1
|
Doan CC, Le TL, Ho NQC, Nguyen TT, Hoang NQH, Le PC, Le NTL, Tran TLG, Nguyen TPT, Hoang NS. Cytotoxic effects of the standardized extract from Curcuma aromatica Salisb. rhizomes via induction of mitochondria-mediated caspase-dependent apoptotic pathway and p21-mediated G0/G1 cell cycle arrest on human gastric cancer AGS cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025; 88:227-249. [PMID: 39635983 DOI: 10.1080/15287394.2024.2433577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Curcuma aromatica Salisb. (C. aromatica) is one of the traditional herbs used to treat microbial infection, skin eruption, coronary heart disease, and other diseases, including cancer. However, the inhibitory effects and underlying mechanisms of action of C. aromatica on gastric cancer cells have not yet been fully elucidated. Our study aimed to examine the possible molecular mechanisms underlying the cytotoxic effects attributed to C. aromatica rhizome standardized extract against gastric cancer cells. The components of two major active compounds in C. aromatica rhizome extract were quantitatively analyzed using a simple and validated HPLC method. Cytotoxicity was determined in different gastric cancer and non-cancer cell lines. The biological activities of the extract targeting apoptosis and cell cycle-related genes on gastric cancer AGS cells were also investigated to elucidate the mechanisms relating to the anti-proliferative effect of C. aromatica rhizomes. The two major active compounds curdione and germacrone, in the C. aromatica extract were standardized to 0.64% and 1.12% w/w, respectively. The standardized extract (CAE) exerted cytotoxic effects on various cancer cells, whereas minimal effects at equivalent doses were noted for normal cells. CAE concentration-dependently suppressed growth of gastric cancer AGS cells via induction of apoptosis. Further studies revealed that CAE treatment disrupted mitochondrial membrane potential (ΔΨm), increased Bax/Bcl-2 ratio, and cytochrome c release, resulting in activation of caspase-9/-3 and subsequent cleavage of PARP. Further, the inhibitory effects of caspase-9/-3 expression by a synthetic pan-caspase inhibitor partially protected cells against apoptosis following CAE treatment. In addition, CAE significantly promoted cell death in AGS cells via an accumulation of cells in the G0/G1 phase. This effect was associated with upregulation of the CDK inhibitor p21 and downregulation of cyclin D1, cyclin E, CDK4, and CDK2 expression. Our data indicated that CAE exerted anti-proliferative activity by activating the mitochondria-mediated caspase-dependent apoptotic pathway and arresting the p21-mediated G0/G1 cell cycle on human gastric cancer AGS cells.
Collapse
Affiliation(s)
- Chinh Chung Doan
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh, Vietnam
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| | - Thanh Long Le
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh, Vietnam
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| | - Nguyen Quynh Chi Ho
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh, Vietnam
| | - Thi Thuy Nguyen
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh, Vietnam
| | - Nghia Quang Huy Hoang
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh, Vietnam
| | - Phuc Chien Le
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh, Vietnam
| | - Nguyen Tu Linh Le
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh, Vietnam
| | - Thi Linh Giang Tran
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh, Vietnam
| | - Thi Phuong Thao Nguyen
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh, Vietnam
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| | - Nghia Son Hoang
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh, Vietnam
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| |
Collapse
|
2
|
Bashari MH, Agung MUK, Ariyanto EF, Al Muqarrabun LMR, Salsabila S, Chahyadi A, Rosandy AR, Afifah E, Afni M, Atmaja HE, Putri T, Utami F, Subhan B, Syafrizayanti, Andriani Y, Elfahmi. Two Novel Compounds Isolated from the Marine Fungal Symbiont of Aspergillus unguis Induce Apoptosis and Cell Cycle Arrest in Breast Cancer Cells: In vitro Study. J Exp Pharmacol 2025; 17:37-50. [PMID: 39867869 PMCID: PMC11766706 DOI: 10.2147/jep.s494777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/12/2024] [Indexed: 01/28/2025] Open
Abstract
Purpose A promising feature of marine sponges is the potential anticancer efficacy of their secondary metabolites. The objective of this study was to explore the anticancer activities of compounds from the fungal symbiont of Aaptos suberitoides on breast cancer cells. Methods In the present research, Aspergillus unguis, an endophytic fungal strain derived from the marine sponge A. suberitoides was successfully isolated and characterized. Subsequently, ethyl acetate extraction and isolation of chemical constituents produced was performed. The structures of the isolated compounds were identified using several spectroscopic methods, ie, UV, NMR, and mass spectrometry. Thereafter, MDA-MB-231, MCF-7 breast cancer cells and HaCat cells were treated with the isolated compounds. Not only viability, apoptosis, and cell cycle analyses were conducted, but also the mRNA expression of MCL1, BCL2L1, AKT1 and CDK2 were evaluated. Results The extract showed cytotoxic activity in breast cancer cells. Two novel compounds were successfully isolated and identified, ie, Unguisol A (15.1 mg) and Unguisol B (97.9 mg). Both compounds share the same basic skeleton and comprise an aromatic ring which is attached to a sulphur-containing, seven-membered ring via an oxygen atom. This marked the first-time isolation of Unguisol A and Unguisol B from A. unguis, highlighting their novelty. Both compounds induced early apoptosis (p < 0.01) and cell cycle arrest at the S phase (p < 0.05) in MDA-MB-231 cells, but not in HaCat cells. Both compounds suppressed BCL2L1 and AKT1 mRNA expression (p < 0.01). Conclusion Two novel compounds were isolated from A. unguis. Unguisol A and Unguisol B induced apoptosis in MDA-MB-231 breast cancer cells via BCL2L1 mRNA downregulation, while both compounds induced cell cycle arrest at the S phase through AKT1 mRNA downregulation.
Collapse
Affiliation(s)
- Muhammad Hasan Bashari
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Mochamad Untung Kurnia Agung
- Department of Marine Science, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Eko Fuji Ariyanto
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Laode Muhammad Ramadhan Al Muqarrabun
- University Center of Excellence for Nutraceuticals, Bioscience and Biotechnology Research Center, Bandung Institute of Technology, Bandung, West Java, Indonesia
| | - Syefira Salsabila
- University Center of Excellence for Nutraceuticals, Bioscience and Biotechnology Research Center, Bandung Institute of Technology, Bandung, West Java, Indonesia
| | - Agus Chahyadi
- University Center of Excellence for Nutraceuticals, Bioscience and Biotechnology Research Center, Bandung Institute of Technology, Bandung, West Java, Indonesia
| | - Andi Rifki Rosandy
- University Center of Excellence for Nutraceuticals, Bioscience and Biotechnology Research Center, Bandung Institute of Technology, Bandung, West Java, Indonesia
| | - Ervi Afifah
- Graduate School of Master Program, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Merry Afni
- Biomedical Laboratory, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Harold Eka Atmaja
- Biomedical Laboratory, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Tenny Putri
- Biomedical Laboratory, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Fitria Utami
- Biomedical Laboratory, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Beginer Subhan
- Department of Marine Science and Technology, Faculty of Fisheries and Marine Science, IPB University, Bogor, West Java, Indonesia
| | - Syafrizayanti
- Biochemistry Laboratory, Department of Chemistry, Universitas Andalas, Padang, West Sumatera, Indonesia
| | - Yosie Andriani
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Elfahmi
- University Center of Excellence for Nutraceuticals, Bioscience and Biotechnology Research Center, Bandung Institute of Technology, Bandung, West Java, Indonesia
- School of Pharmacy, Bandung Institute of Technology, Bandung, West Java, Indonesia
| |
Collapse
|
3
|
Wei R, Pan X, Cai D, Pan L. Synergistic Inhibition of Breast Carcinoma Cell Proliferation by Quercetin and Sulforaphane via Activation of the ERK/MAPK Pathway. Cell Biochem Biophys 2025:10.1007/s12013-024-01662-6. [PMID: 39760839 DOI: 10.1007/s12013-024-01662-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
In the contemporary era of drug discovery, herbal treatments have demonstrated an unparalleled ability to produce anticancer drugs. An important part of the therapy of cancer is the use of plants and their by-products via analogues, which alter the tumor microenvironment and several signaling pathways. The objective of the current investigation was to conclude the rate at which the herbal medications quercetin (QT) and sulforaphane (SFN) repressed the growth of breast carcinoma cells in MDA-MB-231 by preventing the ERK/MAPK signaling systems. The cells were assessed for several studies after being subjected to different concentrations (0-70 µM) of QT and SFN (QT + SFN) for duration of 24 h. We investigated the combination that QT + SFN generated cytotoxicity using the MTT assay. The DCFH-DA staining technique was utilized to assess ROS. The protein spectra of survival of cells, cell cycle progression, and apoptosis were evaluated employing flow cytometry and western blotting. The consequences illustrated that the relative cytotoxicity of QT and SFN was roughly 28.74 μM and 39.87 μM for MDA-MB-231 cells, respectively. Following the 24-h incubation period, MDA-MB-231 cells exhibit considerable cytotoxicity when QT and SFN are combined, with IC50 values of 19.48 μM. Moreover, MCF-7 and MDA-MB-231 cells treated with QT and SFN concurrently showed substantial production of ROS and increased apoptotic signals. Consequently, because QT + SFN inhibit the production of ERK/MAPK/JNK/p38-based control of proliferation and cell cycle-regulating proteins, it has been considered a chemotherapeutic medication. To determine the extent to which the co-treatment induces apoptosis, more in vivo study will be required before they can be used commercially.
Collapse
Affiliation(s)
- Ranmei Wei
- Department of Breast Diseases, Hospital of Traditional Chinese Medicine of Qiqihar, Qiqihar, Heilongjiang, China
| | - Xingchen Pan
- Department of the 0perating Room,Huaian Hospital of Huaian City, Huaian Cancer Hospital, Huaian, Jiangsu, China
| | - Danni Cai
- Outpatient Department, General hospital of the western theater command of Chinese people's liberation army, Chengdu, Sichuan, China
| | - Lili Pan
- Pharmacy Administration Office, The Third Hospital of Nanchang City, Jiangxi Province, Nanchang, Jiangxi, China.
| |
Collapse
|
4
|
Agarwal S, Gupta S, Raj R. Identification of potential targetable genes in papillary, follicular, and anaplastic thyroid carcinoma using bioinformatics analysis. Endocrine 2024; 86:255-267. [PMID: 38676768 DOI: 10.1007/s12020-024-03836-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/14/2024] [Indexed: 04/29/2024]
Abstract
PURPOSE To perform an extensive exploratory analysis to build a deeper insight into clinically relevant molecular biomarkers in Papillary, Follicular, and Anaplastic thyroid carcinomas (PTC, FTC, ATC). METHODS Thirteen Thyroid Cancer (THCA) datasets incorporating PTC, FTC, and ATC were derived from the Gene Expression Omnibus. Genes differentially expressed (DEGs) between THCA and normal were identified and subjected to GO and KEGG analyses. Multiple topological properties were harnessed and protein-protein interaction (PPI) networks were constructed to identify the hub genes followed by survival analysis and validation. RESULTS There were 70, 87, and 377 DEGs, and 23, 27, and 53 hub genes for PTC, FTC, and ATC samples, respectively. Survival analysis detected 39 overall and 49 relapse-free survival-relevant hub genes. Six hub genes, BCL2, FN1, ITPR1, LYVE1, NTRK2, TBC1D4, were found common to more than one THCA type. The most significant hub genes found in the study were: BCL2, CD44, DCN, FN1, IRS1, ITPR1, MFAP4, MKI67, NTRK2, PCLO, TGFA. The most enriched and significant GO terms were Melanocyte differentiation for PTC, Extracellular region for FTC, and Extracellular exosome for ATC. Prostate cancer for PTC was the most significantly enriched KEGG pathway. The results were validated using TCGA data. CONCLUSIONS The findings unravel potential biomarkers and therapeutic targets of thyroid carcinomas.
Collapse
Affiliation(s)
- Shipra Agarwal
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Shikha Gupta
- Department of Computer Science, S.S. College of Business Studies, University of Delhi, New Delhi, India.
| | - Rishav Raj
- Department of Computer Science, S.S. College of Business Studies, University of Delhi, New Delhi, India
| |
Collapse
|
5
|
Reffai A, Hori M, Adusumilli R, Bermudez A, Bouzoubaa A, Pitteri S, Bennani Mechita M, Mallick P. A Proteomic Analysis of Nasopharyngeal Carcinoma in a Moroccan Subpopulation. Cancers (Basel) 2024; 16:3282. [PMID: 39409902 PMCID: PMC11476039 DOI: 10.3390/cancers16193282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a distinct cancer of the head and neck that is highly prevalent in Southeast Asia and North Africa. Though an extensive analysis of environmental and genetic contributors has been performed, very little is known about the proteome of this disease. A proteomic analysis of formalin-fixed paraffin-embedded (FFPE) tissues can provide valuable information on protein expression and molecular patterns for both increasing our understanding of the disease and for biomarker discovery. To date, very few NPC proteomic studies have been performed, and none focused on patients from Morocco and North Africa. METHODS Label-free Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) was used to perform a proteomic analysis of FFPE tissue samples from a cohort of 41 NPC tumor samples of Morocco and North Africa origins. The LC-MS/MS data from this cohort were analyzed alongside 21 healthy controls using MaxQuant 2.4.2.0. A differential expression analysis was performed using the MSstats package in R. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotations were carried out using the DAVID bioinformatic tool. RESULTS 3341 proteins were identified across our NPC cases, revealing three main clusters and five DEPs with prognostic significance. The sex disparity of NPC was investigated from a proteomic perspective in which 59 DEPs were found between males and females, with significantly enriched terms associated with the immune response and gene expression. Furthermore, 26 DEPs were observed between patients with early and advanced stages of NPC with a significant cluster related to the immune response, implicating up-regulated DEPs such as IGHA, IGKC, and VAT1. Across both datasets, 6532 proteins were quantified between NPC patients and healthy controls. Among them, 1507 differentially expressed proteins (DEPs) were observed. GO and KEGG pathway analyses showed enriched terms of DEPs related to increased cellular activity, cell proliferation, and survival. PI3K and MAPK proteins as well as RAC1 BCL2 and PPIA were found to be overexpressed between cancer tissues and healthy controls. EBV infection was also one of the enriched pathways implicating its latent genes like LMP1 and LMP2 that activate several proteins and signaling pathways including NF-Kappa B, MAPK, and JAK-STAT pathways. CONCLUSION Our findings unveil the proteomic landscape of NPC for the first time in the Moroccan population. These studies additionally may provide a foundation for identifying potential biomarkers. Further research is still needed to help develop tools for the early diagnosis and treatment of NPC in Moroccan and North African populations.
Collapse
Affiliation(s)
- Ayman Reffai
- Intelligent Automation and BioMed Genomics Laboratory, Biology Department, Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University-Tetouan, Tangier 90000, Morocco
- Canary Center for Cancer Early Detection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Michelle Hori
- Canary Center for Cancer Early Detection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Ravali Adusumilli
- Canary Center for Cancer Early Detection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Abel Bermudez
- Canary Center for Cancer Early Detection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | | | - Sharon Pitteri
- Canary Center for Cancer Early Detection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Mohcine Bennani Mechita
- Intelligent Automation and BioMed Genomics Laboratory, Biology Department, Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University-Tetouan, Tangier 90000, Morocco
| | - Parag Mallick
- Canary Center for Cancer Early Detection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Zhang Q, Singh P, Peng DW, Peng EY, Burns JM, Swerdlow RH, Suo WZ. Proactive M2 blockade prevents cognitive decline in GRK5-deficient APP transgenic mice via enhancing cholinergic neuronal resilience. J Biol Chem 2024; 300:107619. [PMID: 39098530 PMCID: PMC11400976 DOI: 10.1016/j.jbc.2024.107619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 08/06/2024] Open
Abstract
Alzheimer's disease (AD) poses an immense challenge in healthcare, lacking effective therapies. This study investigates the potential of anthranilamide derivative (AAD23), a selective M2 receptor antagonist, in proactively preventing cognitive impairments and cholinergic neuronal degeneration in G protein-coupled receptor kinase-5-deficient Swedish APP (GAP) mice. GAP mice manifest cognitive deficits by 7 months and develop senile plaques by 9 months. A 6-month AAD23 treatment was initiated at 5 months and stopped at 11 months before behavioral assessments without the treatment. AAD23-treated mice exhibited preserved cognitive abilities and improved cholinergic axonal health in the nucleus basalis of Meynert akin to wildtype mice. Conversely, vehicle-treated GAP mice displayed memory deficits and pronounced cholinergic axonal swellings in the nucleus basalis of Meynert. Notably, AAD23 treatment did not alter senile plaques and microgliosis. These findings highlight AAD23's efficacy in forestalling AD-related cognitive decline in G protein-coupled receptor kinase-5-deficient subjects, attributing its success to restoring cholinergic neuronal integrity and resilience, enhancing resistance against diverse degenerative insults.
Collapse
Affiliation(s)
- Qiang Zhang
- Laboratory for Alzheimer's Disease and Aging Research, Kansas City Veterans Affairs Medical Center, Kansas City, Missouri, USA
| | - Prabhakar Singh
- Laboratory for Alzheimer's Disease and Aging Research, Kansas City Veterans Affairs Medical Center, Kansas City, Missouri, USA
| | - David W Peng
- Laboratory for Alzheimer's Disease and Aging Research, Kansas City Veterans Affairs Medical Center, Kansas City, Missouri, USA
| | - Evelyn Y Peng
- Laboratory for Alzheimer's Disease and Aging Research, Kansas City Veterans Affairs Medical Center, Kansas City, Missouri, USA
| | - Jeffery M Burns
- Department of Neurology, University of Kansas Medical College, Kansas City, Kansas, USA; Department of Physiology, University of Kansas Medical College, Kansas City, Kansas, USA; The University of Kansas Alzheimer's Disease Center, Kansas City, Kansas, USA
| | - Russell H Swerdlow
- Department of Neurology, University of Kansas Medical College, Kansas City, Kansas, USA; Department of Physiology, University of Kansas Medical College, Kansas City, Kansas, USA; The University of Kansas Alzheimer's Disease Center, Kansas City, Kansas, USA
| | - William Z Suo
- Laboratory for Alzheimer's Disease and Aging Research, Kansas City Veterans Affairs Medical Center, Kansas City, Missouri, USA; Department of Neurology, University of Kansas Medical College, Kansas City, Kansas, USA; Department of Physiology, University of Kansas Medical College, Kansas City, Kansas, USA; The University of Kansas Alzheimer's Disease Center, Kansas City, Kansas, USA.
| |
Collapse
|
7
|
Al-Ostoot FH, Salah S, Khanum SA. An Overview of Cancer Biology, Pathophysiological Development and It's Treatment Modalities: Current Challenges of Cancer anti-Angiogenic Therapy. Cancer Invest 2024; 42:559-604. [PMID: 38874308 DOI: 10.1080/07357907.2024.2361295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 11/22/2021] [Accepted: 05/25/2024] [Indexed: 06/15/2024]
Abstract
A number of conditions and factors can cause the transformation of normal cells in the body into malignant tissue by changing the normal functions of a wide range of regulatory, apoptotic, and signal transduction pathways. Despite the current deficiency in fully understanding the mechanism of cancer action accurately and clearly, numerous genes and proteins that are causally involved in the initiation, progression, and metastasis of cancer have been identified. But due to the lack of space and the abundance of details on this complex topic, we have emphasized here more recent advances in our understanding of the principles implied tumor cell transformation, development, invasion, angiogenesis, and metastasis. Inhibition of angiogenesis is a significant strategy for the treatment of various solid tumors, that essentially depend on cutting or at least limiting the supply of blood to micro-regions of tumors, leading to pan-hypoxia and pan-necrosis inside solid tumor tissues. Researchers have continued to enhance the efficiency of anti-angiogenic drugs over the past two decades, to identify their potential in the drug interaction, and to discover reasonable interpretations for possible resistance to treatment. In this review, we have discussed an overview of cancer history and recent methods use in cancer therapy, focusing on anti-angiogenic inhibitors targeting angiogenesis formation. Further, this review has explained the molecular mechanism of action of these anti-angiogenic inhibitors in various tumor types and their limitations use. In addition, we described the synergistic mechanisms of immunotherapy and anti-angiogenic therapy and summarizes current clinical trials of these combinations. Many phase III trials found that combining immunotherapy and anti-angiogenic therapy improved survival. Therefore, targeting the source supply of cancer cells to grow and spread with new anti-angiogenic agents in combination with different conventional therapy is a novel method to reduce cancer progression. The aim of this paper is to overview the varying concepts of cancer focusing on mechanisms involved in tumor angiogenesis and provide an overview of the recent trends in anti-angiogenic strategies for cancer therapy.
Collapse
Affiliation(s)
- Fares Hezam Al-Ostoot
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru, India
- Department of Biochemistry, Faculty of Education & Science, Albaydha University, Al-Baydha, Yemen
| | - Salma Salah
- Faculty of Medicine and Health Sciences, Thamar University, Dhamar, Yemen
| | - Shaukath Ara Khanum
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru, India
| |
Collapse
|
8
|
Xu J, Dong K, Bai X, Zhang M, Du Q, Chen L, Yang J. GluOC promotes proliferation and metastasis of TNBC through the ROCK1 signaling pathway. Cancer Cell Int 2024; 24:263. [PMID: 39054484 PMCID: PMC11270849 DOI: 10.1186/s12935-024-03445-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Triple negative breast cancer (TNBC) is a type of breast cancer that is negative for oestrogen receptor, progesterone receptor and human epidermal growth factor receptor 2, is highly malignant and aggressive, lacks of corresponding targeted therapy, and has a relatively poor prognosis. Therefore, understanding the mechanism of TNBC development and formulating effective treatment strategies for inducing cell death are still urgent tasks in the treatment of TNBC. Research has shown that uncarboxylated osteocalcin can promote the proliferation of prostate cancer, lung adenocarcinoma and TNBC cells, but the mechanism by which GluOC affects TNBC growth and metastasis needs further study. METHODS MDA-MB-231 breast cancer cells were used for in vitro cell analysis. Key target molecules or pathways were identified by RNA sequencing, and migration ability was detected by scratch assays, Transwell assays, cell adhesion assays and western blot analysis. Fluorescence staining, colony detection, qRT‒PCR and flow cytometry were used to detect apoptosis, oxidative stress, the cell cycle and the stemness of cancer cells, and a xenotransplantation model in BALB/C nude mice was used for in vivo analysis. RESULTS This study demonstrated that GluOC facilitates the migration of MDA-MB-231 breast cancer cells through the ROCK1/MYPT1/MLC2 signalling pathway and promotes the proliferation of TNBC cells via the ROCK1/JAK2/PIK3CA/AKT signalling pathway. Experiments in nude mice demonstrated that GluOC promoted tumour cell proliferation and metastasis in tumour-bearing mice, which further clarified the molecular mechanism of TNBC growth and invasion. CONCLUSION Our findings highlight the importance of GluOC in driving TNBC progression and its association with poor patient outcomes. This study clarifies the functional effects of GluOC on TNBC growth, providing insight into the molecular basis of TNBC and potentially providing new ideas for developing targeted therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Jiaojiao Xu
- Medical School, University of Chinese Academy of Sciences, Beijing, 101400, China
| | - Keting Dong
- Medical School, University of Chinese Academy of Sciences, Beijing, 101400, China
| | - Xue Bai
- Medical School, University of Chinese Academy of Sciences, Beijing, 101400, China
| | - Miao Zhang
- Medical School, University of Chinese Academy of Sciences, Beijing, 101400, China
| | - Qian Du
- Medical School, University of Chinese Academy of Sciences, Beijing, 101400, China
| | - Lei Chen
- Medical School, University of Chinese Academy of Sciences, Beijing, 101400, China
| | - Jianhong Yang
- Medical School, University of Chinese Academy of Sciences, Beijing, 101400, China.
| |
Collapse
|
9
|
Boccellato C, Rehm M. TRAIL-induced apoptosis and proteasomal activity - Mechanisms, signalling and interplay. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119688. [PMID: 38368955 DOI: 10.1016/j.bbamcr.2024.119688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/01/2024] [Accepted: 02/10/2024] [Indexed: 02/20/2024]
Abstract
Programmed cell death, in particular apoptosis, is essential during development and tissue homeostasis, and also is the primary strategy to induce cancer cell death by cytotoxic therapies. Precision therapeutics targeting TRAIL death receptors are being evaluated as novel anti-cancer agents, while in parallel highly specific proteasome inhibitors have gained approval as drugs. TRAIL-dependent signalling and proteasomal control of cellular proteostasis are intricate processes, and their interplay can be exploited to enhance therapeutic killing of cancer cells in combination therapies. This review provides detailed insights into the complex signalling of TRAIL-induced pathways and the activities of the proteasome. It explores their core mechanisms of action, pharmaceutical druggability, and describes how their interplay can be strategically leveraged to enhance cell death responses in cancer cells. Offering this comprehensive and timely overview will allow to navigate the complexity of the processes governing cell death mechanisms in TRAIL- and proteasome inhibitor-based treatment conditions.
Collapse
Affiliation(s)
- Chiara Boccellato
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart 70569, Germany.
| | - Markus Rehm
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart 70569, Germany; University of Stuttgart, Stuttgart Research Center Systems Biology, Stuttgart 70569, Germany.
| |
Collapse
|
10
|
Zou J, Zhang H, Wu Z, Hu W, Zhang T, Xie H, Huang Y, Zhou H. TIGD1 Is an Independent Prognostic Factor that Promotes the Progression of Colon Cancer. Cancer Biother Radiopharm 2024; 39:223-235. [PMID: 36508261 DOI: 10.1089/cbr.2022.0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Trigger transposable element-derived 1 (TIGD1) is a human-specific gene, but no studies have been conducted to determine its mechanism of action. Our aim is to ascertain the function and mode of action of TIGD1 in the development of colon cancer. Materials and Methods: The authors used bioinformatics to analyze the relationship between TIGD1 and the clinical characteristics of colon cancer, as well as its prognosis. A series of cell assays were conducted to assess the function of TIGD1 in the proliferation and migration of colon cancer, and flow cytometry was used to explore its effects on apoptosis and the cell cycle. Results: The authors discovered that the expression of TIGD1 was remarkably elevated in colon cancer. Clinical correlation analysis demonstrated that TIGD1 expression was elevated in the tissues of advanced-stage patients, and it was remarkably elevated in individuals with both lymph node and distant metastasis. Further, the authors found that individuals showing elevated TIGD1 expression levels had a shortened survival time. Univariate and multivariate Cox regression analyses revealed that TIGD1 was an independent prognostic factor. Overexpression of the TIGD1 gene remarkedly enhances the proliferation and metastasis of colon cancer cells and suppresses apoptosis. In addition, the overexpression of TIGD1 can enhance the transition of tumor cells from the G1 toward the S phase. Western blot results suggested that TIGD1 may promote the malignant activity of colon cancer cells via the Wnt/β-catenin signaling pathway, Bcl-2, N-cadherin, BAX, E-cadherin, CDK6, and CyclinD1. Conclusions: TIGD1 may be an independent prognostic factor in the advancement of colon cancer, and therefore function as a therapeutic target.
Collapse
Affiliation(s)
- Junwei Zou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Hesong Zhang
- Department of Hepatobiliary Surgery, The Second People's Hospital of Wuhu, Wuhu, China
| | - Zhaoying Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Weichao Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Tingting Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Hao Xie
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Yong Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Hailang Zhou
- Department of Gastroenterology, Lianshui County People's Hospital, Huai'an, China
| |
Collapse
|
11
|
Ma H, Suleman M, Zhang F, Cao T, Wen S, Sun D, Chen L, Jiang B, Wang Y, Lin F, Wang J, Li B, Li Q. Pirin Inhibits FAS-Mediated Apoptosis to Support Colorectal Cancer Survival. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2301476. [PMID: 38148593 PMCID: PMC10933653 DOI: 10.1002/advs.202301476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/17/2023] [Indexed: 12/28/2023]
Abstract
Resistance to immunotherapy in colorectal cancer (CRC) is associated with obstruction of FAS (Apo-1 or CD95)-dependent apoptosis, a hallmark of cancer. Here it is demonstrated that the upregulation of pirin (PIR) protein in colon cancers promotes tumorigenesis. Knockout or inhibition of PIR dramatically increases FAS expression, FAS-dependent apoptosis and attenuates colorectal tumor formation in mice. Specifically, NFκB2 is a direct transcriptional activator of FAS and robustly suppressed by PIR in dual mechanisms. One is the disruption of NFκB2 complex (p52-RELB) association with FAS promoter, the other is the inhibition of NIK-mediated NFκB2 activation and nuclear translocation, leading to the inability of active NFκB2 complex toward the transcription of FAS. Furthermore, PIR interacts with FAS and recruits it in cytosol, preventing its membrane translocation and assembling. Importantly, knockdown or knockout of PIR dramatically sensitizes cells to FAS mAb- or active CD8+ T cells-triggered cell death. Taken together, a PIR-NIK-NFκB2-FAS survival pathway is established, which plays a key role in supporting CRC survival.
Collapse
Affiliation(s)
- Huanhuan Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamen361102China
| | - Muhammad Suleman
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamen361102China
| | - Fengqiong Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamen361102China
| | - Tingyan Cao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamen361102China
| | - Shixiong Wen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamen361102China
| | - Dachao Sun
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamen361102China
| | - Lili Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamen361102China
| | - Bin Jiang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamen361102China
| | - Yue Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamen361102China
| | - Furong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamen361102China
| | - Jinyang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamen361102China
| | - Boan Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamen361102China
| | - Qinxi Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamen361102China
| |
Collapse
|
12
|
Honari P, Shahbazzadeh D, Behdani M, Pooshang Bagheri K. Highly in vitro anti-cancer activity of melittin-loaded niosomes on non-small cell lung cancer cells. Toxicon 2024; 241:107673. [PMID: 38432612 DOI: 10.1016/j.toxicon.2024.107673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/13/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Development of promising medicines from natural sources, specially venom, is of highly necessitated to combat against life-threatening cancers. Non-small cell lung cancer (NSCLC) has a significant percentage of mortalities. Melittin, from bee venom, is a potent anticancer peptide but its toxicity has limited its therapeutic applications. Accordingly, this study aims to synthesize niosomes with suitable stability and capacity for carrying melittin as a drug. Additionally, it seeks to evaluate the anti-cancer activity of melittin-loaded niosomes on non-small cell lung cancer. METHODS The niosome was prepared by thin film hydration method. Cytotoxicity and apoptosis were assessed on A549, Calu-3, and MRC5 cells. Real-time PCR was used to determine expression of apoptotic and pro-apoptotic Bax, Bcl2, and Casp3 genes. Immunocytochemistry (ICC) was also used to confirm expression of the abovementioned genes. Furthermore, wound healing assay was performed to compare inhibition effects of melittin-loaded niosomes with free melittin on migration of cancer cells. RESULTS IC50 values of melittin-loaded niosomes for A549, Calu-3, and MRC5 cells were respectively 0.69 μg/mL, 1.02 μg/mL, and 2.56 μg/mL after 72 h. Expression level of Bax and Casp3 increased '10 and 8' and '9 and 10.5' fold in A549 and Calu-3, whereas Bcl2 gene expression decreased 0.19 and 0.18 fold in the mentioned cell lines. The cell migration inhibited by melittin-loaded niosomes. CONCLUSIONS Melittin-loaded niosomes had more anti-cancer effects and less toxicity on normal cells than free melittin. Furthermore, it induced apoptosis and inhibited cancer cells migration. Our results showed that melittin-loaded niosomes may be a drug lead and it has the potential to be future developed for lung cancer treatment.
Collapse
Affiliation(s)
- Pooyan Honari
- Department of Biology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Delavar Shahbazzadeh
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Dept., Biotechnology Research Center, Pasteur Institute of Iran, P.O BOX. 1316943551, Tehran, Iran
| | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Dept., Biotechnology Research Center, Pasteur Institute of Iran, P.O BOX. 1316943551, Tehran, Iran
| | - Kamran Pooshang Bagheri
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Dept., Biotechnology Research Center, Pasteur Institute of Iran, P.O BOX. 1316943551, Tehran, Iran.
| |
Collapse
|
13
|
McAloney CA, Makkawi R, Budhathoki Y, Cannon MV, Franz EM, Gross AC, Cam M, Vetter TA, Duhen R, Davies AE, Roberts RD. Host-derived growth factors drive ERK phosphorylation and MCL1 expression to promote osteosarcoma cell survival during metastatic lung colonization. Cell Oncol (Dordr) 2024; 47:259-282. [PMID: 37676378 PMCID: PMC10899530 DOI: 10.1007/s13402-023-00867-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
PURPOSE For patients with osteosarcoma, disease-related mortality most often results from lung metastasis-a phenomenon shared with many solid tumors. While established metastatic lesions behave aggressively, very few of the tumor cells that reach the lung will survive. By identifying mechanisms that facilitate survival of disseminated tumor cells, we can develop therapeutic strategies that prevent and treat metastasis. METHODS We analyzed single cell RNA-sequencing (scRNAseq) data from murine metastasis-bearing lungs to interrogate changes in both host and tumor cells during colonization. We used these data to elucidate pathways that become activated in cells that survive dissemination and identify candidate host-derived signals that drive activation. We validated these findings through live cell reporter systems, immunocytochemistry, and fluorescent immunohistochemistry. We then validated the functional relevance of key candidates using pharmacologic inhibition in models of metastatic osteosarcoma. RESULTS Expression patterns suggest that the MAPK pathway is significantly elevated in early and established metastases. MAPK activity correlates with expression of anti-apoptotic genes, especially MCL1. Niche cells produce growth factors that increase ERK phosphorylation and MCL1 expression in tumor cells. Both early and established metastases are vulnerable to MCL1 inhibition, but not MEK inhibition in vivo. Combining MCL1 inhibition with chemotherapy both prevented colonization and eliminated established metastases in murine models of osteosarcoma. CONCLUSION Niche-derived growth factors drive MAPK activity and MCL1 expression in osteosarcoma, promoting metastatic colonization. Although later metastases produce less MCL1, they remain dependent on it. MCL1 is a promising target for clinical trials in both human and canine patients.
Collapse
Affiliation(s)
- Camille A McAloney
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
- Center for Childhood Cancers and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Rawan Makkawi
- Knight Cancer Institute's, Cancer Early Detection Advanced Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Yogesh Budhathoki
- Center for Childhood Cancers and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH, USA
| | - Matthew V Cannon
- Center for Childhood Cancers and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Emily M Franz
- Center for Childhood Cancers and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH, USA
| | - Amy C Gross
- Center for Childhood Cancers and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Maren Cam
- Center for Childhood Cancers and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Tatyana A Vetter
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Rebekka Duhen
- Knight Cancer Institute's, Cancer Early Detection Advanced Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Alexander E Davies
- Knight Cancer Institute's, Cancer Early Detection Advanced Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
| | - Ryan D Roberts
- Center for Childhood Cancers and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
- Division of Pediatric Hematology, Oncology, and BMT, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA.
- The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
14
|
Gulia S, Chandra P, Das A. The Prognosis of Cancer Depends on the Interplay of Autophagy, Apoptosis, and Anoikis within the Tumor Microenvironment. Cell Biochem Biophys 2023; 81:621-658. [PMID: 37787970 DOI: 10.1007/s12013-023-01179-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/04/2023]
Abstract
Within the tumor microenvironment, the fight between the immune system and cancer influences tumor transformation. Metastasis formation is an important stage in the progression of cancer. This process is aided by cellular detachment and resistance to anoikis, which are achieved by altering intercellular signaling. Autophagy, specifically pro-survival autophagy, aids cancer cells in developing treatment resistance. Numerous studies have shown that autophagy promotes tumor growth and resistance to anoikis. To regulate protective autophagy, cancer-related genes phosphorylate both pro- and anti-apoptotic proteins. Apoptosis, a type of controlled cell death, eliminates damaged or unwanted cells. Anoikis is a type of programmed cell death in which cells lose contact with the extracellular matrix. The dysregulation of these cellular pathways promotes tumor growth and spread. Apoptosis, anoikis, and autophagy interact meticulously and differently depending on the cellular circumstances. For instance, autophagy can protect cancer cells from apoptosis by removing cellular components that are damaged and might otherwise trigger apoptotic pathways. Similarly, anoikis dysregulation can trigger autophagy by causing cellular harm and metabolic stress. In order to prevent or treat metastatic disease, specifically, targeting these cellular mechanisms may present a promising prospect for cancer therapy. This review discourses the state of our understanding of the molecular and cellular mechanisms underlying tumor transformation and the establishment of metastatic tumors. To enhance the prognosis for cancer, we highlight and discuss potential therapeutic approaches that target these processes and genes involved in them.
Collapse
Affiliation(s)
- Shweta Gulia
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India
| | - Prakash Chandra
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India.
| |
Collapse
|
15
|
Li Y, Lee HH, Jiang VC, Che Y, McIntosh J, Jordan A, Vargas J, Zhang T, Yan F, Simmons ME, Wang W, Nie L, Yao Y, Jain P, Wang M, Liu Y. Potentiation of apoptosis in drug-resistant mantle cell lymphoma cells by MCL-1 inhibitor involves downregulation of inhibitor of apoptosis proteins. Cell Death Dis 2023; 14:714. [PMID: 37919300 PMCID: PMC10622549 DOI: 10.1038/s41419-023-06233-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Bruton's tyrosine kinase inhibitors (BTKi) and CAR T-cell therapy have demonstrated tremendous clinical benefits in mantle cell lymphoma (MCL) patients, but intrinsic or acquired resistance inevitably develops. In this study, we assessed the efficacy of the highly potent and selective MCL-1 inhibitor AZD5991 in various therapy-resistant MCL cell models. AZD5991 markedly induced apoptosis in these cells. In addition to liberating BAK from the antiapoptotic MCL-1/BAK complex for the subsequent apoptosis cascade, AZD5991 downregulated inhibitor of apoptosis proteins (IAPs) through a BAK-dependent mechanism to amplify the apoptotic signal. The combination of AZD5991 with venetoclax enhanced apoptosis and reduced mitochondrial oxygen consumption capacity in MCL cell lines irrespective of their BTKi or venetoclax sensitivity. This combination also dramatically inhibited tumor growth and prolonged mouse survival in two aggressive MCL patient-derived xenograft models. Mechanistically, the augmented cell lethality was accompanied by the synergistic suppression of IAPs. Supporting this notion, the IAP antagonist BV6 induced dramatic apoptosis in resistant MCL cells and sensitized the resistant MCL cells to venetoclax. Our study uncovered another unique route for MCL-1 inhibitor to trigger apoptosis, implying that the pro-apoptotic combination of IAP antagonists and apoptosis inducers could be further exploited for MCL patients with multiple therapeutic resistance.
Collapse
Affiliation(s)
- Yijing Li
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Heng-Huan Lee
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vivian Changying Jiang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yuxuan Che
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Joseph McIntosh
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Alexa Jordan
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jovanny Vargas
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Tianci Zhang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Fangfang Yan
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Margaret Elizabeth Simmons
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wei Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lei Nie
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yixin Yao
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Preetesh Jain
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Michael Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yang Liu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
16
|
Asghariazar V, Kadkhodayi M, Sarailoo M, Jolfayi AG, Baradaran B. MicroRNA-143 as a potential tumor suppressor in cancer: An insight into molecular targets and signaling pathways. Pathol Res Pract 2023; 250:154792. [PMID: 37689002 DOI: 10.1016/j.prp.2023.154792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/25/2023] [Accepted: 09/02/2023] [Indexed: 09/11/2023]
Abstract
MicroRNAs (MiRNAs), which are highly conserved and small noncoding RNAs, negatively regulate gene expression and influence signaling pathways involved in essential biological activities, including cell proliferation, differentiation, apoptosis, and cell invasion. MiRNAs have received much attention in the past decade due to their significant roles in cancer development. In particular, microRNA-143 (miR-143) is recognized as a tumor suppressor and is downregulated in most cancers. However, it seems that miR-143 is upregulated in rare cases, such as prostate cancer stem cells, and acts as an oncogene. The present review will outline the current studies illustrating the impact of miR-143 expression levels on cancer progression and discuss its target genes and their relevant signaling pathways to discover a potential therapeutic way for cancer.
Collapse
Affiliation(s)
- Vahid Asghariazar
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Deputy of Research and Technology, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mahtab Kadkhodayi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Animal Biology, Faculty of Natural Sciences, The University of Tabriz, Tabriz, Iran
| | - Mehdi Sarailoo
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amir Ghaffari Jolfayi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Carter JL, Su Y, Qiao X, Zhao J, Wang G, Howard M, Edwards H, Bao X, Li J, Hüttemann M, Yang J, Taub JW, Ge Y. Acquired resistance to venetoclax plus azacitidine in acute myeloid leukemia: In vitro models and mechanisms. Biochem Pharmacol 2023; 216:115759. [PMID: 37604291 DOI: 10.1016/j.bcp.2023.115759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
The combination of venetoclax (VEN) and azacitidine (AZA) has become the standard of care for acute myeloid leukemia (AML) patients who are ≥ 75 years or unfit for intensive chemotherapy. Though initially promising, resistance to the combination therapy is an issue and VEN + AZA-relapsed/refractory patients have dismal outcomes. To better understand the mechanisms of resistance, we developed VEN + AZA-resistant AML cell lines, MV4-11/VEN + AZA-R and ML-2/VEN + AZA-R, which show > 300-fold persistent resistance compared to the parental lines. We demonstrate that these cells have unique metabolic profiles, including significantly increased levels of cytidine triphosphate (CTP) and deoxycytidine triphosphate (dCTP), changes in fatty acid and amino acid metabolism and increased utilization and reliance on glycolysis. Furthermore, fatty acid transporter CD36 is increased in the resistant cells compared to the parental cells. Inhibition of glycolysis with 2-Deoxy-D-glucose re-sensitized the resistant cells to VEN + AZA. In addition, the VEN + AZA-R cells have increased levels of the antiapoptotic protein Mcl-1 and decreased levels of the pro-apoptotic protein Bax. Overexpression of Mcl-1 or knockdown of Bax result in resistance to VEN + AZA. Our results provide insight into the molecular mechanisms contributing to VEN + AZA resistance and assist in the development of novel therapeutics to overcome this resistance in AML patients.
Collapse
Affiliation(s)
- Jenna L Carter
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA; MD/PhD Program, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Yongwei Su
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Xinan Qiao
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Jianlei Zhao
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Mackenzie Howard
- Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Xun Bao
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jing Li
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Maik Hüttemann
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA; Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jay Yang
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jeffrey W Taub
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48201, USA; Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI 48201, USA; Department of Pediatrics, Central Michigan University College of Medicine, Mt. Pleasant, MI 48859, USA.
| | - Yubin Ge
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
18
|
Bhuia MS, Chowdhury R, Sonia FA, Kamli H, Shaikh A, El-Nashar HAS, El-Shazly M, Islam MT. Anticancer Potential of the Plant-Derived Saponin Gracillin: A Comprehensive Review of Mechanistic Approaches. Chem Biodivers 2023; 20:e202300847. [PMID: 37547969 DOI: 10.1002/cbdv.202300847] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
With the increasing prevalence of cancer and the toxic side effects of synthetic drugs, natural products are being developed as promising therapeutic approaches. Gracillin is a naturally occurring triterpenoid steroidal saponin with several therapeutic activities. It is obtained as a major compound from different Dioscorea species. This review was designated to summarize the research progress on the anti-cancer activities of gracillin focusing on the underlying cellular and molecular mechanisms, as well as its pharmacokinetic features. The data were collected (up to date as of May 1, 2023) from various reliable and authentic literatures comprising PubMed, Springer Link, Scopus, Wiley Online, Web of Science, ScienceDirect, and Google Scholar. The findings demonstrated that gracillin displays promising anticancer effects through various molecular mechanisms, including anti-inflammatory effects, apoptotic cell death, induction of oxidative stress, cytotoxicity, induction of genotoxicity, cell cycle arrest, anti-proliferative effect, autophagy, inhibition of glycolysis, and blocking of cancer cell migration. Additionally, this review highlighted the pharmacokinetic features of gracillin, indicating its lower oral bioavailability. As a conclusion, it can be proposed that gracillin could serve as a hopeful chemotherapeutic agent. However, further extensive clinical research is recommended to establish its safety, efficacy, and therapeutic potential in cancer treatment.
Collapse
Affiliation(s)
- Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Fatema Akter Sonia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Hossam Kamli
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Ahmad Shaikh
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| |
Collapse
|
19
|
Zeng Y, Liu H, Ma J, Li K, Chang P, Wang C, Li L, Chen D, Liu C, Li N, Zhan W, Zhan Y. Cobalt Ferrite-Gossypol Coordination Nanoagents with High Photothermal Conversion Efficiency Sensitizing Chemotherapy against Bcl-2 to Induce Tumor Apoptosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300104. [PMID: 37186509 DOI: 10.1002/smll.202300104] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/21/2023] [Indexed: 05/17/2023]
Abstract
Gossypol is a chemotherapeutic drug that can inhibit the anti-apoptotic protein Bcl-2, but the existing gossypol-related nanocarriers cannot well solve the problem of chemotherapy resistance. Based on the observation that gossypol becomes black upon Fe3+ coordination, it is hypothesized that encasing gossypol in glyceryl monooleate (GMO) and making it coordinate cobalt ferrite will not only improve its photothermal conversion efficiency (PCE) but also help it enter tumor cells. As the drug loading content and drug encapsulation efficiency of gossypol are 10.67% (w/w) and 96.20%, the PCE of cobalt ferrite rises from 14.71% to 36.00%. The synergistic therapeutic effect finally induces tumor apoptosis with a tumor inhibition rate of 96.56%, which is 2.99 and 1.47 times higher than chemotherapy or photothermal therapy (PTT) alone. PTT generated by the GMO nanocarriers under the irradiation of 808 nm laser can weaken tumor hypoxia, thereby assisting gossypol to inhibit Bcl-2. In addition, the efficacy of nanocarriers is also evaluated through T2 -weighted magnetic resonance imaging. Observations of gossypol-induced apoptosis in tissue slices provide definitive proof of chemotherapy sensitization, indicating that such coordination nanocarriers can be used as an effective preclinical agent to enhance chemotherapy.
Collapse
Affiliation(s)
- Yun Zeng
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, P. R. China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Huifang Liu
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, P. R. China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Jingwen Ma
- Radiology Department, CT and MRI Room, Ninth Hospital of Xi'an, Xi'an, Shaanxi, 710054, P. R. China
| | - Ke Li
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710021, P. R. China
| | - Peng Chang
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, P. R. China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Chenying Wang
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, P. R. China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Lei Li
- Radiology Department, CT and MRI Room, Ninth Hospital of Xi'an, Xi'an, Shaanxi, 710054, P. R. China
| | - Dan Chen
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, P. R. China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Changhu Liu
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, P. R. China
| | - Na Li
- Radiology Department, CT and MRI Room, Ninth Hospital of Xi'an, Xi'an, Shaanxi, 710054, P. R. China
| | - Wenhua Zhan
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, P. R. China
| | - Yonghua Zhan
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, P. R. China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| |
Collapse
|
20
|
Xu Z, Bao J, Jin X, Li H, Fan K, Wu Z, Yao M, Zhang Y, Liu G, Wang D, Yu X, Guo J, Xu R, Gong Q, Wang F, Wang J. The Effects of Cinobufagin on Hepatocellular Carcinoma Cells Enhanced by MRT68921, an Autophagy Inhibitor. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1595-1611. [PMID: 37489112 DOI: 10.1142/s0192415x23500726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Cinobufagin, a cardiotonic steroid derived from toad venom extracts, exhibits significant anticancer properties by inhibiting Na[Formula: see text]/K[Formula: see text]-ATPase in cancer cells. It is frequently used in clinical settings to treat advanced-stage cancer patients, improving their quality of life and survival time. However, its long-term use can result in multidrug resistance to other chemotherapy drugs, and the exact mechanism underlying this effect remains unknown. Therefore, this study explores the molecular mechanism underlying the anticancer effects of cinobufagin in hepatocellular carcinomas (HCCs), specifically in HepG2 and Huh-7 cells. As determined using transcriptome analysis, cinobufagin-triggered protective autophagy suppressed cell apoptosis in liver cancer HepG2 and Huh-7 cells by inhibiting the phosphoinositide-3-Kinase (PI3K)-AKT serine/threonine kinase (AKT)-mammalian target of rapamycin (mTOR) pathway. Cinobufagin-inhibited cell proliferation, induced apoptosis, and generated cell autophagy by upregulating the expression of MAP1 light chain 3 protein II, Beclin1, and autophagy-related protein 12-5. In addition, the autophagy inhibitor MRT68921 improved the antiproliferative and proapoptotic effects of cinobufagin in the studied cell lines. Overall, this study suggests that combining cinobufagin with an autophagy inhibitor can effectively treat HCC, providing a potential strategy for cancer therapy.
Collapse
Affiliation(s)
- Zhongwei Xu
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P. R. China
| | - Jun Bao
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P. R. China
| | - Xiaohan Jin
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P. R. China
| | - Heng Li
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P. R. China
| | - Kaiyuan Fan
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P. R. China
| | - Zhidong Wu
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P. R. China
| | - Min Yao
- Department of Internal Medicine, Tianjin Armed Police Corps Hospital, Tianjin 300126, P. R. China
| | - Yan Zhang
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P. R. China
| | - Gang Liu
- Xinjiang General Corps Hospital, Chinese People's Armed Police Force, Urumqi, Xinjiang 839001, P. R. China
| | - Dan Wang
- Xinjiang General Corps Hospital, Chinese People's Armed Police Force, Urumqi, Xinjiang 839001, P. R. China
| | - Xiaoping Yu
- Xinjiang General Corps Hospital, Chinese People's Armed Police Force, Urumqi, Xinjiang 839001, P. R. China
| | - Jia Guo
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P. R. China
| | - Ruicheng Xu
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P. R. China
| | - Qian Gong
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, P. R. China
| | - Fengmei Wang
- Department of Gastroenterology and Hepatology, Tianjin Third Central Hospital, Tianjin 300170, P. R. China
| | - Jin Wang
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, P. R. China
| |
Collapse
|
21
|
Li M, Yang G, Zheng Y, Lv J, Zhou W, Zhang H, You F, Wu C, Yang H, Liu Y. NIR/pH-triggered aptamer-functionalized DNA origami nanovehicle for imaging-guided chemo-phototherapy. J Nanobiotechnology 2023; 21:186. [PMID: 37301952 DOI: 10.1186/s12951-023-01953-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Targeted chemo-phototherapy has received widespread attention in cancer treatment for its advantages in reducing the side effects of chemotherapeutics and improving therapeutic effects. However, safe and efficient targeted-delivery of therapeutic agents remains a major obstacle. Herein, we successfully constructed an AS1411-functionalized triangle DNA origami (TOA) to codeliver chemotherapeutic drug (doxorubicin, DOX) and a photosensitizer (indocyanine green, ICG), denoted as TOADI (DOX/ICG-loaded TOA), for targeted synergistic chemo-phototherapy. In vitro studies show that AS1411 as an aptamer of nucleolin efficiently enhances the nanocarrier's endocytosis more than 3 times by tumor cells highly expressing nucleolin. Subsequently, TOADI controllably releases the DOX into the nucleus through the photothermal effect of ICG triggered by near-infrared (NIR) laser irradiation, and the acidic environment of lysosomes/endosomes facilitates the release. The downregulated Bcl-2 and upregulated Bax, Cyt c, and cleaved caspase-3 indicate that the synergistic chemo-phototherapeutic effect of TOADI induces the apoptosis of 4T1 cells, causing ~ 80% cell death. In 4T1 tumor-bearing mice, TOADI exhibits 2.5-fold targeted accumulation in tumor region than TODI without AS1411, and 4-fold higher than free ICG, demonstrating its excellent tumor targeting ability in vivo. With the synergetic treatment of DOX and ICG, TOADI shows a significant therapeutic effect of ~ 90% inhibition of tumor growth with negligible systemic toxicity. In addition, TOADI presents outstanding superiority in fluorescence and photothermal imaging. Taken together, this multifunctional DNA origami-based nanosystem with the advantages of specific tumor targeting and controllable drug release provides a new strategy for enhanced cancer therapy.
Collapse
Grants
- (12132004, U19A2006, 32171395) the National Natural Science Foundation of China
- (12132004, U19A2006, 32171395) the National Natural Science Foundation of China
- (23NSFSC0392, 23SYSX0108, 2022NSFSC0048) the Sichuan Science and Technology Program
- (23NSFSC0392, 23SYSX0108, 2022NSFSC0048) the Sichuan Science and Technology Program
- (ZYGX2021YGLH204, ZYGX2021YGLH017, ZYGX2021YGLH023) the Joint Funds of Center for Engineering Medicine
- (ZYGX2021YGLH204, ZYGX2021YGLH017, ZYGX2021YGLH023) the Joint Funds of Center for Engineering Medicine
Collapse
Affiliation(s)
- Mengyue Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Geng Yang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Yue Zheng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Jiazhen Lv
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Wanyi Zhou
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Hanxi Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu, University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610072, P.R. China
| | - Chunhui Wu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Hong Yang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China.
| | - Yiyao Liu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu, University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610072, P.R. China.
| |
Collapse
|
22
|
Huang YK, Chang KC, Li CY, Lieu AS, Lin CL. AKR1B1 Represses Glioma Cell Proliferation through p38 MAPK-Mediated Bcl-2/BAX/Caspase-3 Apoptotic Signaling Pathways. Curr Issues Mol Biol 2023; 45:3391-3405. [PMID: 37185746 PMCID: PMC10136867 DOI: 10.3390/cimb45040222] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
This study aimed to investigate the regulatory role of Aldo-keto reductase family 1 member B1 (AKR1B1) in glioma cell proliferation through p38 MAPK activation to control Bcl-2/BAX/caspase-3 apoptosis signaling. AKR1B1 expression was quantified in normal human astrocytes, glioblastoma multiforme (GBM) cell lines, and normal tissues by using quantitative real-time polymerase chain reaction. The effects of AKR1B1 overexpression or knockdown and those of AKR1B1-induced p38 MAPK phosphorylation and a p38 MAPK inhibitor (SB203580) on glioma cell proliferation were determined using an MTT assay and Western blot, respectively. Furthermore, the AKR1B1 effect on BAX and Bcl-2 expression was examined in real-time by Western blot. A luminescence detection reagent was also utilized to identify the effect of AKR1B1 on caspase-3/7 activity. The early and late stages of AKR1B1-induced apoptosis were assessed by performing Annexin V-FITC/PI double-staining assays. AKR1B1 expression was significantly downregulated in glioma tissues and GBM cell lines (T98G and 8401). Glioma cell proliferation was inhibited by AKR1B1 overexpression but was slightly increased by AKR1B1 knockdown. Additionally, AKR1B1-induced p38 MAPK phosphorylation and SB203580 reversed AKR1B1's inhibitory effect on glioma cell proliferation. AKR1B1 overexpression also inhibited Bcl-2 expression but increased BAX expression, whereas treatment with SB203580 reversed this phenomenon. Furthermore, AKR1B1 induced caspase-3/7 activity. The induction of early and late apoptosis by AKR1B1 was confirmed using an Annexin V-FITC/PI double-staining assay. In conclusion, AKR1B1 regulated glioma cell proliferation through the involvement of p38 MAPK-induced BAX/Bcl-2/caspase-3 apoptosis signaling. Therefore, AKR1B1 may serve as a new therapeutic target for glioma therapy development.
Collapse
Affiliation(s)
- Yu-Kai Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 80145, Taiwan
| | - Kun-Che Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Neurobiology, Center of Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ann-Shung Lieu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Chih-Lung Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
23
|
Sarkar A, Paul A, Banerjee T, Maji A, Saha S, Bishayee A, Maity TK. Therapeutic advancements in targeting BCL-2 family proteins by epigenetic regulators, natural, and synthetic agents in cancer. Eur J Pharmacol 2023; 944:175588. [PMID: 36791843 DOI: 10.1016/j.ejphar.2023.175588] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Cancer is amongst the deadliest and most disruptive disorders, having a much higher death rate than other diseases worldwide. Human cancer rates continue to rise, thereby posing the most significant concerns for medical health professionals. In the last two decades, researchers have gone past several milestones in tackling cancer while gaining insight into the role of apoptosis in cancer or targeting various biomarker tools for prognosis and diagnosis. Apoptosis which is still a topic full of complexities, can be controlled considerably by B-cell lymphoma 2 (BCL-2) and its family members. Therefore, targeting proteins of this family to prevent tumorigenesis, is essential to focus on the pharmacological features of the anti-apoptotic and pro-apoptotic members, which will help to develop and manage this disorder. This review deals with the advancements of various epigenetic regulators to target BCL-2 family proteins, including the mechanism of several microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Similarly, a rise in natural and synthetic molecules' research over the last two decades has allowed us to acquire insights into understanding and managing the transcriptional alterations that have led to apoptosis and treating various neoplastic diseases. Furthermore, several inhibitors targeting anti-apoptotic proteins and inducers or activators targeting pro-apoptotic proteins in preclinical and clinical stages have been summarized. Overall, agonistic and antagonistic mechanisms of BCL-2 family proteins conciliated by epigenetic regulators, natural and synthetic agents have proven to be an excellent choice in developing cancer therapeutics.
Collapse
Affiliation(s)
- Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Abhik Paul
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Tanmoy Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Avik Maji
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Sanjukta Saha
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| | - Tapan Kumar Maity
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| |
Collapse
|
24
|
Bonzerato CG, Wojcikiewicz RJH. Bok: real killer or bystander with non-apoptotic roles? Front Cell Dev Biol 2023; 11:1161910. [PMID: 37123400 PMCID: PMC10130511 DOI: 10.3389/fcell.2023.1161910] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/05/2023] [Indexed: 05/02/2023] Open
Abstract
Bcl-2-related ovarian killer, Bok, was first labeled "pro-apoptotic" due to its ability to cause cell death when over-expressed. However, it has become apparent that this is not a good name, since Bok is widely expressed in tissues other than ovaries. Further, there is serious doubt as to whether Bok is a real "killer," due to disparities in the ability of over-expressed versus endogenous Bok to trigger apoptosis. In this brief review, we rationalize these disparities and argue that endogenous Bok is very different from the pro-apoptotic, mitochondrial outer membrane permeabilization mediators, Bak and Bax. Instead, Bok is a stable, endoplasmic reticulum-located protein bound to inositol 1,4,5 trisphosphate receptors. From this location, Bok plays a variety of roles, including regulation of endoplasmic reticulum/mitochondria contact sites and mitochondrial dynamics. Therefore, categorizing Bok as a "killer" may well be misleading and instead, endogenous Bok would better be considered an endoplasmic reticulum-located "bystander", with non-apoptotic roles.
Collapse
|
25
|
Khalid A, Nadeem T, Khan MA, Ali Q, Zubair M. In vitro evaluation of immunomodulatory, anti-diabetic, and anti-cancer molecular mechanisms of Tribulus terrestris extracts. Sci Rep 2022; 12:22478. [PMID: 36577761 PMCID: PMC9797551 DOI: 10.1038/s41598-022-26742-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Dampened immunity and impaired wound healing in diabetic patients may lead to diabetic foot ulcer disease, which is the leading cause of limb amputations and hospitalization. On the other hand, cancer is the most significant cause of mortality globally, accounting for over 10 million fatalities in 2020, or nearly one in every six deaths. Plants and herbs have been used to treat chronic diseases due to their essential pharmaceutical attributes, such as mitigating drug resistance, ameliorating systemic toxicities, reducing the need for synthetic chemotherapeutic agents,and strengthening the immune system. The present study has been designed to evaluate the effects of Tribulus terrestris on wound healing, cytotoxic and anti-inflammatory responses against HepG-2 liver cancer cell line. Two solvents (methanol and ethanol) were used for root extraction of T. terrestris. The wound healing potential of the extracts was studied on diabetic cell culture line by scratch assay. The anti-oxidant and cytotoxic potentials were evaluated by in vitro assays against HepG2 cell line. The methanolic root extract resulted in the coverage of robust radical scavenging or maximum inhibition of 66.72%,potent cytotoxic activity or reduced cell viability of 40.98%, and anti-diabetic activity having mighty α-glucosidase inhibition of 50.16% at a concentration of 80 μg/ml. Significant reduction in the levels of LDH leakage (56.38%), substantial ROS (48.45%) and SOD (72.13%) activities were recorededMoreover, gene expression analysis demonstrated the down-regulation of inflammatory markers (TNF-α, MMP-9, Bcl-2, and AFP) in HepG-2 cells when treated with T. terresteris methanolic extract as compared to stress. Furthermore, the down-regulation of inflammatory markers was validated through ELISA-mediated protein estimation of IL-1β and TNF-α. It is expected that this study will lay a foundation and lead to the development of efficient but low-cost, natural herbs extract-based dressing/ointment for diabetic patients and identify potential drug metabolites to treat out-of-whack inflammatory responses involved in cancer onset, progression, and metastasis.
Collapse
Affiliation(s)
- Abdullah Khalid
- grid.411786.d0000 0004 0637 891XDepartment of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Tariq Nadeem
- grid.11173.350000 0001 0670 519XCentre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Asaf Khan
- grid.412298.40000 0000 8577 8102Institute of Plant Breeding and Biotechnology, MNS-University of Agriculture, Multan, Pakistan
| | - Qurban Ali
- grid.11173.350000 0001 0670 519XDepartment of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab Lahore, Lahore, Pakistan
| | - Muhammad Zubair
- grid.411786.d0000 0004 0637 891XDepartment of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
26
|
Huang J, Wang J, Song G, Hu C, Xu Z, Chen Z, Xu C, Yang D. Antiproliferative Evaluation of Novel 4-Imidazolidinone Derivatives as Anticancer Agent Which Triggers ROS-Dependent Apoptosis in Colorectal Cancer Cell. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248844. [PMID: 36557977 PMCID: PMC9783213 DOI: 10.3390/molecules27248844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is one of the most common causes of cancer-related death worldwide, and more therapies are needed to treat CRC. To discover novel CRC chemotherapeutic molecules, we used a series of previously synthesized novel imidazolidin-4-one derivatives to study their anticancer role in several cancer cell lines. Among these compounds, compound 9r exhibited the best anticancer activity in CRC cell lines HCT116 and SW620. We further investigated the anticancer molecular mechanism of compound 9r. We found that compound 9r induced mitochondrial pathway apoptosis in HCT116 and SW620 cells by inducing reactive oxygen species (ROS) production. Moreover, the elevated ROS generation activated the c-Jun N-terminal kinase (JNK) pathway, which further accelerated apoptosis. N-acetylcysteine (NAC), an antioxidant reagent, suppressed compound 9r-induced ROS production, JNK pathway activation, and apoptosis. Collectively, this research synthesized a series of imidazolidin-4-one derivatives, evaluated their anticancer activity, and explored the molecular mechanism of compound 9r-induced apoptosis in CRC cells. The present results suggest that compound 9r has a potential therapeutic role in CRC. Hence, it deserves further exploration as a lead compound for CRC treatment.
Collapse
Affiliation(s)
- Jiuhong Huang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Juanli Wang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Guiting Song
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Chunsheng Hu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zhigang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zhongzhu Chen
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Chuan Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
- Department of Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
- Correspondence: (C.X.); (D.Y.)
| | - Donglin Yang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
- Correspondence: (C.X.); (D.Y.)
| |
Collapse
|
27
|
Blinova EA, Nikiforov VS, Kotikova AI, Yanishevskaya MA, Akleyev AV. Methylation Status of Apoptosis Genes and Intensity of Apoptotic Death of Peripheral Blood Lymphocytes in Persons Chronically Exposed to Radiation. Mol Biol 2022. [DOI: 10.1134/s002689332205003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Li Y, Zhuang X, Niu F. Quantitative Investigation of the Link between Actin Cytoskeleton Dynamics and Cellular Behavior. MICROMACHINES 2022; 13:1885. [PMID: 36363906 PMCID: PMC9695820 DOI: 10.3390/mi13111885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Actin cytoskeleton reorganization, which is governed by actin-associated proteins, has a close relationship with the change of cell biological behavior. However, a perceived understanding of how actin mechanical property links to cell biological property remains unclear. This paper reports a label-free biomarker to indicate this interrelationship by using the actin cytoskeleton model and optical tweezers (OT) manipulation technology. Both biophysical and biochemical methods were employed, respectively, as stimuli for two case studies. By comparing the mechanical and biological experiment results of the leukemia cells under electrical field exposure and human mesenchymal stem cells (hMSC) under adipogenesis differentiation, we concluded that β-actin can function as an indicator in characterizing the alteration of cellular biological behavior during the change of actin cytoskeleton mechanical property. This study demonstrated an effective way to probe a quantitative understanding of how actin cytoskeleton reorganization reflects the interrelation between cell mechanical property and cell biological behavior.
Collapse
Affiliation(s)
- Ying Li
- Department of Mechanical and Electrical Engineering, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Xiaoru Zhuang
- Department of Mechanical and Electrical Engineering, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Fuzhou Niu
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou 215000, China
| |
Collapse
|
29
|
Hege Hurrish K, Qiao X, Li X, Su Y, Carter J, Ma J, Kalpage HA, Hüttemann M, Edwards H, Wang G, Kim S, Dombkowski A, Bao X, Li J, Taub JW, Ge Y. Co-targeting of HDAC, PI3K, and Bcl-2 results in metabolic and transcriptional reprogramming and decreased mitochondrial function in acute myeloid leukemia. Biochem Pharmacol 2022; 205:115283. [PMID: 36208684 PMCID: PMC10411618 DOI: 10.1016/j.bcp.2022.115283] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 11/02/2022]
Abstract
Despite the recently approved new therapies, the clinical outcomes of acute myeloid leukemia (AML) patients remain disappointing, highlighting the need for novel therapies. Our lab has previously demonstrated the promising outlook for CUDC-907, a dual inhibitor of PI3K and HDAC, in combination with venetoclax (VEN), against AML both in vitro and in vivo at least partially through suppression of c-Myc. In this study, we further elucidated the mechanism of action of the combination in preclinical models of AML. We demonstrated that the combination significantly reduced primary AML cell engraftment in immunocompromised mice. RNA sequencing and metabolomics analyses revealed that the combination reduced the levels for mRNAs of key TCA cycle genes and metabolites in the TCA cycle, respectively. This was accompanied by a reduced oxygen consumption rate (OCR), demonstrating that the combination suppressed oxidative phosphorylation (OXPHOS). Metabolomics analyses revealed that a large number of metabolites upregulated in AraC-resistant AML cells could be downregulated by the combination. CUDC-907 synergized with VEN in inducing apoptosis in the AraC-resistant AML cells. In conclusion, the CUDC-907 and VEN combination induces metabolic and transcriptomic reprograming and suppression of OXPHOS in AML, which provides additional mechanisms underlying the synergy between the two agents.
Collapse
MESH Headings
- Mice
- Animals
- Phosphatidylinositol 3-Kinases/metabolism
- Cell Line, Tumor
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Cytarabine
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Bridged Bicyclo Compounds, Heterocyclic/metabolism
- Mitochondria/metabolism
- Apoptosis
Collapse
Affiliation(s)
- Katie Hege Hurrish
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Xinan Qiao
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Xinyu Li
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Yongwei Su
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Jenna Carter
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA; MD/PhD Program, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jun Ma
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Hasini A Kalpage
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Holly Edwards
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Seongho Kim
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Alan Dombkowski
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Xun Bao
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jing Li
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jeffrey W Taub
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48201, USA; Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI 48201, USA; Department of Pediatrics, Central Michigan University College of Medicine, Mt. Pleasant, MI 48859, USA.
| | - Yubin Ge
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
30
|
Zhou Y, Luo Y, Yu B, Zheng P, Yu J, Huang Z, Mao X, Luo J, Yan H, He J. Agrobacterium sp. ZX09 β-Glucan Attenuates Enterotoxigenic Escherichia coli-Induced Disruption of Intestinal Epithelium in Weaned Pigs. Int J Mol Sci 2022; 23:ijms231810290. [PMID: 36142202 PMCID: PMC9499454 DOI: 10.3390/ijms231810290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/27/2022] [Accepted: 09/03/2022] [Indexed: 11/24/2022] Open
Abstract
To explore the protective effect of dietary β-glucan (BGL) supplementation on intestinal epithelium exposure to enterotoxigenic Escherichia coli (ETEC), thirty-two weaned pigs were assigned to four groups. Pigs were fed with a basal diet or basal diet containing 500 mg/kg BGL, and were orally infused with ETEC or culture medium. Results showed BGL supplementation had no influence on growth performance in weaned pigs. However, BGL supplementation increased the absorption of D-xylose, and significantly decreased the serum concentrations of D-lactate and diamine oxidase (DAO) in the ETEC-challenged pigs (p < 0.05). Interestingly, BGL significantly increased the abundance of the zonula occludens-1-(ZO-1) in the jejunal epithelium upon ETEC challenge (p < 0.05). BGL supplementation also increased the number of S-phase cells and the number of sIgA-positive cells, but significantly decreased the number of total apoptotic cells in the jejunal epithelium upon ETEC challenge (p < 0.05). Moreover, BGL significantly increased the duodenal catalase (CAT) activity and the ileal total superoxide dismutase (T-SOD) activity in the ETEC-challenged pigs (p < 0.05). Importantly, BGL significantly decreased the expression levels of critical inflammation related proteins such as the tumor necrosis factor-α (TNF-α), interlukin-6 (IL-6), myeloid differentiation factor 88 (MyD88), and nuclear factor-κB (NF-κB) in the jejunal and ileal mucosa upon ETEC challenge (p < 0.05). BGL also elevated the propanoic acid content and the abundance of Lactobacillus and Bacillus in the colon upon ETEC challenge (p < 0.05). These results suggested BGL could alleviate the ETEC-induced intestinal epithelium injury, which may be associated with suppressed inflammation and improved intestinal immunity and antioxidant capacity, as well as the improved intestinal macrobiotic.
Collapse
Affiliation(s)
- Yuankang Zhou
- Animal Nutrition Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 625014, China
| | - Yuheng Luo
- Animal Nutrition Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 625014, China
| | - Bing Yu
- Animal Nutrition Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 625014, China
| | - Ping Zheng
- Animal Nutrition Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 625014, China
| | - Jie Yu
- Animal Nutrition Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 625014, China
| | - Zhiqing Huang
- Animal Nutrition Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 625014, China
| | - Xiangbing Mao
- Animal Nutrition Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 625014, China
| | - Junqiu Luo
- Animal Nutrition Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 625014, China
| | - Hui Yan
- Animal Nutrition Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 625014, China
| | - Jun He
- Animal Nutrition Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 625014, China
- Correspondence:
| |
Collapse
|
31
|
Yan QY, Lv JL, Shen XY, Ou-Yang XN, Yang JZ, Nie RF, Lu J, Huang YJ, Wang JY, Shen X. Patchouli alcohol as a selective estrogen receptor β agonist ameliorates AD-like pathology of APP/PS1 model mice. Acta Pharmacol Sin 2022; 43:2226-2241. [PMID: 35091686 PMCID: PMC9433381 DOI: 10.1038/s41401-021-00857-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022]
Abstract
Clinical evidence shows that postmenpausal women are almost twice as likely to develop Alzheimer's disease (AD) as men of the same age, and estrogen is closely related to the occurrence of AD. Estrogen receptor (ER) α is mainly expressed in the mammary gland and other reproductive organs like uterus while ERβ is largely distributed in the hippocampus and cardiovascular system, suggesting that ERβ selective agonist is a valuable drug against neurodegenerative diseases with low tendency in inducing cancers of breast and other reproductive organs. In this study we identified a natural product patchouli alcohol (PTA) as a selective ERβ agonist which improved the cognitive defects in female APP/PS1 mice, and explore the underlying mechanisms. Six-month-old female APP/PS1 mice were administered PTA (20, 40 mg · kg-1 · d-1, i.g.) for 90 days. We first demonstrated that PTA bound to ERβ with a dissociation constant (KD) of 288.9 ± 35.14 nM in microscale thermophoresis. Then we showed that PTA administration dose-dependently ameliorated cognitive defects evaluated in Morris water maze and Y-maze testes. Furthermore, PTA administration reduced amyloid plaque deposition in the hippocampus by promoting microglial phagocytosis; PTA administration improved synaptic integrity through enhancing BDNF/TrkB/CREB signaling, ameliorated oxidative stress by Catalase level, and regulated Bcl-2 family proteins in the hippocampus. The therapeutic effects of PTA were also observed in vitro: PTA (5, 10, 20 μM) dose-dependently increased phagocytosis of o-FAM-Aβ42 in primary microglia and BV2 cells through enhancing ERβ/TLR4 signaling; PTA treatment ameliorated o-Aβ25-35-induced reduction of synapse-related proteins VAMP2 and PSD95 in primary neurons through enhancing ERβ/BDNF/TrkB/CREB pathways; PTA treatment alleviated o-Aβ25-35-induced oxidative stress in primary neurons through targeting ERβ and increasing Catalase expression. Together, this study has addressed the efficacy of selective ERβ agonist in the amelioration of AD and highlighted the potential of PTA as a drug lead compound against the disease.
Collapse
Affiliation(s)
- Qiu-Ying Yan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jian-Lu Lv
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xing-Yi Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xing-Nan Ou-Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Juan-Zhen Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Rui-Fang Nie
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jian Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu-Jie Huang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jia-Ying Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xu Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
32
|
In silico mutational analysis to identify the role and pathogenicity of BCL-w missense variants. J Genet Eng Biotechnol 2022; 20:120. [PMID: 35951173 PMCID: PMC9372248 DOI: 10.1186/s43141-022-00389-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022]
Abstract
Background Intrinsic pathway of apoptosis is generally mediated by BCL-2 (B cell lymphoma 2) family of proteins; they either induce or inhibit the apoptosis. Overexpression of BCL-2 in cancer cell may lead to delay in apoptosis. BCL-w is the pro-survival member of the BCL-2 family. BCL2L2 gene is present on chromosome number 14 in humans, and it encodes BCL-w protein; BCL-w protein is 193 amino acids residues in length. Interactions among the BCL-2 proteins are very specific. The fate of cell is determined by the ratio of pro-apoptotic proteins to pro-survival proteins. BCL-w promotes cell survival. Studies suggested that overexpression of BCL-w protein is associated with many cancers including DLBCL, BL, colorectal cancers, gastric cancers, and many more. The cause of overexpression is translocations or gene amplification which will subsequently result in cancerous activity. Process For in-silico analysis, BCL2L2 gene was retrieved from UniProt (UniProt ID: Q92843). 54 missense variants have been collected in BCL-w proteins from COSMIC database. Different tools were used to detect the deleteriousness of the variants. Result In silico mutational study reveals how the non-synonymous mutations directly affect the protein’s native structure and its function. Variant mutational analysis with PolyPhen-2 revealed that out of 55 variants, 28 of the missense mutations was probably damaging with a score ranging from 0.9 to 1, while 24 variants were benign with a score ranging from 0 to 0.4. Conclusions This in silico work aims to determine how missense mutations in BCL-w protein affect the activity of the protein, the stability of the protein, and to determine the pathogenicity of the variants. Prediction of pathogenicity of variants will reveal if the missense mutation has a damaging effect on the native structure of protein or not. Prediction of protein stability will reveal whether the mutation has a stabilizing or destabilizing effect on the protein.
Collapse
|
33
|
Rysanek D, Vasicova P, Kolla JN, Sedlak D, Andera L, Bartek J, Hodny Z. Synergism of BCL-2 family inhibitors facilitates selective elimination of senescent cells. Aging (Albany NY) 2022; 14:6381-6414. [PMID: 35951353 PMCID: PMC9467395 DOI: 10.18632/aging.204207] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/12/2022] [Indexed: 12/12/2022]
Abstract
Accumulation of senescent cells in tissues with advancing age participates in the pathogenesis of several human age-associated diseases. Specific senescent secretome, the resistance of senescent cells to apoptotic stimuli, and lack of immune system response contribute to the accumulation of senescent cells and their adverse effects in tissues. Inhibition of antiapoptotic machinery, augmented in senescent cells, by BCL-2 protein family inhibitors represents a promising approach to eliminate senescent cells from tissues. This study aimed to explore synergistic and selective senolytic effects of anti-apoptotic BCL-2 family targeting compounds, particularly BH3 mimetics. Using human non-transformed cells RPE-1, BJ, and MRC-5 brought to ionizing radiation-, oncogene-, drug-induced and replicative senescence, we found synergy in combining MCL-1 selective inhibitors with other BH3 mimetics. In an attempt to uncover the mechanism of such synergy, we revealed that the surviving subpopulation of cells resistant to individually applied ABT-737/ABT-263, MIK665, ABT-199, and S63845 BCL-2 family inhibitors showed elevated MCL-1 compared to untreated control cells indicating the presence of a subset of cells expressing high MCL-1 levels and, therefore, resistant to BCL-2 inhibitors within the original population of senescent cells. Overall, we found that combining BCL-2 inhibitors can be beneficial for eliminating senescent cells, thereby enabling use of lower, potentially less toxic, doses of drugs compared to monotherapy, thereby overcoming the resistance of the subpopulation of senescent cells to monotherapy.
Collapse
Affiliation(s)
- David Rysanek
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavla Vasicova
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | | | - David Sedlak
- CZ-OPENSCREEN, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ladislav Andera
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Biocev, Institute of Biotechnology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Bartek
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Zdenek Hodny
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
34
|
Safa AR. Drug and apoptosis resistance in cancer stem cells: a puzzle with many pieces. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:850-872. [PMID: 36627897 PMCID: PMC9771762 DOI: 10.20517/cdr.2022.20] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/10/2022] [Accepted: 05/26/2022] [Indexed: 01/13/2023]
Abstract
Resistance to anticancer agents and apoptosis results in cancer relapse and is associated with cancer mortality. Substantial data have provided convincing evidence establishing that human cancers emerge from cancer stem cells (CSCs), which display self-renewal and are resistant to anticancer drugs, radiation, and apoptosis, and express enhanced epithelial to mesenchymal progression. CSCs represent a heterogeneous tumor cell population and lack specific cellular targets, which makes it a great challenge to target and eradicate them. Similarly, their close relationship with the tumor microenvironment creates greater complexity in developing novel treatment strategies targeting CSCs. Several mechanisms participate in the drug and apoptosis resistance phenotype in CSCs in various cancers. These include enhanced expression of ATP-binding cassette membrane transporters, activation of various cytoprotective and survival signaling pathways, dysregulation of stemness signaling pathways, aberrant DNA repair mechanisms, increased quiescence, autophagy, increased immune evasion, deficiency of mitochondrial-mediated apoptosis, upregulation of anti-apoptotic proteins including c-FLIP [cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein], Bcl-2 family members, inhibitors of apoptosis proteins, and PI3K/AKT signaling. Studying such mechanisms not only provides mechanistic insights into these cells that are unresponsive to drugs, but may lead to the development of targeted and effective therapeutics to eradicate CSCs. Several studies have identified promising strategies to target CSCs. These emerging strategies may help target CSC-associated drug resistance and metastasis in clinical settings. This article will review the CSCs drug and apoptosis resistance mechanisms and how to target CSCs.
Collapse
Affiliation(s)
- Ahmad R. Safa
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
35
|
Fan CW, Tang J, Jiang JC, Zhou MM, Li MS, Wang HS. Pentagalloylglucose suppresses the growth and migration of human nasopharyngeal cancer cells via the GSK3β/β-catenin pathway in vitro and in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154192. [PMID: 35636179 DOI: 10.1016/j.phymed.2022.154192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a type of malignant squamous cell tumour originating from the nasopharynx epithelium. Pentagalloylglucose (PGG) is a natural polyphenolic compound that exerts anticancer effects in many types of tumours. However, the role and underlying mechanism of PGG in NPC cells have not been fully defined. PURPOSE This study aimed to investigate the anticancer activity of PGG as well as the potential mechanism in NPC cells. METHODS The effects of PGG on the proliferation, apoptosis and cell cycle distribution of CNE1 and CNE2 cells were assessed by MTT and flow cytometry assays. Cell migration was evaluated using wound healing and transwell assays. The expression of microtubule-associated protein 1 light chain 3 beta (LC3B) was observed by immunofluorescence staining. Western blotting was used to explore the levels of related proteins and signalling pathway components. Furthermore, the effects of PGG on NPC cell growth were analysed in a xenograft mouse model in vivo using cisplatin as a positive control. RESULTS PGG dose-dependently inhibited the proliferation of CNE1 and CNE2 cells. PGG regulated the cell cycle by altering p53, cyclin D1, CDK2, and cyclin E1 protein levels. PGG induced apoptosis and autophagy in NPC cells and elevated the Bax/Bcl-2 ratio and the protein levels of LC3B. Moreover, PGG decreased NPC cell migration by increasing E-cadherin and decreasing N-cadherin, vimentin and CD44 protein levels. Mechanistically, PGG treatment downregulated p-mTOR and β-catenin expression but upregulated p-p38 MAPK and p-GSK3β expression. In addition, PGG significantly inhibited NPC cell tumour growth and lung metastasis in vivo. CONCLUSION PGG may suppress cell proliferation, induce apoptosis and autophagy, and decrease the metastatic capacity of NPC cells through the p38 MAPK/mTOR and Wnt/β-catenin pathways. The present study provides evidence for PGG as a potential therapy for NPC.
Collapse
Affiliation(s)
- Cai-Wen Fan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China; Research Center for Science, Guilin Medical University, Guilin 541199, China
| | - Juan Tang
- Department of Pathology, the Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Jing-Chen Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Mei-Mei Zhou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Mei-Shan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China.
| | - Heng-Shan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
36
|
Knight TE, Edwards H, Meshinchi S, Taub JW, Ge Y. "FLipping" the Story: FLT3-Mutated Acute Myeloid Leukemia and the Evolving Role of FLT3 Inhibitors. Cancers (Basel) 2022; 14:3398. [PMID: 35884458 PMCID: PMC9315611 DOI: 10.3390/cancers14143398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 12/19/2022] Open
Abstract
The treatment of many types of cancers, including acute myeloid leukemia (AML), has been revolutionized by the development of therapeutics targeted at crucial molecular drivers of oncogenesis. In contrast to broad, relatively indiscriminate conventional chemotherapy, these targeted agents precisely disrupt key pathways within cancer cells. FMS-like tyrosine kinase 3 (FLT3)-encoding a critical regulator of hematopoiesis-is the most frequently mutated gene in patients with AML, and these mutations herald reduced survival and increased relapse in these patients. Approximately 30% of newly diagnosed AML carries an FLT3 mutation; of these, approximately three-quarters are internal tandem duplication (ITD) mutations, and the remainder are tyrosine kinase domain (TKD) mutations. In contrast to its usual, tightly controlled expression, FLT3-ITD mutants allow constitutive, "run-away" activation of a large number of key downstream pathways which promote cellular proliferation and survival. Targeted inhibition of FLT3 is, therefore, a promising therapeutic avenue. In April 2017, midostaurin became both the first FLT3 inhibitor and the first targeted therapy of any kind in AML to be approved by the US FDA. The use of FLT3 inhibitors has continued to grow as clinical trials continue to demonstrate the efficacy of this class of agents, with an expanding number available for use as both experimental standard-of-care usage. This review examines the biology of FLT3 and its downstream pathways, the mechanism of FLT3 inhibition, the development of the FLT3 inhibitors as a class and uses of the agents currently available clinically, and the mechanisms by which resistance to FLT3 inhibition may both develop and be overcome.
Collapse
Affiliation(s)
- Tristan E. Knight
- Cancer and Blood Disorders Center, Seattle Children’s Hospital, Seattle, WA 98105, USA;
- Division of Hematology and Oncology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48202, USA; (H.E.); (Y.G.)
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Soheil Meshinchi
- Cancer and Blood Disorders Center, Seattle Children’s Hospital, Seattle, WA 98105, USA;
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jeffrey W. Taub
- Division of Hematology/Oncology, Children’s Hospital of Michigan, Detroit, MI 48201, USA;
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Department of Pediatrics, Central Michigan University, Mt. Pleasant, MI 48859, USA
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48202, USA; (H.E.); (Y.G.)
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
37
|
Anticancer Activity of Amantadine and Evaluation of Its Interactions with Selected Cytostatics in Relation to Human Melanoma Cells. Int J Mol Sci 2022; 23:ijms23147653. [PMID: 35886997 PMCID: PMC9319452 DOI: 10.3390/ijms23147653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 12/19/2022] Open
Abstract
Patients with Parkinson’s disease are prone to a higher incidence of melanoma. Amantadine (an anti-Parkinson drug) possesses the antiproliferative potential that can be favorable when combined with other chemotherapeutics. Cisplatin (CDDP) and mitoxantrone (MTO) are drugs used in melanoma chemotherapy, but they have many side effects. (1) Clinical observations revealed a high incidence of malignant melanoma in patients with Parkinson’s disease. Amantadine as an anti-Parkinson drug alleviates symptoms of Parkinson’s disease and theoretically, it should have anti-melanoma properties. (2) To characterize the interaction profile for combinations of amantadine with CDDP and MTO in four human melanoma cell lines (A375, SK-MEL 28, FM55P and FM55M2), type I isobolographic analysis was used in the MTT test. (3) Amantadine produces the anti-proliferative effects in various melanoma cell lines. Flow cytometry analysis indicated that amantadine induced apoptosis and G1/S phase cell cycle arrest. Western blotting analysis showed that amantadine markedly decreased cyclin-D1 protein levels and increased p21 levels. Additionally, amantadine significantly increased the Bax/Bcl-2 ratio. The combined application of amantadine with CDDP at the fixed-ratio of 1:1 exerted an additive interaction in the four studied cell lines in the MTT test. In contrast, the combination of amantadine with MTO (ratio of 1:1) produced synergistic interaction in the FM55M2 cell line in the MTT (* p < 0.05). The combination of amantadine with MTO was also additive in the remaining tested cell lines (A375, FM55P and SK-MEL28) in the MTT test. (4) Amantadine combined with MTO exerted the most desirable synergistic interaction, as assessed isobolographically. Additionally, the exposure of melanoma cell lines to amantadine in combination with CDDP or MTO augmented the induction of apoptosis mediated by amantadine alone.
Collapse
|
38
|
Li Y, Sun S, Wen C, Zhong J, Jiang Q. Effect of Enterococcus faecalis OG1RF on human calvarial osteoblast apoptosis. BMC Oral Health 2022; 22:279. [PMID: 35804353 PMCID: PMC9264677 DOI: 10.1186/s12903-022-02295-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Background Enterococcus faecalis is a dominant pathogen in the root canals of teeth with persistent apical periodontitis (PAP), and osteoblast apoptosis contributes to imbalanced bone remodelling in PAP. Here, we investigated the effect of E. faecalis OG1RF on apoptosis in primary human calvarial osteoblasts. Specifically, the expression of apoptosis-related genes and the role of anti-apoptotic and pro-apoptotic members of the BCL-2 family were examined. Methods Primary human calvarial osteoblasts were incubated with E. faecalis OG1RF at multiplicities of infection corresponding to infection time points. Flow cytometry, terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay, caspase-3/-8/-9 activity assay, polymerase chain reaction (PCR) array, and quantitative real-time PCR were used to assess osteoblast apoptosis. Results E. faecalis infection increased the number of early- and late-phase apoptotic cells and TUNEL-positive cells, decreased the mitochondrial membrane potential (ΔΨm), and activated the caspase-3/-8/-9 pathway. Moreover, of all 84 apoptosis-related genes in the PCR array, the expression of 16 genes was upregulated and that of four genes was downregulated in the infected osteoblasts. Notably, the mRNA expression of anti-apoptotic BCL2 was downregulated, whereas that of the pro-apoptotic BCL2L11, HRK, BIK, BMF, NOXA, and BECN1 and anti-apoptotic BCL2A1 was upregulated. Conclusions E. faecalis OG1RF infection triggered apoptosis in human calvarial osteoblasts, and BCL-2 family members acted as regulators of osteoblast apoptosis. Therefore, BCL-2 family members may act as potential therapeutic targets for persistent apical periodontitis.
Collapse
Affiliation(s)
- Yang Li
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Shuyu Sun
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Cheng Wen
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Jialin Zhong
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Qianzhou Jiang
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China.
| |
Collapse
|
39
|
Wang S, Zhang S, Lin Z, Ma J, Zhu L, Liao G. Identification and Validation of an Apoptosis-Related Gene Prognostic Signature for Oral Squamous Cell Carcinoma. Front Oncol 2022; 12:889049. [PMID: 35769708 PMCID: PMC9235536 DOI: 10.3389/fonc.2022.889049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
To identify an apoptosis-related gene (ARG) prediction model for oral squamous cell carcinoma (OSCC), we analyzed and validated the data from TCGA and GEO, respectively. Kaplan–Meier survival analysis and ROC curves showed a good prognostic ability of the model both in the internal training set and in the external testing set. Furthermore, we built a nomogram using these ARGs to forecast the survival probability of OSCC patients. Moreover, we evaluated the rate of immune cells infiltrating in the tumor samples and found obvious, different patterns between the high and low risk groups. GO and KEGG analyses demonstrated multiple molecular biological processes and signaling pathways connecting with this prognostic model in OSCC. The expression of these risk genes in clinical specimens was higher in the non-survival patients than in the well-survival patients by immunohistochemical staining analysis. In conclusion, we established a signature made up of six risk apoptosis-related genes to predict the survival rate of OSCC. These genes could also be targets for the treatment of OSCC.
Collapse
Affiliation(s)
- Shuqin Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Department of Oral and Maxillofacial Surgery, Guangdong Provincial People’s Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Sien Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Zhi Lin
- Department of Stomatology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingxin Ma
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Lijun Zhu
- Department of Oral and Maxillofacial Surgery, Guangdong Provincial People’s Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
- *Correspondence: Guiqing Liao, ; Lijun Zhu,
| | - Guiqing Liao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- *Correspondence: Guiqing Liao, ; Lijun Zhu,
| |
Collapse
|
40
|
Potievskii MB, Shegai PV, Kaprin AD. Prospects for the Application of Methods of Evolutionary Biology in Oncology. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Cytotoxic activity of non-specific lipid transfer protein (nsLTP1) from Ajwain (Trachyspermum ammi) seeds. BMC Complement Med Ther 2022; 22:135. [PMID: 35578215 PMCID: PMC9112568 DOI: 10.1186/s12906-022-03616-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/09/2022] [Indexed: 11/26/2022] Open
Abstract
Background Trachyspermum ammi, commonly known as Ajwain, is a member of the Apiaceae family. It is a therapeutic herbal spice with diverse pharmacological properties, used in traditional medicine for various ailments. However, all previous studies were conducted using small molecule extracts, leaving the protein’s bioactivity undiscovered. Aim The current study aimed to demonstrate the cytotoxic activity of Ajwain non-specific lipid transfer protein (nsLTP1) in normal breast (MCF10A), breast cancer (MCF-7), and pancreatic cancer (AsPC-1) cell lines. Also, to evaluate its structural stability in human serum as well as at high temperature conditions. Methods The cytotoxic activity of Ajwain nsLTP1 was evaluated in MCF-7 and AsPC-1 cell lines using MTT assay. Annexin V-FITC and PI staining were used to detect the early apoptotic and late apoptotic cells. The role of nsLTP1 in inducing apoptosis was further studied by quantifying Bcl-2, Bax, Caspase-3, Survivin, EGFR, and VEGF genes expression using RT-PCR. CD spectroscopy analyzed the nsLTP1 conformational changes after thermal treatment for structure stability determination. The RP-HPLC was used to analyze the nsLTP1 degradation rate in human serum at different time intervals incubated at 37 °C. Results Ajwain nsLTP1 showed a potent cytotoxic effect in MCF-7 and AsPC-1. The IC50 value obtained in MCF-7 was 8.21 μM, while for AsPC-1 4.17 μM. The effect of nsLTP1 on stimulating apoptosis revealed that the proportions of apoptotic cells in both cell lines were relatively increased depending on the concentration. The apoptotic cells percentage at 20 μM was in MCF-7 71% (***P < 0.001) and AsPC-1 88% (***P < 0.001). These results indicate that nsLTP1 might efficaciously induce apoptosis in multiple types of cancerous cells. Genes expression in MCF-7 and AsPC-1 showed significant upregulation in Bax and Caspase-3 and downregulation in Bcl-2, Survivin, EGFR, and VEGF protein. The CD analysis of nsLTP1 showed a significant thermostable property. In serum, nsLTP1 showed a slow degradation rate, indicating high stability with a half-life of ~ 8.4 h. Conclusion Our results revealed the potential anticancer activity of Ajwain nsLTP1 and its mechanism in inducing apoptosis. It further exhibited thermostable properties at high temperatures and in human serum, which suggested this protein as a promising anticancer agent. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03616-y.
Collapse
|
42
|
Cheng W, Liu D, Guo M, Li H, Wang Q. Sophoraflavanone G suppresses the progression of triple‐negative breast cancer via the inactivation of EGFR–PI3K–AKT signaling. Drug Dev Res 2022; 83:1138-1151. [PMID: 35426453 DOI: 10.1002/ddr.21938] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/21/2022] [Accepted: 04/04/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Wei Cheng
- Department of Pharmacy Second Hospital of Shanxi Medical University Taiyuan China
| | - Dan Liu
- Department of Pharmacy The Second Affiliated Hospital of Army Medical University Chongqing China
| | - Min Guo
- Department of Pharmacy Second Hospital of Shanxi Medical University Taiyuan China
| | - Honglei Li
- Fuxing Road Outpatient Department Chinese PLA General Hospital Beijing China
| | - Qiang Wang
- Department of Pharmacy The Second Affiliated Hospital of Army Medical University Chongqing China
| |
Collapse
|
43
|
Liao M, Qin R, Huang W, Zhu HP, Peng F, Han B, Liu B. Targeting regulated cell death (RCD) with small-molecule compounds in triple-negative breast cancer: a revisited perspective from molecular mechanisms to targeted therapies. J Hematol Oncol 2022; 15:44. [PMID: 35414025 PMCID: PMC9006445 DOI: 10.1186/s13045-022-01260-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of human breast cancer with one of the worst prognoses, with no targeted therapeutic strategies currently available. Regulated cell death (RCD), also known as programmed cell death (PCD), has been widely reported to have numerous links to the progression and therapy of many types of human cancer. Of note, RCD can be divided into numerous different subroutines, including autophagy-dependent cell death, apoptosis, mitotic catastrophe, necroptosis, ferroptosis, pyroptosis and anoikis. More recently, targeting the subroutines of RCD with small-molecule compounds has been emerging as a promising therapeutic strategy, which has rapidly progressed in the treatment of TNBC. Therefore, in this review, we focus on summarizing the molecular mechanisms of the above-mentioned seven major RCD subroutines related to TNBC and the latest progress of small-molecule compounds targeting different RCD subroutines. Moreover, we further discuss the combined strategies of one drug (e.g., narciclasine) or more drugs (e.g., torin-1 combined with chloroquine) to achieve the therapeutic potential on TNBC by regulating RCD subroutines. More importantly, we demonstrate several small-molecule compounds (e.g., ONC201 and NCT03733119) by targeting the subroutines of RCD in TNBC clinical trials. Taken together, these findings will provide a clue on illuminating more actionable low-hanging-fruit druggable targets and candidate small-molecule drugs for potential RCD-related TNBC therapies.
Collapse
Affiliation(s)
- Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Fu Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
44
|
Antar SA, El-Gammal MA, Hazem RM, Moustafa YM. Etanercept Mitigates Cadmium Chloride-induced Testicular Damage in Rats "An Insight into Autophagy, Apoptosis, Oxidative Stress and Inflammation". ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:28194-28207. [PMID: 34993805 DOI: 10.1007/s11356-021-18401-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
RATIONALE Cadmium (Cd) is an environmental and occupational toxin that represents a serious health hazard to humans and other animals. One of the negative consequences of cadmium exposure is testicular injury. OBJECTIVE This study aimed to investigate the therapeutic effect of etanercept against cadmium chloride-induced testicular damage and the probable underlying mechanisms of its action. METHODS A total of sixty rats were divided into six groups: control, cadmium chloride (CdCl2) (7 mg/ kg i.p.), and CdCl2 treated with etanercept (5,10 and 15 mg/kg s.c.) and etanercept only (15 mg/kg s.c.). CdCl2 was administrated as a single dose, while etanercept was administered every 3 days for 3 weeks. RESULTS CdCl2 reduced serum testosterone, testicular glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD). However, it elevated the levels of malondialdehyde (MDA) and microtubule-associated protein light chain 3B (LC3B) in the testes. Cadmium caused pathogenic alterations as well as increased levels of inflammatory biomarkers such as tumor necrosis factor-alpha (TNF-α) and nuclear factor-kappa B (NF-κB). Besides, the gene expressions of caspase-3 and inducible nitric oxide synthase (i-NOS) and Beclin-1 protein increased with CdCl2 exposure. Interestingly, etanercept relieved the previous toxic effects induced by CdCl2 in a dose-dependent manner as evidenced by inhibition of oxidative stress, inflammatory markers, Beclin-1, LC3B, and caspase-3 accompanied by improvement in histopathological changes. CONCLUSION Etanercept provides a potential therapeutic approach to treat testicular tissue against the damaging effects of Cd by reducing oxidative stress, inflammation, apoptosis, and autophagy.
Collapse
Affiliation(s)
- Samar A Antar
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta, 34518, Egypt.
| | - Mohamad A El-Gammal
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta, 34518, Egypt
| | - Reem M Hazem
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Yasser M Moustafa
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University, Badr University Cairo, 11829, Egypt
| |
Collapse
|
45
|
The New Treatment Methods for Non-Hodgkin Lymphoma in Pediatric Patients. Cancers (Basel) 2022; 14:cancers14061569. [PMID: 35326719 PMCID: PMC8945992 DOI: 10.3390/cancers14061569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
One of the most common cancer malignancies is non-Hodgkin lymphoma, whose incidence is nearly 3% of all 36 cancers combined. It is the fourth highest cancer occurrence in children and accounts for 7% of cancers in patients under 20 years of age. Today, the survivability of individuals diagnosed with non-Hodgkin lymphoma varies by about 70%. Chemotherapy, radiation, stem cell transplantation, and immunotherapy have been the main methods of treatment, which have improved outcomes for many oncological patients. However, there is still the need for creation of novel medications for those who are treatment resistant. Additionally, more effective drugs are necessary. This review gathers the latest findings on non-Hodgkin lymphoma treatment options for pediatric patients. Attention will be focused on the most prominent therapies such as monoclonal antibodies, antibody–drug conjugates, chimeric antigen receptor T cell therapy and others.
Collapse
|
46
|
Sun JL, Cao ZQ, Sun SW, Sun ZH, Sun SH, Ye JF, Leng P. Effects of 2,2',4'‑trihydroxychalcone on the proliferation, metastasis and apoptosis of A549 human lung cancer cells. Oncol Lett 2022; 23:116. [PMID: 35261630 PMCID: PMC8855167 DOI: 10.3892/ol.2022.13236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/13/2022] [Indexed: 11/21/2022] Open
Abstract
The aim of the present study was to evaluate the antitumor effects of 2,2′,4′-trihydroxychalcone (7a) on the A549 human lung cancer cell line. A549 cells were treated with different concentrations of 7a for different time periods. Cells without 7a were used as the negative control group. Cell proliferation, invasion, vasculogenic mimicry (VM) formation, heterogeneous adhesion and apoptosis were measured using Cell Counting Kit-8, Transwell invasion, VM, adhesion and flow cytometric assays, respectively. In addition, the expression of related proteins was determined using western blot analysis or ELISA. The present study found that 7a had a significant inhibitory effect on the survival rate of the A549 lung cancer cells but almost no effect on BEAS-2B human lung epithelial cells or human venous endothelial cells. The migration rate, VM length, invasion rate and heterogeneous adhesion number of cells treated with 7a significantly decreased as the concentration increased, while the apoptosis rate increased. Western blot analysis showed that 7a treatment significantly increased the expression levels of E-cadherin, cleaved poly (ADP-ribose) polymerase, Bax and caspase-3 and simultaneously decreased the expression levels of metalloproteinase-2/9, Bcl-2, phosphorylated (p)-PI3K, p-AKT, p-mTOR, vascular endothelial growth factor (VEGF), E-selectin and N-cadherin. At the same time, the ELISA results showed that the level of the pro-angiogenic factor VEGF in the culture media was reduced in the presence of 7a. In addition, 7a could also reduce the nuclear NF-κB protein expression, which could inhibit the gene transcription of tumor apoptosis and metastasis-related proteins. Therefore, 7a may exert inhibitory effects on A549 cells by inhibiting cell proliferation, migration, VM formation and heterogeneous adhesion, as well as by inducing apoptosis through the suppression of the PI3K/AKT/NF-κB signaling pathway; these findings suggested that 7a may be a promising agent for the treatment of lung cancer.
Collapse
Affiliation(s)
- Jia-Lin Sun
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Zhan-Qi Cao
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Shi-Wei Sun
- Department of Natural Medicine and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Zhong-Hua Sun
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Shu-Hong Sun
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Jin-Feng Ye
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266100, P.R. China
| | - Ping Leng
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
47
|
Kim IH, Eom T, Park JY, Kim HJ, Nam TJ. Dichloromethane fractions of Calystegia soldanella induce S‑phase arrest and apoptosis in HT‑29 human colorectal cancer cells. Mol Med Rep 2021; 25:60. [PMID: 34935054 PMCID: PMC8767546 DOI: 10.3892/mmr.2021.12576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/11/2021] [Indexed: 11/22/2022] Open
Abstract
Calystegia soldanella is a halophyte and a perennial herb that grows on coastal sand dunes worldwide. Extracts from this plant have been previously revealed to have a variety of bioactive properties in humans. However, their effects on colorectal cancer cells remain poorly understood. In the present study, the potential biological activity of C. soldanella extracts in the colorectal cancer cell line HT-29 was examined. First, five solvent fractions [n-hexane, dichloromethane (DCM), ethyl acetate, n-butanol and water] were obtained from the crude extracts of C. soldanella through an organic solvent extraction method. In particular, the DCM fraction was demonstrated to exert marked dose- and time-dependent inhibitory effects according to results from the cell viability assay. Data obtained from the apoptosis assay suggested that the inhibition of HT-29 cell viability induced by DCM treatment was attributed to increased apoptosis. The apoptotic rate was markedly increased in a dose-dependent manner, which was associated with the protein expression levels of apoptosis-related proteins, including increased Fas, Bad and Bax, and decreased pro-caspase-8, Bcl-2, Bcl-xL, pro-caspase-9, pro-caspase-7 and pro-caspase-3. A mitochondrial membrane potential assay demonstrated that more cells became depolarized and the extent of cytochrome c release was markedly increased in a dose-dependent manner in HT-29 cells treated with DCM. In addition, cell cycle analysis confirmed S-phase arrest following DCM fraction treatment, which was associated with decreased protein expression levels of cell cycle-related proteins, such as cyclin A, CDK2, cell division cycle 25 A and cyclin dependent kinase inhibitor 1. Based on these results, the present study suggested that the DCM fraction of the C. soldanella extract can inhibit HT-29 cell viability whilst inducing apoptosis through mitochondrial membrane potential regulation and S-phase arrest. These results also suggested that the DCM fraction has potential anticancer activity in HT-29 colorectal cells. Further research on the composition of the DCM fraction is warranted.
Collapse
Affiliation(s)
- In-Hye Kim
- Future Fisheries Food Research Center, Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Republic of Korea
| | - Taekil Eom
- Future Fisheries Food Research Center, Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Republic of Korea
| | - Joon-Young Park
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Hyung-Joo Kim
- Future Fisheries Food Research Center, Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Republic of Korea
| | - Taek-Jeong Nam
- Future Fisheries Food Research Center, Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Republic of Korea
| |
Collapse
|
48
|
van der Westhuizen D, Bezuidenhout DI, Munro OQ. Cancer molecular biology and strategies for the design of cytotoxic gold(I) and gold(III) complexes: a tutorial review. Dalton Trans 2021; 50:17413-17437. [PMID: 34693422 DOI: 10.1039/d1dt02783b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This tutorial review highlights key principles underpinning the design of selected metallodrugs to target specific biological macromolecules (DNA and proteins). The review commences with a descriptive overview of the eukaryotic cell cycle and the molecular biology of cancer, particularly apoptosis, which is provided as a necessary foundation for the discovery, design, and targeting of metal-based anticancer agents. Drugs which target DNA have been highlighted and clinically approved metallodrugs discussed. A brief history of the development of mainly gold-based metallodrugs is presented prior to addressing ligand systems for stabilizing and adding functionality to bio-active gold(I) and gold(III) complexes, particularly in the burgeoning field of anticancer metallodrugs. Concepts such as multi-modal and selective cytotoxic agents are covered where necessary for selected compounds. The emerging role of carbenes as the ligand system of choice to achieve these goals for gold-based metallodrug candidates is highlighted prior to closing the review with comments on some future directions that this research field might follow. The latter section ultimately emphasizes the importance of understanding the fate of metal complexes in cells to garner key mechanistic insights.
Collapse
Affiliation(s)
- Danielle van der Westhuizen
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| | - Daniela I Bezuidenhout
- Laboratory of Inorganic Chemistry, Environmental and Chemical Engineering, University of Oulu, P. O. Box 3000, 90014 Oulu, Finland.
| | - Orde Q Munro
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
49
|
Zhou F, Aipire A, Xia L, Halike X, Yuan P, Sulayman M, Wang W, Li J. Marchantia polymorpha L. ethanol extract induces apoptosis in hepatocellular carcinoma cells via intrinsic- and endoplasmic reticulum stress-associated pathways. Chin Med 2021; 16:94. [PMID: 34583719 PMCID: PMC8477563 DOI: 10.1186/s13020-021-00504-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/12/2021] [Indexed: 12/24/2022] Open
Abstract
Background Marchantia polymorpha L. is a kind of Chinese herbal medicine and has various biological activities including antioxidant and antifungal. However, it is not clear about the antitumor effect and mechanism of M. polymorpha. We prepared M. polymorpha ethanol extract (MPEE) and investigated its antitumor effect on hepatocellular carcinoma cells both in vitro and in vivo. Methods The viability of hepatocellular carcinoma cells was detected by MTT assay. The distribution of cell cycle was analyzed by propidium iodide (PI) staining. The morphology of nuclei was observed by Hoechst 33258 staining. Apoptosis was detected by Annexin V/PI staining. JC-1 fluorescent probe and DCFH-DA were used to detect the mitochondrial membrane potential (ΔψM) and the level of reactive oxygen species (ROS), respectively. Caspase inhibitors were used to test the function of caspase in the induction of apoptosis. Quantitative real time polymerase chain reaction (qRT-PCR) and Western blot were used to evaluate the levels of mRNA and protein, respectively. Differentially expressed genes and signaling pathways were identified by transcriptome analysis. The H22 tumor mouse model was used to detect the antitumor effect of the extract. Results MPEE significantly suppressed the migration and growth of BEL-7404, HepG2 and H22 cells in a dose- and time-dependent manner through induction of apoptosis characterized by chromosomal condensation and cell cycle arrest at G0/G1 and G2/M phases. MPEE induced mitochondria-dependent apoptosis via upregulation of Bax and downregulation of Bcl-2 to reduce mitochondrial membrane potential and increase the release of cytochrome c. The levels of cleaved caspase-8 and -9 were significantly increased, which sequentially activated caspase-3 to cleave PARP. We further found that MPEE significantly increased ROS production and activated endoplasmic reticulum (ER) stress associated-apoptotic signaling pathway. Moreover, MPEE significantly inhibited H22 tumor growth in mouse model and improved the survival of tumor mice. Conclusion These results suggested that MPEE suppressed hepatocellular carcinoma cell growth through induction of apoptosis via intrinsic- and ER stress-associated pathways. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00504-4.
Collapse
Affiliation(s)
- Fangfang Zhou
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Adila Aipire
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Lijie Xia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Xierenguli Halike
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Pengfei Yuan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Mamtimin Sulayman
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Weilan Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China.
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China.
| |
Collapse
|
50
|
Abashkin V, Pędziwiatr-Werbicka E, Gómez R, de la Mata FJ, Dzmitruk V, Shcharbin D, Bryszewska M. Prospects of Cationic Carbosilane Dendronized Gold Nanoparticles as Non-viral Vectors for Delivery of Anticancer siRNAs siBCL-xL and siMCL-1. Pharmaceutics 2021; 13:1549. [PMID: 34683842 PMCID: PMC8540611 DOI: 10.3390/pharmaceutics13101549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer is one of the most important problems of modern medicine. At the present time, gene therapy has been developed against cancer, which includes the delivery of anticancer small interfering RNAs (siRNAs) directed at cancer proteins. The prospect of creating drugs based on RNA interference implies the use of delivery systems. Metal nanoparticles are the most studied objects for medicine, including their application as non-viral vectors. We have synthesized gold nanoparticles (AuNPs) modified with cationic carbosilane dendrons of 1-3 generations, with a positive charge on the surface, gold nanoparticles can effectively bind small interfering RNAs. Using a photometric viability test and flow cytometry, we assessed the ability of dendronized gold nanoparticles in delivering siRNAs to tumor cells. The efficiency of the complexes in initiating apoptosis was measured and, also, the overall effect of proapoptotic siRNA on cells. AuNP15 has both the highest efficacy and toxicity. The delivery efficiency in suspension cell lines was 50-60%. Complexes with targeted siRNA decreased cell viability by 20% compared to control and initiated apoptosis.
Collapse
Affiliation(s)
- Viktar Abashkin
- Institute of Biophysics and Cell Engineering of NASB, 27 Akademicheskaya St., 220072 Minsk, Belarus;
| | - Elżbieta Pędziwiatr-Werbicka
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; (E.P.-W.); (M.B.)
| | - Rafael Gómez
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28871 Alcalá de Henares, Spain; (R.G.); (F.J.d.l.M.)
- Institute “Ramón y Cajal” for Health Research (IRYCIS), 28034 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Francisco Javier de la Mata
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28871 Alcalá de Henares, Spain; (R.G.); (F.J.d.l.M.)
- Institute “Ramón y Cajal” for Health Research (IRYCIS), 28034 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Volha Dzmitruk
- Center of Molecular Structure, Institute of Biotechnology CAS, 595 Průmyslová St., 252 50 Vestec, Czech Republic;
| | - Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of NASB, 27 Akademicheskaya St., 220072 Minsk, Belarus;
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; (E.P.-W.); (M.B.)
| |
Collapse
|