000] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Breast cancer resistance protein is a member of the ATP-binding cassette transporter G family that extrudes xenotoxins from cells, mediating drug resistance, and has been recognized as a major cause of failure of various carcinoma chemotherapies. In this study, the modulatory effects of dexamethasone and indomethacin on the cell cytotoxicity of mitoxantrone and on the BCRP protein activity in breast cancer cell lines were examined. MCF cells were seeded at 1 x 10(4) cells per well in 96-well flat-bottomed microplates for 48 hours and treated with increasing doses of dexamethasone, indomethacin, and novobiocin alone or preincubated with increasing doses of the drugs and then coexposed to mitoxantrone. Cell viability was measured after 1-4 days, using the MTT assay. BCRP activity was determined flow cytometrically by measuring mitoxantrone accumulation in the absence and presence of the inhibitor, novobiocin. Cotreatment of mitoxantrone with different concentrations of dexamethasone and indomethacin sensitized parental and resistant MCF-7 cells to mitoxantrone cytotoxicity. Dexamethasone increased the accumulation of mitoxantrone in the MCF-7/MX cell line, indicating an inhibition of BCRP. In spite of increased levels of mitoxantrone cytotoxicity in the presence of indomethacin, the accumulation of mitoxantrone was not increased in indomethacin-treated MCF cells.
Collapse
Affiliation(s)
- Fatemeh Elahian
- Biotechnology Laboratory, Biotechnology Research Centre, Bu-Ali Research Institute, Mashhad, Iran
| | | | | |
Collapse
|
36
|
Li WZ, Wang XY, Li ZG, Zhang JH, Ding YQ. Celecoxib enhances the inhibitory effect of cisplatin on Tca8113 cells in human tongue squamous cell carcinoma in vivo and in vitro. J Oral Pathol Med 2010; 39:579-84. [PMID: 20202090 DOI: 10.1111/j.1600-0714.2009.00885.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Overexpression of cyclooxygenase-2 (COX-2) is associated with carcinogenesis, invasiveness, and metastasis of malignant tumors. Inhibition of COX-2 is one hot topic of research in prevention and treatment of malignant tumors. Because of the selective and specific inhibition on the activity of COX-2, the roles of celecoxib in prevention and treatment of tumors have attracted broad attention in recent years. In this study, we investigated the inhibitory effect of celecoxib combined with cisplatin on the proliferation of human tongue squamous cell carcinoma cell line Tca8113 in vivo and in vitro. METHODS Human tongue squamous cell carcinoma tumor cells Tca8113 and a mouse model with Tca8113 cells were used to study the growth inhibition of cisplatin enhanced by celecoxib. Drug treatment of Tca8113 in vitro and mice bearing xenografts in vivo were used. The level of COX-2 expression was detected by Western blotting. Sensitivity of cells to drug treatment was analyzed by MTT assay. RESULTS Treatment of Tca8113 cells with cisplatin (CDDP) had less effect on the expression of COX-2, whereas the COX-2 expression was significantly down-regulated after treatment with celecoxib alone or in combination with CDDP for 24 h. In addition, the combination of celecoxib with CDDP was also able to inhibit the Tca8113 line heterotransplanted in Balb/c nude mice. CONCLUSIONS Those findings indicate that a low dose of celecoxib could augment CDDP-induced growth inhibition of Tca8113 cells and its xenograft in Balb/c nude mice.
Collapse
Affiliation(s)
- Wei Zhong Li
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | |
Collapse
|
37
|
Venkatesan P, Das S, Krishnan MMR, Chakraborty C, Chaudhury K, Mandal M. Effect of AEE788 and/or Celecoxib on colon cancer cell morphology using advanced microscopic techniques. Micron 2009; 41:247-56. [PMID: 19945288 DOI: 10.1016/j.micron.2009.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 10/19/2009] [Accepted: 10/20/2009] [Indexed: 01/23/2023]
Abstract
Analysis of changes in cancer cell morphology and cytoskeletal element induced by external stimuli is focus of current cancer chemotherapeutic studies. Cancer cell cytoskeleton is complex network of interwoven protein fibers composed of microtubules, microfilaments and intermediate filaments. These interwoven protein fibers are responsible for maintaining cell morphology, movement, adhesion and transmembrane signal transmission. In this study, morphological and cytoskeletal changes induced by AEE788 and/or Celecoxib on colon cancer cell HCT 15 were analyzed using advanced microscopic techniques. Cell proliferation assay was used for determining IC(50) of AEE788 and/or Celecoxib on HCT 15. Confocal microscopic analysis of AEE788 and/or Celecoxib treated HCT 15 was performed using Rhodamine-Phalloidin (actin stain) and Hoechst 33342 (nuclear stain). Atomic force (AFM) and scanning electron microscopic (SEM) studies were also performed to analyze cell morphology and cell wall extension (filopodia and lamellipodia). In addition, quantitative analysis of morphological parameters was studied using cellular image processing technique. This is the first report that combination of AEE788 and Celecoxib additively increase growth inhibition and cell death on human colon cancer cell HCT 15 as estimated by cell proliferation assay. Morphological analysis of AEE788 or Celecoxib treated HCT 15 cell for 24h have not revealed significant change in morphology under phase contrast microscopy. But, slight morphological changes were observed in combination (AEE788+Celecoxib) treated HCT 15 for 24h. In contrast, high resolution confocal laser fluorescence and atomic force microscopic studies have revealed cell shrinkage, disorganized actin filament and, loss of filopodia and lamellipodia. These changes were more prominent in combination of AEE788 and Celecoxib treated HCT 15 than either drug alone. These results may suggest antiproliferative and antimetastatic activity of AEE788 and/or Celecoxib. Quantitative analysis of morphological parameters using cellular image processing technique have shown decrease in mean area, perimeter, compactness and eccentricity of combination drug treated cells than either drug alone. These results further support the confocal and AFM study. Scanning electron microscopic study of AEE788 and/or Celecoxib treated HCT 15 has also shown morphological changes and loss of filopodia and lamellipodia. In conclusion, this investigation of morphological and cytoskeletal changes using advanced microscopic techniques present a significant foundation for evaluating anticancer activity of a drug and form a new strategy for evaluating effect of AEE788 and/or Celecoxib on colon cancer.
Collapse
Affiliation(s)
- P Venkatesan
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, West Bengal, India.
| | | | | | | | | | | |
Collapse
|
38
|
Kim SH, Kim SH, Song YC, Song YS. Celecoxib potentiates the anticancer effect of cisplatin on vulvar cancer cells independently of cyclooxygenase. Ann N Y Acad Sci 2009; 1171:635-41. [PMID: 19723114 DOI: 10.1111/j.1749-6632.2009.04888.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cyclooxygenase-2 (COX-2) has been found to be associated with the development and progression of various cancers. Our previous study showed a high expression rate of COX-2 in paraffin-embedded tissue specimens from patients with vulvar cancer. In this study, we evaluated the efficacy of celecoxib, a selective COX-2 inhibitor, as a chemosensitizing agent with cisplatin in vulvar cancer cells A431 and SW962. COX-2 was expressed in both A431 and SW962 vulvar cancer cell lines. COX-1 was expressed in A431 but not in SW962. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide] assay showed that treatment with 30 micromol/L celecoxib had no effect on cell growth in A431 cells for 72 h. However, combined treatment with celecoxib and cisplatin induced a significant reduction in cell growth compared to single treatment with cisplatin. Interestingly, single treatment with celecoxib or cisplatin and combined treatment of 10 micromol/L celecoxib with 10 micromol/L cisplatin increased COX-2 expression. However, the combination of 30 micromol/L celecoxib and 30 micromol/L cisplatin reduced COX-2 expression to the control state. Inhibition of cell growth by celecoxib alone and in combination with cisplatin was independent of the expression level of COX-2 induced by these agents. While treatment with 10 micromol/L celecoxib or 10 micromol/L piroxicam significantly suppressed the activity of COX enzymes, neither agent affected the growth of A431 and SW962 cells at this concentration. Taken together, celecoxib could be used as a chemosensitizing agent in vulva cancer cells; the anticancer activity of celecoxib seemed to be independent of COX.
Collapse
Affiliation(s)
- Su-Hyeon Kim
- Cancer Research Institute, World Class University, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
39
|
Abstract
CONTEXT Aspirin reduces risk of colorectal neoplasia in randomized trials and inhibits tumor growth and metastases in animal models. However, the influence of aspirin on survival after diagnosis of colorectal cancer is unknown. OBJECTIVE To examine the association between aspirin use after colorectal cancer diagnosis on colorectal cancer-specific and overall survival. DESIGN, SETTING, AND PARTICIPANTS Prospective cohort study of 1279 men and women diagnosed with stage I, II, or III colorectal cancer. Participants were enrolled in 2 nationwide health professional cohorts in 1980 and 1986 prior to diagnosis and followed up through June 1, 2008. MAIN OUTCOME MEASURE Colorectal cancer-specific and overall mortality. RESULTS After a median follow-up of 11.8 years, there were 193 total deaths (35%) and 81 colorectal cancer-specific deaths (15%) among 549 participants who regularly used aspirin after colorectal cancer diagnosis, compared with 287 total deaths (39%) and 141 colorectal cancer-specific deaths (19%) among 730 participants who did not use aspirin. Compared with nonusers, participants who regularly used aspirin after diagnosis experienced a multivariate hazard ratio (HR) for colorectal cancer-specific mortality of 0.71 (95% confidence interval [CI], 0.53-0.95) and for overall mortality of 0.79 (95% CI, 0.65-0.97). Among 719 participants who did not use aspirin before diagnosis, aspirin use initiated after diagnosis was associated with a multivariate HR for colorectal cancer-specific mortality of 0.53 (95% CI, 0.33-0.86). Among 459 participants with colorectal cancers that were accessible for immunohistochemical assessment, the effect of aspirin differed significantly according to cyclooxygenase 2 (COX-2) expression (P for interaction = .04). Regular aspirin use after diagnosis was associated with a lower risk of colorectal cancer-specific mortality among participants in whom primary tumors overexpressed COX-2 (multivariate HR, 0.39; 95% CI, 0.20-0.76), whereas aspirin use was not associated with lower risk among those with primary tumors with weak or absent expression (multivariate HR, 1.22; 95% CI, 0.36-4.18). CONCLUSION Regular aspirin use after the diagnosis of colorectal cancer is associated with lower risk of colorectal cancer-specific and overall mortality, especially among individuals with tumors that overexpress COX-2.
Collapse
Affiliation(s)
- Andrew T Chan
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, GRJ 722 Boston, MA 02114, USA.
| | | | | |
Collapse
|
40
|
Huang SK, White ES, Wettlaufer SH, Grifka H, Hogaboam CM, Thannickal VJ, Horowitz JC, Peters-Golden M. Prostaglandin E(2) induces fibroblast apoptosis by modulating multiple survival pathways. FASEB J 2009; 23:4317-26. [PMID: 19671668 DOI: 10.1096/fj.08-128801] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although the lipid mediator prostaglandin E(2) (PGE(2)) exerts antifibrotic effects by inhibiting multiple fibroblast functions, its ability to regulate fibroblast survival is unknown. Here, we examined the effects of this prostanoid on apoptosis and apoptosis pathways in normal and fibrotic lung fibroblasts. As compared to medium alone, 24 h of treatment with PGE(2) increased apoptosis of normal lung fibroblasts in a dose-dependent manner (EC(50) approximately 50 nM), as measured by annexin V staining, caspase 3 activity, cleavage of poly-ADP-ribose polymerase, and single-stranded DNA levels. PGE(2) also potentiated apoptosis elicited by Fas ligand plus cycloheximide. These proapoptotic actions were dependent on signaling through the EP2/EP4 receptors and by downstream activation of both caspases 8 and 9. Silencing and gene deletion of PTEN demonstrated that the effects of PGE(2) involved decreased activity of the prosurvival molecule Akt. PGE(2) also down-regulated expression of survivin, an inhibitor of apoptosis, and increased expression of Fas. Fibroblasts from patients with pulmonary fibrosis exhibited resistance to the apoptotic effects of PGE(2). These findings show for the first time that, in contrast to its effects on many other cell types, PGE(2) promotes apoptosis in lung fibroblasts through diverse pathways. They provide another dimension by which PGE(2) may inhibit, and perhaps even reverse, fibrogenesis in patients with interstitial lung disease.
Collapse
Affiliation(s)
- Steven K Huang
- Pulmonary and Critical Care Medicine, University of Michigan, 6301 MSRB III, 1150 W. Medical Center Dr., Ann Arbor, MI 48109-5642, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Rodriguez DA, Tapia JC, Fernandez JG, Torres VA, Muñoz N, Galleguillos D, Leyton L, Quest AFG. Caveolin-1-mediated suppression of cyclooxygenase-2 via a beta-catenin-Tcf/Lef-dependent transcriptional mechanism reduced prostaglandin E2 production and survivin expression. Mol Biol Cell 2009; 20:2297-310. [PMID: 19244345 DOI: 10.1091/mbc.e08-09-0939] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Augmented expression of cyclooxygenase-2 (COX-2) and enhanced production of prostaglandin E(2) (PGE(2)) are associated with increased tumor cell survival and malignancy. Caveolin-1 is a scaffold protein that has been proposed to function as a tumor suppressor in human cancer cells, although mechanisms underlying this ability remain controversial. Intriguingly, the possibility that caveolin-1 regulates the expression of COX-2 has not been explored. Here we show that augmented caveolin-1 expression in cells with low basal levels of this protein, such as human colon cancer (HT29, DLD-1), breast cancer (ZR75), and embryonic kidney (HEK293T) cells reduced COX-2 mRNA and protein levels and beta-catenin-Tcf/Lef and COX-2 gene reporter activity, as well as the production of PGE(2) and cell proliferation. Moreover, COX-2 overexpression or PGE(2) supplementation increased levels of the inhibitor of apoptosis protein survivin by a transcriptional mechanism, as determined by PCR analysis, survivin gene reporter assays and Western blotting. Furthermore, addition of PGE(2) to the medium prevented effects attributed to caveolin-1-mediated inhibition of beta-catenin-Tcf/Lef-dependent transcription. Finally, PGE(2) reduced the coimmunoprecipitation of caveolin-1 with beta-catenin and their colocalization at the plasma membrane. Thus, by reducing COX-2 expression, caveolin-1 interrupts a feedback amplification loop involving PGE(2)-induced signaling events linked to beta-catenin/Tcf/Lef-dependent transcription of tumor survival genes including cox-2 itself and survivin.
Collapse
Affiliation(s)
- Diego A Rodriguez
- Fondo de Investigación Avanzada en Areas Prioritarias, Center for Molecular Studies of the Cell, Departmento de Cirugía, Hospital Clínico, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Duarte ML, de Moraes E, Pontes E, Schluckebier L, de Moraes JL, Hainaut P, Ferreira CG. Role of p53 in the induction of cyclooxygenase-2 by cisplatin or paclitaxel in non-small cell lung cancer cell lines. Cancer Lett 2009; 279:57-64. [PMID: 19217709 DOI: 10.1016/j.canlet.2009.01.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 01/14/2009] [Accepted: 01/14/2009] [Indexed: 10/21/2022]
Abstract
Non-small cell lung Cancer (NSCLC) is extremely resistant to chemotherapeutic agents, such as cisplatin. High expression of the inflammatory enzyme cyclooxygenase-2 (COX-2) has been shown to inhibit chemotherapy-induced apoptosis, but little is known about COX-2 regulation upon drug treatment. Recent data indicate the tumor suppressor protein p53 as an important regulator of COX-2. Therefore, TP53 status could change tumor sensitivity to chemotherapy through induction of the anti-apoptotic protein COX-2. The main objective of this work was to analyze the effect of chemotherapy on the expression of COX-2, according to TP53 status. We report herein that lung cancer cell lines expressing wild-type p53, when exposed to cisplatin treatment, induced COX-2 (mRNA and protein), with concurrent synthesis of prostaglandins (PGE(2)). In contrast, COX-2 expression was not changed after cisplatin treatment of cells containing an inactive form of p53. Further, after silencing of wild-type p53 expressed in A549 cells by RNA interference, cisplatin was no longer able to induce COX-2 expression. Therefore, we suggest that induction of COX-2 by cisplatin in NSCLC cell lines is dependent on p53. For paclitaxel treatment, an increase in COX-2 mRNA expression was observed in H460 and A549 (wild-type p53 cell lines). Moreover, paclitaxel treatment increased COX-2 expression in ACC-LC-319 cell lines (p53 null), showing a p53-independent effect. These data may have therapeutic implications in the selection of patients and strategy for future COX-2 inhibition trials.
Collapse
Affiliation(s)
- Mariana Lemos Duarte
- Clinical Research Division, Research Coordenation, Instituto Nacional de Câncer, Department of Clinical Research, INCA, Rua André Cavalcanti 37/2 degrees andar, CEP 22231-050, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
43
|
Prodigiosin down-regulates survivin to facilitate paclitaxel sensitization in human breast carcinoma cell lines. Toxicol Appl Pharmacol 2008; 235:253-60. [PMID: 19133282 DOI: 10.1016/j.taap.2008.12.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 11/25/2008] [Accepted: 12/09/2008] [Indexed: 11/22/2022]
Abstract
Prodigiosin is a bacterial metabolite with potent anticancer activity, which is attributed to its proapoptotic effect selectively active in malignant cells. Still, the molecular mechanisms whereby prodigiosin induces apoptosis remain largely unknown. In particular, the role of survivin, a vital inhibitor of apoptosis, in prodigiosin-induced apoptosis has never been addressed before and hence was the primary goal of this study. Our results showed that prodigiosin dose-dependently induced down-regulation of survivin in multiple breast carcinoma cell lines, including MCF-7, T-47D and MDA-MB-231. This down-regulation is mainly regulated at the level of transcription, as prodigiosin reduced the levels of both survivin mRNA and survivin promoter activity but failed to rescue survivin expression when proteasome-mediated degradation is abolished. Importantly, overexpression of survivin rendered cells more resistant to prodigiosin, indicating an essential role of survivin down-regulation in prodigiosin-induced apoptosis. In addition, we found that prodigiosin synergistically enhanced cell death induced by paclitaxel, a chemotherapy drug known to up-regulate survivin that in turn confers its own resistance. This paclitaxel sensitization effect of prodigiosin is ascribed to the lowering of survivin expression, because prodigiosin was shown to counteract survivin induction by paclitaxel and, notably, the sensitization effect was severely abrogated in cells that overexpress survivin. Taken together, our results argue that down-regulation of survivin is an integral component mediating prodigiosin-induced apoptosis in human breast cancer cells, and further suggest the potential of prodigiosin to sensitize anticancer drugs, including paclitaxel, in the treatment of breast cancer.
Collapse
|
44
|
Handrick R, Ganswindt U, Faltin H, Goecke B, Daniel PT, Budach W, Belka C, Jendrossek V. Combined action of celecoxib and ionizing radiation in prostate cancer cells is independent of pro-apoptotic Bax. Radiother Oncol 2008; 90:413-21. [PMID: 19038466 DOI: 10.1016/j.radonc.2008.10.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 09/12/2008] [Accepted: 10/22/2008] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND PURPOSE The cyclooxygenase-2-inhibitor celecoxib has been shown to inhibit cell growth and to reduce prostatic intraepithelial neoplasia in mice. The drug was suggested to increase efficacy of ionizing radiation. However, extent and mechanisms of the suggested benefit of celecoxib on the radiation response are still unclear. The aim of the present study was to analyze cytotoxic efficacy of celecoxib in combination with irradiation on human prostate cancer cell lines and to define the importance of pro-apoptotic Bax in this process. MATERIALS AND METHODS Induction of apoptosis and global and clonogenic cell survival upon irradation- (2-10Gy), celecoxib- (10-75microM) or combined treatment were evaluated in prostate cancer cells by fluorescence microscopy, WST-1 assay and standard colony formation assays. RESULTS Celecoxib <25microM caused morphological changes and growth inhibition without substantial apoptosis or radiosensitization in terms of decreased clonogenic cell survival. In contrast, celecoxib 25microM increased radiation-induced cell death and clonogenic kill. While radiation-induced clonogenic death was increased in the presence of Bax, effects of celecoxib or combined treatment were Bax independent. CONCLUSIONS Our findings reveal Bax-independent beneficial effects of celecoxib on radiation-induced apoptosis and eradication of clonogenic prostate cancer cells in vitro providing a rationale for clinical evaluation of high-dose celecoxib in combination with irradiation in prostate cancer patients.
Collapse
Affiliation(s)
- René Handrick
- Department of Radiation Oncology, University of Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Survivin has multiple functions including cytoprotection, inhibition of cell death, and cell-cycle regulation, especially at the mitotic process stage, all of which favor cancer survival. Many studies on clinical specimens have shown that survivin expression is invariably up-regulated in human cancers and is associated with resistance to chemotherapy or radiation therapy, and linked to poor prognosis, suggesting that cancer cells survive with survivin. It is also reported that survivin inhibition, alone or in combination with the other therapies, induces or enhances apoptosis and mitotic catastrophe in tumor cells. Moreover, certain antitumor agents can reduce survivin expression. These findings suggest that survivin may be a promising molecular target against human malignancies.
Collapse
Affiliation(s)
- Hirofumi Yamamoto
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
46
|
Noordhuis P, Laan AC, van de Born K, Losekoot N, Kathmann I, Peters GJ. Oxaliplatin activity in selected and unselected human ovarian and colorectal cancer cell lines. Biochem Pharmacol 2008; 76:53-61. [PMID: 18508032 DOI: 10.1016/j.bcp.2008.04.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 04/10/2008] [Accepted: 04/11/2008] [Indexed: 12/15/2022]
Abstract
Oxaliplatin is used for treatment of colon cancer in combination with 5-fluorouracil or irinotecan. Oxaliplatin has similar, but also different resistant mechanisms as cisplatin. We studied the activity of oxaliplatin in ovarian and colon cancer cells with different resistance patterns to cisplatin. The 40-fold cisplatin-resistant cell line ADDP was only 7.5-fold resistant to oxaliplatin. The gemcitabine-resistant AG6000 cell line, 9-fold resistant to cisplatin, was not cross-resistant. LoVo-175X2, with mutant p53 showed no resistance compared to the empty vector control. However, LoVo-Li, with inactive p53, was 3.6-fold resistant corresponding to decreased accumulation and Pt adducts. Accumulation and DNA adducts formation showed no significant correlation with oxaliplatin sensitivity. Cell cycle distribution after exposure to oxaliplatin showed arrest in G2/M (A2780) or in S-phase (LoVo-92) for wt-p53 cells. ADDP and LoVo-Li showed G1 arrest followed by S-phase arrest and no changes in distribution, respectively. The cell cycle related proteins Cyclins A and B1 and (p)CDC25C were marginally affected by oxaliplatin. Expression of hCTR1 was decreased in ADDP, LoVo-Li and AG6000, OCT1 decreased in ADDP and AG6000 and OCT3 in LoVo-175X2, compared to the parental cell lines. In ADDP and LoVo-175X2 ATP7A and B were decreased but were increased in AG6000. From this study it can be concluded that changes in cell cycle distribution were cell line dependent and not related to changes in expression of Cyclin A or B1. Oxaliplatin accumulation was related to hCTR1 and, at low concentration, ATP7A to DNA adducts formation while the retention was related to hCTR1, OCT2 and ATP7B.
Collapse
Affiliation(s)
- Paul Noordhuis
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
47
|
Mehar A, Macanas-Pirard P, Mizokami A, Takahashi Y, Kass GEN, Coley HM. The effects of cyclooxygenase-2 expression in prostate cancer cells: modulation of response to cytotoxic agents. J Pharmacol Exp Ther 2008; 324:1181-7. [PMID: 18089846 DOI: 10.1124/jpet.107.131383] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cyclooxygenase (COX)-2 has emerged as an exciting target for therapeutic intervention in the management of cancer. Immunohistochemistry studies have indicated higher expression of COX-2 in cancerous versus benign prostatic tissue. We have explored the role of COX-2 in prostate cancer in terms of attenuation of apoptosis and sensitivity to pharmacological agents, including COX-2 inhibitors. The human prostate cancer cell line LNCaP was stably transfected with COX-2 (LNCaPCOX-2) and compared with the empty vector control line (LNCaPneo). Chemosensitivity testing indicated no change in sensitivity to the cytotoxic effects of COX-2 inhibitors celecoxib or sulindac or VP16. However, LNCaPCOX-2 cells showed 3-fold resistance to carboplatin, which was partially reversed by coincubation with the phosphatidylinositol 3-kinase inhibitor wortmannin. Concomitant with reduced apoptotic response to cytotoxic agents, LNCaPCOX-2 cells expressed increased levels of survivin and Bcl-2 with enhanced activation of AKT. We also investigated the effects of celecoxib on expression levels of genes relevant to prostate cancer and drug resistance in our model system using quantitative polymerase chain reaction analysis. Celecoxib treatment resulted in highly significant increases in the mRNA expression of the smooth muscle component desmin, the detoxification enzyme glutathione S-transferase pi (GSTpi), and nonsteroidal anti-inflammatory response gene (NAG-1) in the LNCaPCOX-2 cell line compared with LNCaPneo cells. Significant decreases in survivin levels and increases in GSTpi and NAG-1 appeared to be COX-2-dependent effects because they were more pronounced in LNCaPCOX-2 cells. Our findings indicate both COX-2-dependent and -independent mechanisms attributable to celecoxib and support its utility in the management of prostate cancer.
Collapse
Affiliation(s)
- Ayaz Mehar
- Postgraduate Medical School, University of Surrey, Guildford, Surrey GU2 7WG, UK
| | | | | | | | | | | |
Collapse
|
48
|
Bijman MNA, Hermelink CA, van Berkel MPA, Laan AC, Janmaat ML, Peters GJ, Boven E. Interaction between celecoxib and docetaxel or cisplatin in human cell lines of ovarian cancer and colon cancer is independent of COX-2 expression levels. Biochem Pharmacol 2008; 75:427-437. [PMID: 17936723 DOI: 10.1016/j.bcp.2007.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 09/05/2007] [Accepted: 09/05/2007] [Indexed: 11/28/2022]
Abstract
Celecoxib, an inhibitor of cyclooxygenase-2 (COX-2), is being investigated for enhancement of chemotherapy efficacy in cancer clinical trials. We determined whether continuous exposure to celecoxib would increase the antiproliferative effects of a 1-h treatment with docetaxel or cisplatin in four human ovarian cancer cell lines. COX-2 protein could not be detected in these cell lines, because of which three COX-2 positive human colon cancer cell lines were included. Multiple drug effect analysis demonstrated additive to borderline antagonistic effects of celecoxib combined with docetaxel. Combination indices with values of 1.4-2.5 in all cancer cell lines indicated antagonism between celecoxib and cisplatin regardless whether celecoxib preceded cisplatin for 3h, was added simultaneously or immediately after cisplatin. Apoptotic features measured in COX-2-negative H134 ovarian cancer cells and COX-2-positive WiDr colon cancer cells, such as the activation of caspase-3 and the number of cells in sub-G0 of the cell cycle, induced by docetaxel were increased in the presence of celecoxib, but were abrogated upon addition of celecoxib to cisplatin. Moreover, the G2/M accumulation in cisplatin-treated cells was less pronounced when celecoxib was present. Drugs did not affect p-Akt. Celecoxib upregulated p-ERK1/2 in H134 cells, but not in WiDr cells. Platinum-DNA adduct formation measured in WiDr cells, however, was reduced when celecoxib was combined with cisplatin. Taken together, our data demonstrate clear antagonistic effects when celecoxib is given concurrently with cisplatin, which is independent of COX-2 expression levels.
Collapse
Affiliation(s)
- Marcel N A Bijman
- Department of Medical Oncology, VU University medical center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
49
|
The prognostic significance of COX-2 and survivin expression in ovarian cancer. Pathol Res Pract 2008; 204:241-9. [PMID: 18171606 DOI: 10.1016/j.prp.2007.11.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 10/27/2007] [Accepted: 11/08/2007] [Indexed: 11/21/2022]
Abstract
We investigated the prognostic significance of cyclooxygenase-2 (COX-2) and survivin in ovarian carcinoma. Imprint smears were obtained from 100 ovarian carcinoma specimens and were studied immunocytochemically for the expression of COX-2 and survivin. The results were correlated with several clinicopathological parameters, including 5-year survival. Increased COX-2 staining pattern correlated with a non-mucinous histological type (p=0.008), increased stage (p<0.0001), high histological grade (p<0.0001), and reduced survival rates (p<0.00001). Survivin expression was strongly associated with increased stage (p<0.0001), increased histological grade (p<0.0001), and reduced survival (p<0.00001). Elevated survivin expression also correlated significantly with pre-menopausal status (p=0.033). In addition, COX-2 and survivin staining patterns correlated strongly with one another (p<0.0001). However, on multivariate analysis, an independent prognostic value was found only for tumor stage and grade. The findings of our study indicate that the increased expression of COX-2 and survivin in ovarian cancer is associated with one another and with several adverse clinicopathologic parameters, including reduced survival, thus suggesting a role of these molecules in disease progression. Further investigations of the exact prognostic and therapeutic implications of COX-2 and survivin expression are strongly warranted.
Collapse
|
50
|
Howells LM, Mitra A, Manson MM. Comparison of oxaliplatin- and curcumin-mediated antiproliferative effects in colorectal cell lines. Int J Cancer 2007; 121:175-83. [PMID: 17330230 DOI: 10.1002/ijc.22645] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Colorectal cancer remains a leading cause of cancer death worldwide, despite markedly improved response rates to current systemic therapies. Oxaliplatin either alone or incorporated into 5-fluorouracil/leucovorin regimes has resulted in increased survival rates, particularly with regards to metastatic colorectal carcinoma. The chemopreventive polyphenol curcumin, which is currently in clinical trial, has been advocated for use in colorectal cancer either singly or in combination with chemotherapeutic drugs. In this study, the antiproliferative capacity of both compounds was compared in HCEC (normal-derived), HT29 (p53 mutant adenocarcinoma) and HCT116 (p53wt adenocarcinoma) colorectal cell lines to determine whether effects were cell-type specific at pharmacologically achievable doses, and whether the combination resulted in enhanced efficacy. Both oxaliplatin and curcumin displayed marked antiproliferative capacity at therapeutic concentrations in the two tumor cell lines. Order of sensitivity to oxaliplatin was HCT116>HT29>HCEC, whereas order of sensitivity to curcumin was HT29>HCT116>HCEC. HCT116 cells underwent induction of G2/M arrest in response to both oxaliplatin (irreversible) and curcumin (reversible). Apoptosis was induced by both agents, and up to 16-fold induction of p53 protein was observed in response to the combination. Antiproliferative effects in HT29 cells were largely cell cycle independent, and were mediated by induction of apoptosis. Effects were greatly enhanced in both cell lines when agents were combined. This study provides further evidence that curcumin may be of use in therapeutic regimes directed against colorectal cancer, and suggests that in combination with oxaliplatin it may enhance efficacy of the latter in both p53wt and p53 mutant colorectal tumors.
Collapse
Affiliation(s)
- Lynne M Howells
- Cancer Biomarkers and Prevention Group, Biocentre, University of Leicester, Leicester, United Kingdom.
| | | | | |
Collapse
|