1
|
Hammarlund-Udenaes M, Loryan I. Assessing central nervous system drug delivery. Expert Opin Drug Deliv 2025; 22:421-439. [PMID: 39895003 DOI: 10.1080/17425247.2025.2462767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/15/2025] [Accepted: 01/31/2025] [Indexed: 02/04/2025]
Abstract
INTRODUCTION Delivering drugs to the central nervous system (CNS) remains a major challenge due to the blood-brain barrier, restricting the entry of drugs into the brain. This limitation contributes to the ongoing lack of effective treatments for CNS diseases. To improve the process of drug discovery and development, it is crucial to streamline methods that measure clinically relevant parameters, allowing for good selection of drug candidates. AREA COVERED In this paper, we discuss the essential prerequisites for successful CNS drug delivery and review relevant methods. We emphasize the need for closer collaboration between in vitro and in vivo scientists to improve the relevance of these methods and increase the success rate of developing effective CNS therapies. While our focus is on small molecule drugs, we also touch on some aspects of larger molecules. EXPERT OPINION Significant progress has been made in recent years in method development and their application. However, there is still work to be done before the use of in silico models, in vitro cell systems, and AI can consistently offer meaningful correlations and relationships to clinical data. This gap is partly due to limited patient data, but a lot can be achieved through in vivo research in animal models.
Collapse
Affiliation(s)
| | - Irena Loryan
- Translational PKPD Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Zaragoza Domingo S, Alonso J, Ferrer M, Acosta MT, Alphs L, Annas P, Balabanov P, Berger AK, Bishop KI, Butlen-Ducuing F, Dorffner G, Edgar C, de Gracia Blanco M, Harel B, Harrison J, Horan WP, Jaeger J, Kottner J, Pinkham A, Tinoco D, Vance M, Yavorsky C. Methods for Neuroscience Drug Development: Guidance on Standardization of the Process for Defining Clinical Outcome Strategies in Clinical Trials. Eur Neuropsychopharmacol 2024; 83:32-42. [PMID: 38579661 DOI: 10.1016/j.euroneuro.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 04/07/2024]
Abstract
Neurosciences clinical trials continue to have notoriously high failure rates. Appropriate outcomes selection in early clinical trials is key to maximizing the likelihood of identifying new treatments in psychiatry and neurology. The field lacks good standards for designing outcome strategies, therefore The Outcomes Research Group was formed to develop and promote good practices in outcome selection. This article describes the first published guidance on the standardization of the process for clinical outcomes in neuroscience. A minimal step process is defined starting as early as possible, covering key activities for evidence generation in support of content validity, patient-centricity, validity requirements and considerations for regulatory acceptance. Feedback from expert members is provided, regarding the risks of shortening the process and examples supporting the recommended process are summarized. This methodology is now available to researchers in industry, academia or clinics aiming to implement consensus-based standard practices for clinical outcome selection, contributing to maximizing the efficiency of clinical research.
Collapse
Affiliation(s)
| | - Jordi Alonso
- Hospital del Mar Research Institute; CIBER de Epidemiología y Salud Pública, Instituto de Salud Carlos III; Universitat Pompeu Fabra, Barcelona, Spain
| | - Montse Ferrer
- Hospital del Mar Research Institute; CIBER de Epidemiología y Salud Pública, Instituto de Salud Carlos III; Universitat Pompeu Fabra, Barcelona, Spain
| | - Maria T Acosta
- National Human Genome Research Institute (NHGRI), NIH, Washington, USA
| | - Larry Alphs
- Denovo Biopharma, Princeton, New Jersey, USA
| | - Peter Annas
- Alexion Pharmaceuticals, Inc., Copenhagen, Denmark
| | | | | | | | | | | | | | | | - Brian Harel
- Takeda Pharmaceuticals USA Inc, Cambridge, MA, USA
| | | | | | | | - Jan Kottner
- Charité-Universitätsmedizin, Berlin, Germany
| | - Amy Pinkham
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | |
Collapse
|
3
|
Sato K, Niimi Y, Ihara R, Suzuki K, Iwata A, Iwatsubo T. APOE-ε4 allele[s]-associated adverse events reported from placebo arm in clinical trials for Alzheimer's disease: implications for anti-amyloid beta therapy. FRONTIERS IN DEMENTIA 2024; 2:1320329. [PMID: 39081988 PMCID: PMC11285649 DOI: 10.3389/frdem.2023.1320329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/20/2023] [Indexed: 08/02/2024]
Abstract
APOE-ε4 allele[s] is a risk factor for Alzheimer's disease (AD) and Amyloid-Related Imaging Abnormalities (ARIA) in anti-amyloid beta therapy, and is also associated with cerebrovascular risk factors such as hyperlipidemia or atherosclerosis. During AD clinical trials, APOE-ε4 carriers may experience neuropsychiatric adverse events (AEs) related to these risks, complicating the differentiation of ARIA from cerebrovascular events based on symptoms. This study aimed to examine the hypothetical impact of considering the APOE-ε4 allele's risk for non-ARIA AEs during AD clinical trials. We used data from the Critical Path for Alzheimer's Disease (CPAD) from the placebo arm of randomized controlled trials (RCT) for AD treatment. We determined whether AEs were reported more frequently in APOE-ε4 carriers, quantifying with reporting odds ratio (ROR) using a mixed effect model. We also evaluated the association between ROR levels and the prior probability that an AE is symptomatic ARIA. We analyzed 6,313 patients with AD or mild cognitive impairment in 28 trials. Of the prespecified 35 neuropsychiatric or related AEs, several had a significantly high ROR: "delusion" (ROR = 4.133), "confusional state" (ROR = 1.419), "muscle spasms" (ROR = 9.849), "irritability" (ROR = 12.62), "sleep disorder" (ROR = 2.944), or "convulsion" (ROR = 13.00). However, none remained significant after adjusting for Mini-Mental State Examination scores. There is no strong evidence to suggest that specific neuropsychiatric AEs occur more frequently without drug treatment association among APOE-ε4 carriers. The influence of APOE-ε4 allele[s] on the clinicians' assessment of the likelihood of ARIA during safety monitoring in anti-amyloid beta monoclonal antibody treatment might be unchanged, thus maintaining the current level of awareness of clinicians of AEs.
Collapse
Affiliation(s)
- Kenichiro Sato
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Unit for Early and Exploratory Clinical Development, The University of Tokyo Hospital, Tokyo, Japan
| | - Yoshiki Niimi
- Unit for Early and Exploratory Clinical Development, The University of Tokyo Hospital, Tokyo, Japan
| | - Ryoko Ihara
- Department of Neurology, Tokyo Metropolitan Geriatric Medical Center Hospital, Tokyo, Japan
| | - Kazushi Suzuki
- Division of Neurology, Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Atsushi Iwata
- Department of Neurology, Tokyo Metropolitan Geriatric Medical Center Hospital, Tokyo, Japan
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Unit for Early and Exploratory Clinical Development, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
4
|
Khan A, Kamal M, Alhothi A, Gad H, Adan MA, Ponirakis G, Petropoulos IN, Malik RA. Corneal confocal microscopy demonstrates sensory nerve loss in children with autism spectrum disorder. PLoS One 2023; 18:e0288399. [PMID: 37437060 DOI: 10.1371/journal.pone.0288399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/24/2023] [Indexed: 07/14/2023] Open
Abstract
Autism spectrum disorder (ASD) is a developmental disorder characterized by difficulty in communication and interaction with others. Postmortem studies have shown cerebral neuronal loss and neuroimaging studies show neuronal loss in the amygdala, cerebellum and inter-hemispheric regions of the brain. Recent studies have shown altered tactile discrimination and allodynia on the face, mouth, hands and feet and intraepidermal nerve fiber loss in the legs of subjects with ASD. Fifteen children with ASD (age: 12.00 ± 3.55 years) and twenty age-matched healthy controls (age: 12.83 ± 1.91 years) underwent corneal confocal microscopy (CCM) and quantification of corneal nerve fiber morphology. Corneal nerve fibre density (fibers/mm2) (28.61 ± 5.74 vs. 40.42 ± 8.95, p = 0.000), corneal nerve fibre length (mm/mm2) (16.61 ± 3.26 vs. 21.44 ± 4.44, p = 0.001), corneal nerve branch density (branches/mm2) (43.68 ± 22.71 vs. 62.39 ± 21.58, p = 0.018) and corneal nerve fibre tortuosity (0.037 ± 0.023 vs. 0.074 ± 0.017, p = 0.000) were significantly lower and inferior whorl length (mm/mm2) (21.06 ± 6.12 vs. 23.43 ± 3.95, p = 0.255) was comparable in children with ASD compared to controls. CCM identifies central corneal nerve fiber loss in children with ASD. These findings, urge the need for larger longitudinal studies to determine the utility of CCM as an imaging biomarker for neuronal loss in different subtypes of ASD and in relation to disease progression.
Collapse
Affiliation(s)
- Adnan Khan
- Research Division, Weill Cornell Medicine-Qatar, Doha, Qatar
- Faculty of Health Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Madeeha Kamal
- Department of Pediatrics, Sidra Medicine, Doha, Qatar
| | - Abdula Alhothi
- Department of Pediatrics, Hamad General Hospital, Doha, Qatar
| | - Hoda Gad
- Research Division, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Marian A Adan
- Department of Pediatrics, Hamad General Hospital, Doha, Qatar
| | | | | | - Rayaz A Malik
- Research Division, Weill Cornell Medicine-Qatar, Doha, Qatar
| |
Collapse
|
5
|
Karpen SR, Dunne JL, Frohnert BI, Marinac M, Richard C, David SE, O'Doherty IM. Consortium-based approach to receiving an EMA qualification opinion on the use of islet autoantibodies as enrichment biomarkers in type 1 diabetes clinical studies. Diabetologia 2023; 66:415-424. [PMID: 35867129 PMCID: PMC10024532 DOI: 10.1007/s00125-022-05751-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/25/2022] [Indexed: 02/04/2023]
Abstract
The development of medical products that can delay or prevent progression to stage 3 type 1 diabetes faces many challenges. Of note, optimising patient selection for type 1 diabetes prevention clinical trials is hindered by significant patient heterogeneity and a lack of characterisation of the time-varying probability of progression to stage 3 type 1 diabetes in individuals positive for two or more islet autoantibodies. To meet these needs, the Critical Path Institute's Type 1 Diabetes Consortium was launched in 2017 as a pre-competitive public-private partnership between stakeholders from the pharmaceutical industry, patient advocacy groups, philanthropic organisations, clinical researchers, the National Institutes of Health and the Food and Drug Administration. The Type 1 Diabetes Consortium acquired and aggregated data from three longitudinal observational studies, Environmental Determinants of Diabetes in the Young (TEDDY), Diabetes Autoimmunity Study in the Young (DAISY) and TrialNet Pathway to Prevention (TN01), and used analysis subsets of these data to support the model-based qualification of islet autoantibodies as enrichment biomarkers for patient selection in type 1 diabetes prevention trials, including registration studies. The Type 1 Diabetes Consortium has now received a qualification opinion from the European Medicines Agency for the use of these biomarkers, a major success for the field of type 1 diabetes. This endorsement will improve product developers' ability to design clinical trials of agents intended to prevent or delay type 1 diabetes that are reduced in size and/or length, while being adequately powered.
Collapse
Affiliation(s)
| | | | - Brigitte I Frohnert
- Barbara Davis Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | | | | | | |
Collapse
|
6
|
English BA, Ereshefsky L. Experimental Medicine Approaches in Early-Phase CNS Drug Development. ADVANCES IN NEUROBIOLOGY 2023; 30:417-455. [PMID: 36928860 DOI: 10.1007/978-3-031-21054-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Traditionally, Phase 1 clinical trials were largely conducted in healthy normal volunteers and focused on collection of safety, tolerability, and pharmacokinetic data. However, in the CNS therapeutic area, with more drugs failing in later phase development, Phase 1 trials have undergone an evolution that includes incorporation of novel approaches involving novel study designs, inclusion of biomarkers, and early inclusion of patients to improve the pharmacologic understanding of novel CNS-active compounds early in clinical development with the hope of improving success in later phase pivotal trials. In this chapter, the authors will discuss the changing landscape of Phase 1 clinical trials in CNS, including novel trial methodology, inclusion of pharmacodynamic biomarkers, and experimental medicine approaches to inform early decision-making in clinical development.
Collapse
|
7
|
Carmichael O. The Role of fMRI in Drug Development: An Update. ADVANCES IN NEUROBIOLOGY 2023; 30:299-333. [PMID: 36928856 DOI: 10.1007/978-3-031-21054-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Functional magnetic resonance imaging (fMRI) of the brain is a technology that holds great potential for increasing the efficiency of drug development for the central nervous system (CNS). In preclinical studies and both early- and late-phase human trials, fMRI has the potential to improve cross-species translation of drug effects, help to de-risk compounds early in development, and contribute to the portfolio of evidence for a compound's efficacy and mechanism of action. However, to date, the utilization of fMRI in the CNS drug development process has been limited. The purpose of this chapter is to explore this mismatch between potential and utilization. This chapter provides introductory material related to fMRI and drug development, describes what is required of fMRI measurements for them to be useful in a drug development setting, lists current capabilities of fMRI in this setting and challenges faced in its utilization, and ends with directions for future development of capabilities in this arena. This chapter is the 5-year update of material from a previously published workshop summary (Carmichael et al., Drug DiscovToday 23(2):333-348, 2018).
Collapse
Affiliation(s)
- Owen Carmichael
- Pennington Biomedical Research Center, Baton Rouge, LA, USA.
| |
Collapse
|
8
|
Raikes AC, Hernandez GD, Matthews DC, Lukic AS, Law M, Shi Y, Schneider LS, Brinton RD. Exploratory imaging outcomes of a phase 1b/2a clinical trial of allopregnanolone as a regenerative therapeutic for Alzheimer's disease: Structural effects and functional connectivity outcomes. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12258. [PMID: 35310526 PMCID: PMC8919249 DOI: 10.1002/trc2.12258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 01/14/2023]
Abstract
Introduction Allopregnanolone (ALLO), an endogenous neurosteroid, promoted neurogenesis and oligogenesis and restored cognitive function in animal models of Alzheimer's disease (AD). Based on these discovery research findings, we conducted a randomized-controlled phase 1b/2a multiple ascending dose trial of ALLO in persons with early AD (NCT02221622) to assess safety, tolerability, and pharmacokinetics. Exploratory imaging outcomes to determine whether ALLO impacted hippocampal structure, white matter integrity, and functional connectivity are reported. Methods Twenty-four individuals participated in the trial (n = 6 placebo; n = 18 ALLO) and underwent brain magnetic resonance imaging (MRI) before and after 12 weeks of treatment. Hippocampal atrophy rate was determined from volumetric MRI, computed as rate of change, and qualitatively assessed between ALLO and placebo sex, apolipoprotein E (APOE) ε4 allele, and ALLO dose subgroups. White matter microstructural integrity was compared between placebo and ALLO using fractional and quantitative anisotropy (QA). Changes in local, inter-regional, and network-level functional connectivity were also compared between groups using resting-state functional MRI. Results Rate of decline in hippocampal volume was slowed, and in some cases reversed, in the ALLO group compared to placebo. Gain of hippocampal volume was evident in APOE ε4 carriers (range: 0.6% to 7.8% increased hippocampal volume). Multiple measures of white matter integrity indicated evidence of preserved or improved integrity. ALLO significantly increased fractional anisotropy (FA) in 690 of 690 and QA in 1416 of 1888 fiber tracts, located primarily in the corpus callosum, bilateral thalamic radiations, and bilateral corticospinal tracts. Consistent with structural changes, ALLO strengthened local, inter-regional, and network level functional connectivity in AD-vulnerable regions, including the precuneus and posterior cingulate, and network connections between the default mode network and limbic system. Discussion Indicators of regeneration from previous preclinical studies and these exploratory MRI-based outcomes from this phase 1b/2a clinical cohort support advancement to a phase 2 proof-of-concept efficacy clinical trial of ALLO as a regenerative therapeutic for mild AD (REGEN-BRAIN study; NCT04838301).
Collapse
Affiliation(s)
- Adam C. Raikes
- Center for Innovation in Brain ScienceUniversity of ArizonaTucsonArizonaUSA
| | | | - Dawn C. Matthews
- Departments of Pharmacology and Neurology, College of MedicineADM DiagnosticsNorthbrookIllinoisUSA
| | - Ana S. Lukic
- Departments of Pharmacology and Neurology, College of MedicineADM DiagnosticsNorthbrookIllinoisUSA
| | - Meng Law
- Department of RadiologyAlfred HealthDepartment of Neuroscience and Computer Systems EngineeringMonash UniversityMelbourneAustralia
| | - Yonggang Shi
- Stevens Neuroimaging and Informatics InstituteKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Lon S. Schneider
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Roberta D. Brinton
- Center for Innovation in Brain ScienceUniversity of ArizonaTucsonArizonaUSA
| |
Collapse
|
9
|
Gozzo L, Romano GL, Brancati S, Cicciù M, Fiorillo L, Longo L, Vitale DC, Drago F. Access to Innovative Neurological Drugs in Europe: Alignment of Health Technology Assessments Among Three European Countries. Front Pharmacol 2022; 12:823199. [PMID: 35185551 PMCID: PMC8854989 DOI: 10.3389/fphar.2021.823199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/29/2021] [Indexed: 01/25/2023] Open
Abstract
Even for products centrally approved, each European country is responsible for national market access after European Medicines Agency (EMA) approval. This step can result in inequalities in terms of access, due to different opinions about the therapeutic value assessed by Health Technology Assessment (HTA) bodies. This study aims to provide a comparative analysis of HTA recommendations issued by EU countries (France, Germany, and Italy) for new neurological drugs following EMA approval. In the reference period, we identified 11 innovative medicines authorized in Europe for five neurological diseases (cerebral adrenoleukodystrophy, spinal muscular atrophy, metachromatic leukodystrophy, migraine, and polyneuropathy in patients with hereditary transthyretin amyloidosis), including eight drugs for genetic rare diseases. We found no agreement on the therapeutic value (in particular the “added value” compared to the standard of care) of the selected drugs. Despite the differences in terms of assessment, the access has been usually guaranteed even if with various types of limitations. The heterogeneity of the HTA assessment of clinical data among countries is probably related to the uncertainties about clinical value at the time of EMA approval and the lack of long-term data and of direct comparison with available alternatives. Given the importance of new medicines especially for rare diseases, it is crucial to understand and act on the causes of inconsistency among the HTA assessments, in order to ensure rapid and uniform access to innovation for patients who can benefit.
Collapse
Affiliation(s)
- Lucia Gozzo
- Clinical Pharmacology Unit/Regional Pharmacovigilance Centre, University Hospital of Catania, Catania, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- *Correspondence: Lucia Gozzo,
| | - Giovanni Luca Romano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Serena Brancati
- Clinical Pharmacology Unit/Regional Pharmacovigilance Centre, University Hospital of Catania, Catania, Italy
| | - Marco Cicciù
- Department of Biomedical and Dental Sciences Morphological and Functional Images, University of Messina, AOU “G. Martino”, Messina, Italy
| | - Luca Fiorillo
- Department of Biomedical and Dental Sciences Morphological and Functional Images, University of Messina, AOU “G. Martino”, Messina, Italy
| | - Laura Longo
- Clinical Pharmacology Unit/Regional Pharmacovigilance Centre, University Hospital of Catania, Catania, Italy
| | - Daniela Cristina Vitale
- Clinical Pharmacology Unit/Regional Pharmacovigilance Centre, University Hospital of Catania, Catania, Italy
| | - Filippo Drago
- Clinical Pharmacology Unit/Regional Pharmacovigilance Centre, University Hospital of Catania, Catania, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Centre for Research and Consultancy in HTA and Drug Regulatory Affairs (CERD), University of Catania, Catania, Italy
| |
Collapse
|
10
|
Fonseca Cabral G, Schaan AP, Cavalcante GC, Sena-dos-Santos C, de Souza TP, Souza Port’s NM, dos Santos Pinheiro JA, Ribeiro-dos-Santos Â, Vidal AF. Nuclear and Mitochondrial Genome, Epigenome and Gut Microbiome: Emerging Molecular Biomarkers for Parkinson's Disease. Int J Mol Sci 2021; 22:9839. [PMID: 34576000 PMCID: PMC8471599 DOI: 10.3390/ijms22189839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is currently the second most common neurodegenerative disorder, burdening about 10 million elderly individuals worldwide. The multifactorial nature of PD poses a difficult obstacle for understanding the mechanisms involved in its onset and progression. Currently, diagnosis depends on the appearance of clinical signs, some of which are shared among various neurologic disorders, hindering early diagnosis. There are no effective tools to prevent PD onset, detect the disease in early stages or accurately report the risk of disease progression. Hence, there is an increasing demand for biomarkers that may identify disease onset and progression, as treatment-based medicine may not be the best approach for PD. Over the last few decades, the search for molecular markers to predict susceptibility, aid in accurate diagnosis and evaluate the progress of PD have intensified, but strategies aimed to improve individualized patient care have not yet been established. CONCLUSIONS Genomic variation, regulation by epigenomic mechanisms, as well as the influence of the host gut microbiome seem to have a crucial role in the onset and progress of PD, thus are considered potential biomarkers. As such, the human nuclear and mitochondrial genome, epigenome, and the host gut microbiome might be the key elements to the rise of personalized medicine for PD patients.
Collapse
Affiliation(s)
- Gleyce Fonseca Cabral
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Ana Paula Schaan
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Giovanna C. Cavalcante
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Camille Sena-dos-Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Tatiane Piedade de Souza
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Natacha M. Souza Port’s
- Laboratório de Neurofarmacologia Molecular, Universidade de São Paulo, São Paulo 05508-000, Brazil;
| | - Jhully Azevedo dos Santos Pinheiro
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Ândrea Ribeiro-dos-Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará–R. dos Mundurucus, Belém 66073-000, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil
| | - Amanda F. Vidal
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil
- ITVDS—Instituto Tecnológico Vale Desenvolvimento Sustentável–R. Boaventura da Silva, Belém 66055-090, Brazil
| |
Collapse
|
11
|
Horgan D, Nobili F, Teunissen C, Grimmer T, Mitrecic D, Ris L, Pirtosek Z, Bernini C, Federico A, Blackburn D, Logroscino G, Scarmeas N. Biomarker Testing: Piercing the Fog of Alzheimer's and Related Dementia. Biomed Hub 2021; 5:19-40. [PMID: 33564663 DOI: 10.1159/000511233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) and related dementia is one of the growing threats to the sustainability of health and care systems in developed countries, and efforts to find therapies have had scant success. The main reasons for this are lack of efficient therapy, which is linked to too late discovery of the disease itself. With this in mind, biomarkers are recognised as an element which can bring a major contribution to research, helping elucidate the disease and the search for treatments. They are also playing an increasing role in early detection and timely diagnosis, which are considered the principal hopes of effective management in the absence of an effective drug. The current arsenal of biomarkers could already, if more widely deployed, provide an effective minimum service to patients and health systems. A concerted action by policy makers and stakeholders could drive progress in access to AD biomarker testing to provide an optimum service in the medium term. This paper discusses how to improve the use of and access to biomarker testing in the detection and diagnosis of AD and other diseases featuring dementia, and how EU healthcare systems could benefit. It outlines the challenges, lists the achievements to date, and highlights the actions needed to allow biomarker testing to deliver more fully on their potential in AD.
Collapse
Affiliation(s)
- Denis Horgan
- European Alliance for Personalised Medicine, Brussels, Belgium
| | - Flavio Nobili
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Charlotte Teunissen
- Neurochemistry Lab, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | - Timo Grimmer
- Klinikum rechts der Isar, School of Medicine, Technical University on Munich, Munich, Germany
| | - Dinko Mitrecic
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | | | | | - Chiara Bernini
- European Alliance for Personalised Medicine, Brussels, Belgium
| | | | | | | | - Nikos Scarmeas
- National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
12
|
Cummings JL. Translational Scoring of Candidate Treatments for Alzheimer's Disease: A Systematic Approach. Dement Geriatr Cogn Disord 2021; 49:22-37. [PMID: 32512572 DOI: 10.1159/000507569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND There are many failures in treatment development for Alzheimer's disease (AD). Some of these failures are the result of development programs that lacked critical information about candidate drugs as these were advanced from one phase of development to the next. Translational scoring (TS) has been proposed as a means of increasing the rigor with which treatment development programs are executed. Previously, these approaches were not specific to AD or to the phase of drug development. Detailed information on the characteristics needed to advance a candidate agent from one phase to the next is the basis for success in subsequent phases. SUMMARY The TS approach is presented with a score range of 0-25 for agents entering phases 1, 2, and 3 of development and those that have completed phase 3 and are being considered for regulatory review. Each phase has 5 essential categories scored from 0-5 indicating the completeness of the data available when the agent is being considered for promotion to the next phase. Lower scores suggest that the development program should be reexamined for missing information while higher scores increase the confidence that the agent has the potential to succeed in the next phase. Scoring guidelines are provided and examples of scores for drugs in recent development programs are provided to illustrate the principles of TS. Key Messages: Successful development of drugs for AD treatment requires disciplined informed decision-making at each phase of development. TS is a methodology for more rigorous drug development to help ensure that inadequately characterized drugs are not advanced and that the development platform at each phase is optimal to support success at the next phase.
Collapse
Affiliation(s)
- Jeffrey L Cummings
- Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas, Nevada, USA, .,Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada, USA,
| |
Collapse
|
13
|
Mullin AP, Corey D, Turner EC, Liwski R, Olson D, Burton J, Sivakumaran S, Hudson LD, Romero K, Stephenson DT, Larkindale J. Standardized Data Structures in Rare Diseases: CDISC User Guides for Duchenne Muscular Dystrophy and Huntington's Disease. Clin Transl Sci 2020; 14:214-221. [PMID: 32702147 PMCID: PMC7877853 DOI: 10.1111/cts.12845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/14/2020] [Indexed: 12/13/2022] Open
Abstract
Interest in drug development for rare diseases has expanded dramatically since the Orphan Drug Act was passed in 1983, with 40% of new drug approvals in 2019 targeting orphan indications. However, limited quantitative understanding of natural history and disease progression hinders progress and increases the risks associated with rare disease drug development. Use of international data standards can assist in data harmonization and enable data exchange, integration into larger datasets, and a quantitative understanding of disease natural history. The US Food and Drug Administration (FDA) requires the use of Clinical Data Interchange Consortium (CDISC) Standards in new drug submissions to help the agency efficiently and effectively receive, process, review, and archive submissions, as well as to help integrate data to answer research questions. Such databases have been at the core of biomarker qualification efforts and fit‐for‐purpose models endorsed by the regulators. We describe the development of CDISC therapeutic area user guides for Duchenne muscular dystrophy and Huntington’s disease through Critical Path Institute consortia. These guides describe formalized data structures and controlled terminology to map and integrate data from different sources. This will result in increased standardization of data collection and allow integration and comparison of data from multiple studies. Integration of multiple data sets enables a quantitative understanding of disease progression, which can help overcome common challenges in clinical trial design in these and other rare diseases. Ultimately, clinical data standardization will lead to a faster path to regulatory approval of urgently needed new therapies for patients.
Collapse
Affiliation(s)
| | - Diane Corey
- Critical Path Institute, Tucson, Arizona, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Krahn AI, Wells C, Drewry DH, Beitel LK, Durcan TM, Axtman AD. Defining the Neural Kinome: Strategies and Opportunities for Small Molecule Drug Discovery to Target Neurodegenerative Diseases. ACS Chem Neurosci 2020; 11:1871-1886. [PMID: 32464049 DOI: 10.1021/acschemneuro.0c00176] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Kinases are highly tractable drug targets that have reached unparalleled success in fields such as cancer but whose potential has not yet been realized in neuroscience. There are currently 55 approved small molecule kinase-targeting drugs, 48 of which have an anticancer indication. The intrinsic complexity linked to central nervous system (CNS) drug development and a lack of validated targets has hindered progress in developing kinase inhibitors for CNS disorders when compared to other therapeutic areas such as oncology. Identification and/or characterization of new kinases as potential drug targets for neurodegenerative diseases will create opportunities for the development of CNS drugs in the future. The track record of kinase inhibitors in other disease indications supports the idea that with the best targets identified small molecule kinase modulators will become impactful therapeutics for neurodegenerative diseases. This Review highlights the imminent need for new therapeutics to treat the most prevalent neurodegenerative diseases as well as the promise of kinase inhibitors to address this need. With a focus on kinases that remain largely unexplored after decades of dedicated research in the kinase field, we offer specific examples of understudied kinases that are supported by patient-derived data as linked to Alzheimer's disease, Parkinson's disease, and/or amyotrophic lateral sclerosis. Finally, we show literature-reported high-quality inhibitors for several understudied kinases and suggest other kinases that merit additional medicinal chemistry efforts to elucidate their therapeutic potential.
Collapse
Affiliation(s)
- Andrea I. Krahn
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada H3A 2B4
| | - Carrow Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lenore K. Beitel
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada H3A 2B4
| | - Thomas M. Durcan
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada H3A 2B4
| | - Alison D. Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
15
|
Mullane K, Williams M. Alzheimer’s disease beyond amyloid: Can the repetitive failures of amyloid-targeted therapeutics inform future approaches to dementia drug discovery? Biochem Pharmacol 2020; 177:113945. [DOI: 10.1016/j.bcp.2020.113945] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022]
|
16
|
Silva MC, Haggarty SJ. Human pluripotent stem cell-derived models and drug screening in CNS precision medicine. Ann N Y Acad Sci 2020; 1471:18-56. [PMID: 30875083 PMCID: PMC8193821 DOI: 10.1111/nyas.14012] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/02/2019] [Accepted: 01/07/2019] [Indexed: 12/12/2022]
Abstract
Development of effective therapeutics for neurological disorders has historically been challenging partly because of lack of accurate model systems in which to investigate disease etiology and test new therapeutics at the preclinical stage. Human stem cells, particularly patient-derived induced pluripotent stem cells (iPSCs) upon differentiation, have the ability to recapitulate aspects of disease pathophysiology and are increasingly recognized as robust scalable systems for drug discovery. We review advances in deriving cellular models of human central nervous system (CNS) disorders using iPSCs along with strategies for investigating disease-relevant phenotypes, translatable biomarkers, and therapeutic targets. Given their potential to identify novel therapeutic targets and leads, we focus on phenotype-based, small-molecule screens employing human stem cell-derived models. Integrated efforts to assemble patient iPSC-derived cell models with deeply annotated clinicopathological data, along with molecular and drug-response signatures, may aid in the stratification of patients, diagnostics, and clinical trial success, shifting translational science and precision medicine approaches. A number of remaining challenges, including the optimization of cost-effective, large-scale culture of iPSC-derived cell types, incorporation of aging into neuronal models, as well as robustness and automation of phenotypic assays to support quantitative drug efficacy, toxicity, and metabolism testing workflows, are covered. Continued advancement of the field is expected to help fully humanize the process of CNS drug discovery.
Collapse
Affiliation(s)
- M. Catarina Silva
- Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Center for Genomic Medicine, Harvard Medical School, Boston MA, USA
| | - Stephen J. Haggarty
- Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Center for Genomic Medicine, Harvard Medical School, Boston MA, USA
| |
Collapse
|
17
|
Chen SD, Li HQ, Cui M, Dong Q, Yu JT. Pluripotent stem cells for neurodegenerative disease modeling: an expert view on their value to drug discovery. Expert Opin Drug Discov 2020; 15:1081-1094. [PMID: 32425128 DOI: 10.1080/17460441.2020.1767579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Neurodegenerative diseases have become a major global health concern, posing a huge disease burden on patients and their families. Although there has been rapid progress in the development of therapies, a lack of accurate disease models and efficient drug screening platforms have made achieving a breakthrough difficult. The technology of human-induced pluripotent stem cells (iPSCs) shows better recapitulation of disease pathophysiology and provides a more accessible supply of patient-specific samples compared to other modeling methods. It has been a powerful tool for mechanism exploration and drug development. AREAS COVERED This review describes the recent use of human iPSC-derived cells for modeling neurodegenerative disorders and discovering potential drugs. EXPERT OPINION Model systems based on iPSC-derived cells have created a paradigm shift in drug discovery. Accuracy, consistency, translatability, and cost-effectiveness are the four major focuses of academic and industrial communities to fulfill the potential of iPSC technology for their purposes. It is the art of balance between these four factors to generate efficacious outputs with maximum efficiency. Future studies should persist in refining this technology and promote its application in this field to benefit all the disease-affected population eventually.
Collapse
Affiliation(s)
- Shi-Dong Chen
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University , Shanghai, China
| | - Hong-Qi Li
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University , Shanghai, China
| | - Mei Cui
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University , Shanghai, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University , Shanghai, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University , Shanghai, China
| |
Collapse
|
18
|
McNeill RV, Ziegler GC, Radtke F, Nieberler M, Lesch KP, Kittel-Schneider S. Mental health dished up-the use of iPSC models in neuropsychiatric research. J Neural Transm (Vienna) 2020; 127:1547-1568. [PMID: 32377792 PMCID: PMC7578166 DOI: 10.1007/s00702-020-02197-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
Abstract
Genetic and molecular mechanisms that play a causal role in mental illnesses are challenging to elucidate, particularly as there is a lack of relevant in vitro and in vivo models. However, the advent of induced pluripotent stem cell (iPSC) technology has provided researchers with a novel toolbox. We conducted a systematic review using the PRISMA statement. A PubMed and Web of Science online search was performed (studies published between 2006–2020) using the following search strategy: hiPSC OR iPSC OR iPS OR stem cells AND schizophrenia disorder OR personality disorder OR antisocial personality disorder OR psychopathy OR bipolar disorder OR major depressive disorder OR obsessive compulsive disorder OR anxiety disorder OR substance use disorder OR alcohol use disorder OR nicotine use disorder OR opioid use disorder OR eating disorder OR anorexia nervosa OR attention-deficit/hyperactivity disorder OR gaming disorder. Using the above search criteria, a total of 3515 studies were found. After screening, a final total of 56 studies were deemed eligible for inclusion in our study. Using iPSC technology, psychiatric disease can be studied in the context of a patient’s own unique genetic background. This has allowed great strides to be made into uncovering the etiology of psychiatric disease, as well as providing a unique paradigm for drug testing. However, there is a lack of data for certain psychiatric disorders and several limitations to present iPSC-based studies, leading us to discuss how this field may progress in the next years to increase its utility in the battle to understand psychiatric disease.
Collapse
Affiliation(s)
- Rhiannon V McNeill
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Georg C Ziegler
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Franziska Radtke
- Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy University Hospital, University of Würzburg, Würzburg, Germany
| | - Matthias Nieberler
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Klaus-Peter Lesch
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany.
| |
Collapse
|
19
|
Bruno R, Bottino D, de Alwis DP, Fojo AT, Guedj J, Liu C, Swanson KR, Zheng J, Zheng Y, Jin JY. Progress and Opportunities to Advance Clinical Cancer Therapeutics Using Tumor Dynamic Models. Clin Cancer Res 2019; 26:1787-1795. [PMID: 31871299 DOI: 10.1158/1078-0432.ccr-19-0287] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/31/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022]
Abstract
There is a need for new approaches and endpoints in oncology drug development, particularly with the advent of immunotherapies and the multiple drug combinations under investigation. Tumor dynamics modeling, a key component to oncology "model-informed drug development," has shown a growing number of applications and a broader adoption by drug developers and regulatory agencies in the past years to support drug development and approval in a variety of ways. Tumor dynamics modeling is also being investigated in personalized cancer therapy approaches. These models and applications are reviewed and discussed, as well as the limitations and issues open for further investigations. A close collaboration between stakeholders like clinical investigators, statisticians, and pharmacometricians is warranted to advance clinical cancer therapeutics.
Collapse
Affiliation(s)
| | - Dean Bottino
- Millennium Pharmaceuticals, a wholly owned subsidiary of Takeda Pharmaceuticals, Inc. Cambridge, Massachusetts
| | | | | | - Jérémie Guedj
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Chao Liu
- U.S. Food and Drug Administration, Silver Spring, Maryland
| | | | | | | | - Jin Y Jin
- Genentech-Roche, South San Francisco, California
| |
Collapse
|
20
|
Pani L, Keefe RS. Approaches to attenuated psychosis syndrome treatments: A perspective on the regulatory issues. Schizophr Res Cogn 2019; 18:100155. [PMID: 31431890 PMCID: PMC6580145 DOI: 10.1016/j.scog.2019.100155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/21/2019] [Accepted: 05/26/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Luca Pani
- Department of Psychiatry and Behavioral Sciences, University of Miami, USA
- VeraSci, Durham, NC, USA
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy
| | - Richard S.E. Keefe
- VeraSci, Durham, NC, USA
- Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
21
|
Cummings J, Feldman HH, Scheltens P. The "rights" of precision drug development for Alzheimer's disease. Alzheimers Res Ther 2019; 11:76. [PMID: 31470905 PMCID: PMC6717388 DOI: 10.1186/s13195-019-0529-5] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/13/2019] [Indexed: 01/12/2023]
Abstract
There is a high rate of failure in Alzheimer's disease (AD) drug development with 99% of trials showing no drug-placebo difference. This low rate of success delays new treatments for patients and discourages investment in AD drug development. Studies across drug development programs in multiple disorders have identified important strategies for decreasing the risk and increasing the likelihood of success in drug development programs. These experiences provide guidance for the optimization of AD drug development. The "rights" of AD drug development include the right target, right drug, right biomarker, right participant, and right trial. The right target identifies the appropriate biologic process for an AD therapeutic intervention. The right drug must have well-understood pharmacokinetic and pharmacodynamic features, ability to penetrate the blood-brain barrier, efficacy demonstrated in animals, maximum tolerated dose established in phase I, and acceptable toxicity. The right biomarkers include participant selection biomarkers, target engagement biomarkers, biomarkers supportive of disease modification, and biomarkers for side effect monitoring. The right participant hinges on the identification of the phase of AD (preclinical, prodromal, dementia). Severity of disease and drug mechanism both have a role in defining the right participant. The right trial is a well-conducted trial with appropriate clinical and biomarker outcomes collected over an appropriate period of time, powered to detect a clinically meaningful drug-placebo difference, and anticipating variability introduced by globalization. We lack understanding of some critical aspects of disease biology and drug action that may affect the success of development programs even when the "rights" are adhered to. Attention to disciplined drug development will increase the likelihood of success, decrease the risks associated with AD drug development, enhance the ability to attract investment, and make it more likely that new therapies will become available to those with or vulnerable to the emergence of AD.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Department of Brain Health, School of Integrated Health Sciences, UNLV and Cleveland Clinic Lou Ruvo Center for Brain Health, 888 West Bonneville Ave, Las Vegas, NV, 89106, USA.
| | - Howard H Feldman
- Department of Neurosciences, Alzheimer's Disease Cooperative Study, University of California San Diego, San Diego, CA, USA
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Nøhr‐Nielsen A, De Bruin ML, Thomsen M, Pipper CB, Lange T, Bjerrum OJ, Lund TM. Body of evidence and approaches applied in the clinical development programme of fixed-dose combinations in the European Union from 2010 to 2016. Br J Clin Pharmacol 2019; 85:1829-1840. [PMID: 31077427 PMCID: PMC6624404 DOI: 10.1111/bcp.13986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 04/16/2019] [Accepted: 04/29/2019] [Indexed: 12/21/2022] Open
Abstract
AIMS To provide insights into the clinical development pathway for fixed-dose combinations (FDCs), to consider strategies, and to elucidate the path to approval by assessing the body of evidence, as summarized in the European Public Assessment Reports. METHODS The main resource was the European Public Assessment Reports for 36 FDCs, which included 239 clinical trials with 157 514 patients. The analyses focused on how prior knowledge of the active substances or combination, use of pharmacokinetic-pharmacodynamic modelling, and clinical trial design choice impact the size and strategy of the clinical development programme. RESULTS FDC products primarily comprised 2 previously approved components (21/36, 71%) and had only 1 approved combination (21/36, 71%). Utilizing previously approved active substances resulted in fewer clinical trials, arms and patients, but FDC doses studied in the clinical development programme. Furthermore, dose-finding trials were performed for less than half of FDCs consisting of 2 previously approved active substances. The standard approach to demonstrate contribution of active substances was through a factorial or single combination study. Finally, the use of pharmacokinetic modelling showed a significant decrease in the number of FDC doses studied. CONCLUSIONS The field of FDCs seems to be on the rise, utilizing new molecular entities, prior knowledge and re-profiling drugs. However, a way to move FDC development forward might be through new regulatory and scientific paradigms, in which it is encouraged to utilize model-based approaches to develop FDCs with multiple dose levels and dose ratios for exposure-based treatment that will enable personalization.
Collapse
Affiliation(s)
- Asbjørn Nøhr‐Nielsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Copenhagen Centre for Regulatory ScienceUniversity of CopenhagenCopenhagenDenmark
| | | | | | | | - Theis Lange
- Department of Public HealthUniversity of CopenhagenCopenhagenDenmark
| | - Ole Jannik Bjerrum
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Trine Meldgaard Lund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
23
|
Mullane K, Williams M. Alzheimer's disease (AD) therapeutics - 2: Beyond amyloid - Re-defining AD and its causality to discover effective therapeutics. Biochem Pharmacol 2018; 158:376-401. [PMID: 30273552 DOI: 10.1016/j.bcp.2018.09.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/24/2018] [Indexed: 12/25/2022]
Abstract
Compounds targeted for the treatment of Alzheimer's Disease (AD) have consistently failed in clinical trials despite evidence for target engagement and pharmacodynamic activity. This questions the relevance of compounds acting at current AD drug targets - the majority of which reflect the seminal amyloid and, to a far lesser extent, tau hypotheses - and limitations in understanding AD causality as distinct from general dementia. The preeminence of amyloid and tau led to many alternative approaches to AD therapeutics being ignored or underfunded to the extent that their causal versus contributory role in AD remains unknown. These include: neuronal network dysfunction; cerebrovascular disease; chronic, local or systemic inflammation involving the innate immune system; infectious agents including herpes virus and prion proteins; neurotoxic protein accumulation associated with sleep deprivation, circadian rhythm and glymphatic/meningeal lymphatic system and blood-brain-barrier dysfunction; metabolic related diseases including diabetes, obesity hypertension and hypocholesterolemia; mitochondrial dysfunction and environmental factors. As AD has become increasingly recognized as a multifactorial syndrome, a single treatment paradigm is unlikely to work in all patients. However, the biomarkers required to diagnose patients and parse them into mechanism/disease-based sub-groups remain rudimentary and unvalidated as do non-amyloid, non-tau translational animal models. The social and economic impact of AD is also discussed in the context of new FDA regulatory draft guidance and a proposed biomarker-based Framework (re)-defining AD and its stages as part of the larger landscape of treating dementia via the 2013 G8 initiative to identify a disease-modifying therapy for dementia/AD by 2025.
Collapse
Affiliation(s)
- Kevin Mullane
- Gladstone Institutes, San Francisco, CA, United States
| | - Michael Williams
- Department of Biological Chemistry and Pharmacology, College of Medicine, Ohio State University, Columbus, OH, United States.
| |
Collapse
|
24
|
Lossi L, Merighi A. The Use of ex Vivo Rodent Platforms in Neuroscience Translational Research With Attention to the 3Rs Philosophy. Front Vet Sci 2018; 5:164. [PMID: 30073174 PMCID: PMC6060265 DOI: 10.3389/fvets.2018.00164] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/29/2018] [Indexed: 01/08/2023] Open
Abstract
The principles of the 3Rs—Replacement, Reduction, and Refinement—are at the basis of most advanced national and supranational (EU) regulations on animal experimentation and welfare. In the perspective to reduce and refine the use of these animals in translational research, we here discuss the use of rodent acute and organotypically cultured central nervous system slices. We describe novel applications of these ex vivo platforms in medium-throughput screening of neuroactive molecules of potential pharmacological interest, with particular attention to more recent developments that permit to fully exploit the potential of direct genetic engineering of organotypic cultures using transfection techniques. We then describe the perspectives for expanding the use ex vivo platforms in neuroscience studies under the 3Rs philosophy using the following approaches: (1) Use of co-cultures of two brain regions physiologically connected to each other (source-target) to analyze axon regeneration and reconstruction of circuitries; (2) Microinjection or co-cultures of primary cells and/or cell lines releasing one or more neuroactive molecules to screen their physiological and/or pharmacological effects onto neuronal survival and slice circuitry. Microinjected or co-cultured cells are ideally made fluorescent after transfection with a plasmid construct encoding green or red fluorescent protein under the control of a general promoter such as hCMV; (3) Use of “sniffer” cells sensing the release of biologically active molecules from organotypic cultures by means of fluorescent probes. These cells can be prepared with activatable green fluorescent protein, a unique chromophore that remains in a “dark” state because its maturation is inhibited, and can be made fluorescent (de-quenched) if specific cellular enzymes, such as proteases or kinases, are activated.
Collapse
Affiliation(s)
- Laura Lossi
- Laboratory of Neurobiology, Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Adalberto Merighi
- Laboratory of Neurobiology, Department of Veterinary Sciences, University of Turin, Turin, Italy
| |
Collapse
|