1
|
Yeh YS, Evans TD, Iwase M, Jeong SJ, Zhang X, Liu Z, Park A, Ghasemian A, Dianati B, Javaheri A, Kratky D, Kawarasaki S, Goto T, Zhang H, Dutta P, Schopfer FJ, Straub AC, Cho J, Lodhi IJ, Razani B. Identification of lysosomal lipolysis as an essential noncanonical mediator of adipocyte fasting and cold-induced lipolysis. J Clin Invest 2025; 135:e185340. [PMID: 40091840 PMCID: PMC11910232 DOI: 10.1172/jci185340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/16/2025] [Indexed: 03/19/2025] Open
Abstract
Adipose tissue lipolysis is the process by which triglycerides in lipid stores are hydrolyzed into free fatty acids (FFAs), serving as fuel during fasting or cold-induced thermogenesis. Although cytosolic lipases are considered the predominant mechanism of liberating FFAs, lipolysis also occurs in lysosomes via lysosomal acid lipase (LIPA), albeit with unclear roles in lipid storage and whole-body metabolism. We found that adipocyte LIPA expression increased in adipose tissue of mice when lipolysis was stimulated during fasting, cold exposure, or β-adrenergic agonism. This was functionally important, as inhibition of LIPA genetically or pharmacologically resulted in lower plasma FFAs under lipolytic conditions. Furthermore, adipocyte LIPA deficiency impaired thermogenesis and oxygen consumption and rendered mice susceptible to diet-induced obesity. Importantly, lysosomal lipolysis was independent of adipose triglyceride lipase, the rate-limiting enzyme of cytosolic lipolysis. Our data suggest a significant role for LIPA and lysosomal lipolysis in adipocyte lipid metabolism beyond classical cytosolic lipolysis.
Collapse
Affiliation(s)
- Yu-Sheng Yeh
- Department of Medicine and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
- Pittsburgh VA Medical Center, Pittsburgh, Pennsylvania, USA
| | - Trent D. Evans
- Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mari Iwase
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Se-Jin Jeong
- Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xiangyu Zhang
- Department of Medicine and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
- Pittsburgh VA Medical Center, Pittsburgh, Pennsylvania, USA
| | - Ziyang Liu
- Department of Medicine and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
- Pittsburgh VA Medical Center, Pittsburgh, Pennsylvania, USA
| | - Arick Park
- Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ali Ghasemian
- Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Borna Dianati
- Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ali Javaheri
- Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran VA Medical Center, St. Louis, Missouri, USA
| | - Dagmar Kratky
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Satoko Kawarasaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Goto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Research Unit for Physiological Chemistry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Hanrui Zhang
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Partha Dutta
- Department of Medicine and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
- Pittsburgh VA Medical Center, Pittsburgh, Pennsylvania, USA
| | - Francisco J. Schopfer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, Pennsylvania, USA
| | - Adam C. Straub
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, Pennsylvania, USA
| | - Jaehyung Cho
- Division of Hematology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Irfan J. Lodhi
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Babak Razani
- Department of Medicine and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
- Pittsburgh VA Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Lange Y, Steck TL. How active cholesterol coordinates cell cholesterol homeostasis: Test of a hypothesis. Prog Lipid Res 2024; 96:101304. [PMID: 39491591 DOI: 10.1016/j.plipres.2024.101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/23/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
How do cells coordinate the diverse elements that regulate their cholesterol homeostasis? Our model postulates that membrane cholesterol forms simple complexes with bilayer phospholipids. The phospholipids in the plasma membrane are of high affinity; consequently, they are fully complexed with the sterol. This sets the resting level of plasma membrane cholesterol. Cholesterol in excess of the stoichiometric equivalence point of these complexes has high chemical activity; we refer to it as active cholesterol. It equilibrates with the low affinity phospholipids in the intracellular membranes where it serves as a negative feedback signal to a manifold of regulatory proteins that rein in ongoing cholesterol accretion. We tested the model with a review of the literature regarding fourteen homeostatic proteins in enterocytes. It provided strong albeit indirect support for the following hypothesis. Active cholesterol inhibits cholesterol uptake and biosynthesis by suppressing both the expression and the activity of the gene products activated by SREBP-2; namely, HMGCR, LDLR and NPC1L1. It also reduces free cell cholesterol by serving as the substrate for its esterification by ACAT and for the synthesis of side-chain oxysterols, 27-hydroxycholesterol in particular. The oxysterols drive cholesterol depletion by promoting the destruction of HMGCR and stimulating sterol esterification as well as the activation of LXR. The latter fosters the expression of multiple homeostatic proteins, including four transporters for which active cholesterol is the likely substrate. By nulling active cholesterol, the manifold maintains the cellular sterol at its physiologic set point.
Collapse
Affiliation(s)
- Yvonne Lange
- Department of Pathology, Rush University Medical Center, Chicago, IL 60612, United States of America.
| | - Theodore L Steck
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, United States of America
| |
Collapse
|
3
|
Kim JW, Kim YJ. Cholesin and GPR146 in Modulating Cholesterol Biosynthesis. Pharmacology 2024; 109:305-311. [PMID: 39008961 DOI: 10.1159/000540351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Cholesterol homeostasis in the human body is a crucial process that involves a delicate balance between dietary cholesterol absorption in the intestine and de novo cholesterol synthesis in the liver. Both pathways contribute significantly to the overall pool of cholesterol in the body, influencing plasma cholesterol levels and impacting cardiovascular health. Elevated absorption of cholesterol in the intestines has a suppressive impact on the synthesis of cholesterol in the liver, serving to preserve cholesterol balance. Nonetheless, the precise mechanisms driving this phenomenon remain largely unclear. SUMMARY This review aimed to discuss the previously unrecognized role of cholesin and GPR146 in the regulation of cholesterol biosynthesis, providing a novel conceptual framework for understanding cholesterol homeostasis. KEY MESSAGES The discovery of cholesin, a novel protein implicated in the regulation of cholesterol homeostasis, represents a significant advancement in our understanding of cholesterol biosynthesis and its associated pathways. The cholesin-GPR146 axis could have profound implications across various therapeutic areas concerning abnormal cholesterol metabolism, offering new hope for patients and improving overall healthcare outcomes.
Collapse
Affiliation(s)
- Jong-Won Kim
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yu Ji Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical School, Jeonbuk National University, Research Institute of Clinical Medicine of Jeonbuk National University - Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| |
Collapse
|
4
|
Hu X, Chen F, Jia L, Long A, Peng Y, Li X, Huang J, Wei X, Fang X, Gao Z, Zhang M, Liu X, Chen YG, Wang Y, Zhang H, Wang Y. A gut-derived hormone regulates cholesterol metabolism. Cell 2024; 187:1685-1700.e18. [PMID: 38503280 DOI: 10.1016/j.cell.2024.02.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/18/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024]
Abstract
The reciprocal coordination between cholesterol absorption in the intestine and de novo cholesterol synthesis in the liver is essential for maintaining cholesterol homeostasis, yet the mechanisms governing the opposing regulation of these processes remain poorly understood. Here, we identify a hormone, Cholesin, which is capable of inhibiting cholesterol synthesis in the liver, leading to a reduction in circulating cholesterol levels. Cholesin is encoded by a gene with a previously unknown function (C7orf50 in humans; 3110082I17Rik in mice). It is secreted from the intestine in response to cholesterol absorption and binds to GPR146, an orphan G-protein-coupled receptor, exerting antagonistic downstream effects by inhibiting PKA signaling and thereby suppressing SREBP2-controlled cholesterol synthesis in the liver. Therefore, our results demonstrate that the Cholesin-GPR146 axis mediates the inhibitory effect of intestinal cholesterol absorption on hepatic cholesterol synthesis. This discovered hormone, Cholesin, holds promise as an effective agent in combating hypercholesterolemia and atherosclerosis.
Collapse
Affiliation(s)
- Xiaoli Hu
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fengyi Chen
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Liangjie Jia
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Aijun Long
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ying Peng
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xu Li
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Junfeng Huang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xueyun Wei
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xinlei Fang
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zihua Gao
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Mengxian Zhang
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiao Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Ye-Guang Chen
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Guangzhou Laboratory, Guangzhou 510005, China; School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Yan Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Huijie Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Yiguo Wang
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Dedousis N, Teng L, Kanshana JS, Kohan AB. A single-day mouse mesenteric lymph surgery in mice: an updated approach to study dietary lipid absorption, chylomicron secretion, and lymphocyte dynamics. J Lipid Res 2022; 63:100284. [PMID: 36152881 PMCID: PMC9646667 DOI: 10.1016/j.jlr.2022.100284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 02/04/2023] Open
Abstract
The intestine plays a crucial role in regulating whole-body lipid metabolism through its unique function of absorbing dietary fat. In the small intestine, absorptive epithelial cells emulsify hydrophobic dietary triglycerides (TAGs) prior to secreting them into mesenteric lymphatic vessels as chylomicrons. Except for short- and medium-chain fatty acids, which are directly absorbed from the intestinal lumen into portal vasculature, the only way for an animal to absorb dietary TAG is through the chylomicron/mesenteric lymphatic pathway. Isolating intestinal lipoproteins, including chylomicrons, is extremely difficult in vivo because of the dilution of postprandial lymph in the peripheral blood. In addition, once postprandial lymph enters the circulation, chylomicron TAGs are rapidly hydrolyzed. To enhance isolation of large quantities of pure postprandial chylomicrons, we have modified the Tso group's highly reproducible gold-standard double-cannulation technique in rats to enable single-day surgery and lymph collection in mice. Our technique has a significantly higher survival rate than the traditional 2-day surgical model and allows for the collection of greater than 400 μl of chylous lymph with high postprandial TAG concentrations. Using this approach, we show that after an intraduodenal lipid bolus, the mesenteric lymph contains naïve CD4+ T-cell populations that can be quantified by flow cytometry. In conclusion, this experimental approach represents a quantitative tool for determining dietary lipid absorption, intestinal lipoprotein dynamics, and mesenteric immunity. Our model may also be a powerful tool for studies of antigens, the microbiome, pharmacokinetics, and dietary compound absorption.
Collapse
Affiliation(s)
- Nikolaos Dedousis
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Lihong Teng
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Jitendra S Kanshana
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Alison B Kohan
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Aqul AA, Ramirez CM, Lopez AM, Burns DK, Repa JJ, Turley SD. Molecular markers of brain cholesterol homeostasis are unchanged despite a smaller brain mass in a mouse model of cholesteryl ester storage disease. Lipids 2022; 57:3-16. [PMID: 34618372 PMCID: PMC8766890 DOI: 10.1002/lipd.12325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 01/03/2023]
Abstract
Lysosomal acid lipase (LAL), encoded by the gene LIPA, facilitates the intracellular processing of lipids by hydrolyzing cholesteryl esters and triacylglycerols present in newly internalized lipoproteins. Loss-of-function mutations in LIPA result in cholesteryl ester storage disease (CESD) or Wolman disease when mutations cause complete loss of LAL activity. Although the phenotype of a mouse CESD model has been extensively characterized, there has not been a focus on the brain at different stages of disease progression. In the current studies, whole-brain mass and the concentrations of cholesterol in both the esterified (EC) and unesterified (UC) fractions were measured in Lal-/- and matching Lal+/+ mice (FVB-N strain) at ages ranging from 14 up to 280 days after birth. Compared to Lal+/+ controls at 50, 68-76, 140-142, and 230-280 days of age, Lal-/- mice had brain weights that averaged approximately 6%, 7%, 18%, and 20% less, respectively. Brain EC levels were higher in the Lal-/- mice at every age, being elevated 27-fold at 230-280 days. Brain UC concentrations did not show a genotypic difference at any age. The elevated brain EC levels in the Lal-/- mice did not reflect EC in residual blood. An mRNA expression analysis for an array of genes involved in the synthesis, catabolism, storage, and transport of cholesterol in the brains of 141-day old mice did not detect any genotypic differences although the relative mRNA levels for several markers of inflammation were moderately elevated in the Lal-/- mice. The possible sites of EC accretion in the central nervous system are discussed.
Collapse
Affiliation(s)
- Amal A. Aqul
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
| | - Charina M. Ramirez
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
| | - Adam M. Lopez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
| | - Dennis K. Burns
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
| | - Joyce J. Repa
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
| | - Stephen D. Turley
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
| |
Collapse
|
7
|
Kiourtzidis M, Kühn J, Schutkowski A, Baur AC, Hirche F, Stangl GI. Inhibition of Niemann-Pick C1-like protein 1 by ezetimibe reduces uptake of deuterium-labeled vitamin D in mice. J Steroid Biochem Mol Biol 2020; 197:105504. [PMID: 31682937 DOI: 10.1016/j.jsbmb.2019.105504] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/22/2019] [Accepted: 10/22/2019] [Indexed: 12/17/2022]
Abstract
For a long time, orally ingested vitamin D was assumed to enter the body exclusively via simple passive diffusion. Recent data from in vitro experiments have described Niemann-Pick C1-like protein 1 (Npc1l1) as an important sterol transporter for vitamin D absorption. However, short-term applications of ezetimibe, which inhibits Npc1l1, were not associated with reduced vitamin D uptake in animals and humans. The current study aimed to elucidate the effect of long-term inhibition of Npc1l1 by ezetimibe on the uptake and storage of orally administered triple deuterated vitamin D3 (vitamin D3-d3). Therefore, 30 male wild-type mice were randomly assigned into three groups and received diets with 25 μg/kg of vitamin D3-d3 that contained 0 (control group), 50 or 100 mg/kg ezetimibe for six weeks. Mice fed diets with 50 or 100 mg/kg ezetimibe had lower circulating levels of cholesterol than control mice (-12 %, -15 %, P < 0.01). In contrast, the concentrations of 7-dehydrocholesterol in serum (P < 0.001) and liver (P < 0.05) were higher in mice treated with ezetimibe than in control mice, indicating an increased sterol synthesis to compensate for cholesterol reduction. Long-term application of ezetimibe significantly reduced the concentrations of vitamin D3-d3 in the serum and tissues of mice. The magnitude of vitamin D3 reduction was comparable between the two ezetimibe groups. In comparison to the control group, mice treated with ezetimibe had lower concentrations of deuterated vitamin D3 compared with the control group in serum (62 %, P < 0.001), liver (79 %, P < 0.001), kidney (54 %, P < 0.001), adipose tissues (55 %, P < 0.001) and muscle (41 %, P < 0.001). Surprisingly, the serum concentration of deuterated 25-hydroxyvitamin D3 was higher in the group fed 100 mg/kg ezetimibe than in the control group (P < 0.05). The protein expression of the vitamin D hydroxylases Cyp2r1, Cyp27a1, Cyp3a11, Cyp24a1 and Cyp2j3 in liver and Cyp27b1 and Cyp24a1 in kidney remained largely unaffected by ezetimibe. To conclude, Npc1l1 appears to be crucial for the uptake of orally ingested vitamin D because long-term inhibition of Npc1l1 by ezetimibe strongly reduced the levels of deuterium-labeled vitamin D in the body; the observed rise in deuterated 25-hydroxyvitamin D3 in serum of these mice can not be explained by the expression levels of the key enzymes involved in vitamin D hydroxylation.
Collapse
Affiliation(s)
- Mikis Kiourtzidis
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Germany.
| | - Julia Kühn
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Germany.
| | - Alexandra Schutkowski
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Germany.
| | - Anja C Baur
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Germany; Competence Cluster of Cardiovascular Health and Nutrition (nutriCARD), Halle-Jena-Leipzig, Germany.
| | - Frank Hirche
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Germany.
| | - Gabriele I Stangl
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Germany; Competence Cluster of Cardiovascular Health and Nutrition (nutriCARD), Halle-Jena-Leipzig, Germany.
| |
Collapse
|
8
|
Pritchard AB, Strong A, Ficicioglu C. Persistent dyslipidemia in treatment of lysosomal acid lipase deficiency. Orphanet J Rare Dis 2020; 15:58. [PMID: 32093730 PMCID: PMC7041253 DOI: 10.1186/s13023-020-1328-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/07/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Lysosomal acid lipase deficiency (LALD) is an autosomal recessive inborn error of lipid metabolism characterized by impaired lysosomal hydrolysis and consequent accumulation of cholesteryl esters and triglycerides. The phenotypic spectrum is diverse, ranging from severe, neonatal onset failure to thrive, hepatomegaly, hepatic fibrosis, malabsorption and adrenal insufficiency to childhood-onset hyperlipidemia, hepatomegaly, and hepatic fibrosis. Sebelipase alfa enzyme replacement has been approved by the Food and Drug Administration for use in LALD after demonstrating dramatic improvement in transaminitis and dyslipidemia with initiation of enzyme replacement therapy. METHODS A chart review was performed on 2 patients with childhood-onset, symptomatic LALD with persistent dyslipidemia despite appropriate enzyme replacement therapy to identify biological pathways and risk factors for incomplete response to therapy. RESULTS Two patients with attenuated, symptomatic LALD had resolution of transaminitis on enzyme replacement therapy without concomitant effect on dyslipidemia despite dose escalation and no evidence of antibody response to enzyme. CONCLUSION Enzyme replacement therapy does not universally resolve all complications of LALD. Persistent dyslipidemia remains a clinically significant issue, likely related to the complex metabolic pathways implicated in LALD pathogenesis. We discuss the possible mechanistic basis for this unexpected finding and the implications for curative LALD therapy.
Collapse
Affiliation(s)
- Amanda Barone Pritchard
- Present address: C.S. Mott Children's Hospital, Michigan Medicine, 1500 E Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - Alanna Strong
- Division of Human Genetics and Metabolism, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Can Ficicioglu
- Division of Human Genetics and Metabolism, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
9
|
Gomaraschi M, Bonacina F, Norata GD. Lysosomal Acid Lipase: From Cellular Lipid Handler to Immunometabolic Target. Trends Pharmacol Sci 2019; 40:104-115. [PMID: 30665623 DOI: 10.1016/j.tips.2018.12.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 01/28/2023]
Abstract
Lysosomal acid lipase (LAL) hydrolyzes cholesteryl esters (CEs) and triglycerides (TGs) to free cholesterol (FC) and free fatty acids (FFAs), which are then used for metabolic purposes in the cell. The process also occurs in immune cells that adapt their metabolic machinery to cope with the different energetic requirements associated with cell activation, proliferation, and polarization. LAL deficiency (LALD) causes severe lipid accumulation and affects the immunometabolic signature in animal models. In humans, LAL deficiency is associated with a peculiar clinical immune phenotype, secondary hemophagocytic lymphohistiocytosis. These observations suggest that LAL might play an important role in cellular immunometabolic modulation, and availability of an effective enzyme replacement strategy makes LAL an attractive target to rewire the metabolic machinery of immune cells beyond its role in controlling cellular lipid metabolism.
Collapse
Affiliation(s)
- M Gomaraschi
- Center E. Grossi Paoletti, Department of Excellence of Pharmacological and Biomolecular Sciences (DisFeB), Università Degli Studi di Milano, Milan 20133, Italy
| | - F Bonacina
- Department of Excellence of Pharmacological and Biomolecular Sciences (DisFeB), Università Degli Studi di Milano, Milan 20133, Italy
| | - G D Norata
- Department of Excellence of Pharmacological and Biomolecular Sciences (DisFeB), Università Degli Studi di Milano, Milan 20133, Italy; SISA Centre, Bassini Hospital, Cinisello Balsamo, 20092, Italy.
| |
Collapse
|
10
|
Di Rocco M, Pisciotta L, Madeo A, Bertamino M, Bertolini S. Long term substrate reduction therapy with ezetimibe alone or associated with statins in three adult patients with lysosomal acid lipase deficiency. Orphanet J Rare Dis 2018; 13:24. [PMID: 29374495 PMCID: PMC5787265 DOI: 10.1186/s13023-018-0768-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/16/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Lysosomal acid lipase deficiency is an autosomal recessive metabolic disease with a wide range of severity from Wolman Disease to Cholesterol Ester Storage Disease. Recently enzyme replacement therapy with sebelipase alpha has been approved by drug agencies for treatment of this lysosomal disease. Ezetimibe is an azetidine derivative which blocks Niemann Pick C1-Like 1 Protein; as its consequence, plasmatic concentration of low density lipoproteins and other apoB-containing lipoproteins, that are the substrate of lysosomal acid lipase, are decreased. Furthermore, ezetimibe acts by blocking inflammasome activation which is the cause of liver fibrosis in steatohepatitis and in lysosomal storage diseases. RESULTS Two patients with Cholesterol Ester Storage Disease were treated with ezetimibe for 9 years and a third patients for 10 years. Treatment was supplemented with low dose of atorvastatin in the first two patients during the last 6 years. All patients showed a significant reduction of alanine aminotransferase, cholesterol and triglyceride. Furthermore, no progression of liver fibrosis was demonstrated. CONCLUSION In this observational case series, ezetimibe is effective, safe, and sustainable treatment for lysosomal acid lipase deficiency. Further studies are warranted to demonstrate that ezetimibe is an alternative therapy to enzyme replacement therapy.
Collapse
Affiliation(s)
- Maja Di Rocco
- Department of Pediatrics, Unit of Rare Diseases, Giannina Gaslini Institute, Largo Gaslini 3, 16147 Genoa, Italy
| | - Livia Pisciotta
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy
| | - Annalisa Madeo
- Department of Pediatrics, Unit of Rare Diseases, Giannina Gaslini Institute, Largo Gaslini 3, 16147 Genoa, Italy
| | - Marta Bertamino
- Department of Pediatrics, Unit of Rare Diseases, Giannina Gaslini Institute, Largo Gaslini 3, 16147 Genoa, Italy
| | - Stefano Bertolini
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy
| |
Collapse
|
11
|
Rong S, McDonald JG, Engelking LJ. Cholesterol auxotrophy and intolerance to ezetimibe in mice with SREBP-2 deficiency in the intestine. J Lipid Res 2017. [PMID: 28630260 DOI: 10.1194/jlr.m077610] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
SREBP-2 activates transcription of all genes needed for cholesterol biosynthesis. To study SREBP-2 function in the intestine, we generated a mouse model (Vil-BP2-/- ) in which Cre recombinase ablates SREBP-2 in intestinal epithelia. Intestines of Vil-BP2-/- mice had reduced expression of genes required for sterol synthesis, in vivo sterol synthesis rates, and epithelial cholesterol contents. On a cholesterol-free diet, the mice displayed chronic enteropathy with histological abnormalities of both villi and crypts, growth restriction, and reduced survival that was prevented by supplementation of cholesterol in the diet. Likewise, SREBP-2-deficient enteroids required exogenous cholesterol for growth. Blockade of luminal cholesterol uptake into enterocytes with ezetimibe precipitated acutely lethal intestinal damage in Vil-BP2-/- mice, highlighting the critical interplay in the small intestine of sterol absorption via NPC1L1 and sterol synthesis via SREBP-2 in sustaining the intestinal mucosa. These data show that the small intestine requires SREBP-2 to drive cholesterol synthesis that sustains the intestinal epithelia when uptake of cholesterol from the gut lumen is not available, and provide a unique example of cholesterol auxotrophy expressed in an intact, adult mammal.
Collapse
Affiliation(s)
- Shunxing Rong
- Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Jeffrey G McDonald
- Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046.,Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Luke J Engelking
- Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046 .,Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| |
Collapse
|