1
|
Li W, Liu T, Chen Y, Sun Y, Li C, Dong Y. Regulation and therapeutic potential of NLRP3 inflammasome in intestinal diseases. J Leukoc Biol 2025; 117:qiaf014. [PMID: 40276926 DOI: 10.1093/jleuko/qiaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Indexed: 04/26/2025] Open
Abstract
The NOD-like receptor family, particularly the protein 3 that contains the pyrin domain (NLRP3), is an intracellular sensing protein complex responsible for detecting patterns associated with pathogens and injuries. NLRP3 plays a crucial role in the innate immune response. Currently, a wide range of research has indicated the crucial importance of NLRP3 in various inflammatory conditions. Similarly, the NLRP3 inflammasome plays a significant role in preserving intestinal balance and impacting the advancement of diseases. In addition, several randomized trials have demonstrated the safety and efficacy of targeting NLRP3 in the treatment of colitis, colorectal cancer, and related diseases. This review explores the mechanisms of NLRP3 assembly and activation in the gut. We describe its pathological significance in intestinal diseases. Finally, we summarize current and future therapeutic approaches targeting NLRP3 for intestinal diseases.
Collapse
Affiliation(s)
- Wenxue Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Tianya Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yaoxing Chen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yan Sun
- Department of Horticulture and Landscape Architecture, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Chengzhong Li
- Department of Horticulture and Landscape Architecture, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Yulan Dong
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| |
Collapse
|
2
|
Xu Q, Zhang C, Lu J, Qian H, Wang X, Guo W, Cheng H. Azithromycin induces liver injury in mice by targeting the AMPK/Nrf2 pathway. Immunopharmacol Immunotoxicol 2024; 46:850-860. [PMID: 39406691 DOI: 10.1080/08923973.2024.2415115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/05/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Azithromycin is an antibacterial and anti-inflammatory drug widely used for the treatment of various diseases, including those caused by atypical pathogens, bacterial or viral infections, chronic sinusitis, and bronchial asthma, particularly in pediatric patients. However, concerns have emerged regarding its hepatotoxicity and its precise mechanism of action remains unclear. OBJECTIVE To investigate the molecular mechanisms responsible for azithromycin-induced acute liver injury to advance our understanding of the progression and pathogenesis of antibiotic-induced liver damage, and to improve prevention and treatment strategies. MATERIALS AND METHODS C57BL/6 mice, Nrf2-/- mice, and primary hepatocytes were used. Primary hepatocytes from mice were isolated using a two-step perfusion method and cultured in vitro via the 'sandwich' culture model. RESULTS The exposure to azithromycin resulted in increased apoptosis and reactive oxygen species (ROS) levels. In mouse models, intraperitoneal administration of azithromycin at varying concentrations and time points substantially induced hepatic disarray, swelling, and dysfunction. Azithromycin markedly upregulated the mRNA and protein levels of phosphorylated adenosine-activated protein kinase (AMPK) while downregulating nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1), and NADPH: quinone oxidoreductase 1 (NQO-1). Moreover, HO-1 and NQO-1 protein levels remained largely unaffected in primary hepatocytes co-cultured with azithromycin in Nrf2-/- mice. CONCLUSIONS Our findings suggest that azithromycin-induced acute liver injury is mediated by suppression of Nrf2 activation and ROS production. This sheds light on the potential mechanisms involved in azithromycin-induced liver damage, underscoring the importance of exploring targeted interventions to mitigate the hepatotoxic effects.
Collapse
Affiliation(s)
- Qixiang Xu
- School of Pharmacology, Wannan Medical College, Wuhu, China
| | - Cuifeng Zhang
- Anesthesia Laboratory and Training Center, School of Anesthesiology, Wannan Medical College, Wuhu, China
- Perioperative Monitoring and Prognostic Technology Research and Development Center of Wuhu, Wuhu, China
| | - Jingwen Lu
- Anesthesia Laboratory and Training Center, School of Anesthesiology, Wannan Medical College, Wuhu, China
- Perioperative Monitoring and Prognostic Technology Research and Development Center of Wuhu, Wuhu, China
| | - Haiyi Qian
- School of Pharmacology, Wannan Medical College, Wuhu, China
| | - Xiaodong Wang
- Anesthesia Laboratory and Training Center, School of Anesthesiology, Wannan Medical College, Wuhu, China
- Perioperative Monitoring and Prognostic Technology Research and Development Center of Wuhu, Wuhu, China
| | - Wenjun Guo
- Perioperative Monitoring and Prognostic Technology Research and Development Center of Wuhu, Wuhu, China
- Department of Anesthesiology, Yijishan Hospital, The First Affiliated of Wannan Medical College, Wuhu, China
| | - Huixian Cheng
- Perioperative Monitoring and Prognostic Technology Research and Development Center of Wuhu, Wuhu, China
- Department of Anesthesiology, Yijishan Hospital, The First Affiliated of Wannan Medical College, Wuhu, China
| |
Collapse
|
3
|
Komatsu W, Kishi H, Uchiyama K, Ohhira S, Kobashi G. Urolithin A suppresses NLRP3 inflammasome activation by inhibiting the generation of reactive oxygen species and prevents monosodium urate crystal-induced peritonitis. Biosci Biotechnol Biochem 2024; 88:966-978. [PMID: 38772744 DOI: 10.1093/bbb/zbae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
The NOD-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome triggers the maturation of interleukin-1β (IL-1β) and is implicated in the pathogenesis of various inflammatory diseases. Urolithin A, a gut microbial metabolite of ellagic acid, reportedly exerts antiinflammatory effects in vitro and in vivo. However, whether urolithin A suppresses NLRP3 inflammasome activation is unclear. In this study, urolithin A inhibited the cleavage of NLRP3 inflammasome agonist-induced caspase-1, maturation of IL-1β, and activation of pyroptosis in lipopolysaccharide-primed mouse bone marrow-derived macrophages. Urolithin A reduced generation of intracellular and mitochondrial reactive oxygen species (ROS) and restricted the interaction between thioredoxin-interacting protein and NLRP3, which attenuated NLRP3 inflammasome activation. Urolithin A administration prevented monosodium urate-induced peritonitis in mice. Collectively, these findings indicate that urolithin A suppresses NLRP3 inflammasome activation, at least partially, by repressing the generation of intracellular and mitochondrial ROS.
Collapse
Affiliation(s)
- Wataru Komatsu
- Department of Public Health, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Hisashi Kishi
- Department of Public Health, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Koji Uchiyama
- Department of Public Health, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Shuji Ohhira
- Department of Public Health, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Gen Kobashi
- Department of Public Health, Dokkyo Medical University School of Medicine, Tochigi, Japan
| |
Collapse
|
4
|
Yang F, Dai Z, Xue MY, Chen XY, Liu J, Wang L, Xu LL, Di B. Identification and Validation of PKR as a Direct Target for the Novel Sulfonamide-Substituted Tetrahydroquinoline Nonselective Inhibitor of the NLRP3 Inflammasome. J Med Chem 2024; 67:10168-10189. [PMID: 38855903 DOI: 10.1021/acs.jmedchem.4c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The NLRP3 inflammasome is a critical component of the innate immune system. The persistent abnormal activation of the NLRP3 inflammasome is implicated in numerous human diseases. Herein, sulfonamide-substituted tetrahydroquinoline derivative S-9 was identified as the most promising NLRP3 inhibitor, without obvious cytotoxicity. In vitro, S-9 inhibited the priming and activation stages of the NLRP3 inflammasome. Incidentally, we also observed that S-9 had inhibitory effects on the NLRC4 and AIM2 inflammasomes. To elucidate the multiple anti-inflammatory activities of S-9, photoaffinity probe P-2, which contained a photoaffinity label and a functional handle, was developed for target identification by chemical proteomics. We identified PKR as a novel target of S-9 in addition to NLRP3 by target fishing. Furthermore, S-9 exhibited a significant anti-neuroinflammatory effect in vivo. In summary, our findings show that S-9 is a promising lead compound targeting both PKR and NLRP3 that could emerge as a molecular tool for treating inflammasome-related diseases.
Collapse
Affiliation(s)
- Fan Yang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen Dai
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Ming-Yue Xue
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Yi Chen
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Juan Liu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Li Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Li-Li Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Bin Di
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
5
|
Zhou M, Cao Y, Xie S, Xiang Y, Li M, Yang H, Dong Z. Gypenoside XLIX alleviates acute liver injury: Emphasis on NF-κB/PPAR-α/NLRP3 pathways. Int Immunopharmacol 2024; 131:111872. [PMID: 38503011 DOI: 10.1016/j.intimp.2024.111872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
Liver is one of the vital organs in the human body and liver injury will have a very serious impact on human damage. Gypenoside XLIX is a PPAR-α activator that inhibits the activation of the NF-κB signaling pathway. The components of XLIX have pharmacological effects such as cardiovascular protection, antihypoxia, anti-tumor and anti-aging. In this study, we used cecum ligation and puncture (CLP) was used to induce in vivo mice hepatic injury, and lipopolysaccharide (LPS)-induced inflammation in RAW264.7 cells, evaluated whether Gypenoside XLIX could have a palliative effect on sepsis-induced acute liver injury via NF-κB/PPAR-α/NLRP3. In order to gain insight into these mechanisms, six groups were created in vivo: the Contol group, the Sham group, the CLP group, the CLP + XLIX group (40 mg/kg) and the Sham + XLIX (40 mg/kg) group, and the CLP + DEX (2 mg/kg) group. Three groups were created in vitro: Control, LPS, LPS + XLIX (40 μM). The analytical methods used included H&E staining, qPCR, reactive oxygen species (ROS), oil red O staining, and Western Blot. The results showed that XLIX attenuated hepatic inflammatory injury in mice with toxic liver disease through inhibition of the TLR4-mediated NF-κB pathway, attenuated lipid accumulation through activation of PPAR-α, and attenuated hepatic pyroptosis by inhibiting NLRP3 production. Regarding the imbalance between oxidative and antioxidant defenses due to septic liver injury, XLIX reduced liver oxidative stress-related biomarkers (ALT, AST), reduced ROS accumulation, decreased the amount of malondialdehyde (MDA) produced by lipid peroxidation, and increased the levels of antioxidant enzymes such as glutathione (GSH) and catalase (CAT). Our results demonstrate that XLIX can indeed attenuate septic liver injury. This is extremely important for future studies on XLIX and sepsis, and provides a potential pathway for the treatment of acute liver injury.
Collapse
Affiliation(s)
- Mengyuan Zhou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yu Cao
- School of Civil and Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shaocheng Xie
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yannan Xiang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mengxin Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Haitao Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zibo Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
6
|
Byun KA, Park Y, Oh S, Batsukh S, Son KH, Byun K. Co-Treatment with Phlorotannin and Extracellular Vesicles from Ecklonia cava Inhibits UV-Induced Melanogenesis. Antioxidants (Basel) 2024; 13:408. [PMID: 38671856 PMCID: PMC11047619 DOI: 10.3390/antiox13040408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Hyperpigmentation due to ultraviolet (UV)-induced melanogenesis causes various esthetic problems. Phlorotannin (PT) and extracellular vesicles (EVs) derived from various plants suppress melanogenesis pathways. We used UV-exposed keratinocytes and animal skin to determine if co-treatment with PT and EVs from Ecklonia cava (EVE) could inhibit melanogenesis by reducing UV-induced oxidative stress and the expression of the thioredoxin-interacting protein (TXNIP)/nucleotide-binding oligomerization domain-like receptor family pyrin domain containing the 3 (NLRP3)/interleukin-18 (IL-18) pathway, which are upstream signals of the microphthalmia-associated transcription factor. UV exposure increased oxidative stress in keratinocytes and animal skin, as evaluated by 8-OHdG expression, and this effect was reduced by co-treatment with PT and EVE. UV also increased binding between NLRP3 and TXNIP, which increased NLRP3 inflammasome activation and IL-18 secretion, and this effect was reduced by co-treatment with PT and EVE in keratinocytes and animal skin. In melanocytes, conditioned media (CM) from UV-exposed keratinocytes increased the expression of melanogenesis-related pathways; however, these effects were reduced with CM from UV-exposed keratinocytes treated with PT and EVE. Similarly, PT and EVE treatment reduced melanogenesis-related signals, melanin content, and increased basement membrane (BM) components in UV-exposed animal skin. Thus, co-treatment with PT and EVE reduced melanogenesis and restored the BM structure by reducing oxidative stress and TXNIP/NLRP3/IL-18 pathway expression.
Collapse
Affiliation(s)
- Kyung-A Byun
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- LIBON Inc., Incheon 22006, Republic of Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | | | - Seyeon Oh
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Sosorburam Batsukh
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Kyunghee Byun
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health & Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
7
|
Wang R, Wang Y, Liu H, Zhu J, Fang C, Xu W, Lu Z, Yan Y, He W, Ruan Y, Zhou M. Platycodon D protects human nasal epithelial cells from pyroptosis through the Nrf2/HO-1/ROS signaling cascade in chronic rhinosinusitis. Chin Med 2024; 19:40. [PMID: 38433216 PMCID: PMC10910709 DOI: 10.1186/s13020-024-00897-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/28/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Pyroptosis has been demonstrated being closely associated with the inflammatory progression in chronic rhinosinusitis (CRS). However, platycodon D (PLD) has emerged as a key anti-inflammatory mediator in the inflammatory progression of various respiratory diseases. This study aims at investigating whether PLD could reduce inflammatory progression of CRS by inhibiting pyroptosis. METHODS Nasal mucosal tissues from patients with CRS and the control group (simple nasal septal deviation) were analyzed for morphological difference using hematoxylin & eosin staining and for the expression of pyroptosis-related makers by immunofluorescence (IF). Human nasal epithelial cells (HNEpCs) were cultured and co-stimulated with lipopolysaccharide (LPS)/adenosine triphosphate (ATP) to construct an in vitro cellular model simulating CRS. After pretreatment with PLD, EthD-I staining, TUNEL staining, transmission electron microscopy (TEM), and GSDMD-NT detection were performed to evaluate pyroptosis markers. The NLRP3 inflammasome was detected by IF and western blotting (WB). Reactive oxygen species (ROS) were detected by H2DCFDA staining, and mitochondrial membrane potential was evaluated by JC-1 staining. Mitochondrial morphology and structure were observed using TEM. The Nrf2/HO-1 antioxidant signaling pathway was detected using WB. RESULTS The nasal mucosa structure of patients with CRS exhibited significant damage, with a marked increase in the expression of pyroptosis-related proteins compared with the control group. LPS/ATP co-stimulation resulted in an increased expression of IL-18 and IL-1β in HNEpCs, causing significant damage to nuclear and cell membranes, GSDMD-NT accumulation around the cell membrane, and intracellular NLRP3 inflammasome activation. Furthermore, it led to increased ROS expression, significantly decreased mitochondrial membrane potential, and damaged mitochondrial structure. However, pretreatment with PLD significantly reversed the aforementioned trends and activated the Nrf2/HO-1 antioxidant signaling pathway. CONCLUSIONS The results of this study confirm that NLRP3-mediated pyroptosis plays a crucial role in the pathological process of nasal mucosal impairment in patients with CRS. PLD inhibits NLRP3-mediated pyroptosis, preventing inflammatory damage in HNEpCs of patients with CRS by activating the Nrf2/HO-1 antioxidant signaling pathway, which in turn reduces ROS production and ameliorates mitochondrial damage.
Collapse
Affiliation(s)
- Ruizhi Wang
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yongchun Wang
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - He Liu
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jinxiang Zhu
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Caishan Fang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China
| | - Weizhen Xu
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zesheng Lu
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yajie Yan
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No.16 of Jichang Road, Baiyun District, Guangzhou, 510405, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, 510405, China
| | - Weiping He
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No.16 of Jichang Road, Baiyun District, Guangzhou, 510405, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, 510405, China
| | - Yan Ruan
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No.16 of Jichang Road, Baiyun District, Guangzhou, 510405, China.
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, 510405, China.
| | - Min Zhou
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No.16 of Jichang Road, Baiyun District, Guangzhou, 510405, China.
- Department of Allergy, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| |
Collapse
|
8
|
Tungalag T, Park JY, Park KW, Yang DK. Sesame cake extract attenuates dextran sulfate sodium-induced colitis through inhibition of oxidative stress in mice. Food Sci Biotechnol 2024; 33:699-709. [PMID: 38274181 PMCID: PMC10806049 DOI: 10.1007/s10068-023-01367-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 01/27/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease occurring in the gut causing chronic diarrhea and abdominal pain with severe complications. Sesame cake is a by-product of sesame oil production, possessing various beneficial properties; however, little is known about the effect of sesame cake extract (SCE) against IBD. The aim of this study was to investigate the protective effect of SCE against dextran sulfate sodium (DSS)-induced colitis in mice. Administration of SCE was first performed at 7 days before treating mice with 2.5% DSS to induce colitis for 7 days. SCE pretreatment improved symptoms of DSS-induced colitis. In addition, SCE ameliorated histopathological damages of the mucus layer in colon tissues and decreased pro-inflammatory cytokines in colitis-induced mice. SCE also suppressed apoptosis and oxidative stress in colitis-induced colon tissues. Together, these findings suggest that SCE could be potential nutraceuticals for treating colitis. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01367-1.
Collapse
Affiliation(s)
- Tsendsuren Tungalag
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do 54596 Republic of Korea
| | - Jung Yong Park
- Queensbucket, Daegudae-ro, Jillyang-eup, Gyeongsan-si, Gyeongsangbuk-do 38453 Republic of Korea
| | - Kye Won Park
- Department of Food Science and Biotechnology, Food Clinical Research Center, Sungkyunkwan University, Suwon, 16419 Republic of Korea
| | - Dong Kwon Yang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do 54596 Republic of Korea
| |
Collapse
|
9
|
Alharthi F. Chicoric acid enhances the antioxidative defense system and protects against inflammation and apoptosis associated with the colitis model induced by dextran sulfate sodium in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119814-119824. [PMID: 37930572 DOI: 10.1007/s11356-023-30742-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Although several anticolitic drugs are available, their application is associated with numerous side effects. Chicoric acid (CA) is a hydroxycinnamic acid found naturally in chicory (Cichorium intybus), purple coneflower (Echinacea purpurea), and basil with numerous health benefits, such as antioxidative and anti-inflammatory activities. Here, the potential anticolitic efficiency of CA against dextran sulfate sodium (DSS)-induced colitis in rats was examined in rats. Animals were randomly assigned to the following five groups: control, CA (100 mg/kg body weight), DSS [(DSS); 4% w/v], CA + DSS (100 mg/kg), and the 5-aminosalicylic acid (100 mg/kg) + DSS group. The obtained data revealed that CA significantly prevented the shortening of colon length. Meanwhile, the oxidative stress-related enzymes were increased, while malondialdehyde and nitric oxide, were markedly decreased significantly by CA. The results also indicated that CA administration decreased significantly the pro-apoptogenic indices (Bax and caspase-3) and enhanced significantly Bcl-2, the anti-apoptogenic protein. Moreover, DSS caused a significant elevation of pro-inflammatory mediators, including interleukin-1β, tumor necrosis factor-α, myeloperoxidase, cyclooxygenase II, prostaglandin E2, and peroxisome proliferator-activated receptor gamma. Interestingly, these changes were significantly decreased following the CA administration. At the molecular level, CA supplementation has increased significantly the expression level of nuclear factor erythroid 2-related factor-2 (Nrf2) and decreased the expressions of nitric oxide synthase and mitogen-activated protein kinase 14. CA has been determined to significantly lessen DSS-induced colitis by activating Nrf2 and its derived antioxidant molecules and suppressing inflammation and apoptosis cascades associated with the development of colitis; suggesting that CA could be used as an alternative naturally-derived anticolitic agent.
Collapse
Affiliation(s)
- Fahad Alharthi
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia.
| |
Collapse
|
10
|
Zhou F, Zhang GD, Tan Y, Hu SA, Tang Q, Pei G. NOD-like receptors mediate homeostatic intestinal epithelial barrier function: promising therapeutic targets for inflammatory bowel disease. Therap Adv Gastroenterol 2023; 16:17562848231176889. [PMID: 37701792 PMCID: PMC10493068 DOI: 10.1177/17562848231176889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 05/01/2023] [Indexed: 09/14/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal inflammatory disease that involves host genetics, the microbiome, and inflammatory responses. The current consensus is that the disruption of the intestinal mucosal barrier is the core pathogenesis of IBD, including intestinal microbial factors, abnormal immune responses, and impaired intestinal mucosal barrier. Cumulative data show that nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) are dominant mediators in maintaining the homeostasis of the intestinal mucosal barrier, which play critical roles in sensing the commensal microbiota, maintaining homeostasis, and regulating intestinal inflammation. Blocking NLRs inflammasome activation by botanicals may be a promising way to prevent IBD progression. In this review, we systematically introduce the multiple roles of NLRs in regulating intestinal mucosal barrier homeostasis and focus on summarizing the activities and potential mechanisms of natural products against IBD. Aiming to propose new directions on the pathogenesis and precise treatment of IBD.
Collapse
Affiliation(s)
- Feng Zhou
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, China
| | | | - Yang Tan
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Science and Technology Innovation Center/State Key Laboratory Breeding Base of Chinese Medicine Powder and Innovative Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Shi An Hu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of TCM Prevention and Treatment of Depression Diseases, Changsha, China
| | - Qun Tang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Gang Pei
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, China
| |
Collapse
|
11
|
Yu TY, Feng YM, Kong WS, Li SN, Sun XJ, Zhou G, Xie RF, Zhou X. Gallic acid ameliorates dextran sulfate sodium-induced ulcerative colitis in mice via inhibiting NLRP3 inflammasome. Front Pharmacol 2023; 14:1095721. [PMID: 36762118 PMCID: PMC9905138 DOI: 10.3389/fphar.2023.1095721] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Background: Ulcerative colitis (UC) is a chronic recurrent inflammatory bowel disease (IBD). The conventional drugs for UC may induce severe side effects. Herbal medicine is considered as a complementary and alternative choice for UC. Purpose: This study aims to estimate the effect of natural polyphenol gallic acid (GA) on the NLRP3 inflammasome with dextran sulfate sodium (DSS)-induced colitis in mice. Study design: The body weights and symptoms of BALB/c mice were recorded. Histological evaluation, ELISA, q-PCR, immunohistochemistry, and western blotting were carried out to observe the morphology, cytokine contents, mRNA expressions, and protein expressions, respectively. Lipopolysaccharide (LPS)-induced RAW264.7 macrophage was used to probe GA's effect on relative protein expression. Results: GA attenuated weight loss (p < 0.05), relieved symptoms, and ameliorated colonic morphological injury (p < 0.05) in mice with colitis induced by DSS. GA also lowered the contents of TNF-α, IL-1β, IL-18, IL-33, and IFN-γ in the serum and colon of mice, which were elevated by DSS, downregulated protein, and mRNA expressions of the NLRP3 pathway in the colon tissue. Furthermore, GA downregulated the expressions of NLRP3 (p < 0.05), iNOS (p < 0.01), COX2 (p < 0.01), and P-p65 (p < 0.05), and suppressed NO release (p < 0.001) in LPS-induced RAW264.7 cells. Conclusion: GA ameliorated DSS-induced UC in mice via inhibiting the NLRP3 inflammasome. These findings furnish evidence for the anti-inflammatory effect of herbal medicines containing GA on UC.
Collapse
Affiliation(s)
- Tian-Yuan Yu
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yi-Ming Feng
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei-Song Kong
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shan-Ni Li
- Shanghai Nanyang Model Private High School, Shanghai, China
| | - Xue-Jiao Sun
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Fengdu County People’s Hospital of Chongqing, Chongqing, China
| | - Gui Zhou
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui-Fang Xie
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Zhou
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Xin Zhou,
| |
Collapse
|
12
|
Chen Y, Ma S, Pi D, Wu Y, Zuo Q, Li C, Ouyang M. Luteolin induces pyroptosis in HT-29 cells by activating the Caspase1/Gasdermin D signalling pathway. Front Pharmacol 2022; 13:952587. [PMID: 36105214 PMCID: PMC9464948 DOI: 10.3389/fphar.2022.952587] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/01/2022] [Indexed: 01/31/2023] Open
Abstract
Luteolin, which is a natural flavonoid, has anti-inflammatory, antioxidant, and anticancer properties. Numerous studies have proven that luteolin inhibits the growth of many types of cancer cells by promoting apoptosis, autophagy, and cell cycle arrest in tumour cells. However, in vivo research on this topic has been limited. In addition, other studies have shown that luteolin exerts a good inhibitory effect on apoptosis-resistant cancer cells. While existing studies have not completely elucidated the mechanism underlying this phenomenon, we assume that luteolin, which is a natural compound that exerts its effects through various mechanisms, may have the potential to inhibit tumour growth. In our study, we proved that luteolin exerted a good inhibitory effect on the proliferation of colon cancer cells according to CCK8 and EdU fluorescence assays, and the same conclusion was drawn in animal experiments. In addition, we found that luteolin, which is an antioxidant, unexpectedly promoted oxidative stress as shown by measuring the levels of oxidative balance-related indicators, such as reactive oxygen species (ROS), SOD, H2O2 and GSH. However, the decreased oxidation of luteolin-treated HT-29 cells after treatment with the active oxygen scavenger NAC did not reverse the inhibition of cell growth. However, the Caspase1 inhibitor VX765 did reverse the inhibition of cell growth. Western blotting analysis showed that luteolin treatment increased the expression of Caspase1, Gasdermin D and IL-1β, which are members of the pyroptosis signalling pathway, in colon cancer cells. We further intuitively observed NLRP3/Gasdermin D colocalization in luteolin-treated HT-29 cells and mouse tumour tissues by immunofluorescence. These results suggest that luteolin inhibits the proliferation of colon cancer cells through a novel pathway called pyroptosis. This study provides a new direction for the development of natural products that inhibit tumour growth by inducing pyroptosis.
Collapse
|
13
|
Lao Y, Huang P, Chen J, Wang Y, Su R, Shao W, Hu W, Zhang J. Discovery of 1,2,4-triazole derivatives as novel neuroprotectants against cerebral ischemic injury by activating antioxidant response element. Bioorg Chem 2022; 128:106096. [PMID: 35985158 DOI: 10.1016/j.bioorg.2022.106096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/02/2022]
Abstract
Acute ischemic stroke is an important cause of death and long-term disability worldwide. In this work, we have synthesized a series of derivatives with 3,5‑diaryl substituent triazole scaffolds. The derivatives showed favorable protective effective in SNP-induced oxidative stress model, of which compound 5 was the most active. In vivo experiments showed that compound 5 could ameliorate neurological deficits, attenuate infarction sizes, reduce malonaldehyde (MDA) level and increase superoxide dismutase (SOD) level in middle cerebral artery occlusion (MCAO) rats. Preliminary safety evaluation showed that compound 5 exhibited low acute toxicity in BALB/c mice (LD50 greater than 1000 mg/kg). Further investigation indicated that compound 5 was able to scavenge ROS, restore mitochondrial membrane potential and protect PC12 cells from SNP-induced apoptosis. Moreover, compound 5 could initiate transcription of antioxidant response element (ARE) and induced expressions of antioxidative enzymes. Collectively, compound 5 might have the potency of treating acute ischemic stroke.
Collapse
Affiliation(s)
- Yaoqiang Lao
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Ping Huang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jianwen Chen
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yang Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Ruiqi Su
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Weiyan Shao
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Wenhao Hu
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jingxia Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
14
|
Zhang M, Yu X, Li D, Ma N, Wei Z, Ci X, Zhang S. Nrf2 Signaling Pathway Mediates the Protective Effects of Daphnetin Against D-Galactose Induced-Premature Ovarian Failure. Front Pharmacol 2022; 13:810524. [PMID: 35153783 PMCID: PMC8832979 DOI: 10.3389/fphar.2022.810524] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/05/2022] [Indexed: 12/20/2022] Open
Abstract
Oxidative damage can lead to severe ovarian dysfunctions and even premature ovarian failure. Nrf2, a significant transcription factor that regulates the oxidative stress response of cells, declines with age. Daphnetin, as a kind of natural Chinese herbal medicine, can activate Nrf2 and further promote the antioxidant defense of cells. However, whether Daphnetin treatment can protect ovary from premature ovarian failure and the specific mechanism involved are not understood. This study aimed to investigate the protective function of Daphnetin against the ovarian aging induced by D-galactose in wild-type and Nrf2−/− mice. Female C57BL/6 mice with Wild-type and Nrf2−/− were divided into five groups separately and the premature ovarian failure model were established by D-galactose and then Daphnetin and VE were given for treatment. After 42 days, ovaries tissue and serum were collected for biochemical determination, H&E staining, Immunohistochemical staining and western blot analysis. In the WT-POF group, ovarian function was broke, and the expression of the ovarian senescence-associated protein P16 and the level of oxidative stress were significantly increased, while the expression of the anti-senescence protein klotho was significantly decreased. In addition, the expression of Nrf2 and the antioxidases GCLC, HO-1 and NQO1 were decreased, but TXNIP and NLRP3 were significantly increased. Furthermore, the characteristics of premature ovarian failure were more significant in Nrf2 knockout mice than in wild-type mice, especially the expression of NLRP3 and TXNIP. Moreover, daphnetin, an Nrf2 activator, rescued d-gal-induced POF in a dose-dependent manner, while the protective effect was weakened or even lost in Nrf2 knockout mice. Our results suggested that daphnetin is likely to be a candidate drug for premature ovarian failure treatment and it is mostly possible referred to the molecular mechanism of increasing Nrf2 expression and inhibiting NLRP3 activation in the ovarian aging process.
Collapse
Affiliation(s)
- Mengwen Zhang
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Xiaowei Yu
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Danjie Li
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Ning Ma
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Zhentong Wei
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Xinxin Ci
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Xinxin Ci, ; Songling Zhang,
| | - Songling Zhang
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Xinxin Ci, ; Songling Zhang,
| |
Collapse
|
15
|
Li P, Chang M. Roles of PRR-Mediated Signaling Pathways in the Regulation of Oxidative Stress and Inflammatory Diseases. Int J Mol Sci 2021; 22:ijms22147688. [PMID: 34299310 PMCID: PMC8306625 DOI: 10.3390/ijms22147688] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress is a major contributor to the pathogenesis of various inflammatory diseases. Accumulating evidence has shown that oxidative stress is characterized by the overproduction of reactive oxygen species (ROS). Previous reviews have highlighted inflammatory signaling pathways, biomarkers, molecular targets, and pathogenetic functions mediated by oxidative stress in various diseases. The inflammatory signaling cascades are initiated through the recognition of host cell-derived damage associated molecular patterns (DAMPs) and microorganism-derived pathogen associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs). In this review, the effects of PRRs from the Toll-like (TLRs), the retinoic acid-induced gene I (RIG-I)-like receptors (RLRs) and the NOD-like (NLRs) families, and the activation of these signaling pathways in regulating the production of ROS and/or oxidative stress are summarized. Furthermore, important directions for future studies, especially for pathogen-induced signaling pathways through oxidative stress are also reviewed. The present review will highlight potential therapeutic strategies relevant to inflammatory diseases based on the correlations between ROS regulation and PRRs-mediated signaling pathways.
Collapse
Affiliation(s)
- Pengwei Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
| | - Mingxian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-027-6878-0760
| |
Collapse
|
16
|
Zhang Z, Xue Z, Yang H, Zhao F, Liu C, Chen J, Lu S, Zou Z, Zhou Y, Zhang X. Differential effects of EPA and DHA on DSS-induced colitis in mice and possible mechanisms involved. Food Funct 2021; 12:1803-1817. [PMID: 33523066 DOI: 10.1039/d0fo02308f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The anti-inflammatory effect of n-3 PUFAs has been widely documented. Emerging evidence suggests that the main component of n-3 PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), may have differential effects in ulcerative colitis (UC). It was aimed to clarify their differential effects in UC. METHODS Eight-week-old male C57BL/6J mice were randomly divided into 7 groups, namely control, UC model, salicylazosulfapyridine (SASP), low-dose DHA, high-dose DHA, low-dose EPA, and high-dose EPA. DHA, EPA and SASP treatment groups were orally treated accordingly for 9 weeks. During the 5th to 9th week the control group was given distilled water, while other groups were given distilled water with 2% dextran sodium sulfate (DSS) to induce UC. Body weight loss, diarrhea, and stool bleeding were recorded to calculate the disease activity index (DAI). The level of tight junction proteins Claudin-1 and Occludin, and cytokines including TNF-α, IL-6, and IL-1β as well as inflammatory cell markers such as MPO, F4/80, and MCP-1 in the intestinal epithelium were measured using western blotting. Activation of IL-6/STAT3 and NLRP3/IL-1β inflammatory pathways was also assessed. Levels of proliferation-related proteins of the Wnt/β-catenin pathway with c-myc, Cyclin-D1, and PCNA were detected. RESULTS EPA, superior to DHA, significantly attenuated DSS-induced colitis evidenced by reduced DAI scores, cytokine production and inflammatory cell infiltration. Mechanically, EPA triggered a marked up-regulation of Claudin-1 and Occludin with down-regulation of their up-stream Akt and ERK. EPA also inhibited NLRP3/IL-1β and IL-6/STAT3 inflammatory pathways and up-regulated the Wnt/β-catenin pathway. CONCLUSIONS EPA is more suitable to be used for the treatment of UC than DHA.
Collapse
Affiliation(s)
- Zhuangwei Zhang
- Institute of Preventative Medicine and Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, 315211 Zhejiang, China. and Department of Nutrition, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000 Zhejiang, China
| | - Zhe Xue
- Institute of Preventative Medicine and Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, 315211 Zhejiang, China.
| | - Haitao Yang
- Department of Pathology, Mingzhou Hospital of Zhejiang University, Ningbo, 315040 Zhejiang, China
| | - Feng Zhao
- Institute of Nutrition and Health, Qingdao University, 266071 Qingdao, China
| | - Chundi Liu
- Central South University, Changsha, 410083 Hunan, China
| | - Jiahui Chen
- Institute of Preventative Medicine and Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, 315211 Zhejiang, China.
| | - Songtao Lu
- Institute of Preventative Medicine and Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, 315211 Zhejiang, China.
| | - Zuquan Zou
- Institute of Preventative Medicine and Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, 315211 Zhejiang, China.
| | - Yuping Zhou
- Department of Gastroenterology, Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315040 Zhejiang, China
| | - Xiaohong Zhang
- Institute of Preventative Medicine and Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, 315211 Zhejiang, China.
| |
Collapse
|
17
|
Biological functions of NLRP3 inflammasome: A therapeutic target in inflammatory bowel disease. Cytokine Growth Factor Rev 2021; 60:61-75. [PMID: 33773897 DOI: 10.1016/j.cytogfr.2021.03.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022]
Abstract
Cases of inflammatory bowel disease (IBD), a debilitating intestinal disorder with complex pathological mechanisms, have been increasing in recent years, straining the capacity of healthcare systems. Thus, novel therapeutic targets and innovative agents must be developed. Notably, the NLRP3 inflammasome is upregulated in patients with IBD and/or in animal experimental models. As an innate immune supramolecular assembly, the NLRP3 inflammasome is persistently activated during the pathogenesis of IBD by multiple stimuli. Moreover, this protein complex regulates pro-inflammatory cytokines. Thus, targeting this multiprotein oligomer may offer a feasible way to relieve IBD symptoms and improve clinical outcomes. The mechanisms by which the NLRP3 inflammasome is activated, its role in IBD pathogenesis, and the drugs administered to target this protein complex are reviewed herein. This review establishes that the use of inflammasome-targeting drugs are effective for IBD treatment. Moreover, this review suggests that the value and potential of naturally sourced or derived medicines for IBD treatment must be recognized and appreciated.
Collapse
|
18
|
Yu T, Li Z, Xu L, Yang M, Zhou X. Anti-inflammation effect of Qingchang suppository in ulcerative colitis through JAK2/STAT3 signaling pathway in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113442. [PMID: 33027643 DOI: 10.1016/j.jep.2020.113442] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qingchang Suppository (QCS) is a Traditional Chinese Medicine formula (TCM) for Ulcerative Colitis (UC), which has been used for the treatment of UC for more than 30 years with therapeutic effect. This formula is optimized from a classic formula called "Qingdai San". Although some experiments have shown QCS effective for UC, its mechanism on UC is still unclear and needs to be clarified. AIM OF THE STUDY To investigate the usage of QCS in our hospital, clarify the main compounds in QCS and their anti-inflammation effect both in vivo and in vitro. MATERIALS AND METHODS Prescription analysis was performed in the clinical department and pharmacology network prediction was predicted for relative signal pathways. 2,4,6-Trinitrobenzenesulfonic acid (TNBS)-induced colitis rats and Lipopolysaccharide (LPS)-induced Caco-2 cell as an inflammatory model were used to evaluate the effect of QCS. RESULTS QCS and its herbs were associated with inflammatory and immunological diseases. QCS and its ingredients showed little toxicity on Caco-2 cell and could down-regulate the level of Interleukin-6 (IL-6) and expression of signal transducer and activator of transcription 3 (P-STAT3 Tyr705) in LPS-induced Caco-2 cell. In an animal experiment, QCS and its ingredients (indigo and gallic acid) could alleviate the symptoms of TNBS-induced colitis of rats, significantly decrease pro-inflammatory factors and anti-inflammatory factors as well as inhibit the expressions of P-STAT3 and Tyr705. CONCLUSION QCS and its components could improve UC by anti-inflammation. JAK2/STAT3 pathway might be the possible signaling pathway.
Collapse
Affiliation(s)
- Tianyuan Yu
- Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Zicheng Li
- Shanghai Pu Dong Hospital, Shanghai, China
| | - Liwei Xu
- Suzhou Hospital of Traditional Chinese Medicine, China
| | - Ming Yang
- Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xin Zhou
- Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
19
|
Sialylated human milk oligosaccharides prevent intestinal inflammation by inhibiting toll like receptor 4/NLRP3 inflammasome pathway in necrotizing enterocolitis rats. Nutr Metab (Lond) 2021; 18:5. [PMID: 33407596 PMCID: PMC7789326 DOI: 10.1186/s12986-020-00534-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/11/2020] [Indexed: 12/21/2022] Open
Abstract
Background Necrotizing enterocolitis (NEC) remains a fatal gastrointestinal disorder in neonates and has very limited therapeutic options. Sialylated human milk oligosaccharides (SHMOs) improve pathological changes in experimental NEC models. The objectives of this study were to investigate the involvement of NLRP3 inflammasome in NEC pathology and to explore the effects of SHMOs on toll-like receptor 4 (TLR4)/nuclear factor κB (NF-κB)/NLRP3 inflammatory pathway in experimental NEC. Methods The intestinal-tissue segments were collected from NEC infants, NLRP3 and caspase-1 positive cell were examined by immunohistochemistry. Newborn rats were hand-fed with formula containing or non-containing SHMOs (1500 mg/L) and exposed to hypoxia/cold stress to induce experimental NEC. The NEC pathological scores were evaluated; ileum protein expression of membrane TLR4 (mTLR4), inhibitor κB-α (IκB-α), NF-κB p65 subunit and phospho-NF-κB p65, as well as NLRP3 and caspase-1 were analyzed; ileum concentrations of interleukin-1β, interleukin-6, tumor necrosis factor-α (TNF-α) were also measured. Human colon epithelial Caco-2 cells were pre-treated with or without SHMOs and stimulated with TLR4 activator, lipopolysaccharide. Cell viabilities, mitochondrial membrane potential and supernatant matrix metalloprotease 2 (MMP-2) activities were analyzed. Results Increased frequencies of NLRP3 and caspase-1 positive cells were found in the lamina propria of damaged intestinal area of NEC neonates. SHMOs supplementation reduced NEC incidence and pathological damage scores of rats challenged with hypoxia/cold stress. Accumulation of interleukin-1β, interleukin-6 and TNF-α in NEC group were attenuated in SHMOs + NEC group. Protein expression of mTLR4, NLRP3 and caspase-1 were elevated, cytoplasmic IκB-α were reduced, nuclear phospho-NF-κB p65 were increased in the ileum of NEC rats. SHMOs supplementation ameliorated the elevation of mTLR4, NLRP3 and caspase-1, restored IκB-α in the cytoplasmic fraction and reduced phospho-NF-κB p65 in the nuclear fraction in the ileum of NEC rats. SHMOs pre-treatment improved Caco-2 cell viability, mitigated loss of mitochondrial membrane potential and modulated MMP-2 activities in the presence of lipopolysaccharide in-vitro. Conclusions This study provided clinical evidence of involvement of NLRP3 inflammasome in NEC pathology, and demonstrated the protective actions of SHMOs might be owing to the suppression of TLR4/NF-κB/NLRP3-mediated inflammation in NEC.
Collapse
|
20
|
Guerrero-Hue M, Rayego-Mateos S, Vázquez-Carballo C, Palomino-Antolín A, García-Caballero C, Opazo-Rios L, Morgado-Pascual JL, Herencia C, Mas S, Ortiz A, Rubio-Navarro A, Egea J, Villalba JM, Egido J, Moreno JA. Protective Role of Nrf2 in Renal Disease. Antioxidants (Basel) 2020; 10:antiox10010039. [PMID: 33396350 PMCID: PMC7824104 DOI: 10.3390/antiox10010039] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is one of the fastest-growing causes of death and is predicted to become by 2040 the fifth global cause of death. CKD is characterized by increased oxidative stress and chronic inflammation. However, therapies to slow or prevent CKD progression remain an unmet need. Nrf2 (nuclear factor erythroid 2-related factor 2) is a transcription factor that plays a key role in protection against oxidative stress and regulation of the inflammatory response. Consequently, the use of compounds targeting Nrf2 has generated growing interest for nephrologists. Pre-clinical and clinical studies have demonstrated that Nrf2-inducing strategies prevent CKD progression and protect from acute kidney injury (AKI). In this article, we review current knowledge on the protective mechanisms mediated by Nrf2 against kidney injury, novel therapeutic strategies to induce Nrf2 activation, and the status of ongoing clinical trials targeting Nrf2 in renal diseases.
Collapse
Affiliation(s)
- Melania Guerrero-Hue
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; (M.G.-H.); (S.R.-M.); (C.G.-C.); (J.L.M.-P.)
| | - Sandra Rayego-Mateos
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; (M.G.-H.); (S.R.-M.); (C.G.-C.); (J.L.M.-P.)
| | - Cristina Vázquez-Carballo
- Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain; (C.V.-C.); (L.O.-R.); (C.H.); (S.M.); (A.O.); (J.E.)
| | - Alejandra Palomino-Antolín
- Research Unit, Hospital Universitario Santa Cristina, IIS-Hospital Universitario de la Princesa, 28006 Madrid, Spain; (A.P.-A.); (J.E.)
- Departament of Pharmacology and Therapeutics, Medicine Faculty, Instituto Teófilo Hernando, Autónoma University, 28029 Madrid, Spain
| | - Cristina García-Caballero
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; (M.G.-H.); (S.R.-M.); (C.G.-C.); (J.L.M.-P.)
| | - Lucas Opazo-Rios
- Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain; (C.V.-C.); (L.O.-R.); (C.H.); (S.M.); (A.O.); (J.E.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
| | - José Luis Morgado-Pascual
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; (M.G.-H.); (S.R.-M.); (C.G.-C.); (J.L.M.-P.)
| | - Carmen Herencia
- Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain; (C.V.-C.); (L.O.-R.); (C.H.); (S.M.); (A.O.); (J.E.)
| | - Sebastián Mas
- Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain; (C.V.-C.); (L.O.-R.); (C.H.); (S.M.); (A.O.); (J.E.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
| | - Alberto Ortiz
- Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain; (C.V.-C.); (L.O.-R.); (C.H.); (S.M.); (A.O.); (J.E.)
- Red Nacional Investigaciones Nefrológicas (REDINREN), 28040 Madrid, Spain
| | - Alfonso Rubio-Navarro
- Weill Center for Metabolic Health and Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Javier Egea
- Research Unit, Hospital Universitario Santa Cristina, IIS-Hospital Universitario de la Princesa, 28006 Madrid, Spain; (A.P.-A.); (J.E.)
- Departament of Pharmacology and Therapeutics, Medicine Faculty, Instituto Teófilo Hernando, Autónoma University, 28029 Madrid, Spain
| | - José Manuel Villalba
- Department of Cell Biology, Physiology, and Immunology, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, 14014 Cordoba, Spain;
| | - Jesús Egido
- Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain; (C.V.-C.); (L.O.-R.); (C.H.); (S.M.); (A.O.); (J.E.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
| | - Juan Antonio Moreno
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; (M.G.-H.); (S.R.-M.); (C.G.-C.); (J.L.M.-P.)
- Department of Cell Biology, Physiology, and Immunology, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, 14014 Cordoba, Spain;
- Hospital Universitario Reina Sofia, 14004 Cordoba, Spain
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-957-218-039
| |
Collapse
|
21
|
Dai Z, Chen XY, An LY, Li CC, Zhao N, Yang F, You ST, Hou CZ, Li K, Jiang C, You QD, Di B, Xu LL. Development of Novel Tetrahydroquinoline Inhibitors of NLRP3 Inflammasome for Potential Treatment of DSS-Induced Mouse Colitis. J Med Chem 2020; 64:871-889. [PMID: 33332136 DOI: 10.1021/acs.jmedchem.0c01924] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The NLRP3 inflammasome is a critical component of innate immunity, which defends internal and external threats. However, inappropriate activation of the NLRP3 inflammasome induces various human diseases. In this study, we discovered and synthesized a series of tetrahydroquinoline inhibitors of NLRP3 inflammasome. Among these analogues, compound 6 exhibited optimal NLRP3 inhibitory activity. In vitro studies indicated that compound 6 directly bound to the NACHT domain of NLRP3 but not to protein pyrin domain (PYD) or LRR domain, inhibited NLRP3 ATPase activity, and blocked ASC oligomerization, thereby inhibiting NLRP3 inflammasome assembly and activation. Compound 6 specifically inhibited the NLRP3 inflammasome activation, but had no effect on the activation of NLRC4 or AIM2 inflammasomes. Furthermore, in the dextran sulfate sodium (DSS)-induced colitis mouse model, compound 6 exhibited significant anti-inflammatory activity through inhibiting NLRP3 inflammasome in vivo. Therefore, our study provides a potent NLRP3 inflammasome inhibitor, which deserves further structural optimization as a novel therapeutic candidate for NLRP3-driven diseases.
Collapse
Affiliation(s)
- Zhen Dai
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Yi Chen
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Lu-Yan An
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Cui-Cui Li
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Ni Zhao
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Fan Yang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Song-Tao You
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Chen-Zhi Hou
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Kan Li
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Cheng Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Qi-Dong You
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Bin Di
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Li-Li Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
22
|
Ding W, Ding Z, Wang Y, Zhu Y, Gao Q, Cao W, Du R. Evodiamine Attenuates Experimental Colitis Injury Via Activating Autophagy and Inhibiting NLRP3 Inflammasome Assembly. Front Pharmacol 2020; 11:573870. [PMID: 33240089 PMCID: PMC7681073 DOI: 10.3389/fphar.2020.573870] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022] Open
Abstract
Autophagy and NLRP3 inflammasome were associated with the process of colitis. Drugs targeting NLRP3 inflammasome and autophagy to treat colitis are absent, and they are urgently required. Herein, we examine the effect of evodiamine, extracted from the fruit of Evodiae Fructus, on experimental colitis induced by dextran sulfate sodium and exposit whether evodiamine effects on autophagy and NLRP3 inflammasome. Our data indicated that colitis was ameliorated by evodiamine, including the improvement of mice body weight, colon length, histopathologic score, and the disease activity index. We also observed that evodiamine restrained the formation of the NLRP3 inflammasome by inhibiting the apoptosis-associated speck-like protein oligomerization and caspase-1 activity in THP-1 macrophages. Our results demonstrated evodiamine inhibit NLRP3 inflammasome activation via the induction of autophagosome-mediated degradation of inflammasome and the inhibition of NFκB pathway, which synergistically contribute to the effect of evodiamine in colitis. It indicates the potential use of evodiamine in inflammatory bowel diseases treatment.
Collapse
Affiliation(s)
- Wenwen Ding
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Zhiquan Ding
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yong Wang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| | - Yan Zhu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Qi Gao
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Wangsen Cao
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Ronghui Du
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
23
|
Lopes AH, Silva RL, Fonseca MD, Gomes FI, Maganin AG, Ribeiro LS, Marques LMM, Cunha FQ, Alves-Filho JC, Zamboni DS, Lopes NP, Franklin BS, Gombault A, Ramalho FS, Quesniaux VFJ, Couillin I, Ryffel B, Cunha TM. Molecular basis of carrageenan-induced cytokines production in macrophages. Cell Commun Signal 2020; 18:141. [PMID: 32894139 PMCID: PMC7487827 DOI: 10.1186/s12964-020-00621-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Low molecular weight carrageenan (Cg) is a seaweed-derived sulfated polysaccharide widely used as inflammatory stimulus in preclinical studies. However, the molecular mechanisms of Cg-induced inflammation are not fully elucidated. The present study aimed to investigate the molecular basis involved in Cg-induced macrophages activation and cytokines production. METHODS Primary culture of mouse peritoneal macrophages were stimulated with Kappa Cg. The supernatant and cell lysate were used for ELISA, western blotting, immunofluorescence. Cg-induced mouse colitis was also developed. RESULTS Here we show that Cg activates peritoneal macrophages to produce pro-inflammatory cytokines such as TNF and IL-1β. While Cg-induced TNF production/secretion depends on TLR4/MyD88 signaling, the production of pro-IL-1β relies on TLR4/TRIF/SYK/reactive oxygen species (ROS) signaling pathway. The maturation of pro-IL1β into IL-1β is dependent on canonical NLRP3 inflammasome activation via Pannexin-1/P2X7/K+ efflux signaling. In vivo, Cg-induced colitis was reduced in mice in the absence of NLRP3 inflammasome components. CONCLUSIONS In conclusion, we unravel a critical role of the NLRP3 inflammasome in Cg-induced pro-inflammatory cytokines production and colitis, which is an important discovery on the pro-inflammatory properties of this sulfated polysaccharide for pre-clinical studies. Video abstract Carrageenan (Cg) is one the most used flogistic stimulus in preclinical studies. Nevertheless, the molecular basis of Cg-induced inflammation is not totally elucidated. Herein, Lopes et al. unraveled the molecular basis for Cg-induced macrophages production of biological active IL-1β. The Cg-stimulated macrophages produces pro-IL-1β depends on TLR4/TRIF/Syk/ROS, whereas its processing into mature IL-1β is dependent on the canonical NLRP3 inflammasome.
Collapse
Affiliation(s)
- Alexandre H. Lopes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Center for Research in Inflammatory Diseases (CRID)Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP Brazil
| | - Rangel L. Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Center for Research in Inflammatory Diseases (CRID)Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP Brazil
| | - Miriam D. Fonseca
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Center for Research in Inflammatory Diseases (CRID)Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP Brazil
| | - Francisco I. Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Center for Research in Inflammatory Diseases (CRID)Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP Brazil
| | - Alexandre G. Maganin
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Center for Research in Inflammatory Diseases (CRID)Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP Brazil
| | - Lucas S. Ribeiro
- Institute of Innate Immunity, University Hospitals, University of Bonn, 53127 Bonn, Germany
| | | | - Fernando Q. Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Center for Research in Inflammatory Diseases (CRID)Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP Brazil
| | - Jose C. Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Center for Research in Inflammatory Diseases (CRID)Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP Brazil
| | - Dario S. Zamboni
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Norberto P. Lopes
- Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Bernardo S. Franklin
- Institute of Innate Immunity, University Hospitals, University of Bonn, 53127 Bonn, Germany
| | - Aurélie Gombault
- University of Orleans and CNRS, UMR7355 Experimental and Molecular Immunology, Orleans, France
| | - Fernando Silva Ramalho
- Department of Pathology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Valerie F. J. Quesniaux
- University of Orleans and CNRS, UMR7355 Experimental and Molecular Immunology, Orleans, France
| | - Isabelle Couillin
- University of Orleans and CNRS, UMR7355 Experimental and Molecular Immunology, Orleans, France
| | - Bernhard Ryffel
- University of Orleans and CNRS, UMR7355 Experimental and Molecular Immunology, Orleans, France
| | - Thiago M. Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Center for Research in Inflammatory Diseases (CRID)Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP Brazil
| |
Collapse
|
24
|
Yu T, Wang Z, Jie W, Fu X, Li B, Xu H, Liu Y, Li M, Kim E, Yang Y, Cho JY. The kinase inhibitor BX795 suppresses the inflammatory response via multiple kinases. Biochem Pharmacol 2020; 174:113797. [DOI: 10.1016/j.bcp.2020.113797] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
|
25
|
Zhang Y, Yan T, Sun D, Xie C, Wang T, Liu X, Wang J, Wang Q, Luo Y, Wang P, Yagai T, Krausz KW, Yang X, Gonzalez FJ. Rutaecarpine inhibits KEAP1-NRF2 interaction to activate NRF2 and ameliorate dextran sulfate sodium-induced colitis. Free Radic Biol Med 2020; 148:33-41. [PMID: 31874248 PMCID: PMC7376370 DOI: 10.1016/j.freeradbiomed.2019.12.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 01/24/2023]
Abstract
Inflammatory bowel disease (IBD) represents a group of chronic relapsing intestinal disorders. Rutaecarpine (RUT), isolated from the Traditional Chinese Medicine (TCM) of Evodia rutaecarpa, was reported to suppress IBD. However, the mechanism by which RUT ameliorates dextran sulfate sodium (DSS)-induced IBD is largely unknown. By use of nuclear factor-erythroid 2-related factor 2 (NRF2) knockout mice, cell-based studies, surface plasmon resonance (SPR), western blotting analysis, and molecular docking studies, the mechanism by which RUT affects DSS-induced colitis was explored. In DSS-treated wild-type mice but not in Nrf2-null mice, RUT significantly improved colitis as revealed by rescued body weight loss, improved histology and inflammation, and induced expression of NRF2 target genes in colon and ileum. Cell-based studies showed that RUT significantly increased the LD50 for hydrogen peroxide (H2O2)-induced cell damage, activated NRF2 nuclear translocation, and suppressed the production of reactive oxygen species in H2O2-treated HCT116 cells, activated NRF2 luciferase reporter activities in HCT116 cells and HepG2 cells, and induced expression of NRF2 target genes in primary intestinal epithelial cells. Molecular docking in silico and SPR assays indicated that RUT interacted with kelch-like ECH-associated protein 1 (KEAP1), and extracellular incubation studies revealed that RUT bound to the KEAP1 kelch domain with a calculated equilibrium dissociation constant Kd of 19.6 μM. In conclusion, these results demonstrate that RUT ameliorates DSS-induced colitis, dependent on NRF2, and could be a potential therapeutic option for IBD patients. Mechanistically, RUT potentiates NRF2 nuclear translocation to upregulate NRF2-mediated antioxidant response by directly inhibiting KEAP1-NRF2 interaction.
Collapse
Affiliation(s)
- Youbo Zhang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tingting Yan
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dongxue Sun
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA; College of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Cen Xie
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tianxia Wang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Xiaoyan Liu
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Qiong Wang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yuhong Luo
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ping Wang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tomoki Yagai
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiuwei Yang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
26
|
6-Gingerol ameliorates sepsis-induced liver injury through the Nrf2 pathway. Int Immunopharmacol 2020; 80:106196. [PMID: 31978803 DOI: 10.1016/j.intimp.2020.106196] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/05/2020] [Accepted: 01/05/2020] [Indexed: 12/17/2022]
Abstract
Sepsis-induced liver injury is very common in intensive care units. Here, we investigated the effects of 6-gingerol on sepsis-induced liver injury and the role of the Nrf2 pathway in this process. 6-Gingerol is the principal ingredient of ginger that exerts anti-inflammatory and antioxidant effects. Using cecal ligation and puncture (CLP) to induce polymicrobial sepsis and related liver injury, we found that mice pre-treated with 6-Gingerol showed less incidences of severe liver inflammation and death than untreated CLP groups. 6-Gingerol administration also inhibited the expression of pyroptosis-related proteins, including NOD-like receptor protein 3 (NLRP3), IL-1β, and caspase-1. Consistent with these findings, 6-gingerol reduced the effects of pyroptosis induced by lipopolysaccharide (LPS) and adenosine 5'-triphosphate (ATP) in RAW 264.7 cells, as evidenced by IL-1β and caspase-1 protein levels in the supernatant and propidium iodide (PI) staining. 6-Gingerol was shown to activate the Nrf2 pathway in vivo and in vitro. Notably, Nrf2 siRNA transfection nullified the inhibitory effects of 6-gingerol on pyroptosis in vitro. In summary, these findings suggested that 6-gingerol alleviated sepsis-induced liver injury by inhibiting pyroptosis through the Nrf2 pathway.
Collapse
|
27
|
Bousquet MS, Ratnayake R, Pope JL, Chen QY, Zhu F, Chen S, Carney TJ, Gharaibeh RZ, Jobin C, Paul VJ, Luesch H. Seaweed natural products modify the host inflammatory response via Nrf2 signaling and alter colon microbiota composition and gene expression. Free Radic Biol Med 2020; 146:306-323. [PMID: 31536771 PMCID: PMC7339024 DOI: 10.1016/j.freeradbiomed.2019.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022]
Abstract
Seaweeds are an important component of human diets, especially in Asia and the Pacific islands, and have shown chemopreventive as well as anti-inflammatory properties. However, structural characterization and mechanistic insight of seaweed components responsible for their biological activities are lacking. We isolated cymopol and related natural products from the marine green alga Cymopolia barbata and demonstrated their function as activators of transcription factor Nrf2-mediated antioxidant response to increase the cellular antioxidant status. We probed the reactivity of the bioactivation product of cymopol, cymopol quinone, which was able to modify various cysteine residues of Nrf2's cytoplasmic repressor protein Keap1. The observed adducts are reflective of the polypharmacology at the level of natural product, due to multiple electrophilic centers, and at the amino acid level of the cysteine-rich target protein Keap1. The non-polar C. barbata extract and its major active component cymopol, reduced inflammatory gene transcription in vitro in macrophages and mouse embryonic fibroblasts in an Nrf2-dependent manner. Cymopol-containing extracts attenuated neutrophil migration in a zebrafish tail wound model. RNA-seq analysis of colonic tissues of mice exposed to non-polar extract or cymopol showed an antioxidant and anti-inflammatory response, with more pronounced effects exhibited by the extract. Cymopolia extract reduced DSS-induced colitis as measured by fecal lipocalin concentration. RNA-seq showed that mucosal-associated bacterial composition and transcriptional profile in large intestines were beneficially altered to varying degrees in mice treated with either the extract or cymopol. We conclude that seaweed-derived compounds, especially cymopol, alter Nrf2-mediated host and microbial gene expression, thereby providing polypharmacological effects.
Collapse
Affiliation(s)
- Michelle S Bousquet
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, FL, 32610, USA; Center for Natural Products, Drug Discovery, and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, FL, 32610, USA; Institute of Molecular and Cellular Biology (IMCB), A*STAR, Proteos, 138673, Singapore
| | - Ranjala Ratnayake
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, FL, 32610, USA; Center for Natural Products, Drug Discovery, and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, FL, 32610, USA
| | - Jillian L Pope
- Division of Gastroenterology, Department of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Qi-Yin Chen
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, FL, 32610, USA; Center for Natural Products, Drug Discovery, and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, FL, 32610, USA
| | - Fanchao Zhu
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
| | - Sixue Chen
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA; Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32610, USA
| | - Thomas J Carney
- Institute of Molecular and Cellular Biology (IMCB), A*STAR, Proteos, 138673, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Raad Z Gharaibeh
- Division of Gastroenterology, Department of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Christian Jobin
- Division of Gastroenterology, Department of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Valerie J Paul
- Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, Florida, 34949, USA
| | - Hendrik Luesch
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, FL, 32610, USA; Center for Natural Products, Drug Discovery, and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, FL, 32610, USA; Institute of Molecular and Cellular Biology (IMCB), A*STAR, Proteos, 138673, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore.
| |
Collapse
|
28
|
Synthetic Imine Resveratrol Analog 2-Methoxyl-3,6-Dihydroxyl-IRA Ameliorates Colitis by Activating Protective Nrf2 Pathway and Inhibiting NLRP3 Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7180284. [PMID: 31885813 PMCID: PMC6914940 DOI: 10.1155/2019/7180284] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/14/2019] [Accepted: 10/08/2019] [Indexed: 12/27/2022]
Abstract
Resveratrol (RSV) is a naturally occurring polyphenol that exhibits pleiotropic health benefits, including anticolitis and colon cancer-protective activity. Recently, we identified the novel imine RSV analog (IRA), 2-methoxyl-3,6-dihydroxyl-IRA 3,4,5,4-tetramethoxystilbene (C33), as a putative activator of nuclear factor erythroid 2-related factor 2 (Nrf2). The present study was designed to evaluate the ability of C33 to activate the Nrf2 signaling pathway and its anticolitis effect in comparison to RSV. The anticolitis action of C33 was assessed in a mouse model of colitis induced by dextran sulfate sodium (DSS). The effect of C33 on the Nrf2 signaling pathway was examined in vitro and in vivo. Compared to RSV, C33 triggered a more dramatic increase in the expression of genes downstream of Nrf2 in LS174T cells as well as in the small intestine and colon of wild-type (WT) mice. Correlated with its superior ability to activate the cytoprotective Nrf2 pathway, C33 was significantly better in ameliorating DSS-induced colitis by improving the inflammation score, as well as downregulating the markers of inflammation in WT mice. Moreover, induction of the NOD-like receptors family pyrin domain containing 3 (NLRP3) inflammasome by colitis was also significantly inhibited by the IRA. Nrf2 knockout completely abolished the effects of C33, indicating that Nrf2 is the important mechanistic target of C33 in vivo. In conclusion, the novel IRA, C33, has stronger anticolitis effects than RSV. Further studies are warranted to evaluate C33 as a potential therapeutic agent for inflammatory bowel disease and cancer chemoprevention.
Collapse
|
29
|
Fan H, Chen W, Zhu J, Zhang J, Peng S. Toosendanin alleviates dextran sulfate sodium-induced colitis by inhibiting M1 macrophage polarization and regulating NLRP3 inflammasome and Nrf2/HO-1 signaling. Int Immunopharmacol 2019; 76:105909. [PMID: 31520988 DOI: 10.1016/j.intimp.2019.105909] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 12/22/2022]
Abstract
Toosendanin (TSN), a triterpenoid extracted from the bark of fruit of Melia toosendan Sieb et Zucc, has been proven to have various biological activities including anti-inflammatory activity. But its effects on experimental colitis remain unreported. Herein, we investigated the role and potential mechanisms of TSN in dextran sulfate sodium (DSS) induced colitis in mice. The results showed that, TSN reduced colitis-associated disease activity index (DAI), shortened colon length, and weakened the pathological damage of the colon tissues in murine colitis models. Further studies disclosed that, TSN inhibited the secretion of proinflammatory cytokines and oxidative stress, and suppressed M1 macrophage polarization and the activation of NLR family pyrin domain containing 3 (NLRP3) inflammasome, but upregulated HO-1/Nrf2 expression in murine colitis. In addition, TSN maintained intestinal barrier by regulating zonula occludens-1 (ZO-1) and occludin expression. In conclusion, our findings demonstrated that, TSN alleviates DSS-induced experimental colitis by inhibiting M1 macrophage polarization and regulating NLRP3 inflammasome and Nrf2/HO-1 signaling, and may provide a novel Chinese patent medicine for the treatment of murine colitis.
Collapse
Affiliation(s)
- Huining Fan
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Wei Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jinshui Zhu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Jing Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Shiqiao Peng
- Department of Endocrinology and metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Disease, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 11001, PR China.
| |
Collapse
|
30
|
Pompili S, Sferra R, Gaudio E, Viscido A, Frieri G, Vetuschi A, Latella G. Can Nrf2 Modulate the Development of Intestinal Fibrosis and Cancer in Inflammatory Bowel Disease? Int J Mol Sci 2019; 20:E4061. [PMID: 31434263 PMCID: PMC6720292 DOI: 10.3390/ijms20164061] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 12/15/2022] Open
Abstract
One of the main mechanisms carried out by the cells to counteract several forms of stress is the activation of the nuclear factor erythroid 2-related factor (Nrf2) signaling. Nrf2 signaling controls the expression of many genes through the binding of a specific cis-acting element known as the antioxidant response element (ARE). Activation of Nrf2/ARE signaling can mitigate several pathologic mechanisms associated with an autoimmune response, digestive and metabolic disorders, as well as respiratory, cardiovascular, and neurodegenerative diseases. Indeed, several studies have demonstrated that Nrf2 pathway plays a key role in inflammation and in cancer development in many organs, including the intestine. Nrf2 appears to be involved in inflammatory bowel disease (IBD), an immune-mediated chronic and disabling disease, with a high risk of developing intestinal fibrotic strictures and cancer. Currently, drugs able to increase cytoprotective Nrf2 function are in clinical trials or already being used in clinical practice to reduce the progression of some degenerative conditions. The role of Nrf2 in cancer development and progression is controversial, and drugs able to inhibit abnormal levels of Nrf2 are also under investigation. The goal of this review is to analyze and discuss Nrf2-dependent signals in the initiation and progression of intestinal fibrosis and cancers occurring in IBD.
Collapse
Affiliation(s)
- Simona Pompili
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Roberta Sferra
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Angelo Viscido
- Department of Life, Health and Environmental Sciences, Gastroenterology, Hepatology and Nutrition Division, University of L'Aquila, 67100 L'Aquila, Italy
| | - Giuseppe Frieri
- Department of Life, Health and Environmental Sciences, Gastroenterology, Hepatology and Nutrition Division, University of L'Aquila, 67100 L'Aquila, Italy
| | - Antonella Vetuschi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Giovanni Latella
- Department of Life, Health and Environmental Sciences, Gastroenterology, Hepatology and Nutrition Division, University of L'Aquila, 67100 L'Aquila, Italy.
| |
Collapse
|
31
|
Polysaccharide from Scutellaria baicalensis Georgi ameliorates colitis via suppressing NF-κB signaling and NLRP3 inflammasome activation. Int J Biol Macromol 2019; 132:393-405. [DOI: 10.1016/j.ijbiomac.2019.03.230] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/14/2019] [Accepted: 03/29/2019] [Indexed: 02/07/2023]
|
32
|
Electroacupuncture at ST-36 ameliorates DSS-induced acute colitis via regulating macrophage polarization induced by suppressing NLRP3/IL-1β and promoting Nrf2/HO-1. Mol Immunol 2019; 106:143-152. [PMID: 30610999 DOI: 10.1016/j.molimm.2018.12.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/05/2018] [Accepted: 12/21/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Electroacupuncture (EA) at ST-36 can attenuate acute experimental colitis, but the mechanisms are unclear. We investigated the role of macrophages in the anti-inflammatory effects of EA and its molecular mechanisms. METHODS Male C57BL/6 mice were randomized into five groups: normal control, dextran sulfate sodium (DSS)-induced acute colitis (DSS), DSS with sham EA (SEA), DSS with high-frequency EA (HEA) and DSS with low-frequency EA (LEA). Body weight, colon length, DAI score and histological score were evaluated during colitis progression. Serum and colonic levels of pro- and anti-inflammatory cytokines were detected with ELISA, cytometric beads array, RT-PCR and western blotting analysis. Colonic macrophage subsets were determined using flow cytometry. Magnetic-activated cell sorting was applied to isolate colonic macrophages, and molecular mechanisms were explored with western blotting, RT-PCR and immunofluorescence. RESULTS (1) Compared with the DSS group, HEA and LEA attenuated body weight loss and decreased DAI and histological scores. (2) Serum levels and colonic protein and mRNA levels of IL-1β, TNFα, IL-6, IL-12 and IL17 were markedly decreased with HEA and LEA. IL-10 level was increased with HEA. (3) M1 macrophage percentage increased, while M2 macrophage percentage decreased in the DSS group; HEA and LEA reversed these proportions. (4) NLRP3/IL-1β protein and mRNA levels in isolated macrophages decreased with HEA and LEA compared with the DSS treatment group; (5) HEA increased Nrf2/HO-1 levels compared with levels in DSS mice. CONCLUSION The anti-inflammatory effects of EA on DSS-induced acute colitis may rely on regulating macrophage polarization, NLRP3/IL-1β suppression and Nrf2/HO-1 promotion.
Collapse
|
33
|
Mahmoud AM, Hussein OE, Abd El-Twab SM, Hozayen WG. Ferulic acid protects against methotrexate nephrotoxicityviaactivation of Nrf2/ARE/HO-1 signaling and PPARγ, and suppression of NF-κB/NLRP3 inflammasome axis. Food Funct 2019; 10:4593-4607. [DOI: 10.1039/c9fo00114j] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ferulic acid prevents methotrexate-induced acute kidney injury by suppressing ROS/NF-κB/NLRP3 inflammasome axis, and activating PPARγ and Nrf2/ARE/HO-1 signaling.
Collapse
Affiliation(s)
- Ayman M. Mahmoud
- Physiology Division
- Department of Zoology
- Faculty of Science
- Beni-Suef University
- Egypt
| | - Omnia E. Hussein
- Physiology Division
- Department of Zoology
- Faculty of Science
- Beni-Suef University
- Egypt
| | - Sanaa M. Abd El-Twab
- Physiology Division
- Department of Zoology
- Faculty of Science
- Beni-Suef University
- Egypt
| | - Walaa G. Hozayen
- Biochemistry Division
- Chemistry Department
- Faculty of Science
- Beni-Suef University
- Egypt
| |
Collapse
|
34
|
Wang L, Wang Y, Wang Z, Qi Y, Zong B, Liu M, Li X, Zhang X, Liu C, Cao R, Ma Y. Growth differentiation factor 11 ameliorates experimental colitis by inhibiting NLRP3 inflammasome activation. Am J Physiol Gastrointest Liver Physiol 2018; 315:G909-G920. [PMID: 30188752 DOI: 10.1152/ajpgi.00159.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Growth differentiation factor 11 (GDF11) has an anti-inflammatory effect in the mouse model of atherosclerosis and Alzheimer's disease, but how GDF11 regulates intestinal inflammation during ulcerative colitis (UC) is poorly defined. The Nod-like receptor family pyrin domain-1 containing 3 (NLRP3) inflammasome is closely associated with intestinal inflammation because of its ability to increase IL-1β secretion. Our aim is to determine whether GDF11 has an effect on attenuating experimental colitis in mice. In this study, using a dextran sodium sulfate (DSS)-induced acute colitis mouse model, we reported that GDF11 treatment attenuated loss of body weight, the severity of the disease activity index, shortening of the colon, and histological changes in the colon. GDF11 remarkably suppressed IL-1β secretion and NLRP3 inflammasome activation in colon samples and RAW 264.7 cells, such as the levels of NLRP3 and activated caspase-1. Furthermore, we found that GDF11 inhibited NLRP3 inflammasome activation by downregulating the Toll-like receptor 4/NF-κB p65 pathway and reactive oxygen species production via the typical Smad2/3 pathway. Thus, our research shows that GDF11 alleviates DSS-induced colitis by inhibiting NLRP3 inflammasome activation, providing some basis for its potential use in the treatment of UC. NEW & NOTEWORTHY Here, we identify a new role for growth differentiation factor 11 (GDF11), which ameliorates dextran sodium sulfate-induced acute colitis. Meanwhile, we discover a new phenomenon of GDF11 inhibiting IL-1β secretion and Nod-like receptor family pyrin domain-1 containing 3 (NLRP3) inflammasome activation. These findings reveal that GDF11 is a new potential candidate for the treatment of ulcerative colitis patients with a hyperactive NLRP3 inflammasome.
Collapse
Affiliation(s)
- Lanju Wang
- School of Basic Medical Sciences, Zhengzhou University , Zhengzhou, Henan , China
| | - Yaohui Wang
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University , Kaifeng, Henan , China
| | - Zhenfeng Wang
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University , Kaifeng, Henan , China
| | - Yu Qi
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University , Kaifeng, Henan , China
| | - Beibei Zong
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University , Kaifeng, Henan , China
| | - Meichen Liu
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University , Kaifeng, Henan , China
| | - Xuefang Li
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University , Kaifeng, Henan , China
| | - Xingkun Zhang
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University , Kaifeng, Henan , China
| | - Chengguo Liu
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University , Kaifeng, Henan , China
| | - Run Cao
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University , Kaifeng, Henan , China
| | - Yuanfang Ma
- School of Basic Medical Sciences, Zhengzhou University , Zhengzhou, Henan , China.,Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University , Kaifeng, Henan , China
| |
Collapse
|
35
|
Anti-inflammatory activity of surface layer protein SlpA of Lactobacillus acidophilus CICC 6074 in LPS-induced RAW 264.7 cells and DSS-induced mice colitis. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
36
|
Sho T, Xu J. Role and mechanism of ROS scavengers in alleviating NLRP3-mediated inflammation. Biotechnol Appl Biochem 2018; 66:4-13. [PMID: 30315709 DOI: 10.1002/bab.1700] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/09/2018] [Indexed: 01/20/2023]
Abstract
Inflammation, as a common immune response to various infections or injuries, can cause many dangerous and complicated diseases. Inflammasome is a protein complex playing a vital role in an inflammation process, and the nucleotide-binding oligomerization domain (NOD)-like receptor containing pyrin domain 3 (NLRP3) inflammasome has been the most-widely studied one. Recent evidence suggests the reactive oxygen species (ROS)-NLRP3 signaling pathway to be a possible NLRP3 inflammasome regulation model. Numerous recent preclinical reports indicate that application of antioxidants could scavenge excessive ROS and attenuate inflammatory responses through suppressing NLRP3 inflammasome activation. This article, at first, briefly overviews how ROS may mediate the regulation of NLRP3 inflammasome activation. Then, preclinical researches of various ROS scavengers for treating NLRP3 inflammasome-associated diseases are focused on and critically analyzed. Finally, the potential of antioxidant treatment as a therapy for inflammation is to be discussed, and perspectives on future research directions will be shared.
Collapse
Affiliation(s)
- Takami Sho
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - JianXiong Xu
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
37
|
Huaier aqueous extract protects against dextran sulfate sodium-induced experimental colitis in mice by inhibiting NLRP3 inflammasome activation. Oncotarget 2018; 8:32937-32945. [PMID: 28380426 PMCID: PMC5464840 DOI: 10.18632/oncotarget.16513] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/15/2017] [Indexed: 01/12/2023] Open
Abstract
The use of Trametes robiniophila Murr. (Huaier) as a complementary therapy for cancer has recently become increasingly common in China. However, whether Huaier can regulate host immune responses, especially innate immunity, remains largely unknown. The NLRP3 inflammasome is a multimeric complex consisting of NLRP3, ASC and caspase-1. NLRP3 inflammasomes respond to a variety of endogenous (damage-associated molecular patterns) and exogenous (pathogen-associated molecular patterns) stimuli, and play crucial roles in host defense against pathogens and multiple diseases such as ulcerative colitis (UC). In this study, we investigated the anti-inflammatory effect of Huaier in dextran sulfate sodium (DSS)-induced murine colitis and revealed the underlying mechanisms by targeting NLRP3 inflammasomes. In C57BL/6 mice, oral administration of Huaier attenuated DSS-induced colon shortening and colonic pathological damage. Furthermore, we analyzed the effect of Huaier on NLRP3 inflammasome activation in macrophages. Huaier inhibited NLRP3 inflammasome activation-induced IL-1β secretion and caspase-1 cleavage. Moreover, Huaier decreased NLRP3 protein expression via promoting NLRP3 degradation through the autophagy lysosome pathway. Therefore, our findings demonstrate a novel function for Huaier in the regulation of NLRP3 inflammasome activation and suggest a potential role for Huaier in NLRP3 inflammasome-associated diseases.
Collapse
|
38
|
Adesso S, Russo R, Quaroni A, Autore G, Marzocco S. Astragalus membranaceus Extract Attenuates Inflammation and Oxidative Stress in Intestinal Epithelial Cells via NF-κB Activation and Nrf2 Response. Int J Mol Sci 2018; 19:E800. [PMID: 29534459 PMCID: PMC5877661 DOI: 10.3390/ijms19030800] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/01/2018] [Accepted: 03/09/2018] [Indexed: 12/17/2022] Open
Abstract
Astragalus membranaceus, dried root extract, also known as Astragali radix, is used in traditional Chinese medicine as a tonic remedy. Moreover, it has been reported that Astragalus membranaceus could attenuate intestinal inflammation; however, the underlying mechanism for its anti-inflammatory activity in intestinal epithelial cells (IECs) remains unclear. In this study, we evaluated Astragalus membranaceus extract (5-100 µg/mL) in a model of inflammation and oxidative stress for IECs. We showed that Astragalus membranaceus extract reduced the inflammatory response induced by lipopolysaccharide from E. coli (LPS) plus interferon-γ (IFN), decreasing tumor necrosis factor-α (TNF-α) release, cycloxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression, nitrotyrosine formation, nuclear factor-κB (NF-κB) activation, and reactive oxygen species (ROS) release in the non-tumorigenic intestinal epithelial cell line (IEC-6). The antioxidant potential of Astragalus membranaceus extract was also evaluated in a model of hydrogen peroxide (H₂O₂)-induced oxidative stress in IEC-6, indicating that this extract reduced ROS release and increased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activation and the expression of antioxidant cytoprotective factors in these cells. The results contributed to clarify the mechanisms involved in Astragalus membranaceus extract-reduced inflammation and highlighted the potential use of this extract as an anti-inflammatory and antioxidant remedy for intestinal diseases.
Collapse
Affiliation(s)
- Simona Adesso
- Department of Pharmacy, University of Salerno-Via Giovanni Paolo II, 132-84084 Fisciano-Salerno, Italy.
| | - Rosario Russo
- Giellepi S.p.A. Health Science Department, Via Benvenuto Cellini 37, 20851 Lissone (Monza Brianza), Italy.
| | - Andrea Quaroni
- Department of Biomedical Sciences, Cornell University, Veterinary Research Tower, Cornell University, Ithaca, NY 14853-6401, USA.
| | - Giuseppina Autore
- Department of Pharmacy, University of Salerno-Via Giovanni Paolo II, 132-84084 Fisciano-Salerno, Italy.
| | - Stefania Marzocco
- Department of Pharmacy, University of Salerno-Via Giovanni Paolo II, 132-84084 Fisciano-Salerno, Italy.
| |
Collapse
|
39
|
Hennig P, Garstkiewicz M, Grossi S, Di Filippo M, French LE, Beer HD. The Crosstalk between Nrf2 and Inflammasomes. Int J Mol Sci 2018; 19:ijms19020562. [PMID: 29438305 PMCID: PMC5855784 DOI: 10.3390/ijms19020562] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 01/03/2023] Open
Abstract
The Nrf2 (nuclear factor E2-related factor or nuclear factor (erythroid-derived 2)-like 2) transcription factor is a key player in cytoprotection and activated in stress conditions caused by reactive oxygen species (ROS) or electrophiles. Inflammasomes represent central regulators of inflammation. Upon detection of various stress factors, assembly of the inflamasome protein complex results in activation and secretion of proinflammatory cytokines. In addition, inflammasome activation causes pyroptosis, a lytic form of cell death, which supports inflammation. There is growing evidence of a crosstalk between the Nrf2 and inflammasome pathways at different levels. For example, Nrf2 activating compounds inhibit inflammasomes and consequently inflammation. This review summarizes what is known about the complex and predominantly antagonistic relationship of both stress-activated pathways.
Collapse
Affiliation(s)
- Paulina Hennig
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, F30, CH-8091 Zurich, Switzerland.
| | - Martha Garstkiewicz
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, F30, CH-8091 Zurich, Switzerland.
| | - Serena Grossi
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, F30, CH-8091 Zurich, Switzerland.
| | - Michela Di Filippo
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, F30, CH-8091 Zurich, Switzerland.
| | - Lars E French
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, F30, CH-8091 Zurich, Switzerland.
- Faculty of Medicine, University of Zurich, CH-8091 Zurich, Switzerland.
| | - Hans-Dietmar Beer
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, F30, CH-8091 Zurich, Switzerland.
- Faculty of Medicine, University of Zurich, CH-8091 Zurich, Switzerland.
| |
Collapse
|
40
|
Abstract
The NFE2L2 gene encodes the transcription factor Nrf2 best known for regulating the expression of antioxidant and detoxification genes. Gene knockout approaches have demonstrated its universal cytoprotective features. While Nrf2 has been the topic of intensive research in cancer biology since its discovery in 1994, understanding the role of Nrf2 in cardiovascular disease has just begun. The literature concerning Nrf2 in experimental models of atherosclerosis, ischemia, reperfusion, cardiac hypertrophy, heart failure, and diabetes supports its cardiac protective character. In addition to antioxidant and detoxification genes, Nrf2 has been found to regulate genes participating in cell signaling, transcription, anabolic metabolism, autophagy, cell proliferation, extracellular matrix remodeling, and organ development, suggesting that Nrf2 governs damage resistance as well as wound repair and tissue remodeling. A long list of small molecules, most derived from natural products, have been characterized as Nrf2 inducers. These compounds disrupt Keap1-mediated Nrf2 ubquitination, thereby prohibiting proteasomal degradation and allowing Nrf2 protein to accumulate and translocate to the nucleus, where Nrf2 interacts with sMaf to bind to ARE in the promoter of genes. Recently alternative mechanisms driving Nrf2 protein increase have been revealed, including removal of Keap1 by autophagy due to p62/SQSTM1 binding, inhibition of βTrCP or Synoviolin/Hrd1-mediated ubiquitination of Nrf2, and de novo Nrf2 protein translation. We review here a large volume of literature reporting historical and recent discoveries about the function and regulation of Nrf2 gene. Multiple lines of evidence presented here support the potential of dialing up the Nrf2 pathway for cardiac protection in the clinic.
Collapse
Affiliation(s)
- Qin M Chen
- Department of Pharmacology, College of Medicine, University of Arizona , Tucson, Arizona
| | - Anthony J Maltagliati
- Department of Pharmacology, College of Medicine, University of Arizona , Tucson, Arizona
| |
Collapse
|
41
|
Abstract
Intestinal fibrosis, a common complication of inflammatory bowel diseases, becomes clinically apparent in ~ 40% of patients with Crohn's disease and ~ 5% of those with ulcerative colitis. Fibrosis, a consequence of local chronic inflammation, is characterized by excessive deposition of extracellular matrix (ECM) proteins by activated myofibroblasts, which are modulated by pro-fibrotic and anti-fibrotic factors. Fibrosis depends on the balance between production and degradation of ECM proteins. Although the transforming growth factor (TGF)-β1/Smad pathway is the major driving force of fibrosis, several pro-fibrogenic and anti-fibrogenic endogenous factors appear to interact directly with this pathway such as reactive oxygen species (ROS) and nuclear factor-erythroid 2-related factor 2 (Nrf2), which are connected with TGF-β1 during fibrosis development in several organs, including the intestine. Nrf2 is a ubiquitous master transcription factor that upregulates the expression of antioxidant enzymes and cytoprotective proteins mediated by antioxidant response elements (AREs). Here, I describe and discuss the links among TGF-β1, ROS, and Nrf2-AREs in the pathogenesis of intestinal fibrosis.
Collapse
Affiliation(s)
- Giovanni Latella
- Gastroenterology Unit, Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazza S. Tommasi n.1, Coppito, 67100, L'Aquila, Italy.
| |
Collapse
|
42
|
Kanak MA, Shindo Y, SaiKumar P, Naziruddin B. Role of Inflammasomes in the Development of Gastrointestinal Diseases. EXPERIENTIA SUPPLEMENTUM (2012) 2018; 108:235-268. [PMID: 30536174 DOI: 10.1007/978-3-319-89390-7_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Many diseases of the gastrointestinal tract have been attributed to chronic inflammation, and a few have identified the role of inflammasomes in their pathogenesis. Inflammasomes are a group of protein complexes comprising of several intracellular proteins that link the sensing of microbial products and metabolic stress to the proteolytic activation of the proinflammatory cytokines. Recent studies have implicated activation of several families of NOD-like receptors (NLRs) which are major components of inflammasomes in the development and exacerbation of many diseases of human systems. In this chapter, we discuss the role of inflammasomes in some of the most prevalent diseases of the gastrointestinal tract and highlight potential targets for treatment.
Collapse
Affiliation(s)
- Mazhar A Kanak
- Division of Transplantation, Department of Surgery, Virginia Commonwealth University Medical Center, Richmond, VA, USA
| | - Yoshitaro Shindo
- Division of Transplantation, Department of Surgery, Virginia Commonwealth University Medical Center, Richmond, VA, USA
| | | | - Bashoo Naziruddin
- Sammons Cancer Center, Baylor Simmons Transplant Institute, Dallas, TX, USA.
| |
Collapse
|
43
|
Yang L, Shen L, Li Y, Li Y, Yu S, Wang S. Hyperoside attenuates dextran sulfate sodium-induced colitis in mice possibly via activation of the Nrf2 signalling pathway. JOURNAL OF INFLAMMATION-LONDON 2017; 14:25. [PMID: 29162986 PMCID: PMC5686943 DOI: 10.1186/s12950-017-0172-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/06/2017] [Indexed: 12/28/2022]
Abstract
Background Hyperoside (Hyp) is a flavonoid glycoside compound that has been demonstrated to have anti-inflammatory, anti-apoptotic and antioxidant effects. However, the impact of Hyp on inflammatory bowel disease (IBD) has not been previously explored. Thus, we evaluated the role of Hyp in dextran sodium sulfate (DSS)-induced acute colitis in mice. Methods We established a mouse model of experimental acute colitis by treating mice with drinking water supplemented with 3.0% DSS for 7 days. The disease activity index (DAI), colon length, histological features and colonic malondialdehyde (MDA) levels were examined using appropriate methods, and COX-2 expression was examined by immunohistochemistry. TNF-α, IL-4, IL-6, IL-10, NF-κB p65, Bcl-2, Bax, Caspase-3, nuclear factor-erythroid 2-related factor 2 (Nrf2), hemeoxygenase-1 (HO-1) and superoxide dismutase (SOD) levels in colorectal tissues were detected by RT-PCR and western blotting. Results Hyp significantly attenuated DSS-induced changes in the DAI as well as DSS-induced colonic shortening and histological changes. Hyp also inhibited inflammation, a change reflected by decreases in TNF-α, IL-6, COX-2 and NF-κB p65 expression and increases in IL-10 expression. Hyp suppressed increases in the levels of apoptosis-related proteins, such as Caspase-3 and Bax, but upregulated the level of the anti-apoptotic protein Bcl2. In addition, Hyp also exerted antioxidant effects. The MDA content was decreased, and the expression of Nrf2 and its downstream targets HO-1 and SOD were increased by Hyp. Conclusions Based on these findings, Hyp possesses the ability to attenuate colitis, possibly by mitigating colonic inflammation and apoptosis via activation of the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Lei Yang
- Department of Gastroenterology, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Lei Shen
- Department of Gastroenterology, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Yue Li
- Department of Gastroenterology, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Yanxia Li
- Department of Gastroenterology, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Shijie Yu
- Department of Gastroenterology, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Shanshan Wang
- Department of Gastroenterology, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| |
Collapse
|
44
|
Xu X, Zhang L, Ye X, Hao Q, Zhang T, Cui G, Yu M. Nrf2/ARE pathway inhibits ROS-induced NLRP3 inflammasome activation in BV2 cells after cerebral ischemia reperfusion. Inflamm Res 2017; 67:57-65. [PMID: 28956063 DOI: 10.1007/s00011-017-1095-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/20/2017] [Accepted: 09/21/2017] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE Current therapies for ischemia/reperfusion are insufficient because of our poor understanding of the mechanisms of brain injury after ischemic stroke. As a vital component of the innate immune system, NLRP3 inflammasome contributes to ischemic brain injury; however, a detailed understanding of their molecular mechanisms is unknown. This study was designed to investigate the effect of nuclear factor E2-related factor-2 (Nrf2) on NLRP3 inflammasome. MATERIALS AND METHODS BV2 microglial cells were pretreated with tert-butylhydroquinone or Nrf2 CRISPR plasmid before oxygen-glucose deprivation/reoxygenation (OGDR) exposure. Then we observed the effect of Nrf2 on NLRP3 inflammasome. RESULTS We identified that Nrf2 activation inhibited NLRP3 inflammasome expression and subsequent IL-1β generation. Furthermore, the activation of NLRP3 inflammasome was sensitive to the reactive oxygen species (ROS) level and Nrf2 could decrease the production of ROS. Additionally, as a Nrf2-targeted ARE gene, NADPH quinone oxidoreductase 1 was involved in the inhibition of the NLRP3 inflammasome. CONCLUSION We elucidated an inhibitory regulation of Nrf2/ARE pathway on ROS-induced NLRP3 inflammasome activation in BV2 microglial cells after OGDR exposure.
Collapse
Affiliation(s)
- Xiujian Xu
- Department of Neurology, The Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Zhenjiang, 212001, Jiangsu, China
| | - Liang Zhang
- Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xinchun Ye
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China
| | - Qi Hao
- Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tao Zhang
- Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China.
| | - Ming Yu
- Department of Neurology, The Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Zhenjiang, 212001, Jiangsu, China.
| |
Collapse
|
45
|
Inflammasomes and intestinal inflammation. Mucosal Immunol 2017; 10:865-883. [PMID: 28401932 DOI: 10.1038/mi.2017.19] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 02/19/2017] [Indexed: 02/04/2023]
Abstract
The inflammasome is a cytosolic multi-protein innate immune rheostat, sensing a variety of endogenous and environmental stimuli, and regulating homeostasis or damage control. In the gastrointestinal tract, inflammasomes orchestrate immune tolerance to microbial and potentially food-related signals or drive the initiation of inflammatory responses to invading pathogens. When inadequately regulated, intestinal inflammasome activation leads to a perpetuated inflammatory response leading to immune pathology and tissue damage. In this review, we present the main features of the predominant types of inflammasomes participating in intestinal homeostasis and inflammation. We then discuss current controversies and open questions related to their functions and implications in disease, highlighting how pathological inflammasome over-activation or impaired function impact gut homeostasis, the microbiome ecosystem, and the propensity to develop gut-associated diseases. Collectively, understanding of the molecular basis of intestinal inflammasome signaling may be translated into clinical manipulation of this fundamental pathway as a potential immune modulatory therapeutic intervention.
Collapse
|
46
|
Cocco M, Pellegrini C, Martínez-Banaclocha H, Giorgis M, Marini E, Costale A, Miglio G, Fornai M, Antonioli L, López-Castejón G, Tapia-Abellán A, Angosto D, Hafner-Bratkovič I, Regazzoni L, Blandizzi C, Pelegrín P, Bertinaria M. Development of an Acrylate Derivative Targeting the NLRP3 Inflammasome for the Treatment of Inflammatory Bowel Disease. J Med Chem 2017; 60:3656-3671. [PMID: 28410442 DOI: 10.1021/acs.jmedchem.6b01624] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pharmacological inhibition of NLRP3 inflammasome activation may offer a new option in the treatment of inflammatory bowel disease. In this work, we report the design, synthesis, and biological screening of a series of acrylate derivatives as NLRP3 inhibitors. The in vitro determination of reactivity, cytotoxicity, NLRP3 ATPase inhibition, and antipyroptotic properties allowed the selection of 11 (INF39), a nontoxic, irreversible NLRP3 inhibitor able to decrease interleukin-1β release from macrophages. Bioluminescence resonance energy transfer experiments proved that this compound was able to directly interfere with NLRP3 activation in cells. In vivo studies confirmed the ability of the selected lead to alleviate the effects of colitis induced by 2,4-dinitrobenzenesulfonic acid in rats after oral administration.
Collapse
Affiliation(s)
- Mattia Cocco
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino , Via P. Giuria 9, 10125 Torino, Italy
| | - Carolina Pellegrini
- Department of Clinical and Experimental Medicine, University of Pisa , Via Roma 55, 56126 Pisa, Italy.,Faculty of Biology, Medicine and Health, The University of Manchester , R4.004 AV Hill Building, Oxford Road, Manchester, U.K
| | - Helios Martínez-Banaclocha
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital "Virgen de la Arrixaca", University of Murcia , Carretera Buenavista s/n, 30120, El Palmar, Murcia, Spain
| | - Marta Giorgis
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino , Via P. Giuria 9, 10125 Torino, Italy
| | - Elisabetta Marini
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino , Via P. Giuria 9, 10125 Torino, Italy
| | - Annalisa Costale
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino , Via P. Giuria 9, 10125 Torino, Italy
| | - Gianluca Miglio
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino , Via P. Giuria 9, 10125 Torino, Italy
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa , Via Roma 55, 56126 Pisa, Italy
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa , Via Roma 55, 56126 Pisa, Italy
| | - Gloria López-Castejón
- Faculty of Biology, Medicine and Health, The University of Manchester , R4.004 AV Hill Building, Oxford Road, Manchester, U.K
| | - Ana Tapia-Abellán
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital "Virgen de la Arrixaca", University of Murcia , Carretera Buenavista s/n, 30120, El Palmar, Murcia, Spain
| | - Diego Angosto
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital "Virgen de la Arrixaca", University of Murcia , Carretera Buenavista s/n, 30120, El Palmar, Murcia, Spain
| | - Iva Hafner-Bratkovič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry , Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Luca Regazzoni
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano , Via Mangiagalli 25, 20133 Milano, Italy
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa , Via Roma 55, 56126 Pisa, Italy
| | - Pablo Pelegrín
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital "Virgen de la Arrixaca", University of Murcia , Carretera Buenavista s/n, 30120, El Palmar, Murcia, Spain
| | - Massimo Bertinaria
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino , Via P. Giuria 9, 10125 Torino, Italy
| |
Collapse
|
47
|
Protective effect of sugar cane extract against dextran sulfate sodium-induced colonic inflammation in mice. Tissue Cell 2017; 49:8-14. [DOI: 10.1016/j.tice.2016.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/13/2016] [Accepted: 12/24/2016] [Indexed: 12/11/2022]
|
48
|
Du X, Chen W, Wang Y, Chen C, Guo L, Ju R, Li J, Zhang D, Zhu L, Ye C. Therapeutic efficacy of carboxyamidotriazole on 2,4,6-trinitrobenzene sulfonic acid-induced colitis model is associated with the inhibition of NLRP3 inflammasome and NF-κB activation. Int Immunopharmacol 2017; 45:16-25. [PMID: 28152446 DOI: 10.1016/j.intimp.2017.01.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/07/2016] [Accepted: 01/10/2017] [Indexed: 01/08/2023]
Abstract
Excess proinflammatory cytokines owing to the activation of NF-κB and NLRP3 inflammasome play the key role in inflammatory bowel disease (IBD). Previously, we reported the anti-inflammatory activity of carboxyamidotriazole (CAI) resulting from decreasing cytokines. Therefore, we investigated the therapeutic effects of CAI in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced rat colitis and the involvement of CAI action with NLRP3 inflammasome and NF-κB pathway. CAI was orally administered to TNBS-induced colitis rat. The severity of colitis was assessed, and NLRP3 inflammasome, NF-κB pathway and cytokines were determined. Our results showed that CAI significantly reduced weight loss and disease activity index (DAI) scores in colitis rats and alleviated the colonic macroscopic signs and pathological damage. In addition, the intestinal inflammatory markers and permeability index were markedly ameliorated by CAI treatment. The decreased levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, IL-18 were also detected in the colon tissues of CAI-treated colitis rats. Moreover, the activation of NLRP3 inflammasome in inflamed colon was significantly suppressed by showing an obvious reduction in the NLRP3 and activated caspase-1 levels. Furthermore, CAI reduced NF-κB p65 expression and IκBα phosphorylation and degradation in colitis rats. Therefore, CAI attenuates TNBS-induced colitis, which may be attributed to its inhibition of NLRP3 inflammasome and NF-κB activation, and down-regulation of proinflammatory cytokines. These results provide further understanding of the intestinal anti-inflammatory effect of CAI and highlight it as a potential drug for the treatment of IBD.
Collapse
Affiliation(s)
- Xiaowan Du
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wei Chen
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yufeng Wang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Chen Chen
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Lei Guo
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Rui Ju
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Juan Li
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Dechang Zhang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Lei Zhu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.
| | - Caiying Ye
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.
| |
Collapse
|
49
|
Pellegrini C, Antonioli L, Lopez-Castejon G, Blandizzi C, Fornai M. Canonical and Non-Canonical Activation of NLRP3 Inflammasome at the Crossroad between Immune Tolerance and Intestinal Inflammation. Front Immunol 2017; 8:36. [PMID: 28179906 PMCID: PMC5263152 DOI: 10.3389/fimmu.2017.00036] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/09/2017] [Indexed: 12/16/2022] Open
Abstract
Several lines of evidence point out the relevance of nucleotide-binding oligomerization domain leucine rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome as a pivotal player in regulating the integrity of intestinal homeostasis and shaping innate immune responses during bowel inflammation. Intensive research efforts are being made to achieve an integrated view about the protective/detrimental role of canonical and non-canonical NLRP3 inflammasome activation in the maintenance of intestinal microenvironment integrity. Evidence is also emerging that the pharmacological modulation of NLRP3 inflammasome could represent a promising molecular target for the therapeutic management of inflammatory immune-mediated gut diseases. The present review has been intended to provide a critical appraisal of the available knowledge about the role of canonical and non-canonical NLRP3 inflammasome activation in the dynamic interplay between microbiota, intestinal epithelium, and innate immune system, taken together as a whole integrated network regulating the maintenance/breakdown of intestinal homeostasis. Moreover, special attention has been paid to the pharmacological modulation of NLRP3 inflammasome, emphasizing the concept that this multiprotein complex could represent a suitable target for the management of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Carolina Pellegrini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa , Italy
| | - Gloria Lopez-Castejon
- Manchester Collaborative Centre for Inflammation Research, University of Manchester , Manchester , UK
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa , Italy
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa , Italy
| |
Collapse
|
50
|
Liu X, Zhang X, Ding Y, Zhou W, Tao L, Lu P, Wang Y, Hu R. Nuclear Factor E2-Related Factor-2 Negatively Regulates NLRP3 Inflammasome Activity by Inhibiting Reactive Oxygen Species-Induced NLRP3 Priming. Antioxid Redox Signal 2017; 26:28-43. [PMID: 27308893 PMCID: PMC5198158 DOI: 10.1089/ars.2015.6615] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS The NLRP3 inflammasome is a multiprotein complex that protects hosts against a variety of pathogens. However, the molecular mechanisms of modulating NLRP3 inflammasome activation, especially at the priming step, are still poorly understood. This study was designed to elucidate the negative regulation of nuclear factor E2-related factor-2 (Nrf2) on the activation of NLRP3 inflammasome. RESULTS We reported that Nrf2 activation inhibited NLRP3 expression, caspase-1 cleavage, and subsequent IL-1β generation. Compared with normal cells, Nrf2-deficient cells showed upregulated cleaved caspase-1, which were attributed to the increased transcription of NLRP3 caused by excess reactive oxygen species (ROS). Furthermore, priming of the NLRP3 inflammasome was sensitive to the exogenous ROS levels induced by H2O2 or rotenone. Combined with adenosine triphosphate, rotenone triggered higher activity of the NLRP3 inflammasome compared with lipopolysaccharide, suggesting that ROS promoted the priming step. In addition, Nrf2-induced NQO1 was involved in the inhibition of the NLRP3 inflammasome. In an in vivo alum-induced peritonitis mouse model, Nrf2 activation suppressed typical IL-1 signaling-dependent inflammation, whereas Nrf2-/- mice exhibited a significant increase in the recruitment of immune cell and the generation of IL-1β compared with wild-type mice. INNOVATION We elucidated the effects and possible mechanisms of Nrf2 activation-induced NQO1 expression on NLRP3 inflammasome inactivation and established a novel regulatory role of the Nrf2 pathway in ROS-induced NLRP3 priming. CONCLUSIONS We demonstrated Nrf2 negatively regulating NLRP3 inflammasome activity by inhibiting the priming step and suggested that Nrf2 could be a potential target for some uncontrolled inflammasome activation-associated diseases. Antioxid. Redox Signal. 26, 28-43.
Collapse
Affiliation(s)
- Xiuting Liu
- Department of Physiology, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing, China
| | - Xin Zhang
- Department of Physiology, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing, China
| | - Yang Ding
- Department of Physiology, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing, China
| | - Wei Zhou
- Department of Physiology, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing, China
| | - Lei Tao
- Department of Physiology, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing, China
| | - Ping Lu
- Department of Physiology, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing, China
| | - Yajing Wang
- Department of Physiology, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing, China
| | - Rong Hu
- Department of Physiology, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing, China
| |
Collapse
|