1
|
Toprak H, Toprak ŞS. Investigating the Effects of Metabolic and Bariatric Surgery on Systemic Immune-Inflammation Index and Its Relationship With Smoking. World J Surg 2025; 49:559-569. [PMID: 39916298 PMCID: PMC11903247 DOI: 10.1002/wjs.12499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 01/08/2025] [Accepted: 01/20/2025] [Indexed: 03/14/2025]
Abstract
PURPOSE The contribution of obesity to inflammation may play a role in the progression of obesity-associated medical problems. The systemic immune inflammation index (SII) has recently been identified as a prognostic indicator for many adverse conditions. The primary purpose of the present study was to investigate the effects of metabolic and bariatric surgeries on white blood cell (WBC), platelet (PLT), lymphocyte (LYN), neutrophil (NEU), neutrophil/lymphocyte (NLR), platelet/neutrophil (PLR), and systemic immune inflammation index (SII). The secondary aim was to evaluate the effects of sleeve gastrectomy (SG) and gastric bypass (GB) surgeries, the most commonly performed metabolic and bariatric procedures, on individual inflammation parameters and their relationship with smoking status. METHODS The blood inflammatory markers of the participants who underwent surgery were analyzed using the data evaluated during routine clinic follow-ups in the preoperative period and postoperative 1st, 3rd, 6th, and 12th months. RESULTS The primary result was a statistically significant decrease in WBC, NEU, NLR, and SII values in the 3rd postoperative month in those who underwent metabolic and bariatric surgery (MBS) (p values for each parameter: 0.000, 0.000, 0.028, and 0.006, respectively). A statistically significant decrease in WBC, NEU, and SII values in the 3rd postoperative month compared to preoperative values in nonsmoking individuals with obesity who underwent sleeve gastrectomy surgery was presented as our secondary result (p values for each parameter: 0.000, 0.000, and 0.015, respectively). CONCLUSION In our study, MBS provided significant regression in inflammation parameters at 3 months after surgery in people smoking less than 10 cigarettes per day, although this effect did not seem to persist long term. CLINICAL TRIAL REGISTRATION ACTRN12623000162617.
Collapse
Affiliation(s)
- Hatice Toprak
- Faculty of Medicine Department of Anesthesiology and ReanimationKaramanoğlu Mehmetbey UniversityKaramanTürkiye
| | - Şükrü S. Toprak
- Faculty of Medicine Department of General SurgeryKaramanoğlu Mehmetbey UniversityKaramanTürkiye
| |
Collapse
|
2
|
Diep TN, Liu H, Yan LJ. Beneficial Effects of Butyrate on Kidney Disease. Nutrients 2025; 17:772. [PMID: 40077642 PMCID: PMC11901450 DOI: 10.3390/nu17050772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
The gut microbiota influences and contributes to kidney health and disease. Butyrate, a short-chain fatty acid molecule generated via the fermentation of gut bacterial catabolism of nondigestible dietary fiber, has been shown to exert numerous beneficial effects on kidney disorders. The objective of this review was to discuss the latest findings on the protective effects of butyrate on a variety of animal models of kidney injury. We conducted a PubMed search using the title word "butyrate" and keyword "kidney" to generate our literature review sources. The animal models covered in this review include ischemia-reperfusion renal injury, cisplatin- and folic acid-induced kidney injury, septic kidney injury, diabetic kidney disease (DKD), high-fat diet (HFD)-induced glomerulopathy, adenine-induced chronic kidney disease (CKD), high-salt-induced renal injury, and T-2 toxin-induced kidney injury in birds. The protective mechanisms of butyrate that are most shared among these animal model studies include antioxidative stress, anti-fibrosis, anti-inflammation, and anti-cell death. This review ends with suggestions for future studies on potential approaches that may modulate gut microbiota butyrate production for the well-being of kidneys with the kidney disorders covered in this review.
Collapse
Affiliation(s)
| | | | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (T.N.D.); (H.L.)
| |
Collapse
|
3
|
Xiong Y, Zhu X, Xu H, Zheng Z, Luo Q. Associations Between Gut Microbiota and Diabetic Nephropathy: A Mendelian Randomization Study. Aging Med (Milton) 2025; 8:e70009. [PMID: 39968006 PMCID: PMC11833227 DOI: 10.1002/agm2.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 12/09/2024] [Accepted: 01/23/2025] [Indexed: 02/20/2025] Open
Abstract
Objectives Diabetic nephropathy (DN) is a severe complication of diabetes mellitus, and its pathogenesis remains incompletely understood. Emerging evidence suggests a potential link between gut microbiota and DN. This study aimed to explore the causal relationship between gut microbiota and DN using a two-sample Mendelian randomization (MR) approach. Methods Gut microbiota data were obtained from the MiBioGen consortium, which provides the most comprehensive genome-wide association studies (GWAS) on gut microbiota. Summary-level genetic data for DN were sourced from publicly available GWAS data provided by the FinnGen consortium. The primary analysis was conducted using the inverse variance-weighted (IVW) method, complemented by sensitivity analyses to evaluate pleiotropy and heterogeneity. Results Fourteen gut microbiota species demonstrated significant genetic associations with DN in the MR analysis, including five negatively and nine positively associated species, as determined by the IVW method. No evidence of pleiotropy or heterogeneity was observed, ensuring the robustness of the findings. Conclusions This study provides novel insight into the causal role of gut microbiota in DN pathogenesis, uncovering specific microbial species that may contribute to disease progression. These findings offer a promising avenue for future research and therapeutic development targeting gut microbiota.
Collapse
Affiliation(s)
- Yujun Xiong
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Xingyun Zhu
- Department of EndocrinologyBeijing Jishuitan HospitalBeijingPeople's Republic of China
| | - Huazhao Xu
- Hospital Administration Office, Beijing Hospital, National Center of GerontologyInstitute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Zitian Zheng
- Department of OrthopedicsBeijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingPRChina
- Peking University Fifth School of Clinical MedicineBeijingPRChina
| | - Qingfeng Luo
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
4
|
You Q, Lin Y, Gong JH, Gui WY, Yan QH, Zou JD, Liu EH, Li CY. Integrating lipidomics, 16S rRNA sequencing, and network pharmacology to explore the mechanism of Qikui granule in treating diabetic kidney disease mice. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1250:124378. [PMID: 39579742 DOI: 10.1016/j.jchromb.2024.124378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/01/2024] [Accepted: 11/09/2024] [Indexed: 11/25/2024]
Abstract
Qikui granule (QKG), a hospital preparation of traditional Chinese medicine, has been widely used for diabetic kidney disease (DKD) in clinical practice. However, its holistic therapeutic effects and the underlying therapeutic mechanisms remain unclear. In the present study, the integrated analysis of network pharmacology, 16S rRNA sequencing, and non-targeted lipidomics was performed to explore the anti-DKD effects of QKG and the underlying mechanisms in db/db mouse DKD model. The results of the network pharmacology analysis identified the PI3K-AKT, EGFR, MAPK, JAK-STAT, FoxO, and AGE-RAGE signaling pathways as the potential molecular mechanisms responsible for the efficacy of QKG. Importantly, these signaling pathways were found to be closely related to lipid metabolism and gut microbiota. The therapeutic effectiveness of QKG against DKD was manifested by reducing body weight, alleviating oxidative stress, improving kidney function indicators, promoting the recovery of renal histopathological damage, and regulating the lipid metabolic profile of serum and kidney in db/db mice. A total of 26 lipid metabolites were identified as potential pharmacological biomarkers (PPBs) of QKG for the treatment of DKD, which were mainly involved in glycerophospholipid metabolism. Meanwhile, QKG could alleviate DKD-induced gut microbiota dysbiosis primarily by enriching Candidatus_Arthromitus, which showed a negative correlation with all 26 lipid PPBs as well as 5 biochemical parameters, including 2 oxidative stress factors and 3 kidney function indices. In conclusion, our findings suggest that QKG may upregulate the gut level of Candidatus_Arthromitus to suppress the abnormal activation of PI3K-AKT related signaling pathway, thereby reducing the levels of PC and LPC in the glycerophospholipid metabolism, to finally ameliorate the progression of DKD in db/db mice.
Collapse
Affiliation(s)
- Qing You
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing 210029, China
| | - Yang Lin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jia-Hui Gong
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing 210029, China
| | - Wan-Yu Gui
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing 210029, China
| | - Qian-Hua Yan
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian-Dong Zou
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing 210029, China.
| | - E-Hu Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Chang-Yin Li
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing 210029, China.
| |
Collapse
|
5
|
Lin R, Chen R. Exploring the causal connection: insights into diabetic nephropathy and gut microbiota from whole-genome sequencing databases. Ren Fail 2024; 46:2385065. [PMID: 39090986 PMCID: PMC11299436 DOI: 10.1080/0886022x.2024.2385065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/03/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Over recent years, the prevalence of diabetes has been on the rise, paralleling improvements in living standards. Diabetic nephropathy (DN), a prevalent complication of diabetes, has also exhibited a growing incidence. While some clinical studies and reviews have hinted at a link between diabetic nephropathy and gut microbiota (GM), the nature of this connection, specifically its causative nature, remains uncertain. Investigating the causal relationship between diabetic nephropathy and gut microbiota holds the promise of aiding in disease screening and identifying novel biomarkers. In this study, we employed a two-sample Mendelian randomization analysis. Our dataset encompassed 4,111 DN patients from the GWAS database, juxtaposed with 308,539 members forming a control group. The aim was to pinpoint specific categories within the vast spectrum of the 211 known gut microbiota types that may have a direct causal relationship with diabetic nephropathy. Rigorous measures, including extensive heterogeneity and sensitivity analyses, were implemented to mitigate the influence of confounding variables on our experimental outcomes. Ultimately, our comprehensive analysis revealed 15 distinct categories of gut microbiota that exhibit a causal association with diabetic nephropathy. In summary, the phyla Bacteroidota and Verrucomicrobiae, the families Peptostreptococcaceae and Veillonellaceae, the genus Akkermansia, and the species Catenibacterium, Lachnoclostridium, Parasutterella, along with the orders Bacteroidales and Verrucomicrobiales, and the class Bacteroidetes were identified as correlates of increased risk for DN. Conversely, the family Victivallaceae, the species Eubacterium coprostanoligenes, and the Clostridium sensu stricto 1 group were found to be associated with a protective effect against the development of DN.These findings not only provide valuable insights but also open up novel avenues for clinical research, offering fresh directions for potential treatments.
Collapse
Affiliation(s)
- Rui Lin
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Rongping Chen
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Wu XQ, Zhao L, Zhao YL, He XY, Zou L, Zhao YY, Li X. Traditional Chinese medicine improved diabetic kidney disease through targeting gut microbiota. PHARMACEUTICAL BIOLOGY 2024; 62:423-435. [PMID: 38757785 PMCID: PMC11104709 DOI: 10.1080/13880209.2024.2351946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
CONTEXT Diabetic kidney disease (DKD) affects nearly 40% of diabetic patients, often leading to end-stage renal disease that requires renal replacement therapies, such as dialysis and transplantation. The gut microbiota, an integral aspect of human evolution, plays a crucial role in this condition. Traditional Chinese medicine (TCM) has shown promising outcomes in ameliorating DKD by addressing the gut microbiota. OBJECTIVE This review elucidates the modifications in gut microbiota observed in DKD and explores the impact of TCM interventions on correcting microbial dysregulation. METHODS We searched relevant articles from databases including Web of Science, PubMed, ScienceDirect, Wiley, and Springer Nature. The following keywords were used: diabetic kidney disease, diabetic nephropathy, gut microbiota, natural product, TCM, Chinese herbal medicine, and Chinese medicinal herbs. Rigorous criteria were applied to identify high-quality studies on TCM interventions against DKD. RESULTS Dysregulation of the gut microbiota, including Lactobacillus, Streptococcus, and Clostridium, has been observed in individuals with DKD. Key indicators of microbial dysregulation include increased uremic solutes and decreased short-chain fatty acids. Various TCM therapies, such as formulas, tablets, granules, capsules, and decoctions, exhibit unique advantages in regulating the disordered microbiota to treat DKD. CONCLUSION This review highlights the importance of targeting the gut-kidney axis to regulate microbial disorders, their metabolites, and associated signaling pathways in DKD. The Qing-Re-Xiao-Zheng formula, the Shenyan Kangfu tablet, the Huangkui capsule, and the Bekhogainsam decoction are potential candidates to address the gut-kidney axis. TCM interventions offer a significant therapeutic approach by targeting microbial dysregulation in patients with DKD.
Collapse
Affiliation(s)
- Xia-Qing Wu
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Lei Zhao
- Department of General Practice, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Yan-Long Zhao
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Xin-Yao He
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, Sichuan, China
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xia Li
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
- Department of General Practice, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| |
Collapse
|
7
|
Li S, Zhang W, Liu S, Zhou Y, Liu W, Yuan W, He M. Effects of Tanreqing injection on the gut microbiota in healthy volunteers. Front Cell Infect Microbiol 2024; 14:1428476. [PMID: 39431053 PMCID: PMC11486765 DOI: 10.3389/fcimb.2024.1428476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/13/2024] [Indexed: 10/22/2024] Open
Abstract
Objectives Many studies have confirmed that antibacterial agents can disrupt the human gut microbiota. In China, Tanreqing injection (TRQ) is a drug with antibacterial activity that is widely used in the treatment of respiratory infections. However, its specific influence on gut microbiota remains unclear. This study aimed to investigate the effect of TRQ on the gut microbiota of healthy volunteers. Methods Twelve healthy adults received 20 ml of TRQ intravenously daily for 7 consecutive days. At six timepoints (Pre, on D1, D3, D5, D7 and follow-up visit) fecal samples were collected and analyzed using 16S rRNA gene sequencing. Results Eleven people were included in the analysis finally. TRQ did not significantly alter gut microbiota diversity or richness (Shannon and Simpson and Chao1 index) in healthy people during the intervention. Gut microbial structure was stable (weighted and unweighted Unifrac). Using a machine learning method based on PLS-DA analysis, the separation trend on D7 at the genus level was found, returning to baseline two days after discontinuation. The abundance of major genus fluctuated on D7 compared with that prior to treatment, including an increase of unclassified_f_Enterobacteriaceae (13.0611%), a decrease of Bifidobacterium and Escherichia-Shigella (6.887%, 10.487%). Functional prediction analysis did not reveal any significant difference. Conclusions Our study showed short-term use of TRQ at conventional doses may not cause perturbations to the gut microbiota in healthy adults. This finding provides some useful information for the safe use of TRQ in the treatment of respiratory infections. Clinical trial registration https://www.medicalresearch.org.cn/, identifier MR-31-24-014367.
Collapse
Affiliation(s)
- Shiyu Li
- Clinical Research Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenxia Zhang
- Department of Clinical Laboratory, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Sijie Liu
- Department of Pharmacy, The State Administration of Traditional Chinese Medicine (SATCM) Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yichen Zhou
- Clinical Research Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Liu
- Department of Pharmacy, The State Administration of Traditional Chinese Medicine (SATCM) Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weian Yuan
- Clinical Research Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min He
- Clinical Research Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Liu H, Diep TN, Wang Y, Wang Y, Yan LJ. Diabetic Kidney Disease: Contribution of Phenyl Sulfate Derived from Dietary Tyrosine upon Gut Microbiota Catabolism. Biomolecules 2024; 14:1153. [PMID: 39334919 PMCID: PMC11429668 DOI: 10.3390/biom14091153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Deranged gut microbiota can release increased levels of uremic toxins leading to exacerbated kidney injury. In diabetic kidney disease (DKD), phenyl sulfate (PS) derived from tyrosine catabolism by gut microbiota has been demonstrated to be both an early diagnostic marker and a therapeutic target. In this perspective article, we summarize PS generation pathways and recent findings on PS and kidney injury in DKD. Increasing evidence has shown that the underlying mechanisms of PS-induced kidney injury mainly involve oxidative stress, redox imbalance, and mitochondrial dysfunction, which all may be targeted to attenuate PS-induced kidney injury. For future research directions, we think that a deeper understanding of the pathogenic role of PS in kidney injury using a variety of diabetic animal models should be investigated. Moreover, we also suggest beneficial approaches that could be used to mitigate the deleterious effect of PS on the kidney. These approaches include caloric restriction, tyrosine restriction, and administration of ketogenic drugs, ketogenic diets or natural products; all of which should be conducted under obese and diabetic conditions.
Collapse
Affiliation(s)
- Haoxin Liu
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Tram N Diep
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Ying Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yucheng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
9
|
Pezzuoli C, Biagini G, Magistroni R. Ketogenic Interventions in Autosomal Dominant Polycystic Kidney Disease: A Comprehensive Review of Current Evidence. Nutrients 2024; 16:2676. [PMID: 39203812 PMCID: PMC11356904 DOI: 10.3390/nu16162676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a genetic disorder characterized by the development and enlargement of multiple kidney cysts, leading to progressive kidney function decline. To date, Tolvaptan, the only approved treatment for this condition, is able to slow down the loss of annual kidney function without stopping the progression of the disease. Furthermore, this therapy is approved only for patients with rapid disease progression and its compliance is problematic because of the drug's impact on quality of life. The recent literature suggests that cystic cells are subject to several metabolic dysregulations, particularly in the glucose pathway, and mitochondrial abnormalities, leading to decreased oxidative phosphorylation and impaired fatty acid oxidation. This finding paved the way for new lines of research targeting potential therapeutic interventions for ADPKD. In particular, this review highlights the latest studies on the use of ketosis, through ketogenic dietary interventions (daily calorie restriction, intermittent fasting, time-restricted feeding, ketogenic diets, and exogenous ketosis), as a potential strategy for patients with ADPKD, and the possible involvement of microbiota in the ketogenic interventions' effect.
Collapse
Affiliation(s)
- Carla Pezzuoli
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Division of Nephrology, Dialysis and Renal Transplantation, Azienda Ospedaliero-Universitaria Policlinico di Modena, 41125 Modena, Italy
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Riccardo Magistroni
- Division of Nephrology, Dialysis and Renal Transplantation, Azienda Ospedaliero-Universitaria Policlinico di Modena, 41125 Modena, Italy
- Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy
| |
Collapse
|
10
|
Yu PS, Wu PH, Hung WW, Lin MY, Zhen YY, Hung WC, Chang JM, Tsai JR, Chiu YW, Hwang SJ, Tsai YC. Association Between Trimethylamine N-oxide and Adverse Kidney Outcomes and Overall Mortality in Type 2 Diabetes Mellitus. J Clin Endocrinol Metab 2024; 109:2097-2105. [PMID: 38267025 PMCID: PMC11244202 DOI: 10.1210/clinem/dgae009] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Indexed: 01/26/2024]
Abstract
CONTEXT Type 2 diabetes (T2D) is the major contributor to chronic kidney disease and end-stage kidney disease (ESKD). The influence of trimethylamine N-oxide (TMAO) on kidney outcomes in T2D remains unclear. OBJECTIVE To examine the association between fasting serum TMAO levels and adverse kidney outcomes in patients with T2D. METHODS Between October 2016 and June 2020, patients with T2D were recruited and monitored every 3 months until December 2021. Serum TMAO levels were assessed using liquid chromatography-mass spectrometry. The primary kidney outcomes were doubling of serum creatinine levels or progression to ESKD necessitating dialysis; the secondary kidney outcome was a rapid 30% decline in estimated glomerular filtration rate within 2 years. All-cause mortality was also evaluated. RESULTS Among the 440 enrolled patients with T2D, those in the highest serum TMAO tertile (≥0.88 μM) were older, had a longer diabetes duration, elevated blood urea nitrogen, and lower estimated glomerular filtration rate. Over a median follow-up period of 4 years, 26 patients (5.9%) had a doubling of serum creatinine level or progression to ESKD. After propensity score weighting, the patients in the highest serum TMAO tertile had a 6.45-fold increase in the risk of doubling of serum creatinine levels or progression to ESKD and 5.86-fold elevated risk of rapid decline in kidney function compared with those in the lowest tertile. Additionally, the stepwise increase in serum TMAO was associated with all-cause mortality. CONCLUSION Patients with T2D with elevated circulating TMAO levels are at higher risk of doubling serum creatinine, progressing to ESKD, and mortality. TMAO is a potential biomarker for kidney function progression and mortality in patients with T2D.
Collapse
Affiliation(s)
- Ping-Shaou Yu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Cijin Hospital, Kaohsiung 805, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ping-Hsun Wu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wei-Wen Hung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Yen Lin
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yen-Yi Zhen
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wei-Chun Hung
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jer-Ming Chang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jong-Rung Tsai
- Department of Internal Medicine, Kaohsiung Municipal Cijin Hospital, Kaohsiung 805, Taiwan
| | - Yi-Wen Chiu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shang-Jyh Hwang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yi-Chun Tsai
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of General Medicine, Kaohsiung Medical University, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
11
|
Cheng G, Liu Y, Guo R, Wang H, Zhang W, Wang Y. Molecular mechanisms of gut microbiota in diabetic nephropathy. Diabetes Res Clin Pract 2024; 213:111726. [PMID: 38844054 DOI: 10.1016/j.diabres.2024.111726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/10/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Diabetic nephropathy is a common complication of diabetes and a considerable contributor to end-stage renal disease. Evidence indicates that glucose dysregulation and lipid metabolism comprise a pivotal pathogenic mechanism in diabetic nephropathy. However, current treatment outcomes are limited, as they only provide symptomatic relief without preventing disease progression. The gut microbiota is a group of microorganisms that inhabit the human intestinal tract and play a crucial role in maintaining host energy balance, metabolism, and immune activity. Patients with diabetic nephropathy exhibit altered gut microbiota, suggesting its potential involvement in the onset and progression of the disease. However, how a perturbed microbiota induces and promotes diabetic nephropathy remains unelucidated. This article summarizes the evidence of the impact of gut microbiota on the progression of diabetic nephropathy, with a particular focus on the molecular mechanisms involved, aiming to provide new insights into the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Gang Cheng
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China.
| | - YuLin Liu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China.
| | - Rong Guo
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China.
| | - Huinan Wang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China.
| | - Wenjun Zhang
- Department of Nephrology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
| | - Yingying Wang
- Department of Nephrology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
12
|
Zhou TY, Tian N, Li L, Yu R. Iridoids modulate inflammation in diabetic kidney disease: A review. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:210-222. [PMID: 38631983 DOI: 10.1016/j.joim.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 02/18/2024] [Indexed: 04/18/2024]
Abstract
In recent years, preclinical research on diabetic kidney disease (DKD) has surged to the forefront of scientific and clinical attention. DKD has become a pervasive complication of type 2 diabetes. Given the complexity of its etiology and pathological mechanisms, current interventions, including drugs, dietary modifications, exercise, hypoglycemic treatments and lipid-lowering methods, often fall short in achieving desired therapeutic outcomes. Iridoids, primarily derived from the potent components of traditional herbs, have been the subject of long-standing research. Preclinical data suggest that iridoids possess notable renal protective properties; however, there has been no summary of the research on their efficacy in the management and treatment of DKD. This article consolidates findings from in vivo and in vitro research on iridoids in the context of DKD and highlights their shared anti-inflammatory activities in treating this condition. Additionally, it explores how certain iridoid components modify their chemical structures through the regulation of intestinal flora, potentially bolstering their therapeutic effects. This review provides a focused examination of the mechanisms through which iridoids may prevent or treat DKD, offering valuable insights for future research endeavors. Please cite this article as: Zhou TY, Tian N, Li L, Yu R. Iridoids modulate inflammation in diabetic kidney disease: A review. J Integr Med. 2024; 22(3): 210-222.
Collapse
Affiliation(s)
- Tong-Yi Zhou
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Na Tian
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Liu Li
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Rong Yu
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China; Hunan Provincial Key Laboratory of Translational Research in Traditional Chinese Medicine Prescriptions and Zheng, Changsha 410208, Hunan Province, China.
| |
Collapse
|
13
|
Zhang H, Liu N, Dang H. Association of the Controlling Nutritional Status (CONUT) score with all-cause and cause-specific mortality in patients with diabetic kidney disease: evidence from the NHANES 2009-2018. BMJ Open 2024; 14:e079992. [PMID: 38653515 PMCID: PMC11043715 DOI: 10.1136/bmjopen-2023-079992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/16/2024] [Indexed: 04/25/2024] Open
Abstract
OBJECTIVE To investigate the association between the Controlling Nutritional Status (CONUT) score and all-cause and cause-specific mortality in patients with diabetic kidney disease (DKD). DESIGN A retrospective cohort study. SETTING AND PARTICIPANTS Data on patients with DKD from the National Health and Nutrition Examination Survey 2009-2018. PRIMARY AND SECONDARY OUTCOME MEASURES All-cause mortality, cardiovascular disease (CVD)-related mortality, diabetes-related mortality and nephropathy-related mortality. RESULTS A total of 1714 patients were included, with 1119 (65.29%) in normal nutrition group (a score of 0-1), 553 (32.26%) in mild malnutrition group (a score of 2-4) and 42 (2.45%) in moderate and severe malnutrition group (a score of 5-12), according to the CONUT score. After controlling for age, race, marital status, smoking, hypertension, CVD, diabetic retinopathy, poverty income ratio, antidiabetics, diuretics, urinary albumin to creatinine ratio, uric acid, energy, protein, total fat, sodium and estimated glomerular filtration rate, a higher CONUT score was associated with a significantly greater risk of all-cause death (HR 1.30, 95% CI 1.15 to 1.46, p<0.001). In contrast to patients with a CONUT score of 0-1, those who scored 5-12 had significantly increased risks of all-cause death (HR 2.80, 95% CI 1.42 to 5.51, p=0.003), diabetes-related death (HR 1.78, 95% CI 1.02 to 3.11, p=0.041) and nephropathy-related death (HR 1.84, 95% CI 1.04 to 3.24, p=0.036). CONCLUSION Moderate and severe malnutrition was associated with greater risks of all-cause death, diabetes-related death and nephropathy-related death than normal nutritional status in DKD. Close monitoring of immuno-nutritional status in patients with DKD may help prognosis management and improvement.
Collapse
Affiliation(s)
- Huifeng Zhang
- Department of Nephrology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, Shanxi, P.R.China
| | - Na Liu
- Department of Nephrology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, Shanxi, P.R.China
| | - Huaixin Dang
- Drug Farm Inc Building D7, Jiashan 100032, Zhejiang, P.R.China
| |
Collapse
|
14
|
Zhang Y, Zhong W, Liu W, Wang X, Lin G, Lin J, Fang J, Mou X, Jiang S, Huang J, Zhao W, Zheng Z. Uncovering specific taxonomic and functional alteration of gut microbiota in chronic kidney disease through 16S rRNA data. Front Cell Infect Microbiol 2024; 14:1363276. [PMID: 38707511 PMCID: PMC11066246 DOI: 10.3389/fcimb.2024.1363276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/01/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction Chronic kidney disease (CKD) is worldwide healthcare burden with growing incidence and death rate. Emerging evidence demonstrated the compositional and functional differences of gut microbiota in patients with CKD. As such, gut microbial features can be developed as diagnostic biomarkers and potential therapeutic target for CKD. Methods To eliminate the outcome bias arising from factors such as geographical distribution, sequencing platform, and data analysis techniques, we conducted a comprehensive analysis of the microbial differences between patients with CKD and healthy individuals based on multiple samples worldwide. A total of 980 samples from six references across three nations were incorporated from the PubMed, Web of Science, and GMrepo databases. The obtained 16S rRNA microbiome data were subjected to DADA2 processing, QIIME2 and PICRUSt2 analyses. Results The gut microbiota of patients with CKD differs significantly from that of healthy controls (HC), with a substantial decrease in the microbial diversity among the CKD group. Moreover, a significantly reduced abundance of bacteria Faecalibacterium prausnitzii (F. prausnitzii) was detected in the CKD group through linear discriminant analysis effect size (LEfSe) analysis, which may be associated with the alleviating effects against CKD. Notably, we identified CKD-depleted F. prausnitzii demonstrated a significant negative correlation with three pathways based on predictive functional analysis, suggesting its potential role in regulating systemic acidbase disturbance and pro-oxidant metabolism. Discussion Our findings demonstrated notable alterations of gut microbiota in CKD patients. Specific gut-beneficial microbiota, especially F. prausnitzii, may be developed as a preventive and therapeutic tool for CKD clinical management.
Collapse
Affiliation(s)
- Yangyang Zhang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Weicong Zhong
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Wenting Liu
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Xiaohua Wang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Gan Lin
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Jiawen Lin
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Junxuan Fang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Xiangyu Mou
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Shan Jiang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Jiayuan Huang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Wenjing Zhao
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Zhihua Zheng
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
15
|
Liang C, Ma L, Chen Y, Li J, Wang B, Ma C, Yuan Z, Nong X. Artesunate Alleviates Kidney Fibrosis in Type 1 Diabetes with Periodontitis Rats via Promoting Autophagy and Suppression of Inflammation. ACS OMEGA 2024; 9:16358-16373. [PMID: 38617690 PMCID: PMC11007779 DOI: 10.1021/acsomega.4c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 04/16/2024]
Abstract
To explore the effect of periodontal disease on the progression of diabetic kidney disease (DKD), to observe the effects of artesunate (ART) intervention on periodontal and kidney tissues in type 1 diabetic rats with periodontitis, and to explore the possibility of ART for the treatment of DKD. Rat models of diabetes mellitus, periodontitis, and diabetes mellitus with periodontitis were established through streptozotocin (STZ) intraperitoneal injection, maxillary first molar ligation, and P. gingivalis ligation applied sequentially. Ten weeks after modeling, ART gavage treatment was given for 4 weeks. Immunohistochemistry, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and Western blot were used to investigate the inflammatory factors, fibrogenisis, autophagy-related factors, and proteins in periodontal and kidney tissues, and 16S rDNA sequencing was used to detect the changes in dental plaque fluid and kidney tissue flora. Compared to the control group, the protein expression levels of transforming growth factor β1 (TGF-β1) and COL-IV in the periodontal disease (PD) group were increased. The protein expression of TGF-β1, Smad3, and COL-IV increased in the DM group and the DM + PD group, and the expression of TGF-β1, Smad3, and COL-IV was upregulated in the DM + PD group. These results suggest that periodontal disease enhances renal fibrosis and that this process is related to the TGF-β1/Smad/COL-IV signaling pathway. Among the top five dominant bacteria in the kidney of the DM + PD group, the abundance of Proteobacteria increased most significantly, followed by Actinobacteria and Firmicutes with mild increases. The relative abundance of Proteobacteria, Actinobacteria, and Firmicutes in the kidney tissues of DM and PD groups also showed an increasing trend compared with the CON group. Proteobacteria and Firmicutes in the kidney of the PD group and DM + PD group showed an increasing trend, which may mediate the increase of oxidative stress in the kidney and promote the occurrence and development of DN. Periodontal disease may lead to an imbalance of renal flora, aggravate renal damage in T1DM, cause glomerular inflammation and renal tubulointerstitial fibrosis, and reduce the level of autophagy. ART delays the process of renal fibrosis by inhibiting the TGF-β-Smad signaling pathway.
Collapse
Affiliation(s)
- Chen Liang
- College
of Stomatology, Hospital of Stomatology, Guangxi Medical University, No. 10 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Licheng Ma
- College
of Stomatology, Hospital of Stomatology, Guangxi Medical University, No. 10 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Yi Chen
- College
of Stomatology, Hospital of Stomatology, Guangxi Medical University, No. 10 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Jiaquan Li
- Medical
Science Research Center, Guangxi Medical
University, Nanning 530021, Guangxi, China
| | - Binge Wang
- College
of Stomatology, Hospital of Stomatology, Guangxi Medical University, No. 10 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Chubin Ma
- College
of Stomatology, Hospital of Stomatology, Guangxi Medical University, No. 10 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Zhong Yuan
- College
of Stomatology, Hospital of Stomatology, Guangxi Medical University, No. 10 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Xiaolin Nong
- College
of Stomatology, Hospital of Stomatology, Guangxi Medical University, No. 10 Shuangyong Road, Nanning 530021, Guangxi, China
- Guangxi
Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Medical University, Nanning 530021, Guangxi, China
| |
Collapse
|
16
|
Mo C, Bi J, Li S, Lin Y, Yuan P, Liu Z, Jia B, Xu S. The influence and therapeutic effect of microbiota in systemic lupus erythematosus. Microbiol Res 2024; 281:127613. [PMID: 38232494 DOI: 10.1016/j.micres.2024.127613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Systemic erythematosus lupus (SLE) is an autoimmune disease involving multiple organs that poses a serious risk to the health and life of patients. A growing number of studies have shown that commensals from different parts of the body and exogenous pathogens are involved in SLE progression, causing barrier disruption and immune dysregulation through multiple mechanisms. However, they sometimes alleviate the symptoms of SLE. Many factors, such as genetic susceptibility, metabolism, impaired barriers, food, and sex hormones, are involved in SLE, and the microbiota drives the development of SLE either by depending on or interacting with these factors. Among these, the crosstalk between genetic susceptibility, metabolism, and microbiota is a hot topic of research and is expected to lay the groundwork for the amelioration of the mechanism, diagnosis, and treatment of SLE. Furthermore, the microbiota has great potential for the treatment of SLE. Ideally, personalised therapeutic approaches should be developed in combination with more specific diagnostic methods. Herein, we provide a comprehensive overview of the role and mechanism of microbiota in lupus of the intestine, oral cavity, skin, and kidney, as well as the therapeutic potential of the microbiota.
Collapse
Affiliation(s)
- Chuzi Mo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiaming Bi
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Siwei Li
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunhe Lin
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Peiyan Yuan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongjun Liu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
17
|
Das S, Devi Rajeswari V, Venkatraman G, Elumalai R, Dhanasekaran S, Ramanathan G. Current updates on metabolites and its interlinked pathways as biomarkers for diabetic kidney disease: A systematic review. Transl Res 2024; 265:71-87. [PMID: 37952771 DOI: 10.1016/j.trsl.2023.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Diabetic kidney disease (DKD) is a major microvascular complication of diabetes mellitus (DM) that poses a serious risk as it can lead to end-stage renal disease (ESRD). DKD is linked to changes in the diversity, composition, and functionality of the microbiota present in the gastrointestinal tract. The interplay between the gut microbiota and the host organism is primarily facilitated by metabolites generated by microbial metabolic processes from both dietary substrates and endogenous host compounds. The production of numerous metabolites by the gut microbiota is a crucial factor in the pathogenesis of DKD. However, a comprehensive understanding of the precise mechanisms by which gut microbiota and its metabolites contribute to the onset and progression of DKD remains incomplete. This review will provide a summary of the current scenario of metabolites in DKD and the impact of these metabolites on DKD progression. We will discuss in detail the primary and gut-derived metabolites in DKD, and the mechanisms of the metabolites involved in DKD progression. Further, we will address the importance of metabolomics in helping identify potential DKD markers. Furthermore, the possible therapeutic interventions and research gaps will be highlighted.
Collapse
Affiliation(s)
- Soumik Das
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - V Devi Rajeswari
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Ganesh Venkatraman
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Ramprasad Elumalai
- Department of Nephrology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - Sivaraman Dhanasekaran
- School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Raisan Village, PDPU Road, Gandhinagar, Gujarat 382426, India
| | - Gnanasambandan Ramanathan
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
18
|
Qu W, Liu S, Gu J, Wei X. Association between controlling nutritional status score and chronic kidney disease in diabetic patients: a cross-sectional study based on the National Health and Nutrition Examination Survey. Int Urol Nephrol 2024; 56:795-804. [PMID: 37596447 DOI: 10.1007/s11255-023-03740-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/09/2023] [Indexed: 08/20/2023]
Abstract
PURPOSE This study aimed to explore the association between controlling nutritional status (CONUT) score and chronic kidney disease (CKD) in type-2 diabetes mellitus (T2DM) patients. METHODS This was a cross-sectional study based on the National Health and Nutrition Examination Survey (NHANES). The data on demographic characteristics, physical examination, lifestyle behaviors, comorbidities, medicine use, laboratory values, and energy were extracted. Nutritional status was assessed using CONUT score, and patients were divided into normal nutrition group and malnutrition group. Association between CONUT score and CKD in T2DM patients was assessed using logistic regression analysis, and odds ratio (OR) and 95% confidence intervals (CIs) were reported. Subgroup analysis based on age, body mass index (BMI), cardiovascular disease (CVD), diabetic retinopathy, and hyperlipidemia was performed. RESULTS A total of 4581 patients were finally included for analysis. In the adjusted model, high CONUT score was found to be associated with the high odds of CKD (OR = 1.28, 95% CI 1.05-1.56). Also, high CONUT score was associated with the high odds of CKD in T2DM patients with age ≥ 65 years, with BMI < 25 kg/m2, with BMI ≥ 25 kg/m2, without CVD, without diabetic retinopathy, with hyperlipidemia, or without hyperlipidemia (all P < 0.05). CONCLUSIONS Malnutrition was associated with the high odds of CKD in T2DM patients, indicating that actively monitoring the nutritional status is important for the management of CKD in T2DM patients.
Collapse
Affiliation(s)
- Wei Qu
- Department of General Medicine, The Second Hospital of Jilin University, No. 4026 Yatai Street, Nanguan District, Changchun, 130022, People's Republic of China
| | - Shanshan Liu
- Department of General Medicine, The Second Hospital of Jilin University, No. 4026 Yatai Street, Nanguan District, Changchun, 130022, People's Republic of China
| | - Jinning Gu
- Department of General Medicine, The Second Hospital of Jilin University, No. 4026 Yatai Street, Nanguan District, Changchun, 130022, People's Republic of China
| | - Xianyan Wei
- Department of General Medicine, The Second Hospital of Jilin University, No. 4026 Yatai Street, Nanguan District, Changchun, 130022, People's Republic of China.
| |
Collapse
|
19
|
Hasani M, Pilerud ZA, Kami A, Vaezi AA, Sobhani S, Ejtahed HS, Qorbani M. Association between Gut Microbiota Compositions with MicrovascularComplications in Individuals with Diabetes: A Systematic Review. Curr Diabetes Rev 2024; 20:e240124226068. [PMID: 38275035 DOI: 10.2174/0115733998280396231212114345] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Diabetes is one of the chronic and very complex diseases that can lead to microvascular complications. Recent evidence demonstrates that dysbiosis of the microbiota composition might result in low-grade, local, and systemic inflammation, which contributes directly to the development of diabetes mellitus and its microvascular consequences. OBJECTIVE The aim of this systematic review was to investigate the association between diabetes microvascular complications, including retinopathy, neuropathy, nephropathy, and gut microbiota composition. METHODS A systematic search was carried out in PubMed, Scopus, and ISI Web of Science from database inception to March 2023. Screening, data extraction, and quality assessment were performed by two independent authors. The Newcastle-Ottawa Quality Assessment Scale was used for quality assessment. RESULTS About 19 articles were selected from 590 retrieved articles. Among the included studies, nephropathy has been studied more than other complications of diabetes, showing that the composition of the healthy microbiota is changed, and large quantities of uremic solutes that cause kidney injury are produced by gut microbes. Phyla, including Fusobacteria and Proteobacteria, accounted for the majority of the variation in gut microbiota between Type 2 diabetic patients with and without neuropathy. In cases with retinopathy, an increase in pathogenic and proinflammatory bacteria was observed. CONCLUSION Our results revealed that increases in Bacteroidetes, Proteobacteria and Fusobacteria may be associated with the pathogenesis of diabetic nephropathy, neuropathy, and retinopathy. In view of the detrimental role of intestinal dysbiosis in the development of diabetes-related complications, gut microbiota assessment may be used as a biomarker in the future and interventions that modulate the composition of microbiota in individuals with diabetes can be used to prevent and control these complications.
Collapse
Affiliation(s)
- Motahareh Hasani
- Department of Nutrition, School of Health, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zahra Asadi Pilerud
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Atefe Kami
- Golestan University of Medical Sciences, Gorgan, Iran
| | - Amir Abbas Vaezi
- Department of Internal Medicine, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Sahar Sobhani
- Noncommunicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Qorbani
- Noncommunicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Hou Y, Li J, Ying S. Tryptophan Metabolism and Gut Microbiota: A Novel Regulatory Axis Integrating the Microbiome, Immunity, and Cancer. Metabolites 2023; 13:1166. [PMID: 37999261 PMCID: PMC10673612 DOI: 10.3390/metabo13111166] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023] Open
Abstract
Tryptophan metabolism and gut microbiota form an integrated regulatory axis that impacts immunity, metabolism, and cancer. This review consolidated current knowledge on the bidirectional interactions between microbial tryptophan processing and the host. We focused on how the gut microbiome controls tryptophan breakdown via the indole, kynurenine, and serotonin pathways. Dysbiosis of the gut microbiota induces disruptions in tryptophan catabolism which contribute to disorders like inflammatory conditions, neuropsychiatric diseases, metabolic syndromes, and cancer. These disruptions affect immune homeostasis, neurotransmission, and gut-brain communication. Elucidating the mechanisms of microbial tryptophan modulation could enable novel therapeutic approaches like psychobiotics and microbiome-targeted dietary interventions. Overall, further research on the microbiota-tryptophan axis has the potential to revolutionize personalized diagnostics and treatments for improving human health.
Collapse
Affiliation(s)
- Yingjian Hou
- Target Discovery Center, China Pharmaceutical University, Nanjing 211198, China;
| | - Jing Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha 410000, China
| | - Shuhuan Ying
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
- Shanghai Bocimed Pharmaceutical Research Co., Ltd., Shanghai 201203, China
| |
Collapse
|
21
|
Hong J, Fu T, Liu W, Du Y, Bu J, Wei G, Yu M, Lin Y, Min C, Lin D. Jiangtang Decoction Ameliorates Diabetic Kidney Disease Through the Modulation of the Gut Microbiota. Diabetes Metab Syndr Obes 2023; 16:3707-3725. [PMID: 38029001 PMCID: PMC10674671 DOI: 10.2147/dmso.s441457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
PURPOSE This study aimed to elucidate the impact of Jiangtang decoction (JTD) on diabetic kidney disease (DKD) and its association with alterations in the gut microbiota. METHODS Using a diabetic mouse model (KK-Ay mice), daily administration of JTD for eight weeks was undertaken. Weekly measurements of body weight and blood glucose were performed, while kidney function, uremic toxins, inflammation factors, and fecal microbiota composition were assessed upon sacrifice. Ultra-structural analysis of kidney tissue was conducted to observe the pathological changes. RESULTS The study findings demonstrated that JTD improve metabolism, kidney function, uremic toxins and inflammation, while also exerting a modulatory effect on the gut microbiota. Specifically, the genera Rikenella, Lachnoclostridium, and unclassified_c_Bacilli exhibited significantly increased abundance following JTD treatment, accompanied by reduced abundance of norank_f_Lachnospiraceae compared to the model group. Importantly, Rikenella and unclassified_c_Bacilli demonstrated negative correlations with urine protein levels. Lachnoclostridium and norank_f_Lachnospiraceae were positively associated with creatinine (Cr), indoxyl sulfate (IS) and interleukin (IL)-6. Moreover, norank_f_Lachnospiraceae exhibited positive associations with various indicators of DKD severity, including weight, blood glucose, urea nitrogen (UN), kidney injury molecule-1 (KIM-1) levels, trimethylamine-N-oxide (TMAO), p-cresyl sulfate (pCS), nucleotide-binding oligomerization domain (Nod)-like receptor family pyrin domain-containing 3 (NLRP3) and IL-17A production. CONCLUSION These findings suggested that JTD possess the ability to modulate the abundance of Rikenella, Lachnoclostridium, unclassified_c_Bacilli and norank_f_Lachnospiraceae within the gut microbiota. This modulation, in turn, influenced metabolic processes, kidney function, uremic toxin accumulation, and inflammation, ultimately contributing to the amelioration of DKD.
Collapse
Affiliation(s)
- Jinni Hong
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Tingting Fu
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Weizhen Liu
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Yu Du
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Junmin Bu
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Guojian Wei
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Miao Yu
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Yanshan Lin
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Cunyun Min
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Datao Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People’s Republic of China
| |
Collapse
|
22
|
Yang Y, Ma C, Li S, Cai W, Dai W, Zhang X, Yin L, Donge Tang, Liu F, Dai Y. Urinary microbiota and serum metabolite analysis in patients with diabetic kidney disease. Heliyon 2023; 9:e17040. [PMID: 37521000 PMCID: PMC10382294 DOI: 10.1016/j.heliyon.2023.e17040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 08/01/2023] Open
Abstract
Background Diabetic kidney disease (DKD) is a common and potentially fatal consequence of diabetes. Chronic renal failure or end-stage renal disease may result over time. Numerous studies have demonstrated the function of the microbiota in health and disease. The use of advanced urine culture techniques revealed the presence of resident microbiota in the urinary tract, undermining the idea of urine sterility. Studies have demonstrated that the urine microbiota is related with urological illnesses; nevertheless, the fundamental mechanisms by which the urinary microbiota influences the incidence and progression of DKD remain unclear. The purpose of this research was to describe key characteristics of the patients with DKD urinary microbiota in order to facilitate the development of diagnostic and therapeutic for DKD. Methods We evaluated the structure and composition of the microbiota extracted from urine samples taken from DKD patients (n = 19) and matched healthy controls (n = 15) using 16S rRNA gene sequencing. Meanwhile, serum metabolite profiles were compared using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Associations between clinical characteristics, urine microbiota, and serum metabolites were also examined. Finally, the interaction between urine microbiota and serum metabolites was clarified based on differential metabolite abundance analysis. Results The findings indicated that the DKD had a distinct urinary microbiota from the healthy controls (HC). Taxonomic investigations indicated that the DKD microbiome had less alpha diversity than a control group. Proteobacteria and Acidobacteria phyla increased in the DKD, while Firmicutes and Bacteroidetes decreased significantly (P < 0.05). Acidobacteria was the most prevalent microbiota in the DKD, as determined by the Linear discriminant analysis Effect Size (LEfSe) plot. Changes in the urinary microbiota of DKD also had an effect on the makeup of metabolites. Short-chain fatty acids (SCFAs) and protein-bound uremic toxins (PBUTs) were shown to be specific. Then we discovered that arginine and proline metabolism was the primary mechanism involved in the regulation of diabetic kidney disease. Conclusions This study placed the urinary microbiota and serum metabolite of DKD patients into a functional framework and identified the most abundant microbiota in DKD (Proteobacteria and Acidobacteria). Arginine metabolites may have a major effect on DKD patients, which correlated with the progression of DKD.
Collapse
Affiliation(s)
- Yan Yang
- Department of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Chiyu Ma
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, Guangdong, 518020, China
| | - Shishi Li
- Department of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Wanxia Cai
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, Guangdong, 518020, China
| | - Weier Dai
- College of Natural Science, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Xinzhou Zhang
- Depart of Nephrology, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, Guangdong, 518020, China
| | - Lianghong Yin
- Department of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Donge Tang
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, Guangdong, 518020, China
| | - Fanna Liu
- Department of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Yong Dai
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, Guangdong, 518020, China
| |
Collapse
|
23
|
Zhu T, Hu BY, Zhang YQ, Zhang ZY, Cai KW, Lei L, Hu B, Wang XH, Tang C, Lu YP, Zheng ZH. The role of microbial metabolites in diabetic kidney disease. Heliyon 2023; 9:e17844. [PMID: 37539130 PMCID: PMC10395301 DOI: 10.1016/j.heliyon.2023.e17844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 08/05/2023] Open
Abstract
Background Growing evidence suggests a complex bidirectional interaction between gut microbes, gut-derived microbial metabolites, and diabetic kidney disease (DKD), known as the "gut-kidney axis" theory. The present study aimed to characterize the role of microbial metabolites in DKD. Methods Six-week-old db/db and littermate db/m mice were raised to 20 weeks old. The serum, urine, feces, liver, perinephric fat, and kidney were analyzed using liquid chromatography with tandem mass spectrometry (LC-MS/MS)-based metabolomic analyses. Results The db/db mice showed obvious pathological changes and worse renal functions than db/m mice. Indoleacetaldehyde (IAld) and 5-hydroxy-l-tryptophan (5-HTP) in kidney samples, and serotonin (5-HT) in fecal samples were increased in the db/db group. Phosphatidylcholine (PC), phosphatidate (PA), and 1-acylglycerophosphocholine (lysoPC) were decreased in liver and serum samples of the db/db group, while PC and lysoPC were decreased in kidney and perinephric fat samples. Suggested metabolomic homeostasis was disrupted in DKD mice, especially glycerophospholipid and tryptophan metabolism, which are closely related to the gut microbiome. Conclusions Our findings reveal the perturbation of gut microbial metabolism in db/db mice with DKD, which may be useful for building a bridge between the gut microbiota and the progression of DKD and provide a theoretical basis for the intestinal treatment of DKD.
Collapse
Affiliation(s)
- Ting Zhu
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Bi-Ying Hu
- Department of Nephrology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yi-Qing Zhang
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ze-Yu Zhang
- Department of Nephrology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Kai-Wen Cai
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Lei Lei
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Bo Hu
- Department of Nephrology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiao-Hua Wang
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chun Tang
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yong-Ping Lu
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Department of Nephrology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhi-Hua Zheng
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
24
|
Li J, Li D, Chen Y, Chen W, Xu J, Gao L. Gut Microbiota and Aging: Traditional Chinese Medicine and Modern Medicine. Clin Interv Aging 2023; 18:963-986. [PMID: 37351381 PMCID: PMC10284159 DOI: 10.2147/cia.s414714] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/08/2023] [Indexed: 06/24/2023] Open
Abstract
The changing composition of gut microbiota, much like aging, accompanies people throughout their lives, and the inextricable relationship between both has recently attracted extensive attention as well. Modern medical research has revealed that a series of changes in gut microbiota are involved in the aging process of organisms, which may be because gut microbiota modulates aging-related changes related to innate immunity and cognitive function. At present, there is no definite and effective method to delay aging. However, Nobel laureate Tu Youyou's research on artemisinin has inspired researchers to study the importance of Traditional Chinese Medicine (TCM). TCM, as an ancient alternative medicine, has unique advantages in preventive health care and in treating diseases as it already has formed an independent understanding of the aging system. TCM practitioners believe that the mechanism of aging is mainly deficiency, and pathological states such as blood stasis, qi stagnation and phlegm coagulation can exacerbate the process of aging, which involves a series of organs, including the brain, kidney, heart, liver and spleen. Our current understanding of aging has led us to realise that TCM can indeed make some beneficial changes, such as the improvement of cognitive impairment. However, due to the multi-component and multi-target nature of TCM, the exploration of its mechanism of action has become extremely complex. While analysing the relationship between gut microbiota and aging, this review explores the similarities and differences in treatment methods and mechanisms between TCM and Modern Medicine, in order to explore a new approach that combines TCM and Modern Medicine to regulate gut microbiota, improve immunity and delay aging.
Collapse
Affiliation(s)
- Jinfan Li
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, People’s Republic of China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Dong Li
- Department of Diabetes, Licheng District Hospital of Traditional Chinese Medicine, Jinan, Shandong, 250100, People’s Republic of China
| | - Yajie Chen
- Department of Rehabilitation and Health Care, Jinan Vocational College of Nursing, Jinan, Shandong, 250100, People’s Republic of China
| | - Wenbin Chen
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, People’s Republic of China
| | - Jin Xu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, People’s Republic of China
| | - Ling Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, People’s Republic of China
| |
Collapse
|
25
|
Ganz MJ, Bose K, Herzog C, Bender S, Mertens PR, Scurt FG. Pathomechanismen der chronischen Nierenschädigung bei Diabetes und anderen Begleiterkrankungen. DIE DIABETOLOGIE 2023; 19:251-261. [DOI: 10.1007/s11428-023-01020-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 01/03/2025]
|
26
|
Balint L, Socaciu C, Socaciu AI, Vlad A, Gadalean F, Bob F, Milas O, Cretu OM, Suteanu-Simulescu A, Glavan M, Ienciu S, Mogos M, Jianu DC, Petrica L. Metabolite Profiling of the Gut–Renal–Cerebral Axis Reveals a Particular Pattern in Early Diabetic Kidney Disease in T2DM Patients. Int J Mol Sci 2023; 24:ijms24076212. [PMID: 37047187 PMCID: PMC10094272 DOI: 10.3390/ijms24076212] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) represents an important microvascular disease concerning the kidney and the brain. Gut dysbiosis and microbiota-derived metabolites may be in relation with early pathophysiological changes in diabetic kidney disease (DKD). The aim of the study was to find new potential gut-derived biomarkers involved in the pathogenesis of early DKD, with a focus on the complex interconnection of these biomarkers with podocyte injury, proximal tubule dysfunction, renal and cerebrovascular endothelial dysfunction. The study design consisted of metabolite profiling of serum and urine of 90 T2DM patients (subgroups P1-normoalbuminuria, P2-microalbuminuria, P3-macroalbuminuria) and 20 healthy controls (group C), based on ultra-high-performance liquid chromatography coupled with electrospray ionization-quadrupole-time of flight-mass spectrometry analysis (UHPLC-QTOF-ESI+-MS). By multivariate and univariate analyses of serum and urine, which included Partial Least Squares Discriminant Analysis (PLSDA), Variable Importance Plots (VIP), Random Forest scores, One Way ANOVA and Biomarker analysis, there were discovered metabolites belonging to nitrogen metabolic pathway and retinoic acid signaling pathway which differentiate P1 group from P2, P3, C groups. Tyrosine, phenylalanine, indoxyl sulfate, serotonin sulfate, and all-trans retinoic acid express the metabolic fingerprint of P1 group vs. P2, P3, C groups, revealing a particular pattern in early DKD in T2DM patients.
Collapse
|
27
|
Das S, Gnanasambandan R. Intestinal microbiome diversity of diabetic and non-diabetic kidney disease: Current status and future perspective. Life Sci 2023; 316:121414. [PMID: 36682521 DOI: 10.1016/j.lfs.2023.121414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
A significant portion of the health burden of diabetic kidney disease (DKD) is caused by both type 1 and type 2 diabetes which leads to morbidity and mortality globally. It is one of the most common diabetic complications characterized by loss of renal function with high prevalence, often leading to acute kidney disease (AKD). Inflammation triggered by gut microbiota is commonly associated with the development of DKD. Interactions between the gut microbiota and the host are correlated in maintaining metabolic and inflammatory homeostasis. However, the fundamental processes through which the gut microbiota affects the onset and progression of DKD are mainly unknown. In this narrative review, we summarised the potential role of the gut microbiome, their pathogenicity between diabetic and non-diabetic kidney disease (NDKD), and their impact on host immunity. A well-established association has already been seen between gut microbiota, diabetes and kidney disease. The gut-kidney interrelationship is confirmed by mounting evidence linking gut dysbiosis to DKD, however, it is still unclear what is the real cause of gut dysbiosis, the development of DKD, and its progression. In addition, we also try to distinguish novel biomarkers for early detection of DKD and the possible therapies that can be used to regulate the gut microbiota and improve the host immune response. This early detection and new therapies will help clinicians for better management of the disease and help improve patient outcomes.
Collapse
Affiliation(s)
- Soumik Das
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Ramanathan Gnanasambandan
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
28
|
Su D, Chen J, Du S, Kim H, Yu B, Wong KE, Boerwinkle E, Rebholz CM. Metabolomic Markers of Ultra-Processed Food and Incident CKD. Clin J Am Soc Nephrol 2023; 18:327-336. [PMID: 36735499 PMCID: PMC10103271 DOI: 10.2215/cjn.0000000000000062] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/22/2022] [Indexed: 01/22/2023]
Abstract
BACKGROUND High ultra-processed food consumption is associated with higher risk of CKD. However, there is no biomarker for ultra-processed food, and the mechanism through which ultra-processed food is associated with CKD is not clear. Metabolomics can provide objective biomarkers of ultra-processed food and provide important insights into the mechanisms by which ultra-processed food is associated with risk of incident CKD. Our objective was to identify serum metabolites associated with ultra-processed food consumption and investigate whether ultra-processed food-associated metabolites are prospectively associated with incident CKD. METHODS We used data from 3751 Black and White men and women (aged 45-64 years) in the Atherosclerosis Risk in Communities study. Dietary intake was assessed using a semiquantitative 66-item food frequency questionnaire, and ultra-processed food was classified using the NOVA classification system. Multivariable linear regression models were used to identify the association between 359 metabolites and ultra-processed food consumption. Cox proportional hazards models were used to investigate the prospective association of ultra-processed food-associated metabolites with incident CKD. RESULTS Twelve metabolites (saccharine, homostachydrine, stachydrine, N2, N2-dimethylguanosine, catechol sulfate, caffeine, 3-methyl-2-oxovalerate, theobromine, docosahexaenoate, glucose, mannose, and bradykinin) were significantly associated with ultra-processed food consumption after controlling for false discovery rate <0.05 and adjusting for sociodemographic factors, health behaviors, eGFR, and total energy intake. The 12 ultra-processed food-related metabolites significantly improved the prediction of ultra-processed food consumption (difference in C statistics: 0.069, P <1×10 -16 ). Higher levels of mannose, glucose, and N2, N2-dimethylguanosine were associated with higher risk of incident CKD after a median follow-up of 23 years. CONCLUSIONS We identified 12 serum metabolites associated with ultra-processed food consumption and three of them were positively associated with incident CKD. Mannose and N2, N2-dimethylguanosine are novel markers of CKD that may explain observed associations between ultra-processed food and CKD. PODCAST This article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/CJASN/2023_03_08_CJN08480722.mp3.
Collapse
Affiliation(s)
- Donghan Su
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Jingsha Chen
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Shutong Du
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Hyunju Kim
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston, Houston, Texas
| | | | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Casey M. Rebholz
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
29
|
Wang YJ, Du Y, Chen GQ, Cheng ZQ, Liu XM, Lian Y. Dose-response relationship between dietary inflammatory index and diabetic kidney disease in US adults. Public Health Nutr 2023; 26:611-619. [PMID: 35941082 PMCID: PMC9989711 DOI: 10.1017/s1368980022001653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 05/30/2022] [Accepted: 07/19/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The impact of the dietary potential inflammatory effect on diabetic kidney disease (DKD) has not been adequately investigated. The present study aimed to explore the association between dietary inflammatory index (DII) and DKD in US adults. DESIGN This is a cross-sectional study. SETTING Data from the National Health and Nutrition Examination Survey (2007-2016) were used. DII was calculated from 24-h dietary recall interviews. DKD was defined as diabetes with albuminuria, impaired glomerular filtration rate or both. Logistic regression and restricted cubic spline models were adopted to evaluate the associations. PARTICIPANTS Data from the National Health and Nutrition Examination Survey (2007-2016) were used, which can provide the information of participants. RESULTS Four thousand two-hundred and sixty-four participants were included in this study. The adjusted OR of DKD was 1·04 (95 % CI 0·81, 1·36) for quartile 2, 1·24 (95 % CI 0·97, 1·59) for quartile 3 and 1·64 (95 % CI 1·24, 2·17) for quartile 4, respectively, compared with the quartile 1 of DII. A linear dose-response pattern was observed between DII and DKD (Pnonlinearity = 0·73). In the stratified analyses, the OR for quartile 4 of DII were significant among adults with higher educational level (OR 1·83, 95 % CI 1·26, 2·66) and overweight or obese participants (OR 1·67, 95 % CI 1·23, 2·28), but not among the corresponding another subgroup. The interaction effects between DII and stratified factors on DKD were not statistically significant (all P values for interactions were >0·05). CONCLUSIONS Our findings suggest that a pro-inflammatory diet, shown by a higher DII score, is associated with increased odd of DKD.
Collapse
Affiliation(s)
- Yong-Jun Wang
- Department of Health Management & Engineering Laboratory for Health Management, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jingshi Road 16766, Jinan250014, People’s Republic of China
- Department of Clinical Nutrition, Shandong Provincial Qianfoshan Hospital & The First Affiliated Hospital of Shandong First Medical University, Jinan, People’s Republic of China
| | - Yang Du
- Department of Health Management & Engineering Laboratory for Health Management, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jingshi Road 16766, Jinan250014, People’s Republic of China
| | - Guo-Qiang Chen
- Department of Health Management & Engineering Laboratory for Health Management, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jingshi Road 16766, Jinan250014, People’s Republic of China
- Department of Medical Record Management and Statistics, Shandong Provincial Qianfoshan Hospital & The First Affiliated Hospital of Shandong First Medical University, Jinan, People’s Republic of China
| | - Zhen-Qian Cheng
- Department of Health Management & Engineering Laboratory for Health Management, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jingshi Road 16766, Jinan250014, People’s Republic of China
- Department of Clinical Nutrition, Shandong Provincial Qianfoshan Hospital & The First Affiliated Hospital of Shandong First Medical University, Jinan, People’s Republic of China
| | - Xue-Mei Liu
- Department of Health Management & Engineering Laboratory for Health Management, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jingshi Road 16766, Jinan250014, People’s Republic of China
- Department of Clinical Nutrition, Shandong Provincial Qianfoshan Hospital & The First Affiliated Hospital of Shandong First Medical University, Jinan, People’s Republic of China
| | - Ying Lian
- Department of Health Management & Engineering Laboratory for Health Management, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jingshi Road 16766, Jinan250014, People’s Republic of China
- Department of Medical Record Management and Statistics, Shandong Provincial Qianfoshan Hospital & The First Affiliated Hospital of Shandong First Medical University, Jinan, People’s Republic of China
| |
Collapse
|
30
|
Wang Y, Shi M, Chu Z, Yan X, You G, Chen G, Zhou H. Protective effect of bioactive iridium nanozymes on high altitude-related hypoxia-induced kidney injury in mice. Front Pharmacol 2023; 14:1115224. [PMID: 36891263 PMCID: PMC9986433 DOI: 10.3389/fphar.2023.1115224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Introduction: High altitude-related hypoxia-induced organ damage significantly impacts people who are exposed to acute high-altitude environment. At present, kidney injury still lacks effective treatment strategies. Iridium nanozymes (Ir-NPs) are a nanomaterial with various enzymatic activities and are expected to be used in kidney injury treatment. Methods: In this study, we simulated a high-altitude environment (6000 m) to induce a kidney injury model, and explored the therapeutic effect of Ir-NPs in mice with kidney injury in this environment. Changes in the microbial community and metabolites were analyzed to explore the possible mechanism underlying the improvement of kidney injury during acute altitude hypoxia in mice treated with Ir-NPs. Results: It was discovered that plasma lactate dehydrogenase and urea nitrogen levels were considerably increased in mice exposed to acute altitude hypoxia compared to mice in a normal oxygen environment. Furthermore, there was a substantial increase in IL-6 expression levels in hypoxic mice; contrastingly, Ir-NPs decreased IL-6 expression levels, reduced the levels of succinic acid and indoxyl sulfate in the plasma and kidney pathological changes caused by acute altitude hypoxia. Microbiome analysis showed that bacteria, such as Lachnospiraceae_UCG_006 predominated in mice treated with Ir-NPs. Conclusion: Correlation analysis of the physiological, biochemical, metabolic, and microbiome-related parameters showed that Ir-NPs could reduce the inflammatory response and protect kidney function under acute altitude hypoxia, which may be related to intestinal flora distribution regulation and plasma metabolism in mice. Therefore, this study provides a novel therapeutic strategy for hypoxia-related kidney injury, which could be applied to other hypoxia-related diseases.
Collapse
Affiliation(s)
- Yujing Wang
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Meijun Shi
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Zongtang Chu
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Xinlin Yan
- National Engineering Research Center for the Emergency Drug, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Guoxing You
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Gan Chen
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Hong Zhou
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
31
|
Wang H, Ainiwaer A, Song Y, Qin L, Peng A, Bao H, Qin H. Perturbed gut microbiome and fecal and serum metabolomes are associated with chronic kidney disease severity. MICROBIOME 2023; 11:3. [PMID: 36624472 PMCID: PMC9827681 DOI: 10.1186/s40168-022-01443-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) is a severe public health problem associated with a disordered gut microbiome. However, the functional alterations of microbiota and their cross talk with metabolism pathways based on disease severity remain unclear. RESULTS We performed metagenomics and untargeted metabolomics in a cohort of 68 patients with CKD of differing severities and 20 healthy controls to characterize the complex interplay between the gut microbiome and fecal and serum metabolites during CKD progression. We identified 26 microbial species that significantly changed in patients with CKD; 18 species changed as the disease progressed, and eight species changed only in a specific CKD group. These distinct changes in gut microbiota were accompanied by functional alterations in arginine and proline, arachidonic acid, and glutathione metabolism and ubiquinone and other terpenoid-quinone biosynthesis pathways during CKD progression. Further metabolomic analyses revealed that the distributions of toxic and pro-oxidant metabolites from these four essential metabolic pathways varied in the feces and serum as CKD progressed. Furthermore, we observed a complex co-occurrence between CKD severity-related bacteria and the characterized metabolites from the four essential metabolic pathways. Notably, Ruminococcus bromii, fecal hydroquinone, and serum creatinine were identified as the main contributors to the integrated network, indicating their key roles in CKD progression. Moreover, a noninvasive model including R. bromii and fecal hydroquinone, L-cystine, and 12-keto-tetrahydro-LTB4 levels classified the CKD severity (area under the curve [AUC]: > 0.9) and had better performance than the serum creatinine level for mild CKD (AUC: 0.972 vs. 0.896). CONCLUSIONS Perturbed CKD severity-related gut microbiota may contribute to unbalanced toxic and pro-oxidant metabolism in the gut and host, accelerating CKD progression, which may be an early diagnostic and therapeutic target for CKD. Video Abstract.
Collapse
Affiliation(s)
- Haichao Wang
- Department of Nephrology and Rheumatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Aisima Ainiwaer
- Department of Nephrology and Rheumatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Yaxiang Song
- Department of Nephrology and Rheumatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Ling Qin
- Department of Nephrology and Rheumatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Ai Peng
- Department of Nephrology and Rheumatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Hui Bao
- Department of Nephrology and Rheumatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Huanlong Qin
- Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| |
Collapse
|
32
|
Rampanelli E, Nieuwdorp M. Gut microbiome in type 1 diabetes: the immunological perspective. Expert Rev Clin Immunol 2023; 19:93-109. [PMID: 36401835 DOI: 10.1080/1744666x.2023.2150612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Type 1 diabetes (T1D) is a prevalent, and yet uncurable, autoimmune disease targeting insulin-producing pancreatic β-cells. Despite a known genetic component in T1D onset, genetics alone cannot explain the alarming worldwide rise in T1D incidence, which is attributed to a growing impact of environmental factors, including perturbations of the gut microbiome. AREAS COVERED Intestinal commensal bacteria plays a crucial role in host physiology in health and disease by regulating endocrine and immune functions. An aberrant gut microbiome structure and metabolic function have been documented prior and during T1D onset. In this review, we summarize and discuss the current studies depicting the taxonomic profile and role of the gut microbial communities in murine models of T1D, diabetic patients and human interventional trials. EXPERT OPINION Compelling evidence have shown that the intestinal microbiota is instrumental in driving differentiation and functions of immune cells. Therefore, any alterations in the intestinal microbiome composition or microbial metabolite production, particularly early in life, may impact disease susceptibility and amplify inflammatory responses and hence accelerate the course of T1D pathogenesis.
Collapse
Affiliation(s)
- Elena Rampanelli
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands.,Amsterdam Institute for Infection and Immunity (AII), Amsterdam, The Netherlands.,Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM) Institute, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences (ACS) Institute, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM) Institute, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences (ACS) Institute, Amsterdam, The Netherlands.,Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Wu X, Zhao L, Zhang Y, Li K, Yang J. The role and mechanism of the gut microbiota in the development and treatment of diabetic kidney disease. Front Physiol 2023; 14:1166685. [PMID: 37153213 PMCID: PMC10160444 DOI: 10.3389/fphys.2023.1166685] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
Diabetic kidney disease (DKD) is a common complication in patients with diabetes mellitus (DM). Increasing evidence suggested that the gut microbiota participates in the progression of DKD, which is involved in insulin resistance, renin-angiotensin system (RAS) activation, oxidative stress, inflammation and immunity. Gut microbiota-targeted therapies including dietary fiber, supplementation with probiotics or prebiotics, fecal microbiota transplantation and diabetic agents that modulate the gut microbiota, such as metformin, glucagon-like peptide-1 (GLP-1) receptor agonists, dipeptidyl peptidase-4 (DPP-4) inhibitors, and sodium-glucose transporter-2 (SGLT-2) inhibitors. In this review, we summarize the most important findings about the role of the gut microbiota in the pathogenesis of DKD and the application of gut microbiota-targeted therapies.
Collapse
Affiliation(s)
- Xiaofang Wu
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Zhao
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yujiang Zhang
- Department of Nephrology, Chongqing Jiangjin Second People’s Hospital, Chongqing, China
| | - Kailong Li
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jurong Yang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Jurong Yang,
| |
Collapse
|
34
|
Wang P, Guo R, Bai X, Cui W, Zhang Y, Li H, Shang J, Zhao Z. Sacubitril/Valsartan contributes to improving the diabetic kidney disease and regulating the gut microbiota in mice. Front Endocrinol (Lausanne) 2022; 13:1034818. [PMID: 36589853 PMCID: PMC9802116 DOI: 10.3389/fendo.2022.1034818] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/31/2022] [Indexed: 12/23/2022] Open
Abstract
Background Diabetic kidney disease (DKD), as a serious microvascular complication of diabetes, has limted treatment options. It is reported that the Sacubitril/Valsartan (Sac/Val) can improve kidney function, and the disordered gut microbiota and part of its metabolites are related to the development of DKD. Therefore, we aim to explore whether the effect of Sac/Val on DKD is associated with the gut microbiota and related plasma metabolic profiles. Methods Male C57BL/6J mice were randomly divided into 3 groups: Con group (n = 5), DKD group (n = 6), and Sac/Val group (n = 6) . Sac/Val group was treated with Sac/Val solution. The intervention was given once every 2 days for 6 weeks. We measured the blood glucose and urine protein level of mice at different times. We then collected samples at the end of experiment for the 16s rRNA gene sequencing analysis and the untargeted plasma metabonomic analysis. Results We found that the plasma creatinine concentration of DKD-group mice was significantly higher than that of Con-group mice, whereas it was reduced after the Sac/Val treatment. Compared with DKD mice, Sac/Val treatment could decrease the expression of indicators related to EndMT and renal fibrosis like vimentin, collagen IV and fibronectin in kidney. According to the criteria of LDA ≥ 2.5 and p<0.05, LefSe analysis of gut microbiota identified 13 biomarkers in Con group, and 33 biomarkers in DKD group, mainly including Prevotella, Escherichia_Shigella and Christensenellaceae_R_7_group, etc. For the Sac/Val group, there were 21 biomarkers, such as Bacteroides, Rikenellaceae_RC9_gut_group, Parabacteroides, Lactobacillus, etc. Plasma metabolomics analysis identified a total of 648 metabolites, and 167 important differential metabolites were screened among groups. KEGG pathway of tryptophan metabolism: M and bile secretion: OS had the highest significance of enrichment. Conclusions Sac/Val improves the renal function of DKD mice by inhibiting renal fibrosis. This drug can also regulate gut microbiota in DKD mice.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Ruixue Guo
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Xiwen Bai
- Nanchang University Queen Mary School, Nanchang, China
| | - Wen Cui
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Yiding Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Huangmin Li
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Jin Shang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Laboratory Animal Platform of Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Nephropathy Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhanzheng Zhao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Laboratory Animal Platform of Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Nephropathy Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
35
|
Paul P, Kaul R, Chaari A. Renal Health Improvement in Diabetes through Microbiome Modulation of the Gut-Kidney Axis with Biotics: A Systematic and Narrative Review of Randomized Controlled Trials. Int J Mol Sci 2022; 23:14838. [PMID: 36499168 PMCID: PMC9740604 DOI: 10.3390/ijms232314838] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/13/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Diabetes mellitus is the most common endocrine disorder worldwide, with over 20% of patients ultimately developing diabetic kidney disease (DKD), a complex nephropathic complication that is a leading cause of end-stage renal disease. Various clinical trials have utilized probiotics, prebiotics, and synbiotics to attempt to positively modulate the gut microbiome via the gut-kidney axis, but consensus is limited. We conducted a multi-database systematic review to investigate the effect of probiotics, prebiotics, and synbiotics on various biomarkers of renal health in diabetes, based on studies published through 10 April 2022. Adhering to the Cochrane Collaboration and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, relevant articles were systematically screened and extracted by independent reviewers; subsequently, results were systematically compiled, analyzed, and expanded through a narrative discussion. A total of 16 publications encompassing 903 diabetic individuals met the inclusion criteria. Our findings show that some studies report statistically significant changes in common renal markers, such as serum creatinine, estimated glomerular filtration rate, blood urea nitrogen/urea, microalbuminuria, and uric acid, but not on serum albumin, sodium, potassium, phosphorous, or total urine protein. Interestingly, these nutraceuticals seem to increase serum uric acid concentrations, an inflammatory marker usually associated with decreased renal health. We found that probiotics from the Lactobacillus and Bifidobacterium families were the most investigated, followed by Streptococcus thermophilus. Prebiotics including inulin, galacto-oligosaccharide, and resistant dextrin were also examined. The single-species probiotic soymilk formulation of Lactobacillus plantarum A7 possessed effects on multiple renal biomarkers in DKD patients without adverse events. We further investigated the optimum nutraceutical formulation, discussed findings from prior studies, described the gut-kidney axis in diabetes and DKD, and finally commented on some possible mechanisms of action of these nutraceuticals on renal health in diabetics. Although probiotics, prebiotics, and synbiotics have shown some potential in ameliorating renal health degradation in diabetes via gut-kidney axis crosstalk, larger and more convincing trials with focused objectives and next-generation nutraceutical formulations are required to investigate their possible role as adjunct therapy in such patients.
Collapse
Affiliation(s)
- Pradipta Paul
- Medical Education Division, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation—Education City, Doha P.O. Box 24144, Qatar
| | - Ridhima Kaul
- Medical Education Division, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation—Education City, Doha P.O. Box 24144, Qatar
| | - Ali Chaari
- Premedical Division, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation—Education City, Doha P.O. Box 24144, Qatar
| |
Collapse
|
36
|
Du J, Yang M, Zhang Z, Cao B, Wang Z, Han J. The modulation of gut microbiota by herbal medicine to alleviate diabetic kidney disease - A review. Front Pharmacol 2022; 13:1032208. [PMID: 36452235 PMCID: PMC9702521 DOI: 10.3389/fphar.2022.1032208] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/31/2022] [Indexed: 09/09/2023] Open
Abstract
The treatment of diabetic kidney disease (DKD) has been the key concern of the medical community. Herbal medicine has been reported to alleviate intestinal dysbiosis, promote the excretion of toxic metabolites, and reduce the secretion of uremic toxins. However, the current understanding of the modulation of the gut microbiota by herbal medicine to delay the progression of DKD is still insufficient. Consequently, we reviewed the knowledge based on peer-reviewed English-language journals regarding regulating gut microbiota by herbal medicines in DKD. It was found that herbal medicine or their natural extracts may have the following effects: modulating the composition of intestinal flora, particularly Akkermansia, Lactobacillus, and Bacteroidetes, as well as adjusting the F/B ratio; increasing the production of SCFAs and restoring the intestinal barrier; reducing the concentration of uremic toxins (p-cresol sulfate, indole sulfate, TMAO); inhibiting inflammation and oxidative stress.
Collapse
Affiliation(s)
- Jinxin Du
- Shandong University of Traditional Chinese Medicine, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Meina Yang
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zhongwen Zhang
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Baorui Cao
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Zhiying Wang
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Jinxiang Han
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| |
Collapse
|
37
|
Drake AM, Coughlan MT, Christophersen CT, Snelson M. Resistant Starch as a Dietary Intervention to Limit the Progression of Diabetic Kidney Disease. Nutrients 2022; 14:4547. [PMID: 36364808 PMCID: PMC9656781 DOI: 10.3390/nu14214547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 08/15/2023] Open
Abstract
Diabetes is the leading cause of kidney disease, and as the number of individuals with diabetes increases there is a concomitant increase in the prevalence of diabetic kidney disease (DKD). Diabetes contributes to the development of DKD through a number of pathways, including inflammation, oxidative stress, and the gut-kidney axis, which may be amenable to dietary therapy. Resistant starch (RS) is a dietary fibre that alters the gut microbial consortium, leading to an increase in the microbial production of short chain fatty acids. Evidence from animal and human studies indicate that short chain fatty acids are able to attenuate inflammatory and oxidative stress pathways, which may mitigate the progression of DKD. In this review, we evaluate and summarise the evidence from both preclinical models of DKD and clinical trials that have utilised RS as a dietary therapy to limit the progression of DKD.
Collapse
Affiliation(s)
- Anna M. Drake
- Glycation, Nutrition and Metabolism Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne 3004, Australia
| | - Melinda T. Coughlan
- Glycation, Nutrition and Metabolism Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne 3004, Australia
- Baker Heart & Diabetes Institute, Melbourne 3004, Australia
| | - Claus T. Christophersen
- School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
- WA Human Microbiome Collaboration Centre, School of Molecular Life Sciences, Curtin University, Bentley 6102, Australia
| | - Matthew Snelson
- Glycation, Nutrition and Metabolism Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne 3004, Australia
| |
Collapse
|
38
|
Ni Y, Zheng L, Nan S, Ke L, Fu Z, Jin J. Enterorenal crosstalks in diabetic nephropathy and novel therapeutics targeting the gut microbiota. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1406-1420. [PMID: 36239349 PMCID: PMC9827797 DOI: 10.3724/abbs.2022140] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/03/2022] [Indexed: 12/29/2022] Open
Abstract
The role of gut-kidney crosstalk in the progression of diabetic nephropathy (DN) is receiving increasing concern. On one hand, the decline in renal function increases circulating uremic toxins and affects the composition and function of gut microbiota. On the other hand, intestinal dysbiosis destroys the epithelial barrier, leading to increased exposure to endotoxins, thereby exacerbating kidney damage by inducing systemic inflammation. Dietary inventions, such as higher fiber intake, prebiotics, probiotics, postbiotics, fecal microbial transplantation (FMT), and engineering bacteria and phages, are potential microbiota-based therapies for DN. Furthermore, novel diabetic agents, such as glucagon-like peptide-1 (GLP-1) receptor agonists, dipeptidyl peptidase-4 (DPP-4) inhibitors, and sodium-dependent glucose transporter-2 (SGLT-2) inhibitors, may affect the progression of DN partly through gut microbiota. In the current review, we mainly summarize the evidence concerning the gut-kidney axis in the advancement of DN and discuss therapies targeting the gut microbiota, expecting to provide new insight into the clinical treatment of DN.
Collapse
Affiliation(s)
- Yinhua Ni
- College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Liujie Zheng
- College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Sujie Nan
- College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Lehui Ke
- College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Zhengwei Fu
- College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Juan Jin
- Urology & Nephrology CenterDepartment of NephrologyZhejiang Provincial People’s Hospital (Affiliated People’s HospitalHangzhou Medical College)Hangzhou310014China
| |
Collapse
|
39
|
Deng L, Yang Y, Xu G. Empagliflozin ameliorates type 2 diabetes mellitus-related diabetic nephropathy via altering the gut microbiota. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159234. [PMID: 36185030 DOI: 10.1016/j.bbalip.2022.159234] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/22/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND The dysregulation of gut microbiota can be found in patients with type 2 diabetes mellitus (T2DM)-related diabetic nephropathy (DN). Inhibitors of sodium-glucose co-transporter 2 (SGLT2) were reported to affect gut microbiota. This study aimed to identify whether empagliflozin (EMPA) attenuated DN via regulating gut microbiota. MATERIALS AND METHODS The high-fat diet (HFD) combining streptozocin (STZ) injection was performed to induce DN in mice. The therapeutic effects of EMPA were observed by staining of renal tissues and urine albumin/creatinine ratio (UACR). Mouse feces were collected for 16S rRNA sequencing. Fecal short-chain fatty acids (SCFAs) and fecal and serum lipopolysaccharide (LPS) were determined. An antibiotic-ablated model was established to confirm the role of the gut microbiota in the actions of EMPA. RESULTS EMPA reduced the elevation of blood glucose and UACR caused by HFD/STZ. It inhibited the thickening of the colonic crypt and restored goblet cells and the expressions of ZO-1 and Occludin. The 16S rRNA sequencing showed that the diversity of gut microbiota was reduced after HFD/STZ treatment, while it was restored after EMPA treatment. The LPS-producing bacteria, Oscillibacter, and the SCFA-producing bacteria, Bateroid and Odoribacter, were changed after EMPA administration. The therapeutic effects of EMPA on ABX-treated mice were reduced. Meanwhile, the level of fecal SCFAs was decreased, while the levels of fecal and serum LPS were elevated, in T2DM mice, and they were negated by the administration of EMPA. CONCLUSION EMPA ameliorates T2DM-related DN via altering the gut microbiota, especially reducing LPS-producing bacteria and increasing SCFA-producing bacteria.
Collapse
Affiliation(s)
- Le Deng
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, Jiangxi 330006, China
| | - Yang Yang
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, Jiangxi 330006, China
| | - Gaosi Xu
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, Jiangxi 330006, China.
| |
Collapse
|
40
|
Microbial Tryptophan Metabolism Tunes Host Immunity, Metabolism, and Extraintestinal Disorders. Metabolites 2022; 12:metabo12090834. [PMID: 36144238 PMCID: PMC9505266 DOI: 10.3390/metabo12090834] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
The trillions of commensal microorganisms comprising the gut microbiota have received growing attention owing to their impact on host physiology. Recent advances in our understandings of the host–microbiota crosstalk support a pivotal role of microbiota-derived metabolites in various physiological processes, as they serve as messengers in the complex dialogue between commensals and host immune and endocrine cells. In this review, we highlight the importance of tryptophan-derived metabolites in host physiology, and summarize the recent findings on the role of tryptophan catabolites in preserving intestinal homeostasis and fine-tuning immune and metabolic responses. Furthermore, we discuss the latest evidence on the effects of microbial tryptophan catabolites, describe their mechanisms of action, and discuss how perturbations of microbial tryptophan metabolism may affect the course of intestinal and extraintestinal disorders, including inflammatory bowel diseases, metabolic disorders, chronic kidney diseases, and cardiovascular diseases.
Collapse
|
41
|
Effects of Butyrate Supplementation on Inflammation and Kidney Parameters in Type 1 Diabetes: A Randomized, Double-Blind, Placebo-Controlled Trial. J Clin Med 2022; 11:jcm11133573. [PMID: 35806857 PMCID: PMC9267418 DOI: 10.3390/jcm11133573] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/27/2022] [Accepted: 06/09/2022] [Indexed: 12/19/2022] Open
Abstract
Type 1 diabetes is associated with increased intestinal inflammation and decreased abundance of butyrate-producing bacteria. We investigated the effect of butyrate on inflammation, kidney parameters, HbA1c, serum metabolites and gastrointestinal symptoms in persons with type 1 diabetes, albuminuria and intestinal inflammation. We conducted a randomized placebo-controlled, double-blind, parallel clinical study involving 53 participants randomized to 3.6 g sodium butyrate daily or placebo for 12 weeks. The primary endpoint was the change in fecal calprotectin. Additional endpoints were the change in fecal short chain fatty acids, intestinal alkaline phosphatase activity and immunoglobulins, serum lipopolysaccharide, CRP, albuminuria, kidney function, HbA1c, metabolites and gastrointestinal symptoms. The mean age was 54 ± 13 years, and the median [Q1:Q3] urinary albumin excretion was 46 [14:121] mg/g. The median fecal calprotectin in the butyrate group was 48 [26:100] μg/g at baseline, and the change was −1.0 [−20:10] μg/g; the median in the placebo group was 61 [25:139] μg/g at baseline, and the change was −12 [−95:1] μg/g. The difference between the groups was not significant (p = 0.24); neither did we find an effect of butyrate compared to placebo on the other inflammatory markers, kidney parameters, HbA1c, metabolites nor gastrointestinal symptoms. Twelve weeks of butyrate supplementation did not reduce intestinal inflammation in persons with type 1 diabetes, albuminuria and intestinal inflammation.
Collapse
|
42
|
Bian J, Liebert A, Bicknell B, Chen XM, Huang C, Pollock CA. Faecal Microbiota Transplantation and Chronic Kidney Disease. Nutrients 2022; 14:nu14122528. [PMID: 35745257 PMCID: PMC9228952 DOI: 10.3390/nu14122528] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 02/05/2023] Open
Abstract
Faecal microbiota transplantation (FMT) has attracted increasing attention as an intervention in many clinical conditions, including autoimmune, enteroendocrine, gastroenterological, and neurological diseases. For years, FMT has been an effective second-line treatment for Clostridium difficile infection (CDI) with beneficial outcomes. FMT is also promising in improving bowel diseases, such as ulcerative colitis (UC). Pre-clinical and clinical studies suggest that this microbiota-based intervention may influence the development and progression of chronic kidney disease (CKD) via modifying a dysregulated gut–kidney axis. Despite the high morbidity and mortality due to CKD, there are limited options for treatment until end-stage kidney disease occurs, which results in death, dialysis, or kidney transplantation. This imposes a significant financial and health burden on the individual, their families and careers, and the health system. Recent studies have suggested that strategies to reverse gut dysbiosis using FMT are a promising therapy in CKD. This review summarises the preclinical and clinical evidence and postulates the potential therapeutic effect of FMT in the management of CKD.
Collapse
Affiliation(s)
- Ji Bian
- Kolling Institute, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (J.B.); (X.-M.C.)
| | - Ann Liebert
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia;
| | - Brian Bicknell
- College of Health and Medicine, Australian National University, Deacon, ACT 2600, Australia;
| | - Xin-Ming Chen
- Kolling Institute, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (J.B.); (X.-M.C.)
| | - Chunling Huang
- Kolling Institute, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (J.B.); (X.-M.C.)
- Correspondence: (C.H.); (C.A.P.); Tel.: +61-2-9926-4784 (C.H.); +61-2-9926-4652 (C.A.P.)
| | - Carol A. Pollock
- Kolling Institute, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (J.B.); (X.-M.C.)
- Correspondence: (C.H.); (C.A.P.); Tel.: +61-2-9926-4784 (C.H.); +61-2-9926-4652 (C.A.P.)
| |
Collapse
|
43
|
Tuttle KR, Agarwal R, Alpers CE, Bakris GL, Brosius FC, Kolkhof P, Uribarri J. Molecular Mechanisms and Therapeutic Targets for Diabetic Kidney Disease. Kidney Int 2022; 102:248-260. [PMID: 35661785 DOI: 10.1016/j.kint.2022.05.012] [Citation(s) in RCA: 271] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022]
Abstract
Diabetic kidney disease has a high global disease burden and substantially increases risk of kidney failure and cardiovascular events. Despite treatment, there is substantial residual risk of disease progression with existing therapies. Therefore, there is an urgent need to better understand the molecular mechanisms driving diabetic kidney disease to help identify new therapies that slow progression and reduce associated risks. Diabetic kidney disease is initiated by diabetes-related disturbances in glucose metabolism, which then trigger other metabolic, hemodynamic, inflammatory, and fibrotic processes that contribute to disease progression. This review summarizes existing evidence on the molecular drivers of diabetic kidney disease onset and progression, focusing on inflammatory and fibrotic mediators-factors that are largely unaddressed as primary treatment targets and for which there is increasing evidence supporting key roles in the pathophysiology of diabetic kidney disease. Results from recent clinical trials highlight promising new drug therapies, as well as a role for dietary strategies, in treating diabetic kidney disease.
Collapse
Affiliation(s)
- Katherine R Tuttle
- Providence Medical Research Center, Providence Health Care, Spokane, Washington, USA; Institute of Translational Health Sciences, Kidney Research Institute, and Nephrology Division, University of Washington, Seattle, Washington, USA.
| | - Rajiv Agarwal
- Nephrology Division, Indiana University School of Medicine, Indianapolis, Indiana, USA; Nephrology Division, VA Medical Center, Indianapolis, Indiana, USA
| | - Charles E Alpers
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - George L Bakris
- American Heart Association Comprehensive Hypertension Center at the University of Chicago Medicine, Chicago, Illinois, USA
| | - Frank C Brosius
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter Kolkhof
- Cardiovascular Precision Medicines, Pharmaceuticals, Research & Development, Bayer AG, Wuppertal, Germany
| | - Jaime Uribarri
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
44
|
Kanbay M, Copur S, Demiray A, Sag AA, Covic A, Ortiz A, Tuttle KR. Fatty kidney: A possible future for chronic kidney disease research. Eur J Clin Invest 2022; 52:e13748. [PMID: 35040119 DOI: 10.1111/eci.13748] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Metabolic syndrome is a growing twenty-first century pandemic associated with multiple clinical comorbidities ranging from cardiovascular diseases, non-alcoholic fatty liver disease and polycystic ovary syndrome to kidney dysfunction. A novel area of research investigates the concept of fatty kidney in the pathogenesis of chronic kidney disease, especially in patients with diabetes mellitus or metabolic syndrome. AIM To review the most updated literature on fatty kidney and provide future research, diagnostic and therapeutic perspectives on a disease increasingly affecting the contemporary world. MATERIALS AND METHOD We performed an extensive literature search through three databases including Embase (Elsevier) and the Cochrane Central Register of Controlled Trials (Wiley) and PubMed/Medline Web of Science in November 2021 by using the following terms and their combinations: 'fatty kidney', 'ectopic fat', 'chronic kidney disease', 'cardiovascular event', 'cardio-metabolic risk', 'albuminuria' and 'metabolic syndrome'. Each study has been individually assessed by the authors. RESULTS Oxidative stress and inflammation, Klotho deficiency, endoplasmic reticulum stress, mitochondrial dysfunction and disruption of cellular energy balance appear to be the main pathophysiological mechanisms leading to tissue damage following fat accumulation. Despite the lack of large-scale comprehensive studies in this novel field of research, current clinical trials demonstrate fatty kidney as an independent risk factor for the development of chronic kidney disease and cardiovascular events. CONCLUSION The requirement for future studies investigating the pathophysiology, clinical outcomes and therapeutics of fatty kidney is clear.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Atalay Demiray
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Alan A Sag
- Division of Vascular and Interventional Radiology, Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Adrian Covic
- Department of Nephrology, Grigore T. Popa' University of Medicine, Iasi, Romania
| | - Alberto Ortiz
- Department of Medicine, Universidad Autonoma de Madrid and IIS-Fundacion Jimenez Diaz, Madrid, Spain
| | - Kathherine R Tuttle
- Division of Nephrology, University of Washington, Seattle, Washington, USA.,Providence Medical Research Center, Providence Health Care, Spokane, Washington, USA
| |
Collapse
|
45
|
Liu J, Gao LD, Fu B, Yang HT, Zhang L, Che SQ, Xu Y, Du X, Liu ZC, Xue Y, Lv CX, Huang YH, Wang BH, Gao SX, Xing YF, Yuan XH. Efficacy and safety of Zicuiyin decoction on diabetic kidney disease: A multicenter, randomized controlled trial. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154079. [PMID: 35413644 DOI: 10.1016/j.phymed.2022.154079] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUD Zicuiyin (ZCY) decoction created by Xichun Zhang in the Qing dynasty has been used on diabetes mellitus and complications for more than two centuries in China. Huangkui capsule (HKC) is a listed Chinese patent medicine to treat diabetic kidney disease (DKD). To determine whether ZCY is non-inferior to HKC in the treatment of DKD, a multicenter, parallel-control, open-label, randomized clinical trial was conducted. METHODS In this clinical trial, 88 DKD patients were recruited at three centers in Tianjin from January 2018 to December 2019. They were randomized to receive HKC (2.5 g, TID) or ZCY (crude drug amount 75 g, 150 ml, BID) for eight weeks based on routine treatment. The primary outcome was the change of estimated glomerular filtration rate (eGFR). The secondary outcomes included change of serum creatinine (SCr), urinary albumin excretion rate, 24 h urinary protein, urinary albumin-creatinine ratio, glycosylated hemoglobin A1c, symptom scores, and microbiota compositions profiles. RESULTS The change of eGFR in HKC and ZCY groups were -7.08 ± 24.65 and 2.57 ± 18.49 ml/min/1.73 m2, respectively (p < 0.05). The 95% lower confidence limit for the difference between the estimated means was 1.93 ml/min/1.73 m2, establishing the superiority of ZCY. Compared to HKC, ZCY could significantly decrease SCr and symptom scores (p < 0.05). There were no significant differences in other outcomes between the two groups (p > 0.05). ZCY ameliorated gut microbiota dysbiosis, including increased Prevotellaceae and Lactobacillaceae and decreased Enterobacteriales, Clostridiaceae and Micrococcaceae. No severe adverse events were reported in any group. CONCLUSIONS ZCY had better efficacy in improving and protecting kidney function. It would be an alternative option to treat DKD, especially those who decline eGFR and gut microbiota dysbiosis. TRIAL REGISTRATION Chinese Clinical Trial Registry: ChiCTR-OON-17012076. Registered July 21, 2017.
Collapse
Affiliation(s)
- Jia Liu
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 69 Zengchan Road, Hebei District, Tianjin 300250, China
| | - Li-Dong Gao
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Bin Fu
- Nephrology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 69 Zengchan Road, Hebei District, Tianjin 300250, China
| | - Hong-Tao Yang
- Nephrology Department, First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 88 ChangLing Road, Xiqing District, Tianjin 300381, China
| | - Lin Zhang
- Nephrology Department, First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 88 ChangLing Road, Xiqing District, Tianjin 300381, China
| | - Shu-Qiang Che
- Nephrology Department, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, 354 Beima Road, Hongqiao District, Tianjin 300120, China
| | - Ying Xu
- Nephrology Department, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, 354 Beima Road, Hongqiao District, Tianjin 300120, China
| | - Xi Du
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 69 Zengchan Road, Hebei District, Tianjin 300250, China
| | - Zhi-Chao Liu
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Yu Xue
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Chun-Xiao Lv
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 69 Zengchan Road, Hebei District, Tianjin 300250, China
| | - Yu-Hong Huang
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 69 Zengchan Road, Hebei District, Tianjin 300250, China.
| | - Bao-He Wang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 69 Zengchan Road, Hebei District, Tianjin 300250, China
| | - Shi-Xing Gao
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Yong-Fa Xing
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 69 Zengchan Road, Hebei District, Tianjin 300250, China
| | - Xin-Hui Yuan
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| |
Collapse
|
46
|
Zhang M, Yang L, Zhu M, Yang B, Yang Y, Jia X, Feng L. Moutan Cortex polysaccharide ameliorates diabetic kidney disease via modulating gut microbiota dynamically in rats. Int J Biol Macromol 2022; 206:849-860. [PMID: 35307460 DOI: 10.1016/j.ijbiomac.2022.03.077] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/01/2022] [Accepted: 03/12/2022] [Indexed: 12/11/2022]
Abstract
Growing evidence suggests that polysaccharides from traditional Chinese medicine positively affect diabetic kidney disease (DKD) mainly through modulating gut microbiota. Previously, we demonstrated that supplementation with the polysaccharide from Moutan Cortex (MC-Pa) alleviated DKD in rats. The study intends to investigate the dynamic modulation of MC-Pa on DKD from the gut microbiota perspective. The DKD rat model was induced by a high-fat and high-sugar diet combined with streptozotocin (STZ). The rats were then supplemented with MC-Pa (80 and 160 mg/kg BW) for 12 weeks. The results showed that MC-Pa administration relieved hyperglycemia and renal injury in DKD rats. MC-Pa also reconstructed gut microbiota, improved intestinal barrier function, reduced serum proinflammatory mediators, and elevated the short-chain fatty acid (SCFAs) contents. In addition, the dynamics of Lactobacillus and Muribaculaceae_unclassified were in a dose- and time-dependent manner. Spearman correlation analysis found that a cluster of gut microbiota phyla and genera were significantly associated with DKD-related indicators. These results demonstrated that MC-Pa positively affected DKD rats by modulating gut microbiota dynamically and had potential as a prebiotic.
Collapse
Affiliation(s)
- Meng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Licheng Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Maomao Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Bing Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Yanjun Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China.
| | - Liang Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China.
| |
Collapse
|
47
|
Hua Q, Han Y, Zhao H, Zhang H, Yan B, Pei S, He X, Li Y, Meng X, Chen L, Zhong F, Li D. Punicalagin alleviates renal injury via the gut-kidney axis in high-fat diet-induced diabetic mice. Food Funct 2022; 13:867-879. [PMID: 34989745 DOI: 10.1039/d1fo03343c] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diabetic renal injury was associated with dysbiosis of the gut microbiota and intestinal barrier. Punicalagin (PU) from pomegranates potentially impacts the microbial ecosystem, intestinal barrier, and renal function. Therefore, we hypothesized that PU may improve diabetic renal injury by modulating the gut-kidney axis. The present study evaluated the effect of PU on the gut-kidney axis and kidney function in a diabetic renal injury mouse model induced by a high-fat diet (HFD). Mice were fed a HFD without PU or with at doses of 50 and 100 mg kg-1 d-1 for 8 weeks. Targeted metabolomics by GC-MS and 16S rRNA sequencing were implemented to determine short-chain fatty acids (SCFAs) and microbes. Further RNA sequencing analyses were performed to determine which differentially expressed genes were changed by PU. Compared with the DM model group, PU supplementation improved diabetic renal injury, ameliorated kidney architecture and function, and reshaped gut microbial ecology. Additionally, PU reversed HFD-induced gut barrier dysfunction, promoted cecal SCFA concentrations and inhibited serum lipopolysaccharide (LPS) and diamine oxidase (DAO) levels. Moreover, correlation analysis found that cecal SCFAs were significantly negatively correlated with inflammation-related genes in the kidney. The present results indicated that PU, a promising bioactive polyphenol, successfully improved diabetic renal injury, most likely through the gut-kidney axis.
Collapse
Affiliation(s)
- Qinglian Hua
- School of Public health, Qingdao University, Qingdao, China. .,Institute of Nutrition & Health, Qingdao University, Qingdao, China
| | - Yaling Han
- School of Public health, Qingdao University, Qingdao, China. .,Institute of Nutrition & Health, Qingdao University, Qingdao, China
| | - Haifeng Zhao
- Qingdao Institute for Food and Drug Control, Qingdao, China
| | - Haowen Zhang
- School of Public health, Qingdao University, Qingdao, China. .,Institute of Nutrition & Health, Qingdao University, Qingdao, China
| | - Bei Yan
- School of Public health, Qingdao University, Qingdao, China. .,Institute of Nutrition & Health, Qingdao University, Qingdao, China
| | - Shengjie Pei
- School of Public health, Qingdao University, Qingdao, China. .,Institute of Nutrition & Health, Qingdao University, Qingdao, China
| | - Xin He
- School of Public health, Qingdao University, Qingdao, China. .,Institute of Nutrition & Health, Qingdao University, Qingdao, China
| | - Yue Li
- School of Public health, Qingdao University, Qingdao, China. .,Institute of Nutrition & Health, Qingdao University, Qingdao, China
| | - Xiangyuan Meng
- School of Public health, Qingdao University, Qingdao, China. .,Institute of Nutrition & Health, Qingdao University, Qingdao, China
| | - Lei Chen
- School of Public health, Qingdao University, Qingdao, China. .,Institute of Nutrition & Health, Qingdao University, Qingdao, China
| | - Feng Zhong
- School of Public health, Qingdao University, Qingdao, China. .,Institute of Nutrition & Health, Qingdao University, Qingdao, China
| | - Duo Li
- School of Public health, Qingdao University, Qingdao, China. .,Institute of Nutrition & Health, Qingdao University, Qingdao, China
| |
Collapse
|
48
|
Guo W, Song Y, Sun Y, Du H, Cai Y, You Q, Fu H, Shao L. Systemic immune-inflammation index is associated with diabetic kidney disease in Type 2 diabetes mellitus patients: Evidence from NHANES 2011-2018. Front Endocrinol (Lausanne) 2022; 13:1071465. [PMID: 36561561 PMCID: PMC9763451 DOI: 10.3389/fendo.2022.1071465] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Diabetic kidney disease (DKD) is the most common chronic kidney disease (CKD) and has the highest prevalence of end-stage kidney disease (ESKD) globally, owing mostly to the rise in Type 2 diabetes mellitus (T2DM) correlated with obesity. Current research suggested that the immune response and inflammation may play a role in the pathophysiology of T2DM. The systemic immune-inflammation index (SII) is a novel and integrated inflammatory biomarker that has not yet been linked to DKD. We aimed to identify the potential relationship between SII and DKD. METHODS In the National Health and Nutrition Examination Survey (NHANES) between 2011 and 2018, the current cross-sectional study was conducted among adults with T2DM. SII was calculated as the platelet count × neutrophil count/lymphocyte count. DKD was diagnosed with impaired glomerular filtration rate (< 60 mL/min/1.73 m2 assessed by using the Chronic Kidney Disease Epidemiology Collaboration algorithm), albuminuria (urine albumin to creatinine ratio ≥ 30 mg/g), or both in T2DM patients. To investigate the independent association between SII and DKD, weighted univariate and multivariable logistic regression analyses and subgroup analyses were performed. RESULTS The study involved 3937 patients in total, of whom 1510 (38.4%) had DKD for the diagnosis. After adjustment for covariates, multivariable logistic regression revealed that a high SII level was associated with increased likelihood of DKD (OR = 1.42, 95% CI: 1.10-1.83, P = 0.01). Subgroup analyses and interaction tests revealed that age, gender, estimated glomerular filtration rate (eGFR), urine albumin-to-creatinine ratio (ACR), body mass index (BMI), hypertension, hyperlipidemia, anti-inflammation therapy (yes or no), metformin use (yes or no), and insulin use (yes or no) had no significant dependence on this positive relationship (all p for interaction >0.05). CONCLUSIONS Our results indicate that the higher SII level is associated with DKD in T2DM patients. The SII could be a cost-effective and straightforward approach to detecting DKD. This needs to be verified in further prospective investigations.
Collapse
Affiliation(s)
- Wencong Guo
- Laboratory of Nephrology & Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yancheng Song
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yan Sun
- Laboratory of Nephrology & Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong, China
| | - Huasheng Du
- Laboratory of Nephrology & Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong, China
- *Correspondence: Huasheng Du, ; Leping Shao,
| | - Yan Cai
- Laboratory of Nephrology & Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qingqing You
- Laboratory of Nephrology & Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong, China
| | - Haixia Fu
- Laboratory of Nephrology & Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong, China
| | - Leping Shao
- Laboratory of Nephrology & Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong, China
- *Correspondence: Huasheng Du, ; Leping Shao,
| |
Collapse
|
49
|
Mertowska P, Mertowski S, Wojnicka J, Korona-Głowniak I, Grywalska E, Błażewicz A, Załuska W. A Link between Chronic Kidney Disease and Gut Microbiota in Immunological and Nutritional Aspects. Nutrients 2021; 13:3637. [PMID: 34684638 PMCID: PMC8540836 DOI: 10.3390/nu13103637] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is generally progressive and irreversible, structural or functional renal impairment for 3 or more months affecting multiple metabolic pathways. Recently, the composition, dynamics, and stability of a patient's microbiota has been noted to play a significant role during disease onset or progression. Increasing urea concentration during CKD can lead to an acceleration of the process of kidney injury leading to alterations in the intestinal microbiota that can increase the production of gut-derived toxins and alter the intestinal epithelial barrier. A detailed analysis of the relationship between the role of intestinal microbiota and the development of inflammation within the symbiotic and dysbiotic intestinal microbiota showed significant changes in kidney dysfunction. Several recent studies have determined that dietary factors can significantly influence the activation of immune cells and their mediators. Moreover, dietary changes can profoundly affect the balance of gut microbiota. The aim of this review is to present the importance and factors influencing the differentiation of the human microbiota in the progression of kidney diseases, such as CKD, IgA nephropathy, idiopatic nephropathy, and diabetic kidney disease, with particular emphasis on the role of the immune system. Moreover, the effects of nutrients, bioactive compounds on the immune system in development of chronic kidney disease were reviewed.
Collapse
Affiliation(s)
- Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland; (P.M.); (S.M.); (E.G.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland; (P.M.); (S.M.); (E.G.)
| | - Julia Wojnicka
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (J.W.); (A.B.)
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland; (P.M.); (S.M.); (E.G.)
| | - Anna Błażewicz
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (J.W.); (A.B.)
| | - Wojciech Załuska
- Department of Nephrology, Medical University of Lublin, 8 Jaczewskiego Street, 20-954 Lublin, Poland;
| |
Collapse
|
50
|
Chen W, Zhang M, Guo Y, Wang Z, Liu Q, Yan R, Wang Y, Wu Q, Yuan K, Sun W. The Profile and Function of Gut Microbiota in Diabetic Nephropathy. Diabetes Metab Syndr Obes 2021; 14:4283-4296. [PMID: 34703261 PMCID: PMC8541750 DOI: 10.2147/dmso.s320169] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Dysbiosis of gut microbiota impairs the homeostasis of immune and metabolic systems. Although previous studies have revealed the correlation between gut microbiota and various diseases, the function between gut microbiota and diabetic nephropathy (DN) has not been discovered distinctly. In this study, we tried to investigate the profile and function of gut microbiota in DN. METHODS A total of 100 people were enrolled in this study. Twenty were healthy people, 20 were diabetes patients, and 60 were DN patients. The DN patients were divided into three stages including stage III, IV, and V. We conducted taxonomic analyses in different groups. The distributions of phyla, classes, orders, families, and genera in different groups and samples were investigated. We also evaluated the correlations between clinical parameters and gut microbiota in 60 DN patients. RESULTS The gut microbiota in the healthy group, diabetes group, and DN group had 1764 operational taxonomic units (OTUs) in total. The healthy group had 1034 OTUs, the diabetes group had 899 OTUs, and the DN group had 1602 OTUs. The diversity of gut microbiota in the stage III DN group was smaller than that in the other groups. 24-h urinary protein was positively correlated with Alistipes and Subdoligranulum, cholesterol was positively correlated with Bacteroides and Lachnoclostridium, and estimated glomerular filtration rate was negatively correlated with Ruminococcus torques group. DISCUSSION The gut microbiota might play an important role in the development and pathogenesis of DN. A change in gut microbiota diversity is correlated with disease progression. Some kinds of gut microbiota including Alistipes, Bacteroides, Subdoligranulum, Lachnoclostridium, and Ruminococcus torques group might be detrimental factors in DN.
Collapse
Affiliation(s)
- Weihong Chen
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| | - Mengjiu Zhang
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| | - Yan Guo
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| | - Zhen Wang
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| | - Qingqing Liu
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| | - Runze Yan
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| | - Yi Wang
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| | - Qiaoru Wu
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| | - Kai Yuan
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
- Correspondence: Kai Yuan; Weiwei Sun Email ;
| | - Weiwei Sun
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| |
Collapse
|