1
|
Chen Z, Gong C, Wang S, Lu H, Zhu Y, Ge RS, Tang Y, Ying Y. Benzophenone UV-filters: Inhibition on human and rat 17β-hydroxysteroid dehydrogenase 1 - insights from 3D-QSAR and docking studies. J Steroid Biochem Mol Biol 2025; 250:106739. [PMID: 40122306 DOI: 10.1016/j.jsbmb.2025.106739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Benzophenone (BP) UV-filters have been extensively used for the prevention of UV-induced adverse effects in personal care products. Their potential to interfere with steroidogenesis in the female reproductive system remains uncertain. 17β-Hydroxysteroid dehydrogenase 1 (17β-HSD1) facilitates the conversion of estrone to estradiol, playing a key role in estrogen activation. This study delves into the effects of eleven BPs on human and rat 17β-HSD1, while also analysing the 3D-quntitative structure-activity relationship (3D-QSAR) and the underlying mechanisms. The inhibitory potency of inhibiting human placental 17β-HSD1 was found to be in the order of BP-2 (IC50, 11.42 μM) > BP-1 (14.17 μM) > BP-4 (49.05 μM) > BP-6 (63.49 μM) = BP-8 (63.46 μM) > others. BP-1 and BP-2 markedly inhibited estradiol secretion by human placental BeWo cells at ≥ 1 μM. In contrast, the inhibitory strength of suppressing rat ovarian 17β-HSD1 activity was found to be in the order of BP-2 (IC50, 13.33 μM) > BP-1 (15.09 μM) > BP-4 (22.68 μM) > BP-12 (31.12 μM) > BP-3 (97.11 μM) > BP (119.99 μM) > others. Mode action analysis revealed that these BP compounds acted as mixed inhibitors of both human and rat 17β-HSD1. The introduction of a 4-hydroxyl substitution in the benzene ring was found to markedly increase the inhibitory potency against human and rat 17β-HSD1. BP-1 and BP-2 demonstrated the ability to penetrate human BeWo cells and inhibit estradiol secretion at ≥ 1 μM. Docking analysis revealed that the 2-hydroxyl group of BP-1 and BP-2 forms a hydrogen bond with catalytic residue Ser142 of human 17β-HSD1. 3D-QSAR pharmacophore analysis showed that there are hydrophobic regions and hydrogen bond donor can interact with BPs. In conclusion, this study establishes that BP-2 is the most potent inhibitors of human 17β-HSD1 among the BPs under investigation, highlighting a significant difference in the structure-activity relationship.
Collapse
Affiliation(s)
- Zhuoqi Chen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chaochao Gong
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Shaowei Wang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Han Lu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yang Zhu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Yunbing Tang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Yingfen Ying
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
2
|
Wu X, Zhou C, Wang J, Cao M, Wang L, Liang Y. Reproductive toxicity and parental transmission effects of 4-methylbenzylidene camphor (4-MBC) exposure in adult zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 283:107334. [PMID: 40157257 DOI: 10.1016/j.aquatox.2025.107334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/02/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
4-methylbenzylidene camphor (4-MBC), a commonly used UV absorber, is frequently detected in aquatic environment. So far the reproductive toxicity of parental 4-MBC exposure and its effects on gonadal development in offsprings are not clear. In the present study, male and female adult F0 zebrafish were exposed to 100 nM 4-MBC for 14 consecutive days. Our data showed that 4-MBC exposure resulted in gonadal damage in the parental gonads and decreased egg production in females and sperm viability in males. In addition, exposure to 4-MBC resulted in increased levels of estradiol (E2), follicle stimulating hormone (FSH), and luteinizing hormone (LH) in females and decreased testosterone (T) in males, suggesting the estrogenic and antiandrogenic effects of 4-MBC. Parental 4-MBC exposure did not change the hatchability and mortality of the F1 generation, but caused significantly decreased heart rate and gonadal developmental retardation in 60 dpf fish by interfering with the HPG axis. Therefore, 4-MBC exposure to adult zebrafish caused gonadal damage and reduced reproductive performance in the parental generation, which was sex-dependent and caused intergenerational toxicity to the F1 generation. The present study provides new insights into the ecological risks of 4-MBC and its potential contribution to adverse reproductive outcomes in humans.
Collapse
Affiliation(s)
- Xiaofeng Wu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Chenyu Zhou
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jing Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Mengxi Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
3
|
Sobańska AW, Sobański AM. Organic Sunscreens-Is Their Placenta Permeability the Only Issue Associated with Exposure During Pregnancy? In Silico Studies of Sunscreens' Placenta Permeability and Interactions with Selected Placental Enzymes. Molecules 2024; 29:5836. [PMID: 39769924 PMCID: PMC11728689 DOI: 10.3390/molecules29245836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
One of the functions of placenta is to protect the fetus against harmful xenobiotics. Protective mechanisms of placenta are based on enzymes, e.g., antioxidant enzymes from the glutathione S-transferases group (GST) or human N-acetyltransferase 2 (NAT2). Many organic sunscreens are known to cross biological barriers-they are detected in mother's milk, semen, umbilical cord blood or placental tissues. Some organic sunscreens are able to cross the placenta and to interfere with fetal development; they are known or suspected endocrine disruptors or neurotoxins. In this study, 16 organic sunscreens were investigated in the context of their placenta permeability and interactions with gluthatione S-transferase and human N-acetyltransferase 2 enzymes present in the human placenta. Binary permeability models based on discriminant analysis and artificial neural networks proved that the majority of studied compounds are likely to cross the placenta by passive diffusion. Molecular docking analysis suggested that some sunscreens show stronger affinity for glutathione S-transferase and human N-acetyltransferase 2 that native ligands (glutathione and Coenzyme A for GST and NAT2, respectively)-it is therefore possible that they are able to reduce the enzyme's protective activity. It was established that sunscreens bind to the studied enzymes mainly by alkyl, hydrogen bonds, van der Waals, π-π, π-alkyl and π-sulfur interactions. To conclude, sunscreens may become stressors affecting humans by different mechanisms and at different stages of development.
Collapse
Affiliation(s)
- Anna W. Sobańska
- Department of Analytical Chemistry, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| | | |
Collapse
|
4
|
Kley M, Stücheli S, Ruffiner P, Temml V, Boudon S, Schuster D, Odermatt A. Potential antiandrogenic effects of parabens and benzophenone-type UV-filters by inhibition of 3α-hydroxysteroid dehydrogenases. Toxicology 2024; 509:153997. [PMID: 39532263 DOI: 10.1016/j.tox.2024.153997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/02/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Parabens and UV-filters are frequently used additives in cosmetics and body care products that prolong shelf-life. They are assessed for potential endocrine disrupting properties. Antiandrogenic effects of parabens and benzophenone-type UV-filters by blocking androgen receptor (AR) activity have been reported. Effects on local androgen formation received little attention. Local 5α-dihydrotestosterone (DHT) production with subsequent AR activation is required for male external genitalia formation during embryogenesis. We investigated whether parabens and benzophenone-type UV-filters might cause potential antiandrogenic effects by inhibiting oxidative 3α-hydroxysteroid dehydrogenases (3α-HSDs) involved in the backdoor pathway of DHT formation. Five different 3α-HSDs were assessed for their efficiency to catalyze the 3α-oxidation reaction to form DHT and activate AR. 17β-hydroxysteroid dehydrogenase type 6 (HSD17B6), retinol dehydrogenases type 5 and 16 were further assessed using a radiometric in vitro activity assay to determine the conversion of 5α-androstane-3α-ol-17-one to 5α-androstane-3,17-dione in lysates of overexpressing HEK-293 cells. All parabens tested, except p-hydroxybenzoic acid (a main metabolite) inhibited HSD17B6 activity. Hexyl- and heptylparaben, as well as benzophenone (BP)-1 and BP-2, showed the highest inhibitory potencies, with nanomolar IC50 values. Molecular modeling predicted binding modes for the inhibitory parabens and BPs and provided an explanation for the observed structure-activity-relationship. Our results propose a novel mechanism of antiandrogenic action for commercially used parabens and BP UV-filters by inhibiting HSD17B6 and lowering DHT synthesis. Follow-up studies should assess BP-3 metabolism after topical application and whether the identified inhibitors reach concentrations in liver, testis, or prostate to inhibit HSD17B6, thereby causing antiandrogenic effects.
Collapse
Affiliation(s)
- Manuel Kley
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland; Swiss Centre for Applied Human Toxicology and Department of Pharmaceutical Sciences, University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland
| | - Simon Stücheli
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland
| | - Pamela Ruffiner
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland; Swiss Centre for Applied Human Toxicology and Department of Pharmaceutical Sciences, University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland
| | - Veronika Temml
- Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University, Strubergasse 21, Salzburg 5020, Austria
| | - Stéphanie Boudon
- Swiss Centre for Applied Human Toxicology and Department of Pharmaceutical Sciences, University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland
| | - Daniela Schuster
- Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University, Strubergasse 21, Salzburg 5020, Austria
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland; Swiss Centre for Applied Human Toxicology and Department of Pharmaceutical Sciences, University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland.
| |
Collapse
|
5
|
Ji Z, Chen H, Zheng JI, Yan J, Lu H, He J, Zhu Y, Wang S, Li L, Ge RS, Liu Y. Dithiocarbamate fungicides suppress aromatase activity in human and rat aromatase activity depending on structures: 3D-QSAR analysis and molecular simulation. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:949-970. [PMID: 39475673 DOI: 10.1080/1062936x.2024.2420243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/17/2024] [Indexed: 11/19/2024]
Abstract
Dithiocarbamate fungicides have been widely used in agricultural practices due to their effective control of fungal diseases, thereby contributing to global food security and agricultural productivity. In this study, the inhibitory potency of eight compounds on human and rat aromatase (CYP19A1) activity was evaluated. The results revealed that zineb exhibited the highest inhibitory potency on human CYP19A1 (IC50, 2.79 μM). Maneb (IC50, 3.09 μM), thiram (IC50, 4.76 μM), and ferbam (IC50, 6.04 μM) also demonstrated potent inhibition on human CYP19A1. For the rat CYP19A1, disulfiram (IC50, 1.90 μM) displayed the strongest inhibition followed by maneb (2.16 μM), zineb (2.54 μM), and thiram (6.99 μM). These dithiocarbamates acted as mixed/non-competitive inhibitors of human and rat CYP19A1. Dithiothreitol (DTT), a reducing agent, partially rescued thiram-mediated inhibition when incubated at the same. Moreover, positive correlations were observed between log P, topological polar surface area, molecular weight, and heavy atoms and IC50 values. 3D-QSAR analysis revealed the hydrogen bond acceptor and donor play critical roles in the binding of dithiocarbamates to human CYP19A1. In silico analysis showed that dithiocarbamates bind to the haem binding site, containing Cys437 residues. In conclusion, some dithiocarbamates potently inhibit human and rat CYP19A1 via interacting with haem-binding Cys437 residues.
Collapse
Affiliation(s)
- Z Ji
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - H Chen
- Department of Emergency, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - J I Zheng
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - J Yan
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - H Lu
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - J He
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Y Zhu
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - S Wang
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - L Li
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - R S Ge
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Emergency, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Y Liu
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
6
|
Fu J, Yao Y, Huang Z, Huang J, Zhang D, Li X, Xu J, Xiao Q, Lu S. Prenatal exposure to benzophenone-type UV filters and the associations with neonatal birth outcomes and maternal health in south China. ENVIRONMENT INTERNATIONAL 2024; 189:108797. [PMID: 38838486 DOI: 10.1016/j.envint.2024.108797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/11/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
Benzophenone (BP)-type UV filters are commonly added to sunscreens and cosmetics to protect against UV radiation for human skin and hair. As a result, BPs are ubiquitous in the environment and human body, and their endocrine-disrupting characteristics have been a hot topic of discussion. However, our knowledge regarding the detrimental effects of prenatal exposure to BPs on pregnant women and their offspring remains limited. To fill this gap, we determined five BP derivatives in 600 serum samples obtained from pregnant women. All the target analytes, except 2,4-dihydroxybenzophenone (BP-1), have achieved a 100 % detection rate. The most prevalent compound was 2-hydroxy-4-methoxybenzophenone (BP-3), with a median concentration of 0.545 ng/mL. Significant and positive correlations were observed among BP derivatives, indicating both endogenous metabolism and common external sources. Utilizing Bayesian kernel machine regression (BKMR) and quantile-based g-computation (QGC) models, we found relationships between BP exposure and reduced neonatal birth weight (BW) and birth chest circumference (BC) during the third trimester. Notably, the adverse effect of BPs on birth size was sex-specific. Moreover, triglyceride (TG) was identified as a potential mediator of the effect of BPs on blood pressure, and co-exposure to BPs was linked to disruptions in thyroid hormone levels and glucose regulation. Further research is warranted to unravel the toxicity of BPs and their detrimental effects on pregnant women and fetuses.
Collapse
Affiliation(s)
- Jinfeng Fu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yao Yao
- Genetics Laboratory, Longgang Maternity and Child Institute of Shantou University Medical College, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen 518172, Guangdong, China
| | - Zhihong Huang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jiayin Huang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Duo Zhang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiangyu Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jiayi Xu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Qinru Xiao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
7
|
Hao T, Zhao X, Ji Z, Xia M, Lu H, Sang J, Wang S, Li L, Ge RS, Zhu Q. UV-filter benzophenones suppress human, pig, rat, and mouse 11β-hydroxysteroid dehydrogenase 1: Structure-activity relationship and in silico docking analysis. Comp Biochem Physiol C Toxicol Pharmacol 2024; 281:109900. [PMID: 38518984 DOI: 10.1016/j.cbpc.2024.109900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/13/2024] [Accepted: 03/17/2024] [Indexed: 03/24/2024]
Abstract
Benzophenone chemicals (BPs) have been developed to prevent the adverse effects of UV radiation and they are widely contaminated. 11β-Hydroxysteroid dehydrogenase 1 (11β-HSD1) catalyze the conversion of inactive glucocorticoid to active glucocorticoid, playing critical role in many physiological function. However, the direct effect of BPs on human, pig, rat, and mouse 11β-HSD1 remains unclear. In this study, we screened the inhibitory strength of 12 BPs on 4 species, and performed the structure-activity relationship (SAR) and in silico docking analysis. The inhibitory potency of BPs was: for human 11β-HSD1, BP6 (IC50 = 18.76 μM) > BP8 (40.84 μM) > BP (88.89 μM) > other BPs; for pig 11β-HSD1, BP8 (45.57 μM) > BP6 (59.44 μM) > BP2 (65.12 μM) > BP (135.56 μM) > other BPs; for rat 11β-HSD1, BP7 (67.17 μM) > BP (68.83 μM) > BP8 (133.04 μM) > other BPs; and for mouse 11β-HSD1, BP8 (41.41 μM) > BP (50.61 μM) > other BPs. These BP chemicals were mixed/competitive inhibitors of these 11β-HSD1 enzymes. The 2,2'-dihydroxy substitutions in two benzene rings play a key role in enhancing the effectiveness of inhibiting 11β-HSD1, possibly via increasing hydrogen bond interactions. Docking analysis shows that these BPs bind to NADPH/glucocorticoid binding sites and forms hydrogen bonds with catalytic residues Ser and/or Tyr. In conclusion, this study demonstrates that BP chemicals can inhibit 11β-HSD1 from 4 species, and there are subtle species-dependent difference in the inhibitory strength and structural variations of BPs.
Collapse
Affiliation(s)
- Ting Hao
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education and Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University; Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China
| | - Xin Zhao
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education and Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University; Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China
| | - Zhongyao Ji
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education and Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University; Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China
| | - Miaomiao Xia
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education and Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University; Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China
| | - Han Lu
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jianmin Sang
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education and Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University; Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China
| | - Shaowei Wang
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Linxi Li
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education and Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University; Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China.
| | - Ren-Shan Ge
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education and Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University; Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China; Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Qiqi Zhu
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education and Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University; Wenzhou, Zhejiang 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China; Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
8
|
Wages F, Brandt T, Martin HJ, Herges R, Maser E. Light-switchable diazocines as potential inhibitors of testosterone-synthesizing 17β-hydroxysteroid dehydrogenase 3. Chem Biol Interact 2024; 390:110872. [PMID: 38244963 DOI: 10.1016/j.cbi.2024.110872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/24/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
In patients with prostate carcinoma as well as in some other cancer types, the reduction of testosterone levels is desired because the hormone stimulates cancer cell growth. One molecular target for this goal is the inhibition of 17β-hydroxysteroid dehydrogenase type 3 (17βHSD3), which produces testosterone from its direct precursor androstenedione. Recent research in this field is trying to harness photopharmacological properties of certain compounds so that the inhibitory effect could be turned on and off by irradiation. Seven new light-switchable diazocines were investigated with regard to their inhibition of 17βHSD3. For this purpose, transfected HEK-293 cells and isolated microsomes were treated with the substrate and the potential inhibitors with and without irradiation for an incubation period of 3 or 5 h. The amount of generated testosterone was measured by UHPLC and compared between samples and control as well as between irradiated and non-irradiated samples. There was no significant difference between samples with and without irradiation. However, four of the seven diazocines led to a significantly lower testosterone production both in cell and in microsome assays. In some of the irradiated samples, a partial destruction of the diazocines was observed, indicated by an additional UHPLC peak. However, the influence on the inhibition is negligible, because the majority of the substance remained intact. In conclusion, new inhibitors of 17βHSD3 have been found, but so far without the feature of a light switch, since the configurational alteration of the diazocines by irradiation did not lead to a change in bioactivity. Further modification might help to find a light-switching molecule that inhibits only in one configuration.
Collapse
Affiliation(s)
- F Wages
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Str. 10, 24105 Kiel, Germany
| | - T Brandt
- Otto Diels Institute of Organic Chemistry, Christian-Albrecht University of Kiel, Otto Hahn Platz 4, 24118 Kiel, Germany
| | - H-J Martin
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Str. 10, 24105 Kiel, Germany
| | - R Herges
- Otto Diels Institute of Organic Chemistry, Christian-Albrecht University of Kiel, Otto Hahn Platz 4, 24118 Kiel, Germany
| | - E Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Str. 10, 24105 Kiel, Germany.
| |
Collapse
|
9
|
Broniowska Ż, Tomczyk I, Grzmil P, Bystrowska B, Skórkowska A, Maciejska A, Kazek G, Budziszewska B. Benzophenone-2 exerts reproductive toxicity in male rats. Reprod Toxicol 2023; 120:108450. [PMID: 37543253 DOI: 10.1016/j.reprotox.2023.108450] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
Benzophenone derivatives such as benzophenone-2 (BP-2) belong to the group of endocrine disrupting compounds (EDCs). Increased exposure to EDCs is considered to be an important factor behind the decline of human fertility. The main aim of the present study was to determine the effect of BP-2 on testicular function specified by sperm analysis, the level of sex hormones and their receptors. Since BP-2 has been shown to activate the immune system, another aim of the research was to verify the hypothesis that the immune system may be contributing to the testis toxicity of this compound and for this purpose changes in macrophage and lymphocyte populations in the testes were determined. BP-2 at a dose of 100 mg/kg was administered dermally, twice daily at a dose of 100 mg/kg for 4-weeks. It was shown that BP-2 reduced the number and motility of sperm and increased the number of sperm showing morphological changes. By determining the concentration of sex hormones, a significant decrease in testosterone levels and an increase in the blood levels of 17β-estradiol were demonstrated. Similar to the results obtained from the blood samples, testosterone levels in the testes were lowered, which could affect sperm parameters. The effect of BP-2 on lowering testosterone levels and the number of sperm cells may be due to immunoactivation in the testes, because it has been detected that this compound significantly decreased the number of the immunosuppressive resident testicular macrophages (TMs) (CD68-CD163+), but increased pro-inflammatory TMs with monocyte-like properties (CD68+CD163-).
Collapse
Affiliation(s)
- Żaneta Broniowska
- Department of Biochemical Toxicology Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, PL, Poland.
| | - Igor Tomczyk
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Paweł Grzmil
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Beata Bystrowska
- Department of Biochemical Toxicology Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, PL, Poland
| | - Alicja Skórkowska
- Department of Biochemical Toxicology Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, PL, Poland
| | - Alicja Maciejska
- Department of Biochemical Toxicology Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, PL, Poland
| | - Grzegorz Kazek
- Department of Pharmacodynamics, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland
| | - Bogusława Budziszewska
- Department of Biochemical Toxicology Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, PL, Poland
| |
Collapse
|
10
|
Lin H, Wang S, Tang Y, Hu Z, Chen X, Li H, Zhu Y, Wang Y, Liu Y, Ge RS. Benzophenone-type ultraviolet filters inhibit human and rat placental 3β-hydroxysteroid dehydrogenases: structure-activity relationship and in silico docking analysis. Toxicol Lett 2023:S0378-4274(23)00182-0. [PMID: 37217011 DOI: 10.1016/j.toxlet.2023.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Benzophenones (BPs) are a class of chemicals found in various personal care and cosmetic products, such as sunscreens and lotions. Their usage is known to cause reproductive and hormonal health risks, but the exact mechanism of action remains unknown. In this study, we investigated the effect of BPs on human and rat placental 3β-hydroxysteroid dehydrogenases (3β-HSDs), which play a crucial role in the biosynthesis of steroid hormones, particularly progesterone. We tested inhibitory effects of 12 BPs, and performed structure-activity relationship (SAR) and in silico docking analysis. The potency of BPs to inhibit human 3β-HSD1 (h3β-HSD1) is BP-1 (IC50, 8.37 μM)>BP-2 (9.06 μM)>BP-12 (94.24 μM)>BP-7 (1160 μM) >BP-6 (1257 μM) >BP-6 (1410 μM) > other BPs (ineffective at 100 μM). The potency of BPs on rat r3β-HSD4 is BP-1 (IC50, 4.31 μM)>BP-2 (117.3 μM)>BP-6 (669 μM) >BP-3 (820 μM)>other BPs (ineffective at 100 μM). BP-1, BP-2, and BP-12 are mixed h3β-HSD1 inhibitors and BP-1 is a mixed r3β-HSD4 inhibitor. LogP, lowest binding energy, and molecular weight were positively associated with IC50 for h3β-HSD1, while LogS was negatively associated with IC50. The 4-OH substitution in the benzene ring play a key role in enhancing the effectiveness of inhibiting h3β-HSD1 and r3β-HSD4, possibly through increasing water solubility and decreasing lipophilicity by forming hydrogen bonds. BP-1 and BP-2 inhibited progesterone production in human JAr cells. Docking analysis shows that 2-OH of BP-1 forms hydrogen bond with catalytic residue Ser125 of h3β-HSD1 and Thr125 of r3β-HSD4. In conclusion, this study demonstrates that BP-1 and BP-2 are moderate inhibitors of h3β-HSD1 and BP-1 is moderate inhibitor of r3β-HSD4. There is a significant SAR difference for 3β-HSD homologues between BPs and distinct species-dependent inhibition of placental 3β-HSDs.
Collapse
Affiliation(s)
- Hao Lin
- Department of Anaesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Shaowei Wang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yunbing Tang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhiyan Hu
- Department of Anaesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaofang Chen
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, 325000, Zhejiang Province, China
| | - Huitao Li
- Department of Anaesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yang Zhu
- Department of Anaesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yiyan Wang
- Department of Anaesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Ren-Shan Ge
- Department of Anaesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, 325000, Zhejiang Province, China.
| |
Collapse
|
11
|
Barros B, Oliveira M, Morais S. Biomonitoring of firefighting forces: a review on biomarkers of exposure to health-relevant pollutants released from fires. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:127-171. [PMID: 36748115 DOI: 10.1080/10937404.2023.2172119] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Occupational exposure as a firefighter has recently been classified as a carcinogen to humans by International Agency for Research on Cancer (IARC). Biomonitoring has been increasingly used to characterize exposure of firefighting forces to contaminants. However, available data are dispersed and information on the most relevant and promising biomarkers in this context of firefighting is missing. This review presents a comprehensive summary and critical appraisal of existing biomarkers of exposure including volatile organic compounds such as polycyclic aromatic hydrocarbons, several other persistent other organic pollutants as well as heavy metals and metalloids detected in biological fluids of firefighters attending different fire scenarios. Urine was the most characterized matrix, followed by blood. Firefighters exhaled breath and saliva were poorly evaluated. Overall, biological levels of compounds were predominantly increased in firefighters after participation in firefighting activities. Biomonitoring studies combining different biomarkers of exposure and of effect are currently limited but exploratory findings are of high interest. However, biomonitoring still has some unresolved major limitations since reference or recommended values are not yet established for most biomarkers. In addition, half-lives values for most of the biomarkers have thus far not been defined, which significantly hampers the design of studies. These limitations need to be tackled urgently to improve risk assessment and support implementation of better more effective preventive strategies.
Collapse
Affiliation(s)
- Bela Barros
- REQUIMTE-LAQV,Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Marta Oliveira
- REQUIMTE-LAQV,Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Simone Morais
- REQUIMTE-LAQV,Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| |
Collapse
|
12
|
Harmonized human biomonitoring in European children, teenagers and adults: EU-wide exposure data of 11 chemical substance groups from the HBM4EU Aligned Studies (2014-2021). Int J Hyg Environ Health 2023; 249:114119. [PMID: 36773580 DOI: 10.1016/j.ijheh.2023.114119] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/19/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023]
Abstract
As one of the core elements of the European Human Biomonitoring Initiative (HBM4EU) a human biomonitoring (HBM) survey was conducted in 23 countries to generate EU-wide comparable HBM data. This survey has built on existing HBM capacity in Europe by aligning national or regional HBM studies, referred to as the HBM4EU Aligned Studies. The HBM4EU Aligned Studies included a total of 10,795 participants of three age groups: (i) 3,576 children aged 6-12 years, (ii) 3,117 teenagers aged 12-18 years and (iii) 4,102 young adults aged 20-39 years. The participants were recruited between 2014 and 2021 in 11-12 countries per age group, geographically distributed across Europe. Depending on the age group, internal exposure to phthalates and the substitute DINCH, halogenated and organophosphorus flame retardants, per- and polyfluoroalkyl substances (PFASs), cadmium, bisphenols, polycyclic aromatic hydrocarbons (PAHs), arsenic species, acrylamide, mycotoxins (deoxynivalenol (total DON)), benzophenones and selected pesticides was assessed by measuring substance specific biomarkers subjected to stringent quality control programs for chemical analysis. For substance groups analyzed in different age groups higher average exposure levels were observed in the youngest age group, i.e., phthalates/DINCH in children versus teenagers, acrylamide and pesticides in children versus adults, benzophenones in teenagers versus adults. Many biomarkers in teenagers and adults varied significantly according to educational attainment, with higher exposure levels of bisphenols, phthalates, benzophenones, PAHs and acrylamide in participants (from households) with lower educational attainment, while teenagers from households with higher educational attainment have higher exposure levels for PFASs and arsenic. In children, a social gradient was only observed for the non-specific pyrethroid metabolite 3-PBA and di-isodecyl phthalate (DiDP), with higher levels in children from households with higher educational attainment. Geographical variations were seen for all exposure biomarkers. For 15 biomarkers, the available health-based HBM guidance values were exceeded with highest exceedance rates for toxicologically relevant arsenic in teenagers (40%), 3-PBA in children (36%), and between 11 and 14% for total DON, Σ (PFOA + PFNA + PFHxS + PFOS), bisphenol S and cadmium. The infrastructure and harmonized approach succeeded in obtaining comparable European wide internal exposure data for a prioritized set of 11 chemical groups. These data serve as a reference for comparison at the global level, provide a baseline to compare the efficacy of the European Commission's chemical strategy for sustainability and will give leverage to national policy makers for the implementation of targeted measures.
Collapse
|
13
|
Wang M, Yu Y, Tang Y, Pan C, Fei Q, Hu Z, Li H, Zhu Y, Wang Y, Ge RS. Benzophenone-1 and -2 UV-filters potently inhibit human, rat, and mouse gonadal 3β-hydroxysteroid dehydrogenases: Structure-activity relationship and in silico docking analysis. J Steroid Biochem Mol Biol 2023; 230:106279. [PMID: 36871834 DOI: 10.1016/j.jsbmb.2023.106279] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/19/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Benzophenone (BP) ultraviolet (UV) -filters have been widely used to prevent adverse effects of UV. Whether they can disrupt gonadal steroidogenesis remains unclear. Gonadal 3β-hydroxysteroid dehydrogenases (3β-HSD) catalyse the conversion of pregnenolone to progesterone. This study explored the effect of 12 BPs on human, rat, and mouse 3β-HSD isoforms, and analysed the structure-activity relationship (SAR) and underlying mechanisms. The inhibitory potency was BP-1 (IC50, 5.66 ± 0.95 μM) > BP-2 (5.84 ± 2.22 μM) > BP-6 (185.8 ± 115.2 μM) > BP3-BP12 on human KGN 3β-HSD2, BP-2 (5.90 ± 1.02 μM) > BP-1 (7.55 ± 1.26 μM) > BP3-B12 on rat testicular 3β-HSD1, and BP-1 (15.04 ± 5.20 μM) > BP-2 (22.64 ± 11.81 μM) > BP-6(125.1 ± 34.65 μM)> BP-7 (161.1 ± 102.4 μM) > other BPs on mouse testicular 3β-HSD6. BP-1 is a mixed inhibitor of human, rat, and mouse 3β-HSDs, and BP-2 is a mixed inhibitor of human and rat 3β-HSDs and a noncompetitive inhibitor of mouse 3β-HSD6. 4-Hydroxyl substitution in the benzene ring plays a key role in enhancing potency of inhibiting human, rat, and mouse gonadal 3β-HSDs. BP-1 and BP-2 can penetrate human KGN cells to inhibit progesterone secretion at ≥ 10 μM. Docking analysis revealed that the 4-hydroxyl group of BP-1 and BP-2 forms hydrogen bonds with residue Ser123 of human 3β-HSD2 and residue Asp127 of rat 3β-HSD1. In conclusion, this study demonstrates that BP-1 and BP-2 are the most potent inhibitors of human, rat, and mouse gonadal 3β-HSDs and that there is a significant SAR difference.
Collapse
Affiliation(s)
- Mengyun Wang
- Department of Anaesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yang Yu
- Department of Anaesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yunbing Tang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chengshuang Pan
- Department of Anaesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Reproductive Medicine Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qianjin Fei
- Reproductive Medicine Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhiyan Hu
- Department of Anaesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Huitao Li
- Department of Anaesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yang Zhu
- Department of Anaesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yiyan Wang
- Department of Anaesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Ren-Shan Ge
- Department of Anaesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
14
|
Qi Y, Zou M, Ajarem JS, Allam AA, Wang Z, Qu R, Zhu F, Huo Z. Catalytic degradation of pharmaceutical and personal care products in aqueous solution by persulfate activated with nanoscale FeCoNi-ternary mixed metal oxides. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
15
|
Ben Rhouma B, Kley M, Kallabi F, Kacem FH, Kammoun T, Safi W, Keskes L, Mnif M, Odermatt A, Belguith N. Molecular mechanisms underlying the defects of two novel mutations in the HSD17B3 gene found in the Tunisian population. J Steroid Biochem Mol Biol 2023; 227:106235. [PMID: 36563763 DOI: 10.1016/j.jsbmb.2022.106235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
17β-hydroxysteroid dehydrogenase type 3 (17β-HSD3) converts Δ4-androstene-3,17-dione (androstenedione) to testosterone. It is expressed almost exclusively in the testes and is essential for appropriate male sexual development. More than 70 mutations in the HSD17B3 gene that cause 17β-HSD3 deficiency and result in 46,XY Disorders of Sex Development (46,XY DSD) have been reported. This study describes three novel Tunisian cases with mutations in HSD17B3. The first patient is homozygous for the previously reported mutation p.C206X. The inheritance of this mutation seemed to be independent of consanguineous marriage, which can be explained by its high frequency in the Tunisian population. The second patient has a novel splice site mutation in intron 6 at position c.490 -6 T > C. A splicing assay revealed a complete omission of exon 7 in the resulting HSD17B3 mRNA transcript. Skipping of exon 7 in HSD17B3 is predicted to cause a frame shift in exon 8 that affects the catalytic site and results in a truncation in exon 9, leading to an inactive enzyme. The third patient is homozygous for the novel missense mutation p.K202M, representing the first mutation identified in the catalytic tetrad of 17β-HSD3. Site-directed mutagenesis and enzyme activity measurements revealed a completely abolished 17β-HSD3 activity of the p.K202M mutant, despite unaffected protein expression, compared to the wild-type enzyme. Furthermore, the present study emphasizes the importance of genetic counselling, detabooization of 46,XY DSD, and a sensitization of the Tunisian population for the risks of consanguineous marriage.
Collapse
Affiliation(s)
- Bochra Ben Rhouma
- Human Molecular Genetics Laboratory, Faculty of Medicine, 3029 Sfax, Tunisia; Higher Institute of Nursing, M. Ali Street, 4000 Gabes, Tunisia.
| | - Manuel Kley
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; Swiss Centre for Applied Human Toxicology and Department of Pharmaceutical Sciences, University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland.
| | - Fakhri Kallabi
- Human Molecular Genetics Laboratory, Faculty of Medicine, 3029 Sfax, Tunisia.
| | - Faten Hadj Kacem
- Department of Endocrinology, Hedi Chaker Hospital, 3029 Sfax, Tunisia.
| | - Thouraya Kammoun
- Department of Pediatrics, Hedi Chaker Hospital, 3029 Sfax, Tunisia.
| | - Wajdi Safi
- Department of Endocrinology, Hedi Chaker Hospital, 3029 Sfax, Tunisia.
| | - Leila Keskes
- Human Molecular Genetics Laboratory, Faculty of Medicine, 3029 Sfax, Tunisia.
| | - Mouna Mnif
- Department of Endocrinology, Hedi Chaker Hospital, 3029 Sfax, Tunisia.
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; Swiss Centre for Applied Human Toxicology and Department of Pharmaceutical Sciences, University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland.
| | - Neila Belguith
- Human Molecular Genetics Laboratory, Faculty of Medicine, 3029 Sfax, Tunisia; Department of Congenital and Hereditary Diseases, 1010 Charles Nicolles Hospital, Tunis, Tunisia.
| |
Collapse
|
16
|
Mustieles V, Balogh RK, Axelstad M, Montazeri P, Márquez S, Vrijheid M, Draskau MK, Taxvig C, Peinado FM, Berman T, Frederiksen H, Fernández MF, Marie Vinggaard A, Andersson AM. Benzophenone-3: Comprehensive review of the toxicological and human evidence with meta-analysis of human biomonitoring studies. ENVIRONMENT INTERNATIONAL 2023; 173:107739. [PMID: 36805158 DOI: 10.1016/j.envint.2023.107739] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Benzophenone-3 (BP-3) and its major metabolite benzophenone-1 (BP-1) are widely used as UV filters in sunscreens and cosmetics to prevent sunburn and skin damage, or as stabilizers to prevent photodegradation in many commercial products. As a result, their presence is ubiquitous in the environment, wildlife and humans. Based on endocrine disruption concerns, international regulatory agencies are performing a closer evaluation. OBJECTIVE AND METHODS This work aimed to comprehensively review the available human relevant evidence for safety issues in MEDLINE/PubMed in order to create a structured database of studies, as well as to conduct an integrative analysis as part of the Human Biomonitoring for Europe (HBM4EU) Initiative. RESULTS A total of 1,635 titles and abstracts were screened and 254 references were evaluated and tabulated in detail, and classified in different categories: i) exposure sources and predictors; ii) human biomonitoring (HBM) exposure levels to perform a meta-analysis; iii) toxicokinetic data in both experimental animals and humans; iv) in vitro and in vivo rodent toxicity studies; and v) human data on effect biomarkers and health outcomes. Our integrative analysis showed that internal peak BP-3 concentrations achieved after a single whole-body application of a commercially available sunscreen (4% w/w) may overlap with concentrations eliciting endocrine disrupting effects in vitro, and with internal concentrations causing in vivo adverse female reproductive effects in rodents that were supported by still limited human data. The adverse effects in rodents included prolonged estrous cycle, altered uterine estrogen receptor gene expression, endometrium hyperplasia and altered proliferation and histology of the mammary gland, while human data indicated menstrual cycle hormonal alterations and increased risk of uterine fibroids and endometriosis. Among the modes of action reported (estrogenic, anti-androgenic, thyroid, etc.), BP-3 and especially BP-1 showed estrogenic activity at human-relevant concentrations, in agreement with the observed alterations in female reproductive endpoints. The meta-analysis of HBM studies identified a higher concern for North Americans, showing urinary BP-3 concentrations on average 10 and 20 times higher than European and Asian populations, respectively. DISCUSSION AND CONCLUSIONS Our work supports that these benzophenones present endocrine disrupting properties, endorsing recent European regulatory efforts to limit human exposure. The reproducible and comprehensive database generated may constitute a point of departure in future risk assessments to support regulatory initiatives. Meanwhile, individuals should not refrain from sunscreen use. Commercially available formulations using inorganic UV filters that are practically not absorbed into systemic circulation may be recommended to susceptible populations.
Collapse
Affiliation(s)
- Vicente Mustieles
- University of Granada, Biomedical Research Center (CIBM), Granada, Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain.
| | - Ria K Balogh
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Marta Axelstad
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Parisa Montazeri
- CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sandra Márquez
- CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Martine Vrijheid
- CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Monica K Draskau
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Camilla Taxvig
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Francisco M Peinado
- University of Granada, Biomedical Research Center (CIBM), Granada, Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Granada, Spain
| | - Tamar Berman
- Department of Environmental Health, Ministry of Health, Jerusalem 9101002, Israel
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Mariana F Fernández
- University of Granada, Biomedical Research Center (CIBM), Granada, Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain.
| | | | - Anna-Maria Andersson
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
17
|
Perfetti-Bolaño A, Muñoz K, Kolok AS, Araneda A, Barra RO. Analysis of the contribution of locally derived wastewater to the occurrence of Pharmaceuticals and Personal Care Products in Antarctic coastal waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158116. [PMID: 35988631 DOI: 10.1016/j.scitotenv.2022.158116] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Pharmaceuticals and Personal Care Products (PPCPs) are emerging pollutants detected in many locations of the world including Antarctica. The main objective of this review is to discuss the influence of the human population on the concentration, distribution and biological effects of PPCPs across the Antarctic coastal marine ecosystem. We carried out a review of the scientific articles published for PPCPs in Antarctic, supported by the information of the Antarctic stations reported by Council of Managers of National Antarctic Programs (CONMAP), Scientific Committee on Antarctic Research (SCAR) and Secretariat of the Antarctic Treaty (ATS). In addition, spatial data regarding the Antarctic continent was obtained from Quantarctica. Antarctic concentrations of PPCPs were more reflective of the treatment system used by research stations as opposed to the infrastructure built or the annual occupancy by station. The main problem is that most of the research stations lack tertiary treatment, resulting in elevated concentrations of PPCPs in effluents. Furthermore, the geographic distribution of Antarctic field stations in coastal areas allows for the release of PPCPs, directly into the sea, a practice that remains in compliance with the current Protocol. After their release, PPCPs can become incorporated into sea ice, which can then act as a chemical reservoir. In addition, there is no clarity on the effects on the local biota. Finally, we recommend regulating the entry and use of PPCPs in Antarctica given the difficulties of operating, and in some cases the complete absence of appropriate treatment systems. Further studies are needed on the fate, transport and biological effects of PPCPs on the Antarctic biota. It is recommended that research efforts be carried out in areas inhabited by humans to generate mitigation measures relative to potential adverse impacts. Tourism should be also considered in further studies due the temporal release of PPCPs.
Collapse
Affiliation(s)
- Alessandra Perfetti-Bolaño
- Facultad de Ciencias Ambientales y Centro EULA-Chile, Universidad de Concepción, Concepción 4070386, Chile.
| | - Katherine Muñoz
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau 76829, Germany
| | - Alan S Kolok
- Idaho Water Resources Research Institute, University of Idaho, 875 Perimeter Drive, MS 3002, Moscow, ID 83843, USA
| | - Alberto Araneda
- Facultad de Ciencias Ambientales y Centro EULA-Chile, Universidad de Concepción, Concepción 4070386, Chile
| | - Ricardo O Barra
- Facultad de Ciencias Ambientales y Centro EULA-Chile, Universidad de Concepción, Concepción 4070386, Chile; Instituto Milenio en Socio Ecología-Costera (SECOS), Santiago, Chile
| |
Collapse
|
18
|
Tao Z, Wang Z, Zhu S, Wang S, Wang Z. Associations between benzophenone-3 and sex steroid hormones among United States adult men. Reprod Toxicol 2022; 114:44-51. [DOI: 10.1016/j.reprotox.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
|
19
|
Review on photoprotection: a clinician’s guide to the ingredients, characteristics, adverse effects, and disease-specific benefits of chemical and physical sunscreen compounds. Arch Dermatol Res 2022; 315:735-749. [PMID: 36443500 DOI: 10.1007/s00403-022-02483-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 09/15/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
Photoprotection is a critical health prevention strategy to reduce the deleterious effects of ultraviolet radiation (UVR) and visible light (VL). Methods of photoprotection are reviewed in this paper, with an emphasis on sunscreen. The most appropriate sunscreen formulation for personal use depends on several factors. Active sunscreen ingredients vary in their protective effect over the UVR and VL spectrum. There are dermatologic diseases that cause photosensitivity or that are aggravated by a particular action spectrum. In these situations, sunscreen suggestions can address the specific concern. Sunscreen does not represent a single entity. Appropriate personalized sunscreen selection is critical to improve compliance and clinical outcomes. Health care providers can facilitate informed product selection with awareness of evolving sunscreen formulations and counseling patients on appropriate use. This review aims to summarize different forms of photoprotection, discuss absorption of sunscreen ingredients, possible adverse effects, and disease-specific preferences for chemical, physical or oral agents that may decrease UVR and VL harmful effects.
Collapse
|
20
|
Tian K, Meng Q, Li S, Chang M, Meng F, Yu Y, Li H, Qiu Q, Shao J, Huo H. Mechanism of 17β-estradiol degradation by Rhodococcus equi via the 4,5-seco pathway and its key genes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120021. [PMID: 36037852 DOI: 10.1016/j.envpol.2022.120021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Steroid estrogens have been detected in oceans, rivers, lakes, groundwaters, soils, and even urban water supply systems, thereby inevitably imposing serious impacts on human health and ecological safety. Indeed, many estrogen-degrading bacterial strains and degradation pathways have been reported, with the 4,5-seco pathway being particularly important. However, few studies have evaluated the use of the 4,5-seco pathway by actinomycetes to degrade 17β-estradiol (E2). In this study, 5 genes involved in E2 degradation were identified in the Rhodococcus equi DSSKP-R-001 (R-001) genome and then heterologously expressed to confirm their functions. The transformation of E2 with hsd17b14 reached 63.7% within 30 h, resulting in transformation into estrone (E1). Furthermore, we found that At1g12200-encoded flavin-binding monooxygenase (FMOAt1g12200) can transform E1 at a rate of 51.6% within 30 h and can transform E1 into 4-hydroxyestrone (4-OH E1). In addition, catA and hsaC genes were identified to further transform 4-OH E1 at a rate of 97-99%, and this reaction was accomplished by C-C cleavage at the C4 position of the A ring of 4-OH E1. This study represents the first report on the roles of these genes in estrogen degradation and provides new insights into the mechanisms of microbial estrogen metabolism and a better understanding of E2 degradation via the 4,5-seco pathway by actinomycetes.
Collapse
Affiliation(s)
- Kejian Tian
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Qi Meng
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Shuaiguo Li
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Menghan Chang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Fanxing Meng
- Jilin Province Water Resources and Hydropower Consultative Company of PR China, Changchun City, Jilin Province, China
| | - Yue Yu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Han Li
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Qing Qiu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Junhua Shao
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Hongliang Huo
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China; Jilin Province Laboratory of Water Pollution Control and Resource Engineering, Changchun, 130117, China.
| |
Collapse
|
21
|
Li ZM, Kannan K. Comprehensive Survey of 14 Benzophenone UV Filters in Sunscreen Products Marketed in the United States: Implications for Human Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12473-12482. [PMID: 35951380 DOI: 10.1021/acs.est.2c03885] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Benzophenone (BP)-type ultraviolet (UV) filters are estrogenic chemicals used extensively in sunscreen products, leading to concerns over human exposure. To assess exposure to BP derivatives in sunscreens, we tested 14 BP UV filters in 50 products representing 44 brands marketed in the United States in 2021, finding BP, 2-hydroxy-4-methoxybenzophenone (BP-3 or oxybenzone), 2,2'-dihydroxy-4-methoxybenzophenone (BP-8), 2-hydroxy-4-methoxy-4'-methylbenzophenone (BP-10), 2,3,4-trihydroxybenzophenone (2,3,4-OH-BP), and 4-methylbenzophenone (4-Me-BP) in ≥70% of the samples. The geometric mean (GM) concentration of the sum of these BPs (∑14BPs) in the 50 products was 6600 ng/g. BP-3 was the predominant BP in oxybenzone-containing products (accounting for >99% of the total concentration), with a concentration 5-6 orders of magnitude higher than that in "oxybenzone-free" products (GM: 35 600 000 vs 113 ng/g). BP was present in >90% of products analyzed, including those labeled "oxybenzone-free" (GM: 2100 ng/g). BP concentrations were ∼100-fold higher in octocrylene-containing vs "octocrylene-free" products (GM: 15900 vs 151 ng/g). Dermal exposure doses of BP-3 from oxybenzone-containing products (GM: 4140 000 ng/kg body weight (BW)/day) and of BP in some (24%) octocrylene-containing products (GM: 12 200 ng/kg BW/day) were above reference values (2 000 000 and 30 000 ng/kg BW/day for BP-3 and BP, respectively). This study provides evidence that BP and BP-3 concentrations in sunscreen products vary widely and may be noteworthy even in products labeled oxybenzone- or octocrylene-free, making dermal exposure a continuing concern.
Collapse
Affiliation(s)
- Zhong-Min Li
- Department of Pediatrics, New York University Grossman School of Medicine, New York, New York 10016, United States
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, New York 10016, United States
| | - Kurunthachalam Kannan
- Department of Pediatrics, New York University Grossman School of Medicine, New York, New York 10016, United States
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, New York 10016, United States
| |
Collapse
|
22
|
Klančič V, Gobec M, Jakopin Ž. Halogenated ingredients of household and personal care products as emerging endocrine disruptors. CHEMOSPHERE 2022; 303:134824. [PMID: 35525453 DOI: 10.1016/j.chemosphere.2022.134824] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
The everyday use of household and personal care products (HPCPs) generates an enormous amount of chemicals, of which several groups warrant additional attention, including: (i) parabens, which are widely used as preservatives; (ii) bisphenols, which are used in the manufacture of plastics; (iii) UV filters, which are essential components of many cosmetic products; and (iv) alkylphenol ethoxylates, which are used extensively as non-ionic surfactants. These chemicals are released continuously into the environment, thus contaminating soil, water, plants and animals. Wastewater treatment and water disinfection procedures can convert these chemicals into halogenated transformation products, which end up in the environment and pose a potential threat to humans and wildlife. Indeed, while certain parent HPCP ingredients have been confirmed as endocrine disruptors, less is known about the endocrine activities of their halogenated derivatives. The aim of this review is first to examine the sources and occurrence of halogenated transformation products in the environment, and second to compare their endocrine-disrupting properties to those of their parent compounds (i.e., parabens, bisphenols, UV filters, alkylphenol ethoxylates). Albeit previous reports have focused individually on selected classes of such substances, none have considered the problem of their halogenated transformation products. This review therefore summarizes the available research on these halogenated compounds, highlights the potential exposure pathways, and underlines the existing knowledge gaps within their toxicological profiles.
Collapse
Affiliation(s)
- Veronika Klančič
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Martina Gobec
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Žiga Jakopin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
23
|
Yang Y, Ako-Adounvo AM, Wang J, Coelho SG, Adah SA, Matta MK, Strauss D, Michele TM, Wang J, Faustino PJ, O’Connor T, Ashraf M. In Vitro Testing of Sunscreens for Dermal Absorption: Method Comparison and Rank Order Correlation with In Vivo Absorption. AAPS PharmSciTech 2022; 23:121. [PMID: 35459978 DOI: 10.1208/s12249-022-02275-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
Evaluating the dermal absorption of sunscreen UV filters requires the development of a bio-predictable in vitro permeation test (IVPT). This work describes the comparison of two IVPT methods and rank order correlations of in vitro absorption (skin permeation and retention) with the in vivo absorption (AUC and skin retention) of sunscreens. The IVPT was compared regarding the following elements: (1) application of a single finite dose vs. an infinite dose and (2) the use of heat-separated human epidermis vs. dermatomed skin models. The IVPT was used to evaluate dermal absorption of six UV filters (avobenzone, homosalate, octinoxate, octisalate, octocrylene, and oxybenzone) in commercial sunscreens. Both the in vivo and in vitro permeation studies demonstrated that all UV filters were absorbed following a single-dose application. Sunscreens were rank ordered by the amount of the UV filters absorbed. Data obtained from the IVPT method using a single finite dose and heat-separated human epidermis was found to correlate with the clinical data. Rank orders of the cumulative in vitro skin permeation and the in vivo AUC were found comparable for oxybenzone, homosalate, octisalate, and octinoxate. Rank orders of the in vitro and in vivo skin retention of oxybenzone and octinoxate were also comparable. Additional IVPT parameters may be optimized to enhance the discriminatory power for UV filters with low skin permeation potential (e.g., avobenzone and octocrylene).
Collapse
|
24
|
Zou M, Qi Y, Qu R, Al-Basher G, Pan X, Wang Z, Huo Z, Zhu F. Effective degradation of 2,4-dihydroxybenzophenone by zero-valent iron powder (Fe 0)-activated persulfate in aqueous solution: Kinetic study, product identification and theoretical calculations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144743. [PMID: 33540164 DOI: 10.1016/j.scitotenv.2020.144743] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/06/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
2,4-Dihydroxybenzophenone (BP-1), a typically known derivative of the benzophenone-type UV filter, has been frequently detected in aqueous environments and poses a potential risk to human health and the entire ecosystem. In this study, an effective advanced oxidation technique using zero-valent iron powder (Fe0)-activated persulfate (PS) was used for the degradation of BP-1. The effects of several experimental parameters, including Fe0 dosages, PS dosages, pH, and common natural water constituents, were systematically investigated. The BP-1 degradation efficiency was enhanced by increasing the Fe0 and PS dosages and decreasing the solution pH. The presence of different concentrations of humic acid (HA) could inhibit BP-1 removal, while the addition of various cations and anions had different effects on the degradation. Moreover, the degradation of BP-1 in five water matrices was also compared, and the removal rates followed the order of ultrapure water > tap water > secondary clarifier effluent > river water > synthetic water. Thirteen oxidation products were identified by liquid chromatography-time-of-flight-mass spectrometry (LC-TOF-MS) analysis, and five possible degradation pathways were proposed. The addition reactions initiated by HO and SO4-, as well as single-electron coupling reactions and ring-closing reactions, were further supported by density functional theory (DFT) calculations. Assessment of toxicity of intermediates of the oxidation of BP-1 suggested decreased toxicity from the parent contaminant. The present work illustrates that BP-1 could be efficiently degraded in the Fe0/PS system, which may provide new insights into the removal of benzophenones in water and wastewater.
Collapse
Affiliation(s)
- Mengting Zou
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yumeng Qi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Gadah Al-Basher
- King Saud University, College of Science, Zoology Department, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Xiaoxue Pan
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| | - Zongli Huo
- Jiangsu Provincial Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing 210009, Jiangsu, PR China
| | - Feng Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing 210009, Jiangsu, PR China.
| |
Collapse
|
25
|
Teixeira TR, Rangel KC, Tavares RSN, Kawakami CM, Dos Santos GS, Maria-Engler SS, Colepicolo P, Gaspar LR, Debonsi HM. In Vitro Evaluation of the Photoprotective Potential of Quinolinic Alkaloids Isolated from the Antarctic Marine Fungus Penicillium echinulatum for Topical Use. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:357-372. [PMID: 33811268 DOI: 10.1007/s10126-021-10030-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Marine-derived fungi proved to be a rich source of biologically active compounds. The genus Penicillium has been extensively studied regarding their secondary metabolites and biological applications. However, the photoprotective effects of these metabolites remain underexplored. Herein, the photoprotective potential of Penicillium echinulatum, an Antarctic alga-associated fungus, was assessed by UV absorption, photostability study, and protection from UVA-induced ROS generation assay on human immortalized keratinocytes (HaCaT) and reconstructed human skin (RHS). The photosafety was evaluated by the photoreactivity (OECD TG 495) and phototoxicity assays, performed by 3T3 neutral red uptake (3T3 NRU PT, OECD TG 432) and by the RHS model. Through a bio-guided purification approach, four known alkaloids, (-)-cyclopenin (1), dehydrocyclopeptine (2), viridicatin (3), and viridicatol (4), were isolated. Compounds 3 and 4 presented absorption in UVB and UVA-II regions and were considered photostable after UVA irradiation. Despite compounds 3 and 4 showed phototoxic potential in 3T3 NRU PT, no phototoxicity was observed in the RHS model (reduction of cell viability < 30%), which indicates their very low acute photoirritation and high photosafety potential in humans. Viridicatin was considered weakly photoreactive, while viridicatol showed no photoreactivity; both compounds inhibited UVA-induced ROS generation in HaCaT cells, although viridicatol was not able to protect the RHS model against UVA-induced ROS production. Thus, the results highlighted the photoprotective and antioxidant potential of metabolites produced by P. echinulatum which can be considered a new class of molecules for photoprotection, since their photosafety and non-cytotoxicity were predicted using recommended in vitro methods for topical use.
Collapse
Affiliation(s)
- Thaiz Rodrigues Teixeira
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Karen Cristina Rangel
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Renata Spagolla Napoleão Tavares
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Camila Martins Kawakami
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Gustavo Souza Dos Santos
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Silvya Stuchi Maria-Engler
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Pio Colepicolo
- Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Lorena Rigo Gaspar
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Hosana Maria Debonsi
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
26
|
Jung JW, Kang JS, Choi J, Park JW. A Novel Approach to Derive the Predicted No-Effect Concentration (PNEC) of Benzophenone-3 (BP-3) Using the Species Sensitivity Distribution (SSD) Method: Suggestion of a New PNEC Value for BP-3. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073650. [PMID: 33807469 PMCID: PMC8037607 DOI: 10.3390/ijerph18073650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022]
Abstract
The necessity for the aquatic ecological risk assessment for benzophenone-3 (BP-3) is increasing due to its high toxic potential and high detection frequency in freshwater. The initial step in the ecological risk assessment is to determine predicted no-effect concentration (PNEC). This study derived PNEC of BP-3 in freshwater using a species sensitivity distribution (SSD) approach, whilst existing PNECs are derived using assessment factor (AF) approaches. A total of eight chronic toxicity values, obtained by toxicity testing and a literature survey, covering four taxonomic classes (fish, crustaceans, algae, and cyanobacteria) were used for PNEC derivation. Therefore, the quantity and quality of the toxicity data met the minimum requirements for PNEC derivation using an SSD approach. The PNEC derived in this study (73.3 μg/L) was far higher than the environmental concentration detected in freshwater (up to 10.4 μg/L) as well as existing PNECs (0.67~1.8 μg/L), mainly due to the difference in the PNEC derivation methodology (i.e., AF vs. SSD approach). Since the SSD approach is regarded as more reliable than the AF approach, we recommend applying the PNEC value derived in this study for the aquatic ecological risk assessment of BP-3, as the use of the existing PNEC values seems to unnecessarily overestimate the potential ecological risk of BP-3 in freshwater.
Collapse
Affiliation(s)
- Jae-Woong Jung
- Center for Defense Acquisition and Requirements Analysis, Korea Institute for Defense Analyses, Seoul 02455, Korea;
| | - Jae Soon Kang
- Department of Anatomy and Convergence Medical Science, Institute of Health Science, Bio Anti-Aging Medical Research Center, Gyeongsang National University Medical School, Jinju 52727, Korea;
| | - Jinsoo Choi
- Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Jinju 52834, Korea;
| | - June-Woo Park
- Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Jinju 52834, Korea;
- Human and Environmental Toxicology Program, Korea University of Science and Technology (UST), Daejeon 34113, Korea
- Correspondence: ; Tel.: +82-55-750-3833
| |
Collapse
|
27
|
Thia E, Chou PH, Chen PJ. In vitro and in vivo screening for environmentally friendly benzophenone-type UV filters with beneficial tyrosinase inhibition activity. WATER RESEARCH 2020; 185:116208. [PMID: 32726716 DOI: 10.1016/j.watres.2020.116208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/07/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Benzophenones (BPs) are a group of chemically similar organic compounds commonly used in formulations of sunscreen and other personal care products as UV filters to protect our skin against sunlight overexposure. Studies have shown that the occurrence of certain BPs (e.g., BP-3 and its metabolite BP-1) in multiple environmental matrices may increase the incidence of coral planulae bleaching and estrogenic effects on aquatic life. Currently, most BPs are not yet comprehensively screened in vitro and in vivo for their ecotoxicity under environmentally relevant concentrations. This study systematically assessed the in vitro and in vivo toxicity and activity of the 7 most commonly used BPs (BP-1, BP-2, BP-3, BP-4, BP-6, BP-7 and BP-8) to select BP alternatives with lower ecotoxicity and extra beneficial functions. BP-2 (LC50 = 18.43 µM) was least toxic and BP-3 (LC50 = 4.10 µM) and BP-8 (LC50 =1.62 µM) were less and most toxic, respectively, in terms of 96-hr acute mortality of medaka larvae. BP-2 at environmentally relevant concentrations (5-50 nM) did not significantly alter locomotion and oxidative stress responses of medaka larvae from 24-hr to 7-day exposure, whereas BP-3 and BP-8 at 5 nM induced hypoactivity or changed fish swimming angles. Only BP-2 was able to inhibit in vitro mushroom tyrosinase activity, with EC50 value 19.7 µM. Also, BP-2 could effectively suppress melanin formation and tyrosinase activity in zebrafish embryos. Among the 7 tested BPs, BP-2 was the least toxic and the most environmentally friendly UV filter with extra benefit for tyrosinase inhibition and could be a promising alternative to the use of toxic BPs.
Collapse
Affiliation(s)
- Eveline Thia
- Department of Agricultural Chemistry, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Pei-Hsin Chou
- Department of Environmental Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Jen Chen
- Department of Agricultural Chemistry, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
28
|
Meng Q, Yeung K, Kwok ML, Chung CT, Hu XL, Chan KM. Toxic effects and transcriptome analyses of zebrafish (Danio rerio) larvae exposed to benzophenones. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114857. [PMID: 32497821 DOI: 10.1016/j.envpol.2020.114857] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Sunscreen chemicals, such as benzophenones (BPs), are common environmental contaminants that are posing a growing health concern due to their increasing presence in water, fish, and human systems. Benzoresorcinol (BP1), oxybenzone (BP3), and dioxybenzone (BP8) are the most commonly used BPs for their ability to protect from sunburn by absorbing a broad spectrum of ultraviolet radiation. In this study, zebrafish larvae were used as an in vivo model to investigate the potential risks and molecular mechanisms of the toxic effects of BPs. The effects of these BPs on the gene expression in the aryl hydrocarbon receptor pathway, estrogen receptor pathway, and sex differentiation were detected using quantitative real-time PCR. All BPs were found to function as agonists of the estrogen receptors α and β1, indicating that these BPs likely undergo similar molecular metabolism in vivo, whereby they can activate cytochrome P450 genes and promote the expression of CYP19A and DMRT1. Furthermore, the gene expression profile of larvae after BP3 exposure was evaluated using a whole transcriptome sequencing approach. BP3 affected estradiol biosynthesis and sex differentiation. It also regulated gonadotropin-releasing hormone, thus interfering with the endocrine system. As a xenobiotic toxicant, BP3 upregulated the expression of cytochrome P450 genes (CYP1A and CYP3A65) and glutathione metabolism-related genes (GSTA, GSTM, and GSTP). It also interfered with the nervous system by regulating the calcium signaling pathway. These findings will be useful for understanding the toxicity mechanisms and metabolism of BPs in aquatic organisms and promote the regulation of these chemicals in the environment.
Collapse
Affiliation(s)
- Qi Meng
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong
| | - Karen Yeung
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong
| | - Man Long Kwok
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong
| | - Chun Ting Chung
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong
| | - Xue Lei Hu
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong
| | - King Ming Chan
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong.
| |
Collapse
|
29
|
Liang M, Yan S, Chen R, Hong X, Zha J. 3-(4-Methylbenzylidene) camphor induced reproduction toxicity and antiandrogenicity in Japanese medaka (Oryzias latipes). CHEMOSPHERE 2020; 249:126224. [PMID: 32088463 DOI: 10.1016/j.chemosphere.2020.126224] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
To assess the toxic effects of 3-(4-Methylbenzylidene) camphor (4-MBC) at environmentally relevant concentrations on the reproduction and development of Japanese medaka (Oryzias latipes), adult paired medaka (F0) were exposed to 5, 50, and 500 μg/L 4-MBC for 28 d in the current study. The fecundity and fertility were significantly decreased at 500 μg/L 4-MBC (p < 0.05). Histological observations showed that spermatogenesis in F0 males was significantly inhibited at 50 and 500 μg/L 4-MBC, similar to the effects obtained with all treatments of plasma 11-ketotestosterone (p < 0.05). Moreover, the plasma vitellogenin and estradiol levels in F0 females were significantly increased at 5 μg/L 4-MBC (p < 0.05). All the transcripts of hypothalamic-pituitary-gonadal (HPG) axis-related genes tested in the brains and gonads of males were significantly increased at all treatments, similar to the effects obtained for erα, erβ and vtg in the livers and in contrast to those found for arα in the livers (p < 0.05). Equal numbers of embryos were exposed to tap water and 4-MBC solutions. Significantly increased times to hatching, decreased hatching rates and decreased body lengths at 14-day post-hatching (dph) were obtained at 500 μg/L 4-MBC treatment (p < 0.05). The cumulative death rates at 14 dph were significantly increased with all the treatments (p < 0.05). Therefore, our results showed that long-term exposure to 50 and 500 μg/L 4-MBC causes reproductive and developmental toxicity and thus provide new insight into antiandrogenicity and the mechanism of 4-MBC in Japanese medaka.
Collapse
Affiliation(s)
- Mengmeng Liang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Saihong Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Rui Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
30
|
Paul SP. Ensuring the Safety of Sunscreens, and Their Efficacy in Preventing Skin Cancers: Challenges and Controversies for Clinicians, Formulators, and Regulators. Front Med (Lausanne) 2019; 6:195. [PMID: 31552252 PMCID: PMC6736991 DOI: 10.3389/fmed.2019.00195] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 08/20/2019] [Indexed: 12/17/2022] Open
Abstract
When people think about sun-protection or prevention of skin cancer, sunscreens readily come to mind. Sunscreen effectiveness is tested in vivo by the ability to prevent erythema of skin, yet testing methods vary between markets, and many sunscreens fail to achieve their claims. This article discusses the mechanism of action of sunscreens, Sun Protection Factor (SPF), safety concerns and the challenges for regulators. Many sunscreens that prevent erythema do not provide adequate protection as they contain anti-inflammatory agents; others have ingredients whose risks have not been fully evaluated. This article reviews the imperfect science behind sunscreens and points out the gaps in knowledge regarding safety, efficacy, public knowledge, and perception. Regulations vary between countries and only adds to the confusion. To truly prevent skin cancer, clinicians, formulators and regulators need to come together to research more and improve public education.
Collapse
Affiliation(s)
- Sharad P. Paul
- Faculty of Design and Creative Technologies, Auckland University of Technology, Auckland, New Zealand
- School of Medicine, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
31
|
Akram M, Patt M, Kaserer T, Temml V, Waratchareeyakul W, Kratschmar DV, Haupenthal J, Hartmann RW, Odermatt A, Schuster D. Identification of the fungicide epoxiconazole by virtual screening and biological assessment as inhibitor of human 11β-hydroxylase and aldosterone synthase. J Steroid Biochem Mol Biol 2019; 192:105358. [PMID: 30965118 DOI: 10.1016/j.jsbmb.2019.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/05/2019] [Accepted: 04/06/2019] [Indexed: 12/22/2022]
Abstract
Humans are constantly exposed to a multitude of environmental chemicals that may disturb endocrine functions. It is crucial to identify such chemicals and uncover their mode-of-action to avoid adverse health effects. 11β-hydroxylase (CYP11B1) and aldosterone synthase (CYP11B2) catalyze the formation of cortisol and aldosterone, respectively, in the adrenal cortex. Disruption of their synthesis by exogenous chemicals can contribute to cardio-metabolic diseases, chronic kidney disease, osteoporosis, and immune-related disorders. This study applied in silico screening and in vitro evaluation for the discovery of xenobiotics inhibiting CYP11B1 and CYP11B2. Several databases comprising environmentally relevant pollutants, chemicals in body care products, food additives and drugs were virtually screened using CYP11B1 and CYP11B2 pharmacophore models. A first round of biological testing used hamster cells overexpressing human CYP11B1 or CYP11B2 to analyze 25 selected virtual hits. Three compounds inhibited CYP11B1 and CYP11B2 with IC50 values below 3 μM. The most potent inhibitor was epoxiconazole (IC50 value of 623 nM for CYP11B1 and 113 nM for CYP11B2, respectively); flurprimidol and ancymidol were moderate inhibitors. In a second round, these three compounds were tested in human adrenal H295R cells endogenously expressing CYP11B1 and CYP11B2, confirming the potent inhibition by epoxiconazole and the more moderate effects by flurprimidol and ancymidol. Thus, the in silico screening, prioritization of chemicals for initial biological tests and use of H295R cells to provide initial mechanistic information is a promising strategy to identify potential endocrine disruptors inhibiting corticosteroid synthesis. A critical assessment of human exposure levels and in vivo evaluation of potential corticosteroid disrupting effects by epoxiconazole is required.
Collapse
Affiliation(s)
- Muhammad Akram
- Institute of Pharmacy / Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria; Department of Medicinal and Pharmaceutical Chemistry, Institute of Pharmacy, Paracelsus Medical University, Strubergasse 22, 5020, Salzburg, Austria.
| | - Melanie Patt
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| | - Teresa Kaserer
- Institute of Pharmacy / Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria.
| | - Veronika Temml
- Institute of Pharmacy / Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria.
| | - Watcharee Waratchareeyakul
- Department of Chemistry, Faculty of Science and Technology, Rambhai Barni Rajabhat University, 22000, Chanthaburi, Thailand.
| | - Denise V Kratschmar
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| | - Joerg Haupenthal
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Universitätscampus E8 1, 66123, Saarbrücken, Germany.
| | - Rolf W Hartmann
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Universitätscampus E8 1, 66123, Saarbrücken, Germany; Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, 66123, Saarbrücken, Germany.
| | - Alex Odermatt
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| | - Daniela Schuster
- Institute of Pharmacy / Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria; Department of Medicinal and Pharmaceutical Chemistry, Institute of Pharmacy, Paracelsus Medical University, Strubergasse 22, 5020, Salzburg, Austria.
| |
Collapse
|
32
|
Pomierny B, Krzyżanowska W, Broniowska Ż, Strach B, Bystrowska B, Starek-Świechowicz B, Maciejska A, Skórkowska A, Wesołowska J, Walczak M, Budziszewska B. Benzophenone-3 Passes Through the Blood-Brain Barrier, Increases the Level of Extracellular Glutamate, and Induces Apoptotic Processes in the Hippocampus and Frontal Cortex of Rats. Toxicol Sci 2019; 171:485-500. [PMID: 31368502 DOI: 10.1093/toxsci/kfz160] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
Abstract
Abstract
Benzophenone-3 is the most commonly used UV filter. It is well absorbed through the skin and gastrointestinal tract. Its best-known side effect is the impact on the function of sex hormones. Little is known about the influence of BP-3 on the brain. The aim of this study was to show whether BP-3 crosses the blood-brain barrier (BBB), to determine whether it induces nerve cell damage in susceptible brain structures, and to identify the mechanism of its action in the central nervous system. BP-3 was administered dermally during the prenatal period and adulthood to rats. BP-3 effect on short-term and spatial memory was determined by novel object and novel location recognition tests. BP-3 concentrations were assayed in the brain and peripheral tissues. In brain structures, selected markers of brain damage were measured. The study showed that BP-3 is absorbed through the rat skin, passes through the BBB. BP-3 raised oxidative stress and induced apoptosis in the brain. BP-3 increased the concentration of extracellular glutamate in examined brain structures and changed the expression of glutamate transporters. BP-3 had no effect on short-term memory but impaired spatial memory. The present study showed that dermal BP-3 exposure may cause damage to neurons what might be associated with the increase in the level of extracellular glutamate, most likely evoked by changes in the expression of GLT-1 and xCT glutamate transporters. Thus, exposure to BP-3 may be one of the causes that increase the risk of developing neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | - Beata Bystrowska
- Department of Toxicology, Chair of Toxicology, Medical College, Jagiellonian University, 30-688 Kraków, Poland
| | | | | | | | - Julita Wesołowska
- Laboratory for In vivo and In Vitro Imaging, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Maria Walczak
- Department of Toxicology, Chair of Toxicology, Medical College, Jagiellonian University, 30-688 Kraków, Poland
| | | |
Collapse
|
33
|
Long J, Xia W, Li J, Zhou Y, Zhao H, Wu C, Liao J, Jiang Y, Li C, Li Y, Li X, Sun X, Huang S, Cai Z, Xu S. Maternal urinary benzophenones and infant birth size: Identifying critical windows of exposure. CHEMOSPHERE 2019; 219:655-661. [PMID: 30557721 DOI: 10.1016/j.chemosphere.2018.11.190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 05/05/2023]
Abstract
Benzophenones (BPs) are widely used as ultraviolet absorbers and fragrance retention agents. Evidences from animal studies have suggested that exposure to BPs may affect fetal growth, but human data is limited and no study is concerning critical windows of BPs exposure throughout pregnancy in relation to fetal growth. We aimed to investigate the associations of prenatal exposure to BPs with birth size and examine the critical exposure windows of fetus development. We measured BPs (including 2,4-dihydroxybenzophenone (BP-1), 2-hydroxy-4-methoxybenzophenone (BP-3) and 4-hydroxybenzophenone (4-OH-BP)) in maternal urine samples collected in the first, second, and third trimester from 847 mothers recruited in Wuhan, China. The general estimation equations were used to analyze the relationships between maternal exposure to BPs levels and birth size. In all newborns, we found each log unit increase in maternal urinary concentrations of BP-1 and 4-OH-BP in the 1st trimester were associated with decreases in birth length by 0.06 cm (95% confidence interval (CI): -0.11, -0.01) and 0.08 cm (95% CI: -0.15, -0.01), respectively, but only the association with BP-1 in the boys remained significant in the stratified analysis by infant sex. In girls, urinary concentrations of BP-1 and BP-3 in the 3rd trimester were associated with decreased birth weight (adjusted β = -27.99 g, 95% CI: -50.66, -5.31 and -19.75 g, 95% CI: -37.31, -2.19, respectively) and length (adjusted β = -0.08 cm, 95% CI: -0.17, 0.00 and -0.08 cm, 95% CI: -0.15, -0.02) (p for interaction = 0.04). Our findings indicate that maternal urinary levels of BPs in the early and late periods during pregnancy may have impacts on delayed fetal growth, and the effects were more pronounced in girls.
Collapse
Affiliation(s)
- Jinlie Long
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiufeng Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yanqiu Zhou
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Hongzhi Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Chuansha Wu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiaqiang Liao
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yangqian Jiang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunhui Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinping Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaojie Sun
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sha Huang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
34
|
Joensen UN, Jørgensen N, Thyssen JP, Szecsi PB, Stender S, Petersen JH, Andersson AM, Frederiksen H. Urinary excretion of phenols, parabens and benzophenones in young men: Associations to reproductive hormones and semen quality are modified by mutations in the Filaggrin gene. ENVIRONMENT INTERNATIONAL 2018; 121:365-374. [PMID: 30245359 DOI: 10.1016/j.envint.2018.09.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND The filaggrin gene (FLG) encodes an epidermal protein, filaggrin, which is important for normal skin barrier functions. We previously showed that FLG loss-of-function mutation carriers have a higher internal exposure to some non-persistent chemicals such as certain phthalates and parabens, suggesting increased trans-epidermal penetration. Several groups of non-persistent chemicals are suspected endocrine disrupters with potential to affect testicular function. OBJECTIVES To investigate associations between exposure to non-persistent chemicals and testicular function in young Danish men with and without FLG mutations. METHODS We measured urinary concentrations of bisphenol A (BPA) and other simple phenols, parabens, and UV filters including benzophenones (BP-1, BP-3 and 4-HBP) in men genotyped for FLG R501X, 2282del4, and R2447X loss-of-function mutations; in total 65 mutation carriers and 130 non-carriers (controls) were included. Outcomes were markers of testicular function, assessed by serum reproductive hormones and semen quality. RESULTS We found that associations between urinary chemical concentrations and outcomes were different in cases and controls. Within the group of FLG mutation carriers, higher urinary concentrations of BPA, BP-1 and BP-3 were associated with higher testosterone and estradiol serum levels and lower FSH. Similar trends in hormone levels were observed for FLG mutation carriers with measurable levels of 4-HBP compared to those who had no detectable levels of urinary 4-HBP. Furthermore, those in the highest urinary BPA quartile had lower sperm motility than those in the lower quartiles. None of these associations were evident in the control group. In the control group, however, lower sperm motility and sperm concentration were observed in the men with detectable urinary 4-HBP compared to the men non-detectable urinary 4-HBP. We found no association between any parabens and outcomes, nor for the other measured phenols or UV filters. CONCLUSIONS Associations between male reproductive health parameters and urinary levels of BPA and benzophenones such as BP-3, BP-1 and 4-HBP were observed in FLG mutation carriers but not in controls from the same study population. This difference between FLG mutation carriers and non-carriers is not explained solely by differences in exposure levels of the examined compounds as e.g. BPA and 4-HBP urinary levels did not differ between the two groups. We hypothesise that effects of exposure to these compounds may be modulated in FLG mutation carriers by either different levels of co-exposures or by route of uptake, with a higher fraction of the uptake by dermal uptake.
Collapse
Affiliation(s)
- Ulla Nordström Joensen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Niels Jørgensen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jacob P Thyssen
- National Allergy Research Centre, Department of Dermatology and Allergy, Copenhagen University Hospital Gentofte, Copenhagen, Denmark
| | - Pal Bela Szecsi
- Department of Clinical Biochemistry, Copenhagen University Hospital Gentofte, Copenhagen, Denmark; Department of Clinical Biochemistry, Copenhagen University Hospital Holbæk, Holbæk, Denmark
| | - Steen Stender
- Department of Clinical Biochemistry, Copenhagen University Hospital Gentofte, Copenhagen, Denmark
| | - Jørgen Holm Petersen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
35
|
Krzyżanowska W, Pomierny B, Starek-Świechowicz B, Broniowska Ż, Strach B, Budziszewska B. The effects of benzophenone-3 on apoptosis and the expression of sex hormone receptors in the frontal cortex and hippocampus of rats. Toxicol Lett 2018; 296:63-72. [DOI: 10.1016/j.toxlet.2018.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/23/2018] [Accepted: 08/08/2018] [Indexed: 01/08/2023]
|
36
|
Ziarrusta H, Mijangos L, Montes R, Rodil R, Anakabe E, Izagirre U, Prieto A, Etxebarria N, Olivares M, Zuloaga O. Study of bioconcentration of oxybenzone in gilt-head bream and characterization of its by-products. CHEMOSPHERE 2018; 208:399-407. [PMID: 29885506 DOI: 10.1016/j.chemosphere.2018.05.154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
The widespread occurrence of UV filters such as oxybenzone (OXY) in the aquatic ecosystems has raised social and scientific concern due to their high bioaccumulation potential and possible adverse effects in organisms. Within this context, the aim of the present work was to study the uptake, distribution, metabolization and elimination of OXY in different tissues (liver, gill and muscle) and biofluids (bile and plasma) of gilt-head bream (Sparus aurata) in a controlled seawater ecosystem (50 ng/mL OXY) within a 14-day exposure. The highest OXY concentrations in all the tissue/biofluids were found at the end of the experiment. The highest OXY levels were found in bile (1.8-17 μg/mL). In the case of liver, the concentrations found (9-160 ng/g) were lower than those expected for a lipidic matrix, which could be explained by a high OXY metabolization. Up to 20 Phase I and Phase II by-products of OXY were annotated by means of liquid chromatography-high resolution mass spectrometry, of which 12 were reported for the first time. In addition to OXY, its by-products might also cause adverse effects and their biomonitoring is advisable in order to fully characterize OXY exposure.
Collapse
Affiliation(s)
- Haizea Ziarrusta
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain.
| | - Leire Mijangos
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - Rosa Montes
- Department of Analytical Chemistry, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Rosario Rodil
- Department of Analytical Chemistry, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Eneritz Anakabe
- Department of Organic Chemistry II, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
| | - Urtzi Izagirre
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - Ailette Prieto
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - Nestor Etxebarria
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - Maitane Olivares
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - Olatz Zuloaga
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| |
Collapse
|
37
|
Krause M, Frederiksen H, Sundberg K, Jørgensen FS, Jensen LN, Nørgaard P, Jørgensen C, Ertberg P, Petersen JH, Feldt-Rasmussen U, Juul A, Drzewiecki KT, Skakkebaek NE, Andersson AM. Maternal exposure to UV filters: associations with maternal thyroid hormones, IGF-I/IGFBP3 and birth outcomes. Endocr Connect 2018; 7:334-346. [PMID: 29362228 PMCID: PMC5820990 DOI: 10.1530/ec-17-0375] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 01/23/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Several chemical UV filters/absorbers ('UV filters' hereafter) have endocrine-disrupting properties in vitro and in vivo. Exposure to these chemicals, especially during prenatal development, is of concern. OBJECTIVES To examine maternal exposure to UV filters, associations with maternal thyroid hormone, with growth factor concentrations as well as to birth outcomes. METHODS Prospective study of 183 pregnant women with 2nd trimester serum and urine samples available. Maternal concentrations of the chemical UV filters benzophenone-1 (BP-1) and benzophenone-3 (BP-3) in urine and 4-hydroxy-benzophenone (4-HBP) in serum were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The relationships between 2nd trimester maternal concentrations of the three chemical UV filters and maternal serum concentrations of thyroid hormones and growth factors, as well as birth outcomes (weight, height, and head and abdominal circumferences) were examined. RESULTS Positive associations between maternal serum concentrations of 4-HBP and triiodothyronine (T3), thyroxine (T4), insulin-like growth factor I (IGF-I) and its binding protein IGFBP3 were observed in mothers carrying male fetuses. Male infants of mothers in the middle 4-HBP exposure group had statistically significantly lower weight and shorter head and abdominal circumferences at birth compared to the low exposure group. CONCLUSIONS Widespread exposure of pregnant women to chemical UV filters and the possible impact on maternal thyroid hormones and growth factors, and on fetal growth, calls for further studies on possible long-term consequences of the exposure to UV filters on fetal development and children's health.
Collapse
Affiliation(s)
- M Krause
- Department of Growth and Reproduction & International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC)Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - H Frederiksen
- Department of Growth and Reproduction & International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC)Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - K Sundberg
- Center of Fetal Medicine and PregnancyDepartment of Obstetrics, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - F S Jørgensen
- Fetal Medicine UnitDepartment of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre, Denmark
| | - L N Jensen
- Center of Fetal Medicine and PregnancyDepartment of Obstetrics, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - P Nørgaard
- Fetal Medicine UnitDepartment of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre, Denmark
| | - C Jørgensen
- Center of Fetal Medicine and PregnancyDepartment of Obstetrics, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - P Ertberg
- Fetal Medicine UnitDepartment of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre, Denmark
| | - J H Petersen
- Department of Growth and Reproduction & International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC)Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Section of BiostatisticsFaculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - U Feldt-Rasmussen
- Department of EndocrinologyRigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - A Juul
- Department of Growth and Reproduction & International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC)Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - K T Drzewiecki
- Department of Plastic SurgeryBreast Surgery and Burns Treatment, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - N E Skakkebaek
- Department of Growth and Reproduction & International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC)Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - A M Andersson
- Department of Growth and Reproduction & International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC)Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
38
|
Engeli RT, Fürstenberger C, Kratschmar DV, Odermatt A. Currently available murine Leydig cell lines can be applied to study early steps of steroidogenesis but not testosterone synthesis. Heliyon 2018; 4:e00527. [PMID: 29560447 PMCID: PMC5857625 DOI: 10.1016/j.heliyon.2018.e00527] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/12/2017] [Accepted: 01/23/2018] [Indexed: 02/08/2023] Open
Abstract
Androgen biosynthesis in males occurs to a large extent in testicular Leydig cells. This study focused on the evaluation of three murine Leydig cell lines as potential screening tool to test xenobiotics interfering with gonadal androgen synthesis. The final step of testosterone (T) production in Leydig cells is catalyzed by the enzyme 17β-hydroxysteroid dehydrogenase 3 (17β-hsd3). The endogenous 17β-hsd3 mRNA expression and Δ4-androstene-3,17-dione (AD) to T conversion were determined in the murine cell lines MA-10, BLTK1 and TM3. Additionally, effects of 8-Br-cAMP and forskolin stimulation on steroidogenesis and T production were analyzed. Steroids were quantified in supernatants of cells using liquid chromatography–tandem mass spectrometry. Unstimulated cells incubated with AD produced only very low T but substantial amounts of the inactive androsterone. Stimulated cells produced low amounts of T, moderate amounts of AD, but high amounts of progesterone. Gene expression analyses revealed barely detectable 17β-hsd3 levels, absence of 17β-hsd5 (Akr1c6), but substantial 17β-hsd1 expression in all three cell lines. Thus, MA-10, BLTK1 and TM3 cells are not suitable to study the expression and activity of the gonadal T synthesizing enzyme 17β-hsd3. The low T production reported in stimulated MA-10 cells are likely a result of the expression of 17β-hsd1. This study substantiates that the investigated Leydig cell lines MA-10, BLTK1, and TM3 are not suitable to study gonadal androgen biosynthesis due to altered steroidogenic pathways. Furthermore, this study emphasizes the necessity of mass spectrometry-based steroid quantification in experiments using steroidogenic cells such as Leydig cells.
Collapse
Affiliation(s)
- Roger T Engeli
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Cornelia Fürstenberger
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Denise V Kratschmar
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Alex Odermatt
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
39
|
Krause M, Frederiksen H, Sundberg K, Jørgensen FS, Jensen LN, Nørgaard P, Jørgensen C, Ertberg P, Juul A, Drzewiecki KT, Skakkebaek NE, Andersson AM. Presence of benzophenones commonly used as UV filters and absorbers in paired maternal and fetal samples. ENVIRONMENT INTERNATIONAL 2018; 110:51-60. [PMID: 29100749 DOI: 10.1016/j.envint.2017.10.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 10/12/2017] [Accepted: 10/12/2017] [Indexed: 05/05/2023]
Abstract
BACKGROUND Previous studies have demonstrated widespread exposure of humans to certain benzophenones commonly used as UV filters or UV absorbers; some of which have been demonstrated to have endocrine disrupting abilities. OBJECTIVES To examine whether benzophenones present in pregnant women pass through the placental barrier to amniotic fluid and further to the fetal blood circulation. METHODS A prospective study of 200 pregnant women with simultaneously collected paired samples of amniotic fluid and maternal serum and urine. In addition, unique samples of human fetal blood (n=4) obtained during cordocentesis: and cord blood (n=23) obtained at delivery, both with paired maternal samples of serum and urine collected simultaneously, were used. All biological samples were analyzed by TurboFlow-liquid chromatography - tandem mass spectrometry for seven different benzophenones. RESULTS Benzophenone-1 (BP-1), benzophenone-3 (BP-3), 4-methyl-benzophenone (4-MBP), and 4-hydroxy-benzophenone (4-HBP) were all detectable in amniotic fluid and cord blood samples and except 4-HBP also in fetal blood; albeit at a low frequency. BP-1 and BP-3 were measured at ~10-times lower concentrations in fetal and cord blood compared to maternal serum and 1000-times lower concentration compared to maternal urine levels. Therefore BP-1 and BP-3 were only detectable in the fetal circulation in cases of high maternal exposure indicating some protection by the placental barrier. 4-MBP seems to pass into fetal and cord blood more freely with a median 1:3 ratio between cord blood and maternal serum levels. Only for BP-3, which the women seemed to be most exposed to, did the measured concentrations in maternal urine and serum correlate to concentrations measured in amniotic fluid. Thus, for BP-3, but not for the other tested benzophenones, maternal urinary levels seem to be a valid proxy for fetal exposure. CONCLUSIONS Detectable levels of several of the investigated benzophenones in human amniotic fluid as well as in fetal and cord blood calls for further investigations of the toxicokinetic and potential endocrine disrupting properties of these compounds in order for better assessment of the risk to the developing fetus.
Collapse
Affiliation(s)
- M Krause
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark
| | - H Frederiksen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark
| | - K Sundberg
- Center of Fetal Medicine and Pregnancy, Department of Obstetrics, Rigshospitalet, University of Copenhagen, Denmark
| | - F S Jørgensen
- Fetal Medicine Unit, Department of Obstetrics and Gynecology, Copenhagen University Hospital Hvidovre, Denmark
| | - L N Jensen
- Center of Fetal Medicine and Pregnancy, Department of Obstetrics, Rigshospitalet, University of Copenhagen, Denmark
| | - P Nørgaard
- Fetal Medicine Unit, Department of Obstetrics and Gynecology, Copenhagen University Hospital Hvidovre, Denmark
| | - C Jørgensen
- Center of Fetal Medicine and Pregnancy, Department of Obstetrics, Rigshospitalet, University of Copenhagen, Denmark
| | - P Ertberg
- Fetal Medicine Unit, Department of Obstetrics and Gynecology, Copenhagen University Hospital Hvidovre, Denmark
| | - A Juul
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark
| | - K T Drzewiecki
- Department of Plastic Surgery, Breast Surgery and Burns Treatment, Rigshospitalet, University of Copenhagen, Denmark
| | - N E Skakkebaek
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark
| | - A M Andersson
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark.
| |
Collapse
|
40
|
Beck KR, Kaserer T, Schuster D, Odermatt A. Virtual screening applications in short-chain dehydrogenase/reductase research. J Steroid Biochem Mol Biol 2017; 171:157-177. [PMID: 28286207 PMCID: PMC6831487 DOI: 10.1016/j.jsbmb.2017.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 02/06/2023]
Abstract
Several members of the short-chain dehydrogenase/reductase (SDR) enzyme family play fundamental roles in adrenal and gonadal steroidogenesis as well as in the metabolism of steroids, oxysterols, bile acids, and retinoids in peripheral tissues, thereby controlling the local activation of their cognate receptors. Some of these SDRs are considered as promising therapeutic targets, for example to treat estrogen-/androgen-dependent and corticosteroid-related diseases, whereas others are considered as anti-targets as their inhibition may lead to disturbances of endocrine functions, thereby contributing to the development and progression of diseases. Nevertheless, the physiological functions of about half of all SDR members are still unknown. In this respect, in silico tools are highly valuable in drug discovery for lead molecule identification, in toxicology screenings to facilitate the identification of hazardous chemicals, and in fundamental research for substrate identification and enzyme characterization. Regarding SDRs, computational methods have been employed for a variety of applications including drug discovery, enzyme characterization and substrate identification, as well as identification of potential endocrine disrupting chemicals (EDC). This review provides an overview of the efforts undertaken in the field of virtual screening supported identification of bioactive molecules in SDR research. In addition, it presents an outlook and addresses the opportunities and limitations of computational modeling and in vitro validation methods.
Collapse
Affiliation(s)
- Katharina R Beck
- Swiss Center for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Teresa Kaserer
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), Computer Aided Molecular Design Group, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Daniela Schuster
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), Computer Aided Molecular Design Group, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Alex Odermatt
- Swiss Center for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
41
|
Ning X, Yang Y, Deng H, Zhang Q, Huang Y, Su Z, Fu Y, Xiang Q, Zhang S. Development of 17β-hydroxysteroid dehydrogenase type 3 as a target in hormone-dependent prostate cancer therapy. Steroids 2017; 121:10-16. [PMID: 28267564 DOI: 10.1016/j.steroids.2017.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 02/24/2017] [Accepted: 02/28/2017] [Indexed: 12/20/2022]
Abstract
17β-Hydroxysteroid dehydrogenase type 3 (17β-HSD3) is expressed almost exclusively in the testes and specifically converts the weak androgenic androstenedione to active testosterone (T) in the presence of NADPH. Additionally, studies have demonstrated that 17β-HSD3 is over-expressed in hormone-dependent prostate cancer. T, which interacts with the androgen receptor (AR), eventually stimulates the growth of prostate cancer cells. Defects in T synthesis or action impair the development of the male phenotype during embryogenesis and cause the autosomal recessive disorder male pseudohermaphroditism. Affected individuals are often born with female-appearing external genitalia and are reared as females. Since 17β-HSD3 plays a central role in T production, it has been recognized as a promising therapeutic target to reduce the circulating level of androgens and to suppress androgen-sensitive tumor proliferation. In recent decades, improvements have been made in the development of 17β-HSD3 inhibitors. Herein, we give an overview of the main structure and function of human 17β-HSD3 and summarize steroidal and non-steroidal inhibitors of 17β-HSD3, which can be a potential target for prostate cancer.
Collapse
Affiliation(s)
- Xiaohui Ning
- Institute of Materia Medica and Guangdong Provincial Key Laboratory of New Pharmaceutical Dosage Form, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, PR China
| | - Yan Yang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Hong Deng
- Institute of Materia Medica and Guangdong Provincial Key Laboratory of New Pharmaceutical Dosage Form, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, PR China
| | - Qihao Zhang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Yadong Huang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Zhijian Su
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Yongmei Fu
- Sinopharm Group Guangdong Medi-world Pharmaceutical Co. Ltd., Foshan 528200, PR China
| | - Qi Xiang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China.
| | - Shu Zhang
- Institute of Materia Medica and Guangdong Provincial Key Laboratory of New Pharmaceutical Dosage Form, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, PR China.
| |
Collapse
|
42
|
Wang J, Pan L, Wu S, Lu L, Xu Y, Zhu Y, Guo M, Zhuang S. Recent Advances on Endocrine Disrupting Effects of UV Filters. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13080782. [PMID: 27527194 PMCID: PMC4997468 DOI: 10.3390/ijerph13080782] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/09/2016] [Accepted: 07/25/2016] [Indexed: 11/23/2022]
Abstract
Ultraviolet (UV) filters are used widely in cosmetics, plastics, adhesives and other industrial products to protect human skin or products against direct exposure to deleterious UV radiation. With growing usage and mis-disposition of UV filters, they currently represent a new class of contaminants of emerging concern with increasingly reported adverse effects to humans and other organisms. Exposure to UV filters induce various endocrine disrupting effects, as revealed by increasing number of toxicological studies performed in recent years. It is necessary to compile a systematic review on the current research status on endocrine disrupting effects of UV filters toward different organisms. We therefore summarized the recent advances on the evaluation of the potential endocrine disruptors and the mechanism of toxicity for many kinds of UV filters such as benzophenones, camphor derivatives and cinnamate derivatives.
Collapse
Affiliation(s)
- Jiaying Wang
- Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan 316022, China.
| | - Liumeng Pan
- Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Shenggan Wu
- Institute of Quality Standard of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Liping Lu
- Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yiwen Xu
- Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yanye Zhu
- Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Ming Guo
- School of Science, Zhejiang Agriculture & Forestry University, Lin'an 311300, China.
| | - Shulin Zhuang
- Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan 316022, China.
- Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
43
|
Waldman JM, Gavin Q, Anderson M, Hoover S, Alvaran J, Ip HSS, Fenster L, Wu NT, Krowech G, Plummer L, Israel L, Das R, She J. Exposures to environmental phenols in Southern California firefighters and findings of elevated urinary benzophenone-3 levels. ENVIRONMENT INTERNATIONAL 2016; 88:281-287. [PMID: 26821331 DOI: 10.1016/j.envint.2015.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/14/2015] [Accepted: 11/18/2015] [Indexed: 05/22/2023]
Abstract
Firefighters are at increased risk for exposure to toxic chemicals compared to the general population, but few studies of this occupational group have included biomonitoring. We measured selected phenolic chemicals in urine collected from 101 Southern California firefighters. The analytes included bisphenol A (BPA), triclosan, benzophenone-3 (BP-3), and parabens, which are common ingredients in a range of consumer products. BP-3, BPA, triclosan, and methyl paraben were detected in almost all study subjects (94-100%). The BP-3 geometric mean for firefighters was approximately five times higher than for a comparable National Health and Nutrition Examination Survey (NHANES) subgroup. Demographic and exposure data were collected from medical records and via a questionnaire, and covariates were examined to assess associations with BP-3 levels. BP-3 levels were elevated across all firefighter age groups, with the highest levels observed in the 35 to 39year old group. Body fat percentage had a significant inverse association with BP-3 concentrations. Our results indicate pervasive exposure to BP-3, BPA, triclosan, and methyl paraben in this population of firefighters, consistent with studies of other populations. Further research is needed to investigate possible explanations for the higher observed BP-3 levels, such as occupational or California-specific exposures.
Collapse
Affiliation(s)
- Jed M Waldman
- Environmental Health Laboratory, California Department of Public Health, Richmond, CA, USA
| | - Qi Gavin
- Environmental Health Laboratory, California Department of Public Health, Richmond, CA, USA
| | - Meredith Anderson
- Environmental Health Investigations Branch, California Department of Public Health, Richmond, CA, USA
| | - Sara Hoover
- Safer Alternatives Assessment and Biomonitoring Section, Office of Environmental Health Hazard Assessment, Oakland, CA, USA
| | - Josephine Alvaran
- Environmental Health Laboratory, California Department of Public Health, Richmond, CA, USA
| | - Ho Sai Simon Ip
- Environmental Health Laboratory, California Department of Public Health, Richmond, CA, USA
| | - Laura Fenster
- Environmental Health Investigations Branch, California Department of Public Health, Richmond, CA, USA
| | - Nerissa T Wu
- Environmental Health Investigations Branch, California Department of Public Health, Richmond, CA, USA
| | - Gail Krowech
- Safer Alternatives Assessment and Biomonitoring Section, Office of Environmental Health Hazard Assessment, Oakland, CA, USA
| | - Laurel Plummer
- Safer Alternatives Assessment and Biomonitoring Section, Office of Environmental Health Hazard Assessment, Oakland, CA, USA
| | - Leslie Israel
- Center for Occupational and Environmental Health, University of California at Irvine, Irvine, CA, USA
| | - Rupali Das
- Environmental Health Investigations Branch, California Department of Public Health, Richmond, CA, USA
| | - Jianwen She
- Environmental Health Laboratory, California Department of Public Health, Richmond, CA, USA.
| |
Collapse
|
44
|
Downs CA, Kramarsky-Winter E, Segal R, Fauth J, Knutson S, Bronstein O, Ciner FR, Jeger R, Lichtenfeld Y, Woodley CM, Pennington P, Cadenas K, Kushmaro A, Loya Y. Toxicopathological Effects of the Sunscreen UV Filter, Oxybenzone (Benzophenone-3), on Coral Planulae and Cultured Primary Cells and Its Environmental Contamination in Hawaii and the U.S. Virgin Islands. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 70:265-88. [PMID: 26487337 DOI: 10.1007/s00244-015-0227-7] [Citation(s) in RCA: 322] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/13/2015] [Indexed: 05/26/2023]
Abstract
Benzophenone-3 (BP-3; oxybenzone) is an ingredient in sunscreen lotions and personal-care products that protects against the damaging effects of ultraviolet light. Oxybenzone is an emerging contaminant of concern in marine environments—produced by swimmers and municipal, residential, and boat/ship wastewater discharges. We examined the effects of oxybenzone on the larval form (planula) of the coral Stylophora pistillata, as well as its toxicity in vitro to coral cells from this and six other coral species. Oxybenzone is a photo-toxicant; adverse effects are exacerbated in the light. Whether in darkness or light, oxybenzone transformed planulae from a motile state to a deformed, sessile condition. Planulae exhibited an increasing rate of coral bleaching in response to increasing concentrations of oxybenzone. Oxybenzone is a genotoxicant to corals, exhibiting a positive relationship between DNA-AP lesions and increasing oxybenzone concentrations. Oxybenzone is a skeletal endocrine disruptor; it induced ossification of the planula, encasing the entire planula in its own skeleton. The LC50 of planulae exposed to oxybenzone in the light for an 8- and 24-h exposure was 3.1 mg/L and 139 µg/L, respectively. The LC50s for oxybenzone in darkness for the same time points were 16.8 mg/L and 779 µg/L. Deformity EC20 levels (24 h) of planulae exposed to oxybenzone were 6.5 µg/L in the light and 10 µg/L in darkness. Coral cell LC50s (4 h, in the light) for 7 different coral species ranges from 8 to 340 µg/L, whereas LC20s (4 h, in the light) for the same species ranges from 0.062 to 8 µg/L. Coral reef contamination of oxybenzone in the U.S. Virgin Islands ranged from 75 µg/L to 1.4 mg/L, whereas Hawaiian sites were contaminated between 0.8 and 19.2 µg/L. Oxybenzone poses a hazard to coral reef conservation and threatens the resiliency of coral reefs to climate change.
Collapse
Affiliation(s)
- C A Downs
- Haereticus Environmental Laboratory, P.O. Box 92, Clifford, VA 24533, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Potter SJ, Kumar DL, DeFalco T. Origin and Differentiation of Androgen-Producing Cells in the Gonads. Results Probl Cell Differ 2016; 58:101-134. [PMID: 27300177 DOI: 10.1007/978-3-319-31973-5_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Sexual reproduction is dependent on the activity of androgenic steroid hormones to promote gonadal development and gametogenesis. Leydig cells of the testis and theca cells of the ovary are critical cell types in the gonadal interstitium that carry out steroidogenesis and provide key androgens for reproductive organ function. In this chapter, we will discuss important aspects of interstitial androgenic cell development in the gonad, including: the potential cellular origins of interstitial steroidogenic cells and their progenitors; the molecular mechanisms involved in Leydig cell specification and differentiation (including Sertoli-cell-derived signaling pathways and Leydig-cell-related transcription factors and nuclear receptors); the interactions of Leydig cells with other cell types in the adult testis, such as Sertoli cells, germ cells, peritubular myoid cells, macrophages, and vascular endothelial cells; the process of steroidogenesis and its systemic regulation; and a brief discussion of the development of theca cells in the ovary relative to Leydig cells in the testis. Finally, we will describe the dynamics of steroidogenic cells in seasonal breeders and highlight unique aspects of steroidogenesis in diverse vertebrate species. Understanding the cellular origins of interstitial steroidogenic cells and the pathways directing their specification and differentiation has implications for the study of multiple aspects of development and will help us gain insights into the etiology of reproductive system birth defects and infertility.
Collapse
Affiliation(s)
- Sarah J Potter
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Deepti Lava Kumar
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Tony DeFalco
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
46
|
Engeli RT, Rhouma BB, Sager CP, Tsachaki M, Birk J, Fakhfakh F, Keskes L, Belguith N, Odermatt A. Biochemical analyses and molecular modeling explain the functional loss of 17β-hydroxysteroid dehydrogenase 3 mutant G133R in three Tunisian patients with 46, XY Disorders of Sex Development. J Steroid Biochem Mol Biol 2016; 155:147-54. [PMID: 26545797 DOI: 10.1016/j.jsbmb.2015.10.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/21/2015] [Accepted: 10/29/2015] [Indexed: 12/13/2022]
Abstract
Mutations in the HSD17B3 gene resulting in 17β-hydroxysteroid dehydrogenase type 3 (17β-HSD3) deficiency cause 46, XY Disorders of Sex Development (46, XY DSD). Approximately 40 different mutations in HSD17B3 have been reported; only few mutant enzymes have been mechanistically investigated. Here, we report novel compound heterozygous mutations in HSD17B3, composed of the nonsense mutation C206X and the missense mutation G133R, in three Tunisian patients from two non-consanguineous families. Mutants C206X and G133R were constructed by site-directed mutagenesis and expressed in HEK-293 cells. The truncated C206X enzyme, lacking part of the substrate binding pocket, was moderately expressed and completely lost its enzymatic activity. Wild-type 17β-HSD3 and mutant G133R showed comparable expression levels and intracellular localization. The conversion of Δ4-androstene-3,17-dione (androstenedione) to testosterone was almost completely abolished for mutant G133R compared with wild-type 17β-HSD3. To obtain further mechanistic insight, G133 was mutated to alanine, phenylalanine and glutamine. G133Q and G133F were almost completely inactive, whereas G133A displayed about 70% of wild-type activity. Sequence analysis revealed that G133 on 17β-HSD3 is located in a motif highly conserved in 17β-HSDs and other short-chain dehydrogenase/reductase (SDR) enzymes. A homology model of 17β-HSD3 predicted that arginine or any other bulky residue at position 133 causes steric hindrance of cofactor NADPH binding, whereas substrate binding seems to be unaffected. The results indicate an essential role of G133 in the arrangement of the cofactor binding pocket, thus explaining the loss-of-function of 17β-HSD3 mutant G133R in the patients investigated.
Collapse
Affiliation(s)
- Roger T Engeli
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Pharmacenter, University of Basel, Basel, Switzerland
| | - Bochra Ben Rhouma
- Human Molecular Genetics Laboratory, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Christoph P Sager
- Molecular Modeling, Department of Pharmaceutical Sciences, Pharmacenter, University of Basel, Basel, Switzerland
| | - Maria Tsachaki
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Pharmacenter, University of Basel, Basel, Switzerland
| | - Julia Birk
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Pharmacenter, University of Basel, Basel, Switzerland
| | - Faiza Fakhfakh
- Human Molecular Genetics Laboratory, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Leila Keskes
- Human Molecular Genetics Laboratory, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Neila Belguith
- Human Molecular Genetics Laboratory, Faculty of Medicine, University of Sfax, Sfax, Tunisia; Department of Medical Genetics, HediChaker Hospital, Sfax, Tunisia.
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Pharmacenter, University of Basel, Basel, Switzerland.
| |
Collapse
|
47
|
Pharmacophore Models and Pharmacophore-Based Virtual Screening: Concepts and Applications Exemplified on Hydroxysteroid Dehydrogenases. Molecules 2015; 20:22799-832. [PMID: 26703541 PMCID: PMC6332202 DOI: 10.3390/molecules201219880] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/03/2015] [Accepted: 12/09/2015] [Indexed: 01/06/2023] Open
Abstract
Computational methods are well-established tools in the drug discovery process and can be employed for a variety of tasks. Common applications include lead identification and scaffold hopping, as well as lead optimization by structure-activity relationship analysis and selectivity profiling. In addition, compound-target interactions associated with potentially harmful effects can be identified and investigated. This review focuses on pharmacophore-based virtual screening campaigns specifically addressing the target class of hydroxysteroid dehydrogenases. Many members of this enzyme family are associated with specific pathological conditions, and pharmacological modulation of their activity may represent promising therapeutic strategies. On the other hand, unintended interference with their biological functions, e.g., upon inhibition by xenobiotics, can disrupt steroid hormone-mediated effects, thereby contributing to the development and progression of major diseases. Besides a general introduction to pharmacophore modeling and pharmacophore-based virtual screening, exemplary case studies from the field of short-chain dehydrogenase/reductase (SDR) research are presented. These success stories highlight the suitability of pharmacophore modeling for the various application fields and suggest its application also in futures studies.
Collapse
|
48
|
Vuorinen A, Odermatt A, Schuster D. Reprint of "In silico methods in the discovery of endocrine disrupting chemicals". J Steroid Biochem Mol Biol 2015; 153:93-101. [PMID: 26291836 DOI: 10.1016/j.jsbmb.2015.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 04/03/2013] [Accepted: 04/07/2013] [Indexed: 12/18/2022]
Abstract
The prevalence of sex hormone-dependent cancers, reproductive problems, obesity, and cardiovascular complications has risen especially in the Western world. It has been suggested, that the exposure to various endocrine disrupting chemicals (EDCs) contributes to the development and progression of these diseases. EDCs can interfere with various proteins: nuclear steroid hormone receptors, such as estrogen-, androgen-, glucocorticoid- and mineralocorticoid receptors (ER, AR, GR, MR), and enzymes that are involved in steroid hormone synthesis and metabolism, for example hydroxysteroid dehydrogenases (HSDs). Numerous chemicals are known as endocrine disruptors. However, the mechanism of action for most of these EDCs is still unknown. It is exhaustive and time consuming to test in vitro all chemicals - potential EDCs - used in industry, agriculture or as food preservatives against their effects on the endocrine system. Computational methods, such as virtual screening, quantitative structure activity relationships and docking, are already well recognized and used in drug development. The same methods could also aid the research on EDCs. So far, the computational methods in the search of EDCs have been retrospective. There are, however, some prospective studies reporting the use of in silico methods: five studies reporting the identification of previously unknown 17β-HSD3 inhibitors, MR agonists, and ER antagonists/agonists. This review provides an overview of case studies and in silico methods that are used in the search of EDCs. This article is part of a Special Issue entitled 'CSR 2013'.
Collapse
Affiliation(s)
- Anna Vuorinen
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck - CMBI, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Alex Odermatt
- Swiss Center for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Daniela Schuster
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck - CMBI, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| |
Collapse
|
49
|
Warr WA. Many InChIs and quite some feat. J Comput Aided Mol Des 2015; 29:681-94. [PMID: 26081259 DOI: 10.1007/s10822-015-9854-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/10/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Wendy A Warr
- Wendy Warr & Associates, Holmes Chapel, Crewe, Cheshire, CW4 7HZ, UK,
| |
Collapse
|
50
|
Nakamura N, Inselman AL, White GA, Chang CW, Trbojevich RA, Sepehr E, Voris KL, Patton RE, Bryant MS, Harrouk W, McIntyre B, Foster PM, Hansen DK. Effects of maternal and lactational exposure to 2-hydroxy-4-methoxybenzone on development and reproductive organs in male and female rat offspring. BIRTH DEFECTS RESEARCH. PART B, DEVELOPMENTAL AND REPRODUCTIVE TOXICOLOGY 2015; 104:35-51. [PMID: 25707689 PMCID: PMC4353586 DOI: 10.1002/bdrb.21137] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/30/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND 2-Hydroxy-4-methoxybenzophenone (HMB) is an ultraviolet (UV) absorbing compound used in many cosmetic products as a UV-protecting agent and in plastics for preventing UV-induced photodecomposition. HMB has been detected in over 95% of randomly collected human urine samples from adults and from premature infants, and it may have estrogenic potential. METHODS To determine the effects of maternal and lactational exposure to HMB on development and reproductive organs of offspring, time-mated female Harlan Sprague-Dawley rats were dosed with 0, 1000, 3000, 10,000, 25,000, or 50,000 ppm HMB (seven to eight per group) added to chow from gestation day 6 until weaning on postnatal day (PND) 23. RESULTS AND CONCLUSION Exposure to HMB was associated with reduced body and organ weights in female and male offspring. No significant differences were observed in the number of implantation sites/litter, mean resorptions/litter, % litters with resorptions, number and weights of live fetuses, or sex ratios between the control and HMB dose groups. Normalized anogenital distance in male pups at PND 23 was decreased in the highest dose group. Spermatocyte development was impaired in testes of male offspring in the highest dose group. In females, follicular development was delayed in the highest dose group. However, by evaluating levels of the compound in rat serum, the doses at which adverse events occurred are much higher than usual human exposure levels. Thus, exposure to less than 10,000 ppm HMB does not appear to be associated with adverse effects on the reproductive system in rats.
Collapse
Affiliation(s)
- Noriko Nakamura
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson AR 72079, United States
| | - Amy L. Inselman
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson AR 72079, United States
| | - Gene A. White
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson AR 72079, United States
| | - Ching-Wei Chang
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, Food and Drug Administration, Jefferson AR 72079, United States
| | - Raul A. Trbojevich
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson AR 72079, United States
| | - Estatira Sepehr
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson AR 72079, United States
| | - Kristie L. Voris
- Toxicologic Pathology Associates, Jefferson AR 72079, United States
| | - Ralph E. Patton
- Toxicologic Pathology Associates, Jefferson AR 72079, United States
| | - Matthew S. Bryant
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson AR 72079, United States
| | - Wafa Harrouk
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Barry McIntyre
- National Toxicology Program, Research Triangle Park, NC 27709, United States
| | - Paul M. Foster
- National Toxicology Program, Research Triangle Park, NC 27709, United States
| | - Deborah K. Hansen
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson AR 72079, United States
| |
Collapse
|