1
|
Molinari S, Nicolosi ML, Selicorni A, Fossati C, Lattuada M, Bellani I, Arcuti F, Carnevale R, Biondi A, Balduzzi A, Cattoni A. Moebius syndrome and hypopituitarism: a case of multiple pituitary hormone deficiency and revision of the literature. J Pediatr Endocrinol Metab 2025; 38:421-428. [PMID: 39846147 DOI: 10.1515/jpem-2024-0494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/10/2025] [Indexed: 01/24/2025]
Abstract
OBJECTIVES Moebius syndrome (MS) is a rare congenital non-progressive rhombencephalic disorder mostly characterised by abducens and facial nerve palsy, but with a multifaceted clinical presentation. Isolated or multiple pituitary hormone deficiencies in the setting of MS have been occasionally reported, but the simultaneous involvement of three or more hypothalamic-pituitary axes has never been described. We hereby report the case of a girl with MS that showed a co-occurrence of GH-, TSH- and ACTH-deficiency. In addition, we provide a systematic revision of all the published cases of hypopituitarism among patients with MS. CASE PRESENTATION A 6-year-old patient with a MS was referred to our outpatient clinic for faltering growth. The combination of stature below -3.0 SDS, impaired height velocity and pathological response to two GH-stimulation tests prompted the diagnosis of GH deficiency and therefore recombinant human GH was undertaken. Brain MRI highlighted a thin infundibular stalk. By the age of 10 years, she started to complain progressive fatigue and the co-occurrence of remarkably decreased fT4 levels in the setting of non-increased TSH led to diagnose central hypothyroidism. Accordingly, she was started on levothyroxine replacement therapy with timely clinical improvement. At the age of 11.3 years, recurrent symptoms consistent with morning hypoglycaemia prompted the prescription of a low-dose ACTH test, that confirmed an ACTH deficiency, in the setting of a multiple pituitary hormonal impairment. CONCLUSIONS Patients with MS are potentially at risk for either isolated or multiple pituitary hormones deficiency. Clinicians should lower the threshold for prescribing a dedicated endocrine assessment.
Collapse
Affiliation(s)
- Silvia Molinari
- Pediatrics, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | | | | | - Chiara Fossati
- Pediatrics, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Martina Lattuada
- Pediatrics, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Iacopo Bellani
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Federica Arcuti
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Riccardo Carnevale
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Andrea Biondi
- Pediatrics, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Adriana Balduzzi
- Pediatrics, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Alessandro Cattoni
- Pediatrics, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
2
|
Santoro C, Aiello F, Farina A, Miraglia del Giudice E, Pascarella F, Licenziati MR, Improda N, Piluso G, Torella A, Del Vecchio Blanco F, Cirillo M, Nigro V, Grandone A. A Novel Missense Variant in LHX4 in Three Children with Multiple Pituitary Hormone Deficiency Belonging to Two Unrelated Families and Contribution of Additional GLI2 and IGFR1 Variant. CHILDREN (BASEL, SWITZERLAND) 2025; 12:364. [PMID: 40150646 PMCID: PMC11941417 DOI: 10.3390/children12030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Multiple genes can disrupt hypothalamic-pituitary axis development, causing multiple pituitary hormone deficiencies (MPHD). Despite advances in next-generation sequencing (NGS) identifying over 30 key genes, 85% of cases remain unsolved, indicating complex genotype-phenotype correlations and variable inheritance patterns. OBJECTIVE This study aimed to identify the MPHD genetics in three probands from two unrelated families. METHODS Family A had one affected child, while Family B had two affected siblings. All probands exhibited poor growth since birth, and family B's probands were born small for gestational age. Growth hormone deficiency was confirmed in all subjects. Family B's probands responded poorly to growth hormone treatment compared to the first patient. Furthermore, Family A's proband and Family B's younger sibling developed central hypothyroidism, while Family B's older sibling presented hypogonadotropic hypogonadism. Brain magnetic resonance imaging (MRI) revealed pituitary hypoplasia, ectopic posterior pituitary gland, and small sella turcica in all probands. Patients and their available relatives underwent NGS. RESULTS NGS identified the same novel and likely pathogenic LHX4 variant (c.481C>G) in all probands despite the families being unrelated. Additionally, Family A's proband carried a GLI2 variant (c.2105C>A), and Family B's probands carried an IGF1R variant (c.166G>A), both interpreted as being of uncertain significance. CONCLUSIONS This study confirms that heterozygous pathogenic variants of LHX4 can cause MPHD associated with a specific neuroradiological triad of abnormalities despite incomplete penetrance and variable phenotype. Moreover, the co-occurrence of the other two gene variants was debated. The IGF1R variant could explain the unusually poor response to growth hormone therapy in Family B, suggesting an oligogenic mechanism underlying the phenotype.
Collapse
Affiliation(s)
- Claudia Santoro
- Department of Child, Woman, General and Specialized Surgery, University of Campania “L. Vanvitelli”, L. De Crecchio 4 Street, 80138 Naples, Italy; (C.S.); (E.M.d.G.); (A.G.)
| | - Francesca Aiello
- Department of Child, Woman, General and Specialized Surgery, University of Campania “L. Vanvitelli”, L. De Crecchio 4 Street, 80138 Naples, Italy; (C.S.); (E.M.d.G.); (A.G.)
| | - Antonella Farina
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Sant’Andrea delle Dame Square L. De Crecchio 7 Street, 80138 Naples, Italy; (A.F.); (G.P.); (A.T.); (F.D.V.B.); (V.N.)
| | - Emanuele Miraglia del Giudice
- Department of Child, Woman, General and Specialized Surgery, University of Campania “L. Vanvitelli”, L. De Crecchio 4 Street, 80138 Naples, Italy; (C.S.); (E.M.d.G.); (A.G.)
| | - Filomena Pascarella
- Pediatric Endocrinology Unit, Sant’Anna e San Sebastiano Hospital, Palasciano Street, 81100 Caserta, Italy
| | - Maria Rosaria Licenziati
- Neuro-Endocrine Diseases and Obesity Unit, Department of Neurosciences, Santobono-Pausilipon Children’s Hospital, Via Egiziaca a Forcella, 18, 80139 Naples, Italy; (M.R.L.); (N.I.)
| | - Nicola Improda
- Neuro-Endocrine Diseases and Obesity Unit, Department of Neurosciences, Santobono-Pausilipon Children’s Hospital, Via Egiziaca a Forcella, 18, 80139 Naples, Italy; (M.R.L.); (N.I.)
| | - Giulio Piluso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Sant’Andrea delle Dame Square L. De Crecchio 7 Street, 80138 Naples, Italy; (A.F.); (G.P.); (A.T.); (F.D.V.B.); (V.N.)
| | - Annalaura Torella
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Sant’Andrea delle Dame Square L. De Crecchio 7 Street, 80138 Naples, Italy; (A.F.); (G.P.); (A.T.); (F.D.V.B.); (V.N.)
| | - Francesca Del Vecchio Blanco
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Sant’Andrea delle Dame Square L. De Crecchio 7 Street, 80138 Naples, Italy; (A.F.); (G.P.); (A.T.); (F.D.V.B.); (V.N.)
| | - Mario Cirillo
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Sant’Andrea delle Dame Square, 80138 Naples, Italy;
- MRI Research Center SUN-FISM, University of Campania “Luigi Vanvitelli”, Sant’Andrea delle Dame Square, 80138 Naples, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Sant’Andrea delle Dame Square L. De Crecchio 7 Street, 80138 Naples, Italy; (A.F.); (G.P.); (A.T.); (F.D.V.B.); (V.N.)
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Anna Grandone
- Department of Child, Woman, General and Specialized Surgery, University of Campania “L. Vanvitelli”, L. De Crecchio 4 Street, 80138 Naples, Italy; (C.S.); (E.M.d.G.); (A.G.)
| |
Collapse
|
3
|
Nguyen HT, Nguyen KN, Dien TM, Can TBN, Nguyen TTN, Lien NTK, Tung NV, Xuan NT, Tao NT, Nguyen NL, Tran VK, Mai TTC, Tran VA, Nguyen HH, Vu CD. Identification of POU1F1 Variants in Vietnamese Patients with Combined Pituitary Hormone Deficiency. Int J Mol Sci 2025; 26:2406. [PMID: 40141050 PMCID: PMC11941804 DOI: 10.3390/ijms26062406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Hypopituitarism is a condition characterized by the deficiency of several hormones produced by the pituitary gland. Genetic factors play an important role. Variants in the POU1F1 gene are associated with combined pituitary hormone deficiency 1 (CPHD1), which manifests as deficiencies in growth hormone (GH), thyroid-stimulating hormone (TSH), and prolactin (PRL). This study aimed to analyze the phenotype, genotype, treatment, and outcomes of Vietnamese patients with deficiency. Six patients from five unrelated families, initially diagnosed with hypopituitarism, were enrolled in this study. Data on physical characteristics, biochemical tests, treatment, outcomes, and follow-up were collected. Exome sequencing and Sanger sequencing were conducted to identify disease-causing variants in five probands and their families. All six patients exhibited anterior pituitary hypoplasia on brain magnetic resonance imaging and presented with TSH, GH, and PRL deficiencies. Exome sequencing identified three variants in the POU1F1 gene: c.428G>A p.(Arg143Gln), c.557T>G p.(Leu186Arg), and c.811C>T p.(Arg271Trp). The c.811C>T p.(Arg271Trp) variant was found in three patients, while c.557T>G p.(Leu186Arg) is a novel variant. Based on the ACMG classification, these variants were categorized as likely pathogenic or pathogenic variants. All patients were definitively diagnosed with CPHD1 caused by POU1F1 variants. All patients received levothyroxine and recombinant human growth hormone (rhGH) replacement therapy, leading to considerable growth. During the first year of treatment, all patients showed excellent growth response, with height increases ranging from 11 to 24 cm. After three years of treatment, two patients achieved normal height. One of the six patients developed scoliosis during treatment, which resolved after a one-year pause in rhGH therapy. Upon resuming treatment, no recurrence of scoliosis was observed. Our findings reveal the importance of early hormone testing and genetic analysis in improving the care and outcomes for patients with combined pituitary hormone deficiency.
Collapse
Affiliation(s)
- Ha Thu Nguyen
- Hanoi Medical University, 1st Ton That Tung Street, Hanoi 11521, Vietnam; (H.T.N.); (K.N.N.); (T.T.C.M.); (V.A.T.)
- Center of Endocrinology, Metabolism, Genetic/Genomics and Molecular Therapy, Vietnam National Children’s Hospital, 18/879 La Thanh, Dong Da, Hanoi 11512, Vietnam;
| | - Khanh Ngoc Nguyen
- Hanoi Medical University, 1st Ton That Tung Street, Hanoi 11521, Vietnam; (H.T.N.); (K.N.N.); (T.T.C.M.); (V.A.T.)
- Center of Endocrinology, Metabolism, Genetic/Genomics and Molecular Therapy, Vietnam National Children’s Hospital, 18/879 La Thanh, Dong Da, Hanoi 11512, Vietnam;
| | - Tran Minh Dien
- Vietnam National Children’s Hospital, 18/879 La Thanh, Dong Da, Hanoi 11512, Vietnam;
| | - Thi Bich Ngoc Can
- Center of Endocrinology, Metabolism, Genetic/Genomics and Molecular Therapy, Vietnam National Children’s Hospital, 18/879 La Thanh, Dong Da, Hanoi 11512, Vietnam;
| | - Thi Thanh Ngan Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Hanoi 10072, Vietnam; (T.T.N.N.); (N.T.K.L.); (N.V.T.); (N.T.X.); (N.T.T.)
| | - Nguyen Thi Kim Lien
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Hanoi 10072, Vietnam; (T.T.N.N.); (N.T.K.L.); (N.V.T.); (N.T.X.); (N.T.T.)
| | - Nguyen Van Tung
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Hanoi 10072, Vietnam; (T.T.N.N.); (N.T.K.L.); (N.V.T.); (N.T.X.); (N.T.T.)
| | - Nguyen Thi Xuan
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Hanoi 10072, Vietnam; (T.T.N.N.); (N.T.K.L.); (N.V.T.); (N.T.X.); (N.T.T.)
| | - Nguyen Thien Tao
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Hanoi 10072, Vietnam; (T.T.N.N.); (N.T.K.L.); (N.V.T.); (N.T.X.); (N.T.T.)
| | - Ngoc Lan Nguyen
- Center for Gene and Protein Research, Hanoi Medical University, 1st Ton That Tung Street, Hanoi 11521, Vietnam; (N.L.N.); (V.K.T.)
| | - Van Khanh Tran
- Center for Gene and Protein Research, Hanoi Medical University, 1st Ton That Tung Street, Hanoi 11521, Vietnam; (N.L.N.); (V.K.T.)
| | - Tran Thi Chi Mai
- Hanoi Medical University, 1st Ton That Tung Street, Hanoi 11521, Vietnam; (H.T.N.); (K.N.N.); (T.T.C.M.); (V.A.T.)
| | - Van Anh Tran
- Hanoi Medical University, 1st Ton That Tung Street, Hanoi 11521, Vietnam; (H.T.N.); (K.N.N.); (T.T.C.M.); (V.A.T.)
| | - Huy Hoang Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Hanoi 10072, Vietnam; (T.T.N.N.); (N.T.K.L.); (N.V.T.); (N.T.X.); (N.T.T.)
| | - Chi Dung Vu
- Hanoi Medical University, 1st Ton That Tung Street, Hanoi 11521, Vietnam; (H.T.N.); (K.N.N.); (T.T.C.M.); (V.A.T.)
- Center of Endocrinology, Metabolism, Genetic/Genomics and Molecular Therapy, Vietnam National Children’s Hospital, 18/879 La Thanh, Dong Da, Hanoi 11512, Vietnam;
| |
Collapse
|
4
|
Caputo M, Pigni S, Mele C, Pitino R, Marzullo P, Prodam F, Aimaretti G. The history of an effective, specific and sensitive diagnostic test: the GHRH test in clinical practice. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09938-1. [PMID: 39681762 DOI: 10.1007/s11154-024-09938-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/10/2024] [Indexed: 12/18/2024]
Abstract
Growth hormone (GH) secretion is pulsatile, entropic, and nycthemeral and is mainly controlled by the hypothalamus through two neurohormones, the stimulating growth hormone releasing hormone (GHRH) and the inhibiting somatostatin. Shortly after its discovery and synthesis, GHRH was intensely investigated diagnostically to define GH secretion. The nascent enthusiasm for using GHRH as a single diagnostic tool to investigate GH deficiency (GHD) dropped down quickly due to a flawed reproducibility. The subsequent combinatory use of molecules implicated in GH secretion through inhibition of the somatostatinergic tone, such as arginine (ARG), or the synthesis of receptor-orphan pharmaceutical compounds capable of stimulating pituitary somatotrophs to release GH, such as the GH secretagogues (GHSs), improved the reproducibility of GH response to GHRH alone, thus gaining access into the clinical practice by means of different diagnostic approaches. This review will focus on the history of the GHRH test, with main emphasis on GHRH plus ARG as a dynamic testing for the diagnosis of GHD. Our attention will extend crosswise from studies aimed at validating GHRH-based tests for the clinical practice, to address main pitfall conditions capable of affecting per se GH secretion, such as obesity, hypothalamic damage, and ageing. The history of GHRH test has been progressively dismantled due to the cease of its production for business reasons, opening a gap in the diagnostic workup of patients with GHD. In the urgency to seek further robust, safe, and validated diagnostic tests or tools, we hope to stimulate attention on a so important peptide for the health of our patients suffering from pituitary diseases.
Collapse
Affiliation(s)
- Marina Caputo
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Stella Pigni
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, (MI), Italy
| | - Chiara Mele
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Rosa Pitino
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Paolo Marzullo
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Flavia Prodam
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Gianluca Aimaretti
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy.
| |
Collapse
|
5
|
Mele C, Pigni S, Caputo M, Birtolo MF, Ciamparini C, Mazziotti G, Lania AGA, Marzullo P, Prodam F, Aimaretti G. Could low prolactin levels after radiotherapy predict the onset of hypopituitarism? Rev Endocr Metab Disord 2024; 25:1013-1025. [PMID: 39172174 PMCID: PMC11624224 DOI: 10.1007/s11154-024-09900-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Both local and external cranial radiotherapy (RT) can induce neurotoxicity and vascular damage of the hypothalamic-pituitary area, which can promote neuroendocrine alterations. While anterior pituitary insufficiency after RT has been extensively characterized, data on the effect of RT on prolactin (PRL) secretion are limited and heterogeneous, with different patterns of PRL behavior described in the literature. A progressive decline in PRL levels, reflecting a time-dependent, slowly evolving radiation-induced damage to the pituitary lactotroph cells has been reported. To date, the association between hypopituitarism and hypoprolactinemia in patients undergoing RT has not yet been fully investigated. The few available data suggest that lower PRL levels can predict an extent damage of the pituitary tissue and a higher degree of hypothalamic dysfunction. However, most studies on the effect of RT on pituitary function do not properly assess PRL secretion, as PRL deficiency is usually detected as part of hypopituitarism and not systematically investigated as an isolated disorder, which may lead to an underestimation of hypoprolactinemia after RT. In addition, the often-inadequate follow-up over a long period of time may contribute to the non-recognition of PRL deficiency after RT. Considering that hypoprolactinemia is associated with various metabolic complications, there is a need to define appropriate diagnostic and management criteria. Therefore, hypoprolactinemia should enter in the clinical investigation of patients at risk for hypopituitarism, mainly in those patients who underwent RT.
Collapse
Affiliation(s)
- Chiara Mele
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, Novara, 28100, Italy
| | - Stella Pigni
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
- Endocrinology, Diabetology and Medical Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, MI, Italy
| | - Marina Caputo
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Maria Francesca Birtolo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
- Endocrinology, Diabetology and Medical Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, MI, Italy
| | - Carola Ciamparini
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Gherardo Mazziotti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
- Endocrinology, Diabetology and Medical Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, MI, Italy
| | - Andrea Gerardo Antonio Lania
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
- Endocrinology, Diabetology and Medical Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, MI, Italy
| | - Paolo Marzullo
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, Novara, 28100, Italy
| | - Flavia Prodam
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Gianluca Aimaretti
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, Novara, 28100, Italy.
| |
Collapse
|
6
|
Zygmunt-Górska A, Wójcik M, Gilis-Januszewska A, Starmach A, Bik-Multanowski M, Starzyk JB. Comparison of clinical characteristics of a pediatric cohort with combined pituitary hormone deficiency caused by mutation of the PROP1 gene or of other origins. Hormones (Athens) 2024; 23:69-79. [PMID: 38147295 PMCID: PMC10847174 DOI: 10.1007/s42000-023-00510-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/09/2023] [Indexed: 12/27/2023]
Abstract
The most commonly identified genetic cause of combined pituitary hormone deficiency (CPHD) is PROP1 gene mutations. The aim of the study was to compare selected clinical features of patients with CPHD caused by variants of the PROP1 gene (CPHD-PROP1) and patients with inborn CPHD of other etiology (CPHD-nonPROP1). MATERIAL AND METHODS The retrospective analysis included childhood medical records of 74 patients (32 female) with CPHD, including 43 patients (23 female) with the mutation in the PROP1 gene. RESULTS Patients with CPHD-PROP1 compared to the CPHD-nonPROP1 presented with the following: significantly higher median birth weight (0.21 vs. - 0.29 SDS, p = 0.019), lower growth velocity within 3 years preceding growth hormone administration (- 2.7 vs. - 0.8 SDS, p < 0.001), higher mean maximal blood concentration of growth hormone within the stimulation process (1.2 vs. 1.08 ng/mL, p = 0.003), lower TSH (1.8 vs. 2.4 µIU/mL, p < 0.001), significantly lower prolactin concentrations (128 vs. 416.3 µIU/mL, p < 0.001), and less frequent typical signs of hypogonadism at birth in boys (n = 6; 30% vs. n = 12, 54%, p < 0.001). Secondary adrenal insufficiency was less frequent in CPHD-PROP1 (20 vs. 25 cases, p = 0.006) and occurred at a later age (13.4 vs. 10.4 years). MRI of the pituitary gland in CPHD-PROP1 revealed a small pituitary gland (21 cases), pituitary gland enlargement (eight cases), and one pituitary stalk interruption and posterior lobe ectopy, while it was normal in nine cases. CONCLUSION Patients with the PROP1 mutations present a clinical picture significantly different from that of other forms of congenital hypopituitarism. Certain specific clinical results may lead to the successful identification of children requiring diagnostics for the PROP1 gene mutation.
Collapse
Affiliation(s)
- Agata Zygmunt-Górska
- Department of Pediatric and Adolescent Endocrinology, University Children's Hospital in Cracow, Cracow, Poland
| | - Małgorzata Wójcik
- Department of Pediatric and Adolescent Endocrinology, University Children's Hospital in Cracow, Cracow, Poland.
- Department of Pediatric and Adolescent Endocrinology, Chair of Pediatrics, Pediatric Institute, Jagiellonian University Medical College, Ul. Wielicka 265, 30-663, Cracow, Poland.
| | | | - Anna Starmach
- Department of Pediatric and Adolescent Endocrinology, University Children's Hospital in Cracow, Cracow, Poland
- Department of Pediatric and Adolescent Endocrinology, Chair of Pediatrics, Pediatric Institute, Jagiellonian University Medical College, Ul. Wielicka 265, 30-663, Cracow, Poland
| | | | - Jerzy B Starzyk
- Department of Pediatric and Adolescent Endocrinology, University Children's Hospital in Cracow, Cracow, Poland
- Department of Pediatric and Adolescent Endocrinology, Chair of Pediatrics, Pediatric Institute, Jagiellonian University Medical College, Ul. Wielicka 265, 30-663, Cracow, Poland
| |
Collapse
|
7
|
Abstract
Endocrine pathology comprises a spectrum of disorders originating in various sites throughout the body. Some disorders affect endocrine glands, and others arise from endocrine cells that are dispersed in non-endocrine tissues. Endocrine cells can broadly be classified as neuroendocrine, steroidogenic, or thyroid follicular cells; these three families have distinct embryologic origins, morphologic structure, and biochemical hormone synthetic pathways. Lesions affecting the endocrine system include developmental abnormalities, inflammatory processes that can be infectious or autoimmune, hypofunction with atrophy or hyperfunction caused by hyperplasia secondary to pathology in other sites, and neoplasia of many types. Understanding endocrine pathology requires knowledge of both structure and function, including the biochemical signaling pathways that regulate hormone synthesis and secretion. Molecular genetics has clarified sporadic and hereditary disease that is common in this field.
Collapse
Affiliation(s)
- Sylvia L. Asa
- Department of Pathology, Institute of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University, 11100 Euclid Avenue, Room 204, Cleveland, OH 44106 USA
| | - Lori A. Erickson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55901 USA
| | - Guido Rindi
- Department of Life Sciences and Public Health, Section of Anatomic Pathology, Universita Cattolica del Sacro Cuore, Rome, Italy
- Department of Woman and Child Health Sciences and Public Health, Anatomic Pathology Unit, Fondazione Policlinico Universitario A. Gemelli – IRCCS, Largo A. Gemelli, 00168 Rome, Italy
- ENETS Center of Excellence, Rome, Italy
| |
Collapse
|
8
|
Gonigam RL, Weis KE, Ge X, Yao B, Zhang Q, Raetzman LT. Characterization of Somatotrope Cell Expansion in Response to GHRH in the Neonatal Mouse Pituitary. Endocrinology 2023; 164:bqad131. [PMID: 37616545 PMCID: PMC11009787 DOI: 10.1210/endocr/bqad131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/25/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023]
Abstract
In humans and mice, loss-of-function mutations in growth hormone-releasing hormone receptor (GHRHR) cause isolated GH deficiency. The mutant GHRHR mouse model, GhrhrLit/Lit (LIT), exhibits loss of serum GH, but also fewer somatotropes. However, how loss of GHRH signaling affects expansion of stem and progenitor cells giving rise to GH-producing cells is unknown. LIT mice and wild-type littermates were examined for differences in proliferation and gene expression of pituitary lineage markers by quantitative reverse transcription polymerase chain reaction and immunohistochemistry at postnatal day 5 (p5) and 5 weeks. At p5, the LIT mouse shows a global decrease in pituitary proliferation measured by proliferation marker Ki67 and phospho-histone H3. This proliferative defect is seen in a pituitary cell expressing POU1F1 with or without GH. SOX9-positive progenitors show no changes in proliferation in p5 LIT mice. Additionally, the other POU1F1 lineage cells are not decreased in number; rather, we observe an increase in lactotrope cell population as well as messenger RNA for Tshb and Prl. In the 5-week LIT pituitary, the proliferative deficit in POU1F1-expressing cells observed neonatally persists, while the number and proliferative proportion of SOX9 cells do not appear changed. Treatment of cultured pituitary explants with GHRH promotes proliferation of POU1F1-expressing cells, but not GH-positive cells, in a mitogen-activated protein kinase-dependent manner. These findings indicate that hypothalamic GHRH targets proliferation of a POU1F1-positive cell, targeted to the somatotrope lineage, to fine tune their numbers.
Collapse
Affiliation(s)
- Richard L Gonigam
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Karen E Weis
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Xiyu Ge
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Boyuan Yao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Qilin Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Lori T Raetzman
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
9
|
Öztürk AP, Yavas Abali Z, Aslanger AD, Bas F, Toksoy G, Karaman V, Bagirova G, Poyrazoglu S, Uyguner ZO, Darendeliler F. Phenotype-Genotype Correlations of GH1 Gene Variants in Patients with Isolated Growth Hormone Deficiency or Multiple Pituitary Hormone Deficiency. Horm Res Paediatr 2023; 97:126-133. [PMID: 37315542 PMCID: PMC11126197 DOI: 10.1159/000531113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/03/2023] [Indexed: 06/16/2023] Open
Abstract
INTRODUCTION Genetic forms of growth hormone deficiency (GHD) may occur as isolated GHD (IGHD) or as a component of multiple pituitary hormone deficiency (MPHD). This study aimed to present the clinical and molecular characteristics of patients with IGHD/MPHD due to the GH1 gene variants. METHODS A gene panel accommodating 25 genes associated with MPHD and short stature was used to search for small sequence variants. Multiplex ligation-dependent probe amplification was performed in patients with normal panel results to investigate gross deletion/duplications. Segregation in the family was performed by Sanger sequencing. RESULTS The GH1 gene variants were detected in 5 patients from four unrelated families. One patient had IGHD IA due to homozygous whole GH1 gene deletion and one had IGHD IB due to novel homozygous c.162C>G/p.(Tyr54*) variant. Two patients from a family had previously reported heterozygous c.291+1G>A/p.(?) variant in which clinical and genetic characteristics were compatible with IGHD II accompanying MPHD. One patient had clinical and laboratory characteristics of IGHD II with MPHD but the heterozygous c.468 C>T/p.(R160W) variant had conflicting results about the relationship with the phenotype. CONCLUSION Expanding our knowledge of the spectrum of GH1 gene variants by apprehending clinical and molecular data of more cases, helps to identify the genotype-phenotype correlation of IGHD/MPHD and the GH1 gene variants. These patients must be regularly followed up for the occurrence of additional pituitary hormone deficiencies.
Collapse
Affiliation(s)
- Ayşe Pınar Öztürk
- Department of Pediatric Endocrinology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Zehra Yavas Abali
- Institute of Health Sciences, Istanbul University, Istanbul, Turkey,
- Department of Pediatric Endocrinology, Pendik Research and Training Hospital, Marmara University, Istanbul, Turkey,
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey,
| | - Ayça Dilruba Aslanger
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Firdevs Bas
- Department of Pediatric Endocrinology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Güven Toksoy
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Volkan Karaman
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Gulandam Bagirova
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sukran Poyrazoglu
- Department of Pediatric Endocrinology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Zehra Oya Uyguner
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Feyza Darendeliler
- Department of Pediatric Endocrinology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
10
|
Franceschi R, Rivieri F, Novelli A, Ferretti D, Anesi A, Soffiati M, Porretti G, Maines E, Mucciolo M, Radetti G. Mosaicism of a novel variant in the ANKRD11 gene in a child with a mild KBG phenotype: A case report. World J Med Genet 2023; 11:21-27. [DOI: 10.5496/wjmg.v11.i2.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/03/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND KBG syndrome is likely underdiagnosed because of mild and non-specific features in some affected patients especially before the upper permanent central incisors eruption at about the age of 7-8 years. Somatic mosaicisms are usually recognized in the parents only after a typically affected son is diagnosed with KBG syndrome. We describe for the first time the mosaicism of a novel variant in a child with a mild KBG phenotype.
CASE SUMMARY Our patient presented at 24 mo of age with short stature, hand abnormalities, facial dysmorphism and mild developmental delay. Pituitary hypoplasia and central hypothyroidism were also detected. By next generation sequencing (NGS) analysis we found a novel deletion in the ANKRD11 gene (c.4880_4893del.), that can be classified as likely pathogenic for the syndrome, with the percentage of mutated allele of 36%. We considered this finding as causative of the mild and non-specific phenotype for KBG syndrome in our patient, as previously reported in adults. A heterozygous variant in HESX1 gene, classified as variant of uncertain significance, but suspected of causing pituitary hypoplasia and hormonal deficiency, was also found. The patient started levothyroxine and growth hormone treatment.
CONCLUSION The increased use of NGS analysis may expand the phenotypic spectrum of KBG syndrome because it allows genetic diagnosis of somatic mosaicisms also in children.
Collapse
Affiliation(s)
- Roberto Franceschi
- Department of Pediatrics, S. Chiara Hospital of Trento, APSS, Trento 38122, Italy
| | - Francesca Rivieri
- Genetic Unit, Laboratory of Clinical Pathology, Department of Laboratories, APSS, Trento 38122, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Ospedale Pediatrico Bambino Gesù, Rome 00165, Italy
| | - Daniele Ferretti
- Human Genetics Laboratory, Ospedale Pediatrico Bambino Gesù, Rome 00165, Italy
| | - Adriano Anesi
- Genetic Unit, Laboratory of Clinical Pathology, Department of Laboratories, APSS, Trento 38122, Italy
| | - Massimo Soffiati
- Department of Pediatrics, S. Chiara General Hospital, APSS, Trento 38122, Italy
| | - Giulia Porretti
- Department of Radiology, S. Chiara General Hospital, APSS, Trento 38122, Italy
| | - Evelina Maines
- Department of Pediatrics, S. Chiara General Hospital, APSS, Trento 38122, Italy
| | - Mafalda Mucciolo
- Human Genetics Laboratory, Ospedale Pediatrico Bambino Gesù, Rome 00165, Italy
| | - Giorgio Radetti
- Department of Pediatrics, General Hospital Bolzano, Marienklinik, Bolzano 39100, Italy
| |
Collapse
|
11
|
Case Report: A Detailed Phenotypic Description of Patients and Relatives with Combined Central Hypothyroidism and Growth Hormone Deficiency Carrying IGSF1 Mutations. Genes (Basel) 2022; 13:genes13040623. [PMID: 35456429 PMCID: PMC9024824 DOI: 10.3390/genes13040623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 12/10/2022] Open
Abstract
In recent years, variants in immunoglobulin superfamily member 1 (IGSF1) have been associated with congenital hypopituitarism. Initially, IGSF1 variants were only reported in patients with central hypothyroidism (CeH) and macroorchidism. Later on, IGSF1 variants were also reported in patients with additional endocrinopathies, sometimes without macroorchidism. We studied IGSF1 as a new candidate gene for patients with combined CeH and growth hormone deficiency (GHD). We screened 80 male and 14 female Dutch patients with combined CeH and GHD for variants in the extracellular region of IGSF1, and we report detailed biomedical and clinical data of index cases and relatives. We identified three variants in our patient cohort, of which two were novel variants of unknown significance (p.L570I and c.1765+37C>A). In conclusion, we screened 94 patients with CeH and GHD and found variants in IGSF1 of which p.L570I could be of functional relevance. We provide detailed phenotypic data of two boys with the p.C947R variant and their large family. The remarkable phenotype of some of the relatives sheds new light on the phenotypic spectrum of IGSF1 variants.
Collapse
|
12
|
Labello JH, Benedetti AFF, Azevedo BV, de Lima Jorge AA, Cescato VAS, Rosemberg S, Frasseto FP, Arnhold IJP, de Carvalho LRS. Cushing disease due to a somatic USP8 mutation in a patient with evolving pituitary hormone deficiencies due to a germline GH1 splicing variant. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2022; 66:104-111. [PMID: 35029852 PMCID: PMC9991035 DOI: 10.20945/2359-3997000000428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We present the unique case of an adult Brazilian woman with severe short stature due to growth hormone deficiency with a heterozygous G to T substitution in the donor splice site of intron 3 of the growth hormone 1 (GH1) gene (c.291+1G>T). In this autosomal dominant form of growth hormone deficiency (type II), exon 3 skipping results in expression of the 17.5 kDa isoform of growth hormone, which has a dominant negative effect over the bioactive isoform, is retained in the endoplasmic reticulum, disrupts the Golgi apparatus, and impairs the secretion of other pituitary hormones in addition to growth hormone deficiency. This mechanism led to the progression of central hypothyroidism in the same patient. After 5 years of growth and thyroid hormone replacement, at the age of 33, laboratory evaluation for increased weight gain revealed high serum and urine cortisol concentrations, which could not be suppressed with dexamethasone. Magnetic resonance imaging of the sella turcica detected a pituitary macroadenoma, which was surgically removed. Histological examination confirmed an adrenocorticotropic hormone (ACTH)-secreting pituitary macroadenoma. A ubiquitin-specific peptidase 8 (USP8) somatic pathogenic variant (c.2159C>G/p.Pro720Arg) was found in the tumor. In conclusion, we report progression of isolated growth hormone deficiency due to a germline GH1 variant to combined pituitary hormone deficiency followed by hypercortisolism due to an ACTH-secreting macroadenoma with a somatic variant in USP8 in the same patient. Genetic studies allowed etiologic diagnosis and prognosis of this unique case.
Collapse
Affiliation(s)
- Julia Haddad Labello
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Anna Flávia Figueredo Benedetti
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil.,Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Bruna Viscardi Azevedo
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Alexander Augusto de Lima Jorge
- Unidade de Endocrinologia Genética/LIM25, Hospital das Clínicas, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Valter Angelo Sperling Cescato
- Neurocirurgia Funcional, Instituto de Psiquiatria, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Sergio Rosemberg
- Departamento de Patologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Fernando Pereira Frasseto
- Departamento de Patologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Ivo Jorge Prado Arnhold
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Luciani Renata Silveira de Carvalho
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia e Metabologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil,
| |
Collapse
|
13
|
Allelic Variants in Established Hypopituitarism Genes Expand Our Knowledge of the Phenotypic Spectrum. Genes (Basel) 2021; 12:genes12081128. [PMID: 34440302 PMCID: PMC8394260 DOI: 10.3390/genes12081128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/06/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022] Open
Abstract
We report four allelic variants (three novel) in three genes previously established as causal for hypopituitarism or related disorders. A novel homozygous variant in the growth hormone gene, GH1 c.171delT (p.Phe 57Leufs*43), was found in a male patient with severe isolated growth hormone deficiency (IGHD) born to consanguineous parents. A hemizygous SOX3 allelic variant (p.Met304Ile) was found in a male patient with IGHD and hypoplastic anterior pituitary. YASARA, a tool to evaluate protein stability, suggests that p.Met304Ile destabilizes the SOX3 protein (ΔΔG = 2.49 kcal/mol). A rare, heterozygous missense variant in the TALE homeobox protein gene, TGIF1 (c.268C>T:p.Arg90Cys) was found in a patient with combined pituitary hormone deficiency (CPHD), diabetes insipidus, and syndromic features of holoprosencephaly (HPE). This variant was previously reported in a patient with severe holoprosencephaly and shown to affect TGIF1 function. A novel heterozygous TGIF1 variant (c.82T>C:p.Ser28Pro) was identified in a patient with CPHD, pituitary aplasia and ectopic posterior lobe. Both TGIF1 variants have an autosomal dominant pattern of inheritance with incomplete penetrance. In conclusion, we have found allelic variants in three genes in hypopituitarism patients. We discuss these variants and associated patient phenotypes in relation to previously reported variants in these genes, expanding our knowledge of the phenotypic spectrum in patient populations.
Collapse
|
14
|
Zervas A, Chrousos G, Livadas S. Snow White and the Seven Dwarfs: a fairytale for endocrinologists. Endocr Connect 2021; 10:R189-R199. [PMID: 33878729 PMCID: PMC8183629 DOI: 10.1530/ec-20-0615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022]
Abstract
'Snow White and the Seven Dwarfs', a fairytale that is widely known across the Western world, was originally written by the Brothers Grimm, and published in 1812 as 'Snow White'. Though each dwarf was first given an individual name in the 1912 Broadway play, in Walt Disney's 1937 film 'Snow White and the Seven Dwarfs', they were renamed, and the dwarfs have become household names. It is well known that myths, fables, and fairytales, though appearing to be merely children's tales about fictional magical beings and places, have, more often than not, originated from real facts. Therefore, the presence of the seven brothers with short stature in the story is, from an endocrinological point of view, highly intriguing, in fact, thrilling. The diversity of the phenotypes among the seven dwarfs is also stimulating, although puzzling. We undertook a differential diagnosis of their common underlying disorder based on the original Disney production's drawings and the unique characteristics of these little gentlemen, while we additionally evaluated several causes of short stature and, focusing on endocrine disorders that could lead to these clinical features among siblings, we have, we believe, been able to reveal the underlying disease depicted in this archetypal tale.
Collapse
Affiliation(s)
| | - George Chrousos
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Athens, Greece
- National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, Athens, Greece
| | - Sarantis Livadas
- Endocrine Unit, Athens Medical Centre, Athens, Greece
- Correspondence should be addressed to S Livadas:
| |
Collapse
|
15
|
Bosch i Ara L, Katugampola H, Dattani MT. Congenital Hypopituitarism During the Neonatal Period: Epidemiology, Pathogenesis, Therapeutic Options, and Outcome. Front Pediatr 2021; 8:600962. [PMID: 33634051 PMCID: PMC7902025 DOI: 10.3389/fped.2020.600962] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction: Congenital hypopituitarism (CH) is characterized by a deficiency of one or more pituitary hormones. The pituitary gland is a central regulator of growth, metabolism, and reproduction. The anterior pituitary produces and secretes growth hormone (GH), adrenocorticotropic hormone, thyroid-stimulating hormone, follicle-stimulating hormone, luteinizing hormone, and prolactin. The posterior pituitary hormone secretes antidiuretic hormone and oxytocin. Epidemiology: The incidence is 1 in 4,000-1 in 10,000. The majority of CH cases are sporadic; however, a small number of familial cases have been identified. In the latter, a molecular basis has frequently been identified. Between 80-90% of CH cases remain unsolved in terms of molecular genetics. Pathogenesis: Several transcription factors and signaling molecules are involved in the development of the pituitary gland. Mutations in any of these genes may result in CH including HESX1, PROP1, POU1F1, LHX3, LHX4, SOX2, SOX3, OTX2, PAX6, FGFR1, GLI2, and FGF8. Over the last 5 years, several novel genes have been identified in association with CH, but it is likely that many genes remain to be identified, as the majority of patients with CH do not have an identified mutation. Clinical manifestations: Genotype-phenotype correlations are difficult to establish. There is a high phenotypic variability associated with different genetic mutations. The clinical spectrum includes severe midline developmental disorders, hypopituitarism (in isolation or combined with other congenital abnormalities), and isolated hormone deficiencies. Diagnosis and treatment: Key investigations include MRI and baseline and dynamic pituitary function tests. However, dynamic tests of GH secretion cannot be performed in the neonatal period, and a diagnosis of GH deficiency may be based on auxology, MRI findings, and low growth factor concentrations. Once a hormone deficit is confirmed, hormone replacement should be started. If onset is acute with hypoglycaemia, cortisol deficiency should be excluded, and if identified this should be rapidly treated, as should TSH deficiency. This review aims to give an overview of CH including management of this complex condition.
Collapse
Affiliation(s)
- Laura Bosch i Ara
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Harshini Katugampola
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Mehul T. Dattani
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London, United Kingdom
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
16
|
Prodam F, Caputo M, Mele C, Marzullo P, Aimaretti G. Insights into non-classic and emerging causes of hypopituitarism. Nat Rev Endocrinol 2021; 17:114-129. [PMID: 33247226 DOI: 10.1038/s41574-020-00437-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
Hypopituitarism is defined as one or more partial or complete pituitary hormone deficiencies, which are related to the anterior and/or posterior gland and can have an onset in childhood or adulthood. The most common aetiology is a sellar or suprasellar lesion, often an adenoma, which causes hypopituitarism due to tumour mass effects, or the effects of surgery and/or radiation therapy. However, other clinical conditions, such as traumatic brain injury, and autoimmune and inflammatory diseases, can result in hypopituitarism, and there are also genetic causes of hypopituitarism. Furthermore, the use of immune checkpoint inhibitors to treat cancer is increasing the risk of hypopituitarism, with a pattern of hormone defects that is different from the classic patterns and depends on mechanisms that are specific for each drug. Moreover, autoantibody production against the pituitary and hypothalamus has been demonstrated in studies investigating the development or worsening of some cases of hypopituitarism. Finally, evidence suggests that posterior pituitary damage can affect oxytocin secretion. The aim of this Review is to summarize current knowledge on non-classic and emerging causes of hypopituitarism, so as to help clinicians improve early identification, avoid life-threatening events and improve the clinical care and quality of life of patients at risk of hypopituitarism.
Collapse
Affiliation(s)
- Flavia Prodam
- Endocrinology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Marina Caputo
- Endocrinology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Chiara Mele
- Endocrinology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Paolo Marzullo
- Endocrinology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- Division of General Medicine, I.R.C.C.S. Istituto Auxologico Italiano, Ospedale San Giuseppe, Verbania, Italy
| | - Gianluca Aimaretti
- Endocrinology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy.
| |
Collapse
|
17
|
Alesi V, Dentici ML, Genovese S, Loddo S, Bellacchio E, Orlando V, Di Tommaso S, Catino G, Calacci C, Calvieri G, Pompili D, Ubertini G, Dallapiccola B, Capolino R, Novelli A. Homozygous HESX1 and COL1A1 Gene Variants in a Boy with Growth Hormone Deficiency and Early Onset Osteoporosis. Int J Mol Sci 2021; 22:ijms22020750. [PMID: 33451138 PMCID: PMC7828579 DOI: 10.3390/ijms22020750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 11/21/2022] Open
Abstract
We report on a patient born to consanguineous parents, presenting with Growth Hormone Deficiency (GHD) and osteoporosis. SNP-array analysis and exome sequencing disclosed long contiguous stretches of homozygosity and two distinct homozygous variants in HESX1 (Q6H) and COL1A1 (E1361K) genes. The HESX1 variant was described as causative in a few subjects with an incompletely penetrant dominant form of combined pituitary hormone deficiency (CPHD). The COL1A1 variant is rare, and so far it has never been found in a homozygous form. Segregation analysis showed that both variants were inherited from heterozygous unaffected parents. Present results further elucidate the inheritance pattern of HESX1 variants and recommend assessing the clinical impact of variants located in C-terminal propeptide of COL1A1 gene for their potential association with rare recessive and early onset forms of osteoporosis.
Collapse
Affiliation(s)
- Viola Alesi
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146 Rome, Italy; (S.G.); (S.L.); (V.O.); (S.D.T.); (G.C.); (C.C.); (G.C.); (D.P.); (A.N.)
- Correspondence:
| | - Maria Lisa Dentici
- Medical Genetics Unit, Bambino Gesù Children Hospital, IRCCS, 00146 Rome, Italy; (M.L.D.); (B.D.); (R.C.)
| | - Silvia Genovese
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146 Rome, Italy; (S.G.); (S.L.); (V.O.); (S.D.T.); (G.C.); (C.C.); (G.C.); (D.P.); (A.N.)
| | - Sara Loddo
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146 Rome, Italy; (S.G.); (S.L.); (V.O.); (S.D.T.); (G.C.); (C.C.); (G.C.); (D.P.); (A.N.)
| | - Emanuele Bellacchio
- Department of Research Laboratories, Bambino Gesù Children Hospital, IRCCS, 00146 Rome, Italy;
| | - Valeria Orlando
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146 Rome, Italy; (S.G.); (S.L.); (V.O.); (S.D.T.); (G.C.); (C.C.); (G.C.); (D.P.); (A.N.)
| | - Silvia Di Tommaso
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146 Rome, Italy; (S.G.); (S.L.); (V.O.); (S.D.T.); (G.C.); (C.C.); (G.C.); (D.P.); (A.N.)
| | - Giorgia Catino
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146 Rome, Italy; (S.G.); (S.L.); (V.O.); (S.D.T.); (G.C.); (C.C.); (G.C.); (D.P.); (A.N.)
| | - Chiara Calacci
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146 Rome, Italy; (S.G.); (S.L.); (V.O.); (S.D.T.); (G.C.); (C.C.); (G.C.); (D.P.); (A.N.)
| | - Giusy Calvieri
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146 Rome, Italy; (S.G.); (S.L.); (V.O.); (S.D.T.); (G.C.); (C.C.); (G.C.); (D.P.); (A.N.)
| | - Daniele Pompili
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146 Rome, Italy; (S.G.); (S.L.); (V.O.); (S.D.T.); (G.C.); (C.C.); (G.C.); (D.P.); (A.N.)
| | | | - Bruno Dallapiccola
- Medical Genetics Unit, Bambino Gesù Children Hospital, IRCCS, 00146 Rome, Italy; (M.L.D.); (B.D.); (R.C.)
| | - Rossella Capolino
- Medical Genetics Unit, Bambino Gesù Children Hospital, IRCCS, 00146 Rome, Italy; (M.L.D.); (B.D.); (R.C.)
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146 Rome, Italy; (S.G.); (S.L.); (V.O.); (S.D.T.); (G.C.); (C.C.); (G.C.); (D.P.); (A.N.)
| |
Collapse
|
18
|
Yu C, Xie B, Zhao Z, Zhao S, Liu L, Cheng X, Li X, Cao B, Shao J, Chen J, Zhao H, Yan Z, Su C, Niu Y, Song Y, Wei L, Wang Y, Ren X, Fan L, Zhang B, Li C, Gui B, Zhang Y, Wang L, Chen S, Zhang J, Wu Z, Gong C, Fan X, Wu N. Whole Exome Sequencing Uncovered the Genetic Architecture of Growth Hormone Deficiency Patients. Front Endocrinol (Lausanne) 2021; 12:711991. [PMID: 34589056 PMCID: PMC8475633 DOI: 10.3389/fendo.2021.711991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/09/2021] [Indexed: 02/01/2023] Open
Abstract
PURPOSE Congenital growth hormone deficiency (GHD) is a rare and etiologically heterogeneous disease. We aim to screen disease-causing mutations of GHD in a relatively sizable cohort and discover underlying mechanisms via a candidate gene-based mutational burden analysis. METHODS We retrospectively analyzed 109 short stature patients associated with hormone deficiency. All patients were classified into two groups: Group I (n=45) with definitive GHD and Group II (n=64) with possible GHD. We analyzed correlation consistency between clinical criteria and molecular findings by whole exome sequencing (WES) in two groups. The patients without a molecular diagnosis (n=90) were compared with 942 in-house controls for the mutational burden of rare mutations in 259 genes biologically related with the GH axis. RESULTS In 19 patients with molecular diagnosis, we found 5 possible GHD patients received known molecular diagnosis associated with GHD (NF1 [c.2329T>A, c.7131C>G], GHRHR [c.731G>A], STAT5B [c.1102delC], HRAS [c.187_207dup]). By mutational burden analysis of predicted deleterious variants in 90 patients without molecular diagnosis, we found that POLR3A (p = 0.005), SUFU (p = 0.006), LHX3 (p = 0.021) and CREB3L4 (p = 0.040) represented top genes enriched in GHD patients. CONCLUSION Our study revealed the discrepancies between the laboratory testing and molecular diagnosis of GHD. These differences should be considered when for an accurate diagnosis of GHD. We also identified four candidate genes that might be associated with GHD.
Collapse
Affiliation(s)
- Chenxi Yu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bobo Xie
- Department of Pediatrics, The Second Affiliated Hospital of Guangxi Medical University, Guangxi, China
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Guangxi, China
- Department of Pediatric Endocrine and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, China
| | - Zhengye Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Sen Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Lian Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Xi Cheng
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Xiaoxin Li
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Bingyan Cao
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Jiashen Shao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Jiajia Chen
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Hengqiang Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Zihui Yan
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Chang Su
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Yuchen Niu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yanning Song
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Liya Wei
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Yi Wang
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Xiaoya Ren
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Lijun Fan
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Beibei Zhang
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Chuan Li
- Department of Pediatrics, The Second Affiliated Hospital of Guangxi Medical University, Guangxi, China
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Guangxi, China
- Department of Pediatric Endocrine and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, China
| | - Baoheng Gui
- Department of Pediatrics, The Second Affiliated Hospital of Guangxi Medical University, Guangxi, China
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Guangxi, China
- Department of Pediatric Endocrine and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, China
| | - Yuanqiang Zhang
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lianlei Wang
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shaoke Chen
- Department of Pediatrics, The Second Affiliated Hospital of Guangxi Medical University, Guangxi, China
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Guangxi, China
- Department of Pediatric Endocrine and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, China
| | - Jianguo Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- *Correspondence: Nan Wu, ; Xin Fan, ; Chunxiu Gong, ; Zhihong Wu,
| | - Chunxiu Gong
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
- *Correspondence: Nan Wu, ; Xin Fan, ; Chunxiu Gong, ; Zhihong Wu,
| | - Xin Fan
- Department of Pediatrics, The Second Affiliated Hospital of Guangxi Medical University, Guangxi, China
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Guangxi, China
- Department of Pediatric Endocrine and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, China
- *Correspondence: Nan Wu, ; Xin Fan, ; Chunxiu Gong, ; Zhihong Wu,
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- *Correspondence: Nan Wu, ; Xin Fan, ; Chunxiu Gong, ; Zhihong Wu,
| |
Collapse
|
19
|
Kale S, Gada JV, Jadhav S, Lila AR, Sarathi V, Budyal S, Patt H, Goroshi MR, Thadani PM, Arya S, Kamble AA, Patil VA, Acharya S, Sankhe S, Shivane V, Raghavan V, Bandgar TR, Shah NS. Genetic spectrum and predictors of mutations in four known genes in Asian Indian patients with growth hormone deficiency and orthotopic posterior pituitary: an emphasis on regional genetic diversity. Pituitary 2020; 23:701-715. [PMID: 32894409 DOI: 10.1007/s11102-020-01078-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
CONTEXT Regional variation in prevalence of genetic mutations in growth hormone deficiency (GHD) is known. AIM Study phenotype and prevalence of mutations in GH1, GHRHR, POU1F1, PROP1 genes in GHD cohort. METHODS One hundred and two patients {Isolated GHD (IGHD): 79; combined pituitary hormone deficiency (CPHD): 23} with orthotopic posterior pituitary were included. Auxologic, hormonal and radiological details were studied. All four genes were analysed in IGHD patients. POU1F1 and PROP1 were studied in CPHD patients. RESULTS Of 102, 19.6% were familial cases. Height SDS, mean (SD) was - 5.14 (1.63). Peak GH, median (range) was 0.47 ng/ml (0-6.59), 72.5% patients had anterior pituitary hypoplasia (APH). Twenty mutations (novel: 11) were found in 43.1% patients (n = 44, IGHD-36, CPHD-8). GHRHR mutations (n = 32, p.Glu72* = 24) were more common than GH1 mutations (n = 4) in IGHD cohort. POU1F1 mutations (n = 6) were more common than PROP1 mutations (n = 2) in CPHD cohort. With few exceptions, this prevalence pattern is contrary to most studies in world-literature. No patients with peak GH > 4 ng/ml had mutations, signifying it as negative predictor. While many parameters were significant on univariate analysis, only positive family history and lower median peak GH levels were significant predictors of mutations on multivariate analysis in IGHD patients. CONCLUSION At variance with world literature, we found reverse predominance of GHRHR over GH1 mutations, POU1F1 over PROP1 mutations and predominance of GHRHR p.Glu72* mutations thus re-affirming the regional diversity in GHD genetics. We report positive and negative predictors of mutations in GHD.
Collapse
Affiliation(s)
- Shantanu Kale
- Department of Endocrinology, Seth G.S. Medical College & KEM Hospital, Parel, Mumbai, Maharashtra, 400012, India
| | - Jugal V Gada
- Department of Endocrinology, Topiwala National Medical College and BYL Nair Hospital, Mumbai, Maharashtra, India
| | - Swati Jadhav
- Department of Endocrinology, Seth G.S. Medical College & KEM Hospital, Parel, Mumbai, Maharashtra, 400012, India
| | - Anurag R Lila
- Department of Endocrinology, Seth G.S. Medical College & KEM Hospital, Parel, Mumbai, Maharashtra, 400012, India
| | - Vijaya Sarathi
- Department of Endocrinology, Vydehi Institute of Medical Sciences and Research Center, Bangalore, Karnataka, India
| | - Sweta Budyal
- Department of Endocrinology, Seth G.S. Medical College & KEM Hospital, Parel, Mumbai, Maharashtra, 400012, India
| | - Hiren Patt
- Department of Endocrinology, Seth G.S. Medical College & KEM Hospital, Parel, Mumbai, Maharashtra, 400012, India
| | | | - Puja M Thadani
- Department of Endocrinology, Seth G.S. Medical College & KEM Hospital, Parel, Mumbai, Maharashtra, 400012, India
| | - Sneha Arya
- Department of Endocrinology, Seth G.S. Medical College & KEM Hospital, Parel, Mumbai, Maharashtra, 400012, India
| | - Aparna A Kamble
- Department of Endocrinology, Seth G.S. Medical College & KEM Hospital, Parel, Mumbai, Maharashtra, 400012, India
| | - Virendra A Patil
- Department of Endocrinology, Seth G.S. Medical College & KEM Hospital, Parel, Mumbai, Maharashtra, 400012, India.
| | - Shrikrishna Acharya
- Department of Endocrinology, K S Hegde Medical Academy, Mangalore, Karnataka, India
| | - Shilpa Sankhe
- Department of Endocrinology, Seth G.S. Medical College & KEM Hospital, Parel, Mumbai, Maharashtra, 400012, India
| | - Vyankatesh Shivane
- Department of Endocrinology, Seth G.S. Medical College & KEM Hospital, Parel, Mumbai, Maharashtra, 400012, India
| | - Vijaya Raghavan
- Department of Endocrinology, Seth G.S. Medical College & KEM Hospital, Parel, Mumbai, Maharashtra, 400012, India
| | - Tushar R Bandgar
- Department of Endocrinology, Seth G.S. Medical College & KEM Hospital, Parel, Mumbai, Maharashtra, 400012, India
| | - Nalini S Shah
- Department of Endocrinology, Seth G.S. Medical College & KEM Hospital, Parel, Mumbai, Maharashtra, 400012, India
| |
Collapse
|
20
|
Bulut FD, Özdemir Dilek S, Kotan D, Mengen E, Gürbüz F, Yüksel B. Mutations Within the Transcription Factor PROP1 in a Cohort of Turkish Patients with Combined Pituitary Hormone Deficiency. J Clin Res Pediatr Endocrinol 2020; 12:261-268. [PMID: 31948187 PMCID: PMC7499144 DOI: 10.4274/jcrpe.galenos.2020.2019.0191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE Mutations of the genes encoding transcription factors which play important roles in pituitary morphogenesis, differentiation and maturation may lead to combined pituitary hormone deficiency (CPHD). PROP1 gene mutations are reported as the most frequent genetic aetiology of CHPD. The aim of this study was to describe the phenotypes of Turkish CPHD patients and define the frequency of PROP1 mutations. METHODS Fifty-seven CPHD patients from 50 families were screened for PROP1 mutations. The patients were affected by growth hormone (GH) and additional anterior pituitary hormone deficiencies. RESULTS All patients had GH deficiency. In addition, 98.2% had central hypothyroidism, 45.6% had hypogonadotropic hypogonadism, 43.8% had adrenocorticotropic hormone deficiency and 7.1% had prolactin deficiency. Parental consanguinity rate was 50.9% and 14 cases were familial. Mean height standard deviation score (SDS) and weight SDS were -3.8±1.4 and -3.1±2.0, respectively. Of 53 patients with available pituitary imaging, 32 (60.4%) showed abnormalities. None had extra-pituitary abnormalities. Eight index patients had PROP1 gene mutations. Five sporadic patients were homozygous for c.301_302delAG (p.Leu102CysfsTer8) mutation, two siblings had exon 2 deletion, two siblings had complete gene deletion and two siblings were homozygous for the novel c.353A>G (p.Q118R) mutation. The frequency of the PROP1 mutations was 16% in our cohort. Mutation rate was significantly higher in familial cases compared to sporadic cases (42.8% vs 11.6%; p<0.01). CONCLUSION Phenotype of patients regarding hormonal deficiencies, pituitary morphology, presence of extra-pituitary findings, family history of CPHD and parental consanguinity are important for deciding which pituitary transcription factor deficiency should be investigated. PROP1 mutation frequencies vary in different populations and its prevalence is high in Turkish CPHD patients.
Collapse
Affiliation(s)
- Fatma Derya Bulut
- Adana City Training and Research Hospital, Clinic of Pediatrics, Adana, Turkey,* Address for Correspondence: Adana City Training and Research Hospital, Clinic of Pediatrics, Adana, Turkey Phone: +90 532 743 27 18 E-mail:
| | - Semine Özdemir Dilek
- Çukurova University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology, Adana, Turkey
| | - Damla Kotan
- Çukurova University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology, Adana, Turkey
| | - Eda Mengen
- Ankara City Hospital, Children’s Hospital, Clinic of Pediatric Endocrinology, Ankara, Turkey
| | - Fatih Gürbüz
- Çukurova University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology, Adana, Turkey
| | - Bilgin Yüksel
- Çukurova University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology, Adana, Turkey
| |
Collapse
|
21
|
Fang X, Zhang Y, Cai J, Lu T, Hu J, Yuan F, Chen P. Identification of novel candidate pathogenic genes in pituitary stalk interruption syndrome by whole-exome sequencing. J Cell Mol Med 2020; 24:11703-11717. [PMID: 32864857 PMCID: PMC7579688 DOI: 10.1111/jcmm.15781] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 06/25/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022] Open
Abstract
Pituitary stalk interruption syndrome (PSIS) is a type of congenital malformation of the anterior pituitary, which leads to isolated growth hormone deficiency or multiple hypothalamic-pituitary deficiencies. Many genetic factors have been explored, but they only account for a minority of the genetic aetiology. To identify novel PSIS pathogenic genes, we conducted whole-exome sequencing with 59 sporadic PSIS patients, followed by filtering gene panels involved in pituitary development, holoprosencephaly and midline abnormality. A total of 81 heterozygous variants, distributed among 59 genes, were identified in 50 patients, with 31 patients carrying polygenic variants. Fourteen of the 59 pathogenic genes clustered to the Hedgehog pathway. Of them, PTCH1 and PTCH2, inhibitors of Hedgehog signalling, showed the most frequent heterozygous mutations (22%, seven missense and one frameshift mutations were identified in 13 patients). Moreover, five novel heterozygous null variants in genes including PTCH2 (p.S391fs, combined with p.L104P), Hedgehog acyltransferase (p.R280X, de novo), MAPK3 (p.H50fs), EGR4 (p.G22fs, combined with LHX4 p.S263N) and SPG11 (p.Q1624X), which lead to truncated proteins, were identified. In conclusion, genetic mutations in the Hedgehog signalling pathway might underlie the complex polygenic background of PSIS, and the findings of our study could extend the understanding of PSIS pathogenic genes.
Collapse
Affiliation(s)
- Xuqian Fang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuwen Zhang
- Department of Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialin Cai
- Clinical Research Center, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingwei Lu
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjie Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Yuan
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peizhan Chen
- Clinical Research Center, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Galazzi E, Persani LG. Differential diagnosis between constitutional delay of growth and puberty, idiopathic growth hormone deficiency and congenital hypogonadotropic hypogonadism: a clinical challenge for the pediatric endocrinologist. MINERVA ENDOCRINOL 2020; 45:354-375. [PMID: 32720501 DOI: 10.23736/s0391-1977.20.03228-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Differential diagnosis between constitutional delay of growth and puberty (CDGP), partial growth hormone deficiency (pGHD) and congenital hypogonadotropic hypogonadism (cHH) may be difficult. All these conditions usually present with poor growth in pre- or peri-pubertal age and they may recur within one familial setting, constituting a highly variable, but somehow common, spectrum of pubertal delay. EVIDENCE ACQUISITION Narrative review of the most relevant English papers published between 1981 and march 2020 using the following search terms "constitutional delay of growth and puberty," "central hypogonadism," "priming," "growth hormone deficiency," "pituitary," "pituitary magnetic resonance imaging," with a special regard to the latest scientific acquisitions. EVIDENCE SYNTHESIS CDGP is by far the most prevalent entity in boys and recurs within families. pGHD is a rare, often idiopathic and transient condition, where hypostaturism presents more severely. Specificity of pGHD diagnosis is increased by priming children before growth hormone stimulation test (GHST); pituitary MRI and genetic analysis are recommended to personalize future follow-up. Diagnosing cHH may be obvious when anosmia and eunuchoid proportions concomitate. However, cHH can either overlap with pGHD in forms of multiple pituitary hormone deficiencies (MPHD) or syndromic conditions either with CDGP in family pedigrees, so endocrine workup and genetic investigations are necessary. The use of growth charts, bone age, predictors of adult height, primed GHST and low dose sex steroids (LDSS) treatment are recommended. CONCLUSIONS Only a step-by-step diagnostic process based on appropriate endocrine and genetic markers together with LDSS treatment can help achieving the correct diagnosis and optimizing outcomes.
Collapse
Affiliation(s)
- Elena Galazzi
- Department of Endocrinology and Metabolic Diseases, IRCCS Auxologico Italian Institute, Milan, Italy -
| | - Luca G Persani
- Department of Endocrinology and Metabolic Diseases, IRCCS Auxologico Italian Institute, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
23
|
Firouzi M, Sherkatolabbasieh H, Shafizadeh S. Genetic Anomalies of Growth Hormone Deficiency in Pediatrics. Endocr Metab Immune Disord Drug Targets 2020; 21:288-297. [PMID: 32621723 DOI: 10.2174/1871530320666200704144912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/27/2020] [Accepted: 05/15/2020] [Indexed: 11/22/2022]
Abstract
Several different proteins regulate, directly or indirectly, the production of growth hormones from the pituitary gland, thereby complex genetics is involved. Defects in these genes are related to the deficiency of growth hormones solely, or deficiency of other hormones, secreted from the pituitary gland including growth hormones. These studies can aid clinicians to trace the pattern of the disease between the families, start early treatment and predict possible future consequences. This paper highlights some of the most common and novel genetic anomalies concerning growth hormones, which are responsible for various genetic defects in isolated growth and combined pituitary hormone deficiency disease.
Collapse
Affiliation(s)
- Majid Firouzi
- Department of Pediatrics, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Shiva Shafizadeh
- Department of Internal Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
24
|
Majewska KA, Kedzia A, Kontowicz P, Prauzinska M, Szydlowski J, Switonski M, Nowacka-Woszuk J. Polymorphism of the growth hormone gene GH1 in Polish children and adolescents with short stature. Endocrine 2020; 69:157-164. [PMID: 32338337 PMCID: PMC7343724 DOI: 10.1007/s12020-020-02305-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/04/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Short stature in children is a significant medical problem which, without proper diagnosis and treatment, can lead to long-term consequences for physical and psychological health in adult life. Since human height is a polygenic and highly heritable trait, numerous variants in the genes involved in growth-including the growth hormone (GH1) gene-have been identified as causes of short stature. METHODS In this study, we performed for the first time molecular analysis of the GH1 gene in a cohort (n = 186) of Polish children and adolescents with short stature, suffering from growth hormone deficiency (GHD) or idiopathic short stature (ISS), and a control cohort (n = 178). RESULTS Thirteen SNP variants were identified, including four missense variants, six in 5'UTR, and three in introns. The frequency of minor missense variants was low (<0.02) and similar in the compared cohorts. However, two of these variants, Ala39Val (rs151263636) and Arg42Leu (rs371953554), were found (heterozygote status) in only two GHD patients. These substitutions, according to databases, can potentially be deleterious. CONCLUSIONS Mutations of GH1 causing short stature are very rare in the Polish population, but two potentially causative variants need further studies in a larger cohort of GHD patients.
Collapse
Affiliation(s)
- Katarzyna Anna Majewska
- Department of Clinical Auxology and Pediatric Nursing, Poznan University of Medical Sciences, Szpitalna 27/33, Poznan, Poland
| | - Andrzej Kedzia
- Department of Clinical Auxology and Pediatric Nursing, Poznan University of Medical Sciences, Szpitalna 27/33, Poznan, Poland
| | - Przemyslaw Kontowicz
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland
| | - Magdalena Prauzinska
- Department of Pediatric Otolaryngology, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572, Poznan, Poland
| | - Jaroslaw Szydlowski
- Department of Pediatric Otolaryngology, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572, Poznan, Poland
| | - Marek Switonski
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland
| | - Joanna Nowacka-Woszuk
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland.
| |
Collapse
|
25
|
Bellastella G, Maiorino MI, Longo M, Cirillo P, Scappaticcio L, Vietri MT, Bellastella A, Esposito K, De Bellis A. Impact of Pituitary Autoimmunity and Genetic Disorders on Growth Hormone Deficiency in Children and Adults. Int J Mol Sci 2020; 21:ijms21041392. [PMID: 32092880 PMCID: PMC7073103 DOI: 10.3390/ijms21041392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/24/2022] Open
Abstract
Growth hormone (GH), mostly through its peripheral mediator, the insulin-like growth factor 1(IGF1), in addition to carrying out its fundamental action to promote linear bone growth, plays an important role throughout life in the regulation of intermediate metabolism, trophism and function of various organs, especially the cardiovascular, muscular and skeletal systems. Therefore, if a prepubertal GH secretory deficiency (GHD) is responsible for short stature, then a deficiency in adulthood identifies a nosographic picture classified as adult GHD syndrome, which is characterized by heart, muscle, bone, metabolic and psychic abnormalities. A GHD may occur in patients with pituitary autoimmunity; moreover, GHD may also be one of the features of some genetic syndromes in association with other neurological, somatic and immune alterations. This review will discuss the impact of pituitary autoimmunity on GHD and the occurrence of GHD in the context of some genetic disorders. Moreover, we will discuss some genetic alterations that cause GH and IGF-1 insensitivity and the arguments in favor and against the influence of GH/IGF-1 on longevity and cancer in the light of the papers on these issues that so far appear in the literature.
Collapse
Affiliation(s)
- Giuseppe Bellastella
- Unit of Endocrinology and Metabolic Diseases, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.B.); (M.I.M.); (M.L.)
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.C.); (L.S.); (K.E.)
| | - Maria Ida Maiorino
- Unit of Endocrinology and Metabolic Diseases, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.B.); (M.I.M.); (M.L.)
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.C.); (L.S.); (K.E.)
| | - Miriam Longo
- Unit of Endocrinology and Metabolic Diseases, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.B.); (M.I.M.); (M.L.)
| | - Paolo Cirillo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.C.); (L.S.); (K.E.)
| | - Lorenzo Scappaticcio
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.C.); (L.S.); (K.E.)
| | - Maria Teresa Vietri
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Antonio Bellastella
- Department of Cardiothoracic and Respiratory Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Katherine Esposito
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.C.); (L.S.); (K.E.)
- Unit of Diabetes, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Annamaria De Bellis
- Unit of Endocrinology and Metabolic Diseases, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.B.); (M.I.M.); (M.L.)
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.C.); (L.S.); (K.E.)
- Correspondence: ; Tel.: +39-0815665245
| |
Collapse
|
26
|
Adrenal insufficiency: Physiology, clinical presentation and diagnostic challenges. Clin Chim Acta 2020; 505:78-91. [PMID: 32035851 DOI: 10.1016/j.cca.2020.01.029] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 12/21/2022]
Abstract
Adrenal insufficiency (AI) is a serious condition, which can arise from pathology affecting the adrenal gland itself (primary adrenal insufficiency, PAI), hypothalamic or pituitary pathology (secondary adrenal insufficiency, SAI), or as a result of suppression of the hypothalamic-pituitaryadrenal (HPA) axis by exogenous glucocorticoid therapy (tertiary adrenal insufficiency, TAI). AI is associated with an increase in morbidity and mortality and a reduction in quality of life. In addition, the most common cause of PAI, autoimmune adrenalitis, may be associated with a variety of other autoimmune disorders. Untreated AI can present with chronic fatigue, weight loss and vulnerability to infection. The inability to cope with acute illness or infection can precipitate life-threatening adrenal crisis. It is therefore a critical diagnosis to make in a timely fashion, in order to institute appropriate management, aimed at reversing chronic ill health, preventing acute crises, and restoring quality of life. In this review, we will describe the normal physiology of the HPA axis and explain how knowledge of the physiology of this axis helps us understand the clinical presentation of AI, and forms the basis for the biochemical investigations which lead to the diagnosis of AI.
Collapse
|
27
|
Wang F, Han J, Shang X, Li G. Distinct pituitary hormone levels of 184 Chinese children and adolescents with multiple pituitary hormone deficiency: a single-centre study. BMC Pediatr 2019; 19:441. [PMID: 31722706 PMCID: PMC6854793 DOI: 10.1186/s12887-019-1819-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pituitary tumors and/or their treatment are associated with multiple pituitary hormone deficiency (MPHD) in adults, but the distinct pituitary hormone profile of MPHD in Chinese children and adolescents remains unclear. METHODS Patients with MPHD were divided into four groups according to their MRI results: 1) pituitary stalk interruption syndrome (PSIS); 2) hypoplasia; 3) normal; and 4) tumor survivor. RESULTS Among the 184 patients, 93 patients (50.5%) were with PSIS, 24 (13.0%) had hypoplastic pituitary gland, 10 (5.4%) patients were normal, and 57 (31.0%) were tumor survivors. There was an association between abnormal fetal position and PSIS (P ≤ 0.001). The CA/BA in PSIS, hypoplasia, normal, tumor survivor groups were 2.27 ± 1.05, 1.48 ± 0.39, 1.38 ± 0.57, 1.49 ± 0.33, and HtSDS were - 3.94 ± 1.39, - 2.89 ± 1.09, - 2.50 ± 1.05, - 1.38 ± 1.63. Patients in PSIS group had the largest CA/BA (P ≤ 0.001 vs. hypoplasia group, P = 0.009 vs. normal group, P ≤ 0.001 vs. tumor survivors) and lowest HtSDS (P ≤ 0.001 vs. hypoplasia group, P = 0.003 vs. normal group, P ≤ 0.001 vs. tumor survivors). The levels of TSH in the PSIS, hypoplasia, normal, and tumor survivor groups were 1.03 ± 1.08 (P = 0.149 vs. tumor survivors), 1.38 ± 1.47 (P = 0.045 vs. tumor survivors), 2.49 ± 1.53 (P < 0.001 vs. tumor survivors), and 0.76 ± 1.15 μIU/ml. The levels of GH peak in PSIS, hypoplasia, normal, tumor survivor groups were 1.37 ± 1.78, 1.27 ± 1.52, 3.36 ± 1.79, 0.53 ± 0.52 ng/ml and ACTH were 27.50 ± 20.72, 25.05 ± 14.64, 34.61 ± 59.35, 7.19 ± 8.63 ng/ml. Tumor survivors had the lowest levels of GH peak (P ≤ 0.001 vs. PSIS group, P = 0.002 vs. hypoplasia group, P ≤ 0.001 vs. normal group) and ACTH (all the P ≤ 0.001 vs. the other three groups). CONCLUSION The frequency of PSIS is high among children and adolescents with MPHD. The severity of hormone deficiencies in patients with MPHD was more important in the tumor survivor group compared with the other groups.
Collapse
Affiliation(s)
- Fengxue Wang
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, 9677 Jingshi Road, Jinan, 250014 Shandong China
| | - Jinyan Han
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, 9677 Jingshi Road, Jinan, 250014 Shandong China
| | - Xiaohong Shang
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, 9677 Jingshi Road, Jinan, 250014 Shandong China
| | - Guimei Li
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, 9677 Jingshi Road, Jinan, 250014 Shandong China
| |
Collapse
|
28
|
Zhang Y, Cui W, Yang H, Wang M, Yan H, Zhu H, Liu J, Qu L, Lan X, Pan C. A novel missense mutation (L280V) within POU1F1 gene strongly affects litter size and growth traits in goat. Theriogenology 2019; 135:198-203. [DOI: 10.1016/j.theriogenology.2019.06.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 12/24/2022]
|
29
|
Bajuk Studen K, Stefanija MA, Saveanu A, Barlier A, Brue T, Pfeifer M. Genetic analysis of adult Slovenian patients with combined pituitary hormone deficiency. Endocrine 2019; 65:379-385. [PMID: 31093944 DOI: 10.1007/s12020-019-01949-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 05/04/2019] [Indexed: 11/26/2022]
Abstract
PURPOSE Among genetic causes of combined pituitary hormone deficiency (CPHD), mutations of genes coding for transcription factors involved in pituitary development have been implicated. Congenital CPHD is a rare disease; therefore, it is important to expand the knowledge about incidence and regional distribution of specific mutations. The aim of this paper is to report results of genetic analyses of adult Slovenian patients with CPHD. METHODS Twenty-three adult Slovenian patients with early childhood onset CPHD were included in the study. Blood samples were collected through the GENHYPOPIT network to assess possible mutations of six genes (PROP1/HESX1/LHX4/LHX3/POU1F1) involved in the pituitary development following an established algorithm. RESULTS In seven out of 23 patients (30%) a specific mutation in genes encoding pituitary transcription factors was discovered. In five patients, two different mutations of the PROP1 gene (c.150delA and c.301-302delAG) were identified. One patient was heterozygous for a missense variant in the LHX4 gene. Additionally, one patient was positive for a mutation in the gene coding for prokineticin receptor-2. CONCLUSIONS Our study confirms that the two most common mutations of the PROP1 gene globally are also the most frequent mutations in the cohort of adult Slovenian patients with CHPD. Other mutations of pituitary transcription factor genes are extremely rare.
Collapse
Affiliation(s)
- Katica Bajuk Studen
- Department of Nuclear Medicine, University Medical Centre Ljubljana, Zaloška 7, 1000, Ljubljana, Slovenia.
| | - Magdalena Avbelj Stefanija
- Department of Pediatric Endocrinology, Diabetes and Metabolism, University Children's Hospital, University Medical Centre Ljubljana, Bohoriceva 20, 1000, Ljubljana, Slovenia
| | - Alexandru Saveanu
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Laboratory of Molecular Biology, Hôpital de la Conception, 13005, Marseille, France
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Marseille, France
| | - Anne Barlier
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Laboratory of Molecular Biology, Hôpital de la Conception, 13005, Marseille, France
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Centre de Référence des Maladies Rares de l'hypophyse HYPO, Department of Endocrinology, Hôpital de la Conception, 13005, Marseille, France
| | - Thierry Brue
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Centre de Référence des Maladies Rares de l'hypophyse HYPO, Department of Endocrinology, Hôpital de la Conception, 13005, Marseille, France
| | - Marija Pfeifer
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| |
Collapse
|
30
|
Coutinho E, Brandão CM, Lemos MC. Combined Pituitary Hormone Deficiency Caused by a Synonymous HESX1 Gene Mutation. J Clin Endocrinol Metab 2019; 104:2851-2854. [PMID: 30888394 DOI: 10.1210/jc.2019-00081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/13/2019] [Indexed: 02/05/2023]
Abstract
CONTEXT Mutations in the HESX1 gene can give rise to complex phenotypes that involve variable pituitary hormone deficiencies and other developmental defects. CASE DESCRIPTION A 14-year-old boy presented with short stature and delayed puberty and received a diagnosis of GH deficiency, central hypothyroidism, hypogonadotropic hypogonadism, and secondary adrenal insufficiency. He had anterior pituitary hypoplasia, ectopic posterior pituitary, and an interrupted pituitary stalk. Genetic studies uncovered a heterozygous variant in exon 2 of the HESX1 gene (c.219C>T; p.Ser73Ser). This single base change was predicted to be synonymous at the translational level but was shown to cause skipping of exon 2 in the RNA transcript. CONCLUSIONS This study of a patient with combined pituitary hormone deficiency revealed an unusual synonymous mutation of the HESX1 gene leading to abnormal RNA processing and indicates the importance of investigating silent variants that at first glance appear to be benign.
Collapse
Affiliation(s)
- Eduarda Coutinho
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | | | - Manuel Carlos Lemos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
31
|
Penta L, Bizzarri C, Panichi M, Novelli A, Lepri FR, Cappa M, Esposito S. Identification of a Novel PROP1 Mutation in a Patient with Combined Pituitary Hormone Deficiency and Enlarged Pituitary. Int J Mol Sci 2019; 20:ijms20081875. [PMID: 30988269 PMCID: PMC6515070 DOI: 10.3390/ijms20081875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 12/26/2022] Open
Abstract
Growth hormone deficiency (GHD) can be present from the neonatal period to adulthood and can be the result of congenital or acquired insults. In addition, GHD can be classified into two types: isolated growth hormone deficiency (IGHD) and combined pituitary hormone deficiency (CPHD). CPHD is a disorder characterized by impaired production of two or more anterior and/or posterior pituitary hormones. Many genes implicated in CPHD remain to be identified. Better genetic characterization will provide more information about the disorder and result in important genetic counselling because a number of patients with hypopituitarism represent familial cases. To date, PROP1 mutations represent the most common known genetic cause of CPHD both in sporadic and familial cases. We report a novel mutation in the PROP1 gene in an infant with CPHD and an enlarged pituitary gland. Close long-term follow-up will reveal other possible hormonal defects and pituitary involution.
Collapse
Affiliation(s)
- Laura Penta
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Carla Bizzarri
- Unit of Endocrinology and Diabetes, IRCCS Bambino Gesù Children's Hospital, Piazza Sant'Onofrio 4, 00165 Rome, Italy.
| | - Michela Panichi
- Unit of Pediatrics, Città di Castello Hospital, Via L. Angelini, 10, 06012 Città di Castello, Italy.
| | - Antonio Novelli
- Laboratory of Medical Genetics, IRCCS Bambino Gesù Children Hospital and Research Institute, Piazza Sant'Onofrio 4, 00165 Rome, Italy.
| | - Francesca Romana Lepri
- Laboratory of Medical Genetics, IRCCS Bambino Gesù Children Hospital and Research Institute, Piazza Sant'Onofrio 4, 00165 Rome, Italy.
| | - Marco Cappa
- Unit of Endocrinology and Diabetes, IRCCS Bambino Gesù Children's Hospital, Piazza Sant'Onofrio 4, 00165 Rome, Italy.
| | - Susanna Esposito
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| |
Collapse
|
32
|
Zhu H, Zhang Y, Bai Y, Yang H, Yan H, Liu J, Shi L, Song X, Li L, Dong S, Pan C, Lan X, Qu L. Relationship between SNPs of POU1F1 Gene and Litter Size and Growth Traits in Shaanbei White Cashmere Goats. Animals (Basel) 2019; 9:ani9030114. [PMID: 30934610 PMCID: PMC6466355 DOI: 10.3390/ani9030114] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/09/2019] [Accepted: 03/20/2019] [Indexed: 02/07/2023] Open
Abstract
POU (Pit-Oct-Unc) class 1 homeobox 1 (POU1F1, or Pit-1) is a transcription factor that directly regulates pituitary hormone-related genes, as well as affects the reproduction and growth in mammals. Thus, POU1F1 gene was investigated as a candidate gene for litter size and growth performance in goats. In the current study, using direct DNA sequencing, c.682G > T, c.723T > G and c.837T > C loci were genotyped in Shaanbei white cashmere (SBWC) goats (n = 609), but c.876 + 110T > C was monomorphic. Besides, the c.682G > T locus was first identified by HinfI (Haemophilus influenzae Rf) restriction endonuclease. Association analysis results showed that the c.682G > T, c.837T > C loci and diplotypes were significantly associated with goat litter size (p < 0.05). The positive genotypes were GT and TT for the two SNPs, respectively, and the optimal diplotype was H3H7 (GTTT-TTTT). On the other hand, the c.682G > T, c.723T > G and c.837T > C strongly affected growth traits and body measurement indexes in SBWC goats (p < 0.05). The positive genotypes or allele of these SNPs were GT, G and TT, respectively. Additionally, the goats with H3H7 diplotype also had a greater growth status than others (p < 0.05). Here, individuals with same genotype had both a better litter size and growth traits, showing a positive correlation between these economic traits. Meanwhile, the positive genotypes of four SNPs were combined to obtain the optimal diplotype, which was also H3H7. These SNPs, especially the diplotype, could be used for the genomic selection of excellent individuals with a greater litter size and better growth status in goat breeding.
Collapse
Affiliation(s)
- Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China.
- Life Science Research Center, Yulin University, Yulin 719000, China.
| | - Yanghai Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Yangyang Bai
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China.
- Life Science Research Center, Yulin University, Yulin 719000, China.
| | - Han Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Hailong Yan
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China.
- Life Science Research Center, Yulin University, Yulin 719000, China.
| | - Jinwang Liu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China.
- Life Science Research Center, Yulin University, Yulin 719000, China.
| | - Lei Shi
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China.
- Life Science Research Center, Yulin University, Yulin 719000, China.
| | - Xiaoyue Song
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China.
- Life Science Research Center, Yulin University, Yulin 719000, China.
| | - Longping Li
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China.
- Life Science Research Center, Yulin University, Yulin 719000, China.
| | - Shuwei Dong
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China.
- Life Science Research Center, Yulin University, Yulin 719000, China.
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China.
- Life Science Research Center, Yulin University, Yulin 719000, China.
| |
Collapse
|
33
|
Esmaiel NN, Fayez AG, Thomas MM, Khalaf RI, Salem SM, Ramadan A, Helwa I, Raouf HA, El-Bassyouni HT, Ismaeil S. The association of +1150A polymorphism with low GH level in isolated growth hormone deficiency (IGHD) patients. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2018.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Ahern S, Daniels M, Bhangoo A. LHX3 deficiency presenting in the United States with severe developmental delay in a child of Syrian refugee parents. Endocrinol Diabetes Metab Case Rep 2018; 2018:EDM180079. [PMID: 30481152 PMCID: PMC6280131 DOI: 10.1530/edm-18-0079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/30/2018] [Indexed: 02/02/2023] Open
Abstract
In this case report, we present a novel mutation in Lim-homeodomain (LIM-HD) transcription factor, LHX3, manifesting as combined pituitary hormone deficiency (CPHD). This female patient was originally diagnosed in Egypt during infancy with Diamond Blackfan Anemia (DBA) requiring several blood transfusions. Around 10 months of age, she was diagnosed and treated for central hypothyroidism. It was not until she came to the United States around two-and-a-half years of age that she was diagnosed and treated for growth hormone deficiency. Her response to growth hormone replacement on linear growth and muscle tone were impressive. She still suffers from severe global development delay likely due to delay in treatment of congenital central hypothyroidism followed by poor access to reliable thyroid medications. Her diagnosis of DBA was not confirmed after genetic testing in the United States and her hemoglobin normalized with hormone replacement therapies. We will review the patient's clinical course as well as a review of LHX3 mutations and the associated phenotype. Learning points: Describe an unusual presentation of undertreated pituitary hormone deficiencies in early life Combined pituitary hormone deficiency due to a novel mutation in pituitary transcription factor, LHX3 Describe the clinical phenotype of combined pituitary hormone deficiency due to LHX3 mutations.
Collapse
Affiliation(s)
- Susan Ahern
- Division of Endocrinology, UCLA School of Medicine, Ventura, California, USA
| | - Mark Daniels
- Division of Pediatric Endocrinology, Children's Hospital of Orange County, Orange, California, USA
| | - Amrit Bhangoo
- Division of Pediatric Endocrinology, Children's Hospital of Orange County, Orange, California, USA
| |
Collapse
|
35
|
Blum WF, Klammt J, Amselem S, Pfäffle HM, Legendre M, Sobrier ML, Luton MP, Child CJ, Jones C, Zimmermann AG, Quigley CA, Cutler GB, Deal CL, Lebl J, Rosenfeld RG, Parks JS, Pfäffle RW. Screening a large pediatric cohort with GH deficiency for mutations in genes regulating pituitary development and GH secretion: Frequencies, phenotypes and growth outcomes. EBioMedicine 2018; 36:390-400. [PMID: 30266296 PMCID: PMC6197701 DOI: 10.1016/j.ebiom.2018.09.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 11/28/2022] Open
Affiliation(s)
- Werner F Blum
- University Hospital for Children and Adolescents, University of Leipzig, Liebigstrasse 20a, 04103 Leipzig, Germany; Center of Child and Adolescent Medicine, Justus Liebig University, Feulgenstrasse 12, 35392 Giessen, Germany.
| | - Jürgen Klammt
- University Hospital for Children and Adolescents, University of Leipzig, Liebigstrasse 20a, 04103 Leipzig, Germany
| | - Serge Amselem
- Sorbonne Université, Inserm UMR_S933, Département de Génétique, Hôpital Trousseau, AP-HP, 75012 Paris, France
| | - Heike M Pfäffle
- University Hospital for Children and Adolescents, University of Leipzig, Liebigstrasse 20a, 04103 Leipzig, Germany
| | - Marie Legendre
- Sorbonne Université, Inserm UMR_S933, Département de Génétique, Hôpital Trousseau, AP-HP, 75012 Paris, France
| | - Marie-Laure Sobrier
- Sorbonne Université, Inserm UMR_S933, Département de Génétique, Hôpital Trousseau, AP-HP, 75012 Paris, France
| | - Marie-Pierre Luton
- Sorbonne Université, Inserm UMR_S933, Département de Génétique, Hôpital Trousseau, AP-HP, 75012 Paris, France
| | | | - Christine Jones
- Eli Lilly and Company, Werner-Reimers-Strasse 2-4, 61352 Bad Homburg, Germany
| | | | | | | | - Cheri L Deal
- University of Montreal and CHU Ste-Justine, Montreal, Canada
| | - Jan Lebl
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University, University Hospital Motol, V Uvalu 84, 150 06 Prague, 5, Czech Republic
| | - Ron G Rosenfeld
- Department of Pediatrics, Oregon Health and Science University, Portland, USA
| | - John S Parks
- Division of Pediatric Endocrinology and Diabetes, Emory University School of Medicine, 2015 Uppergate Dr, Atlanta, GA 30322, USA
| | - Roland W Pfäffle
- University Hospital for Children and Adolescents, University of Leipzig, Liebigstrasse 20a, 04103 Leipzig, Germany
| |
Collapse
|
36
|
A Large PROP1 Gene Deletion in a Turkish Pedigree. Case Rep Endocrinol 2018; 2018:2403430. [PMID: 30112224 PMCID: PMC6077661 DOI: 10.1155/2018/2403430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/13/2018] [Indexed: 12/30/2022] Open
Abstract
Pituitary-specific paired-like homeodomain transcription factor, PROP1, is associated with multiple pituitary hormone deficiency. Alteration of the gene encoding the PROP1 may affect somatotropes, thyrotropes, and lactotropes, as well as gonadotropes and corticotropes. We performed genetic analysis of PROP1 gene in a Turkish pedigree with three siblings who presented with short stature. Parents were first degree cousins. Index case, a boy, had somatotrope, gonadotrope, thyrotrope, and corticotrope deficiency. However, two elder sisters had somatotroph, gonadotroph, and thyrotroph deficiency and no corticotroph deficiency. On pituitary magnetic resonance, partial empty sella was detected with normal bright spot in all siblings. In genetic analysis, we found a gross deletion involving PROP1 coding region. In conclusion, we report three Turkish siblings with a gross deletion in PROP1 gene. Interestingly, although little boy with combined pituitary hormone deficiency has adrenocorticotropic hormone (ACTH) deficiency, his elder sisters with the same gross PROP1 deletion have no ACTH deficiency. This finding is in line with the fact that patients with PROP1 mutations may have different phenotype/genotype correlation.
Collapse
|
37
|
Abstract
Human growth is a very complex phenomenon influenced by genetic, hormonal, nutritional and environmental factors, from fetal life to puberty. Although the GH-IGF axis has a central role with specific actions on growth, numerous genes are involved in the control of stature. Genome-wide association studies have identified >600 variants associated with human height, still explaining only a small fraction of phenotypic variation. Since short stature in childhood is a common reason for referral, pediatric endocrinologists must be aware of the multifactorial and polygenic contributions to height. Multiple disorders characterized by growth failure of prenatal and/or postnatal onset due to single gene defects have been described. Their early diagnosis, facilitated by advances in genomic technologies, is of upmost importance for their clinical management and to provide genetic counseling. Here we review the current clinical and genetic information regarding different syndromes and hormone abnormalities with proportionate short stature as the main feature, and provide an update of the approach for diagnosis and management.
Collapse
Affiliation(s)
- Jesús Argente
- Full Professor of Pediatrics & Pediatric Endocrinology, Director, Department of Pediatrics, Universidad Autónoma de Madrid, Spain, Chairman, Department of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain, Centro de Investigación Biomédica en Red de fisiopatología de la obesidad y nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain, IMDEA Food Institute,CEIUAM+CSIC, Madrid, Spain.
| | - Luis A Pérez-Jurado
- Full Professor of Genetics. Genetics Unit, Universitat Pompeu Fabra, Barcelona, Spain, Hospital del Mar Research Institute (IMIM), Barcelona, Spain, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain, SA Clinical Genetics, Women's and Children's Hospital, North Adelaide, SA, Australia, Clinical Professor, University of Adelaide, SA, Australia
| |
Collapse
|
38
|
Crisafulli G, Aversa T, Zirilli G, De Luca F, Gallizzi R, Wasniewska M. Congenital hypopituitarism: how to select the patients for genetic analyses. Ital J Pediatr 2018; 44:47. [PMID: 29625578 PMCID: PMC5889615 DOI: 10.1186/s13052-018-0484-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/23/2018] [Indexed: 11/10/2022] Open
Affiliation(s)
- Giuseppe Crisafulli
- Department of Human Pathology in Adulthood and Childhood, University of Messina, Via Consolare Valeria, 98124, Messina, Italy
| | - Tommaso Aversa
- Department of Human Pathology in Adulthood and Childhood, University of Messina, Via Consolare Valeria, 98124, Messina, Italy
| | - Giuseppina Zirilli
- Department of Human Pathology in Adulthood and Childhood, University of Messina, Via Consolare Valeria, 98124, Messina, Italy
| | - Filippo De Luca
- Department of Human Pathology in Adulthood and Childhood, University of Messina, Via Consolare Valeria, 98124, Messina, Italy.
| | - Romina Gallizzi
- Department of Human Pathology in Adulthood and Childhood, University of Messina, Via Consolare Valeria, 98124, Messina, Italy
| | - Malgorzata Wasniewska
- Department of Human Pathology in Adulthood and Childhood, University of Messina, Via Consolare Valeria, 98124, Messina, Italy
| |
Collapse
|
39
|
Rotwein P. The New Genomics: What Molecular Databases Can Tell Us About Human Population Variation and Endocrine Disease. Endocrinology 2017; 158:2035-2042. [PMID: 28498917 PMCID: PMC7282473 DOI: 10.1210/en.2017-00338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/08/2017] [Indexed: 11/25/2022]
Abstract
Major recent advances in genetics and genomics present unique opportunities for enhancing our understanding of human physiology and disease predisposition. Here I demonstrate how analysis of genomic information can provide new insights into endocrine systems, using the human growth hormone (GH) signaling pathway as an illustrative example. GH is essential for normal postnatal growth in children, and plays important roles in other biological processes throughout life. GH actions are mediated by the GH receptor, primarily via the JAK2 protein tyrosine kinase and the STAT5B transcription factor, and inactivating mutations in this pathway all lead to impaired somatic growth. Variation in GH signaling genes has been evaluated using DNA sequence data from the Exome Aggregation Consortium, a compendium of information from >60,000 individuals. Results reveal many potential missense and other alterations in the coding regions of GH1, GHR, JAK2, and STAT5B, with most changes being uncommon. The total number of different alleles per gene varied by ~threefold, from 101 for GH1 to 338 for JAK2. Several known disease-linked mutations in GH1, GHR, and JAK2 were present but infrequent in the population; however, three amino acid changes in GHR were sufficiently prevalent (~4% to 44% of chromosomes) to suggest that they are not disease causing. Collectively, these data provide new opportunities to understand how genetically driven variability in GH signaling and action may modify human physiology and disease.
Collapse
Affiliation(s)
- Peter Rotwein
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech Health University Health Sciences Center, El Paso, Texas 79905
| |
Collapse
|