1
|
Liu M, Xiao R, Li X, Zhao Y, Huang J. A comprehensive review of recombinant technology in the food industry: Exploring expression systems, application, and future challenges. Compr Rev Food Sci Food Saf 2025; 24:e70078. [PMID: 39970011 DOI: 10.1111/1541-4337.70078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/06/2024] [Accepted: 11/17/2024] [Indexed: 02/21/2025]
Abstract
Biotechnology has significantly advanced the production of recombinant proteins (RPs). This review examines the latest advancements in protein production technologies, including CRISPR, genetic engineering, vector integration, and fermentation, and their implications for the food industry. This review delineates the merits and shortcomings of prevailing host systems for RP production, underscoring molecular and process strategies pivotal for amplifying yields and purity. It traverses the spectrum of RP applications, challenges, and burgeoning trends, highlighting the imperative of employing robust hosts and cutting-edge genetic engineering to secure high-quality, high-yield outputs while circumventing protein aggregation and ensuring correct folding for enhanced activity. Recombinant technology has paved the way for the food industry to produce alternative proteins like leghemoglobin and cytokines, along with enzyme preparations such as proteases and lipases, and to modify microbial pathways for synthesizing beneficial compounds, including pigments, terpenes, flavonoids, and functional sugars. However, scaling microbial production to industrial scales presents economic, efficiency, and environmental challenges that demand innovative solutions, including high-throughput screening and CRISPR/Cas9 systems, to bolster protein yield and quality. Although recombinant technology holds much promise, it must navigate high costs and scalability to satisfy the escalating global demand for RPs in therapeutics and food. The variability in ethical and regulatory hurdles across regions further complicates market acceptance, underscoring an urgent need for robust regulatory frameworks for genetically modified organisms. These frameworks are essential for safeguarding the production process, ensuring product safety, and upholding the efficacy of RPs in industrial applications.
Collapse
Affiliation(s)
- Ming Liu
- College of Grain and Food Science, Henan University of Technology, Zhengzhou, Henan, P. R. China
- Food Laboratory of Zhongyuan, Henan University of Technology, Zhengzhou, Henan, P. R. China
| | - Ran Xiao
- College of Agriculture, Henan University, Kaifeng, Henan, P. R. China
- Food Laboratory of Zhongyuan, Henan University of Technology, Zhengzhou, Henan, P. R. China
| | - Xiaolin Li
- College of Grain and Food Science, Henan University of Technology, Zhengzhou, Henan, P. R. China
- Food Laboratory of Zhongyuan, Henan University of Technology, Zhengzhou, Henan, P. R. China
| | - Yingyu Zhao
- College of Grain and Food Science, Henan University of Technology, Zhengzhou, Henan, P. R. China
- Food Laboratory of Zhongyuan, Henan University of Technology, Zhengzhou, Henan, P. R. China
| | - Jihong Huang
- College of Agriculture, Henan University, Kaifeng, Henan, P. R. China
- Food Laboratory of Zhongyuan, Henan University of Technology, Zhengzhou, Henan, P. R. China
- School of Food and Pharmacy, Xuchang University, Xuchang, Henan, P. R. China
| |
Collapse
|
2
|
Sultana R, Stahelin RV. Strengths and limitations of SARS-CoV-2 virus-like particle systems. Virology 2025; 601:110285. [PMID: 39536645 PMCID: PMC11624109 DOI: 10.1016/j.virol.2024.110285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/19/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Virus-like particles (VLPs) resemble the parent virus but lack the viral genome, providing a safe and efficient platform for the analysis of virus assembly and budding as well as the development of vaccines and drugs. During the COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the formation of SARS-CoV-2 VLPs was investigated as an alternative to authentic virions because the latter requires biosafety level 3 (BSL-3) facilities. This allowed researchers to model its assembly and budding processes, examine the role of mutations in variants of concern, and determine how the structural proteins interact with each other. Also, the absence of viral genome in VLPs circumvents worries of gains in infectivity via mutagenesis. This review summarizes the strengths and limitations of several SARS-CoV-2 VLP systems and details some of the strides that have been made in using these systems to study virus assembly and budding, viral entry, and antibody and vaccine development.
Collapse
Affiliation(s)
- Rokaia Sultana
- Borch Department of Medicinal Chemistry and Molecular Pharmacology and The Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, 47907, West Lafayette, IN, USA
| | - Robert V Stahelin
- Borch Department of Medicinal Chemistry and Molecular Pharmacology and The Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, 47907, West Lafayette, IN, USA.
| |
Collapse
|
3
|
Clark TW, Tregoning JS, Lister H, Poletti T, Amin F, Nguyen-Van-Tam JS. Recent advances in the influenza virus vaccine landscape: a comprehensive overview of technologies and trials. Clin Microbiol Rev 2024; 37:e0002524. [PMID: 39360831 PMCID: PMC11629632 DOI: 10.1128/cmr.00025-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
SUMMARYIn the United Kingdom (UK) in 2022/23, influenza virus infections returned to the levels recorded before the COVID-19 pandemic, exerting a substantial burden on an already stretched National Health Service (NHS) through increased primary and emergency care visits and subsequent hospitalizations. Population groups ≤4 years and ≥65 years of age, and those with underlying health conditions, are at the greatest risk of influenza-related hospitalization. Recent advances in influenza virus vaccine technologies may help to mitigate this burden. This review aims to summarize advances in the influenza virus vaccine landscape by describing the different technologies that are currently in use in the UK and more widely. The review also describes vaccine technologies that are under development, including mRNA, and universal influenza virus vaccines which aim to provide broader or increased protection. This is an exciting and important era for influenza virus vaccinations, and advances are critical to protect against a disease that still exerts a substantial burden across all populations and disproportionately impacts the most vulnerable, despite it being over 80 years since the first influenza virus vaccines were deployed.
Collapse
Affiliation(s)
- Tristan W. Clark
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - John S. Tregoning
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | | | | | | | | |
Collapse
|
4
|
Norizwan JAM, Tan WS. Multifaceted virus-like particles: Navigating towards broadly effective influenza A virus vaccines. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 8:100317. [PMID: 39717209 PMCID: PMC11665419 DOI: 10.1016/j.crmicr.2024.100317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
The threat of influenza A virus (IAV) remains an annual health concern, as almost 500,000 people die each year due to the seasonal flu. Current flu vaccines are highly dependent on embryonated chicken eggs for production, which is time consuming and costly. These vaccines only confer moderate protections in elderly people, and they lack cross-protectivity; thereby requiring annual reformulation to ensure effectiveness against contemporary circulating strains. To address current limitations, new strategies are being sought, with great emphasis given on exploiting IAV's conserved antigens for vaccine development, and by using different vaccine technologies to enhance immunogenicity and expedite vaccine production. Among these technologies, there are growing pre-clinical and clinical studies involving virus-like particles (VLPs), as they are capable to display multiple conserved IAV antigens and augment their immune responses. In this review, we outline recent findings involving broadly effective IAV antigens and strategies to display these antigens on VLPs. Current production systems for IAV VLP vaccines are comprehensively reviewed. Pain-free methods for administration of IAV VLP vaccines through intranasal and transdermal routes, as well as the mechanisms in stimulating immune responses are discussed in detail. The future perspectives of VLPs in IAV vaccine development are discussed, particularly concerning their potentials in overcoming current immunological limitations of IAV vaccines, and their inherent advantages in exploring intranasal vaccination studies. We also propose avenues to expedite VLP vaccine production, as we envision that there will be more clinical trials involving IAV VLP vaccines, leading to commercialization of these vaccines in the near future.
Collapse
Affiliation(s)
- Jaffar Ali Muhamad Norizwan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
5
|
Badruzzaman ATM, Cheng YC, Sung WC, Lee MS. Insect Cell-Based Quadrivalent Seasonal Influenza Virus-like Particles Vaccine Elicits Potent Immune Responses in Mice. Vaccines (Basel) 2024; 12:667. [PMID: 38932396 PMCID: PMC11209530 DOI: 10.3390/vaccines12060667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Influenza viruses can cause highly infectious respiratory diseases, posing noteworthy epidemic and pandemic threats. Vaccination is the most cost-effective intervention to prevent influenza and its complications. However, reliance on embryonic chicken eggs for commercial influenza vaccine production presents potential risks, including reductions in efficacy due to HA gene mutations and supply delays due to scalability challenges. Thus, alternative platforms are needed urgently to replace egg-based methods and efficiently meet the increasing demand for vaccines. In this study, we employed a baculovirus expression vector system to engineer HA, NA, and M1 genes from seasonal influenza strains A/H1N1, A/H3N2, B/Yamagata, and B/Victoria, generating virus-like particle (VLP) vaccine antigens, H1N1-VLP, H3N2-VLP, Yamagata-VLP, and Victoria-VLP. We then assessed their functional and antigenic characteristics, including hemagglutination assay, protein composition, morphology, stability, and immunogenicity. We found that recombinant VLPs displayed functional activity, resembling influenza virions in morphology and size while maintaining structural integrity. Comparative immunogenicity assessments in mice showed that our quadrivalent VLPs were consistent in inducing hemagglutination inhibition and neutralizing antibody titers against homologous viruses compared to both commercial recombinant HA and egg-based vaccines (Vaxigrip). The findings highlight insect cell-based VLP vaccines as promising candidates for quadrivalent seasonal influenza vaccines. Further studies are worth conducting.
Collapse
Affiliation(s)
- A. T. M. Badruzzaman
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan 350, Taiwan; (A.T.M.B.); (Y.-C.C.); (W.-C.S.)
- Department of Life Sciences, National Central University, Zhongli District, Taoyuan 320, Taiwan
| | - Yu-Chieh Cheng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan 350, Taiwan; (A.T.M.B.); (Y.-C.C.); (W.-C.S.)
| | - Wang-Chou Sung
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan 350, Taiwan; (A.T.M.B.); (Y.-C.C.); (W.-C.S.)
| | - Min-Shi Lee
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan 350, Taiwan; (A.T.M.B.); (Y.-C.C.); (W.-C.S.)
| |
Collapse
|
6
|
Gupta R, Arora K, Roy SS, Joseph A, Rastogi R, Arora NM, Kundu PK. Platforms, advances, and technical challenges in virus-like particles-based vaccines. Front Immunol 2023; 14:1123805. [PMID: 36845125 PMCID: PMC9947793 DOI: 10.3389/fimmu.2023.1123805] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Viral infectious diseases threaten human health and global stability. Several vaccine platforms, such as DNA, mRNA, recombinant viral vectors, and virus-like particle-based vaccines have been developed to counter these viral infectious diseases. Virus-like particles (VLP) are considered real, present, licensed and successful vaccines against prevalent and emergent diseases due to their non-infectious nature, structural similarity with viruses, and high immunogenicity. However, only a few VLP-based vaccines have been commercialized, and the others are either in the clinical or preclinical phases. Notably, despite success in the preclinical phase, many vaccines are still struggling with small-scale fundamental research owing to technical difficulties. Successful production of VLP-based vaccines on a commercial scale requires a suitable platform and culture mode for large-scale production, optimization of transduction-related parameters, upstream and downstream processing, and monitoring of product quality at each step. In this review article, we focus on the advantages and disadvantages of various VLP-producing platforms, recent advances and technical challenges in VLP production, and the current status of VLP-based vaccine candidates at commercial, preclinical, and clinical levels.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Prabuddha K. Kundu
- Department of Research and Development, Premas Biotech Pvt Ltd., Sector IV, Industrial Model Township (IMT), Manesar, Gurgaon, India
| |
Collapse
|
7
|
Li J, Zhang Y, Zhang X, Liu L. Influenza and Universal Vaccine Research in China. Viruses 2022; 15:116. [PMID: 36680158 PMCID: PMC9861666 DOI: 10.3390/v15010116] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Influenza viruses usually cause seasonal influenza epidemics and influenza pandemics, resulting in acute respiratory illness and, in severe cases, multiple organ complications and even death, posing a serious global and human health burden. Compared with other countries, China has a large population base and a large number of influenza cases and deaths. Currently, influenza vaccination remains the most cost-effective and efficient way to prevent and control influenza, which can significantly reduce the risk of influenza virus infection and serious complications. The antigenicity of the influenza vaccine exhibits good protective efficacy when matched to the seasonal epidemic strain. However, when influenza viruses undergo rapid and sustained antigenic drift resulting in a mismatch between the vaccine strain and the epidemic strain, the protective effect is greatly reduced. As a result, the flu vaccine must be reformulated and readministered annually, causing a significant drain on human and financial resources. Therefore, the development of a universal influenza vaccine is necessary for the complete fight against the influenza virus. By statistically analyzing cases related to influenza virus infection and death in China in recent years, this paper describes the existing marketed vaccines, vaccine distribution and vaccination in China and summarizes the candidate immunogens designed based on the structure of influenza virus, hoping to provide ideas for the design and development of new influenza vaccines in the future.
Collapse
Affiliation(s)
| | | | | | - Longding Liu
- Key Laboratory of Systemic Innovative Research on Virus Vaccine, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| |
Collapse
|
8
|
Chen J, Xu W, Li L, Yi L, Jiang Y, Hao P, Xu Z, Zou W, Li P, Gao Z, Tian M, Jin N, Ren L, Li C. Immunogenicity and protective potential of chimeric virus-like particles containing SARS-CoV-2 spike and H5N1 matrix 1 proteins. Front Cell Infect Microbiol 2022; 12:967493. [PMID: 35923799 PMCID: PMC9339902 DOI: 10.3389/fcimb.2022.967493] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 12/17/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), has posed a constant threat to human beings and the world economy for more than two years. Vaccination is the first choice to control and prevent the pandemic. However, an effective SARS-CoV-2 vaccine against the virus infection is still needed. This study designed and prepared four kinds of virus-like particles (VLPs) using an insect expression system. Two constructs encoded wild-type SARS-CoV-2 spike (S) fused with or without H5N1 matrix 1 (M1) (S and SM). The other two constructs contained a codon-optimized spike gene and/or M1 gene (mS and mSM) based on protein expression, stability, and ADE avoidance. The results showed that the VLP-based vaccine could induce high SARS-CoV-2 specific antibodies in mice, including specific IgG, IgG1, and IgG2a. Moreover, the mSM group has the most robust ability to stimulate humoral immunity and cellular immunity than the other VLPs, suggesting the mSM is the best immunogen. Further studies showed that the mSM combined with Al/CpG adjuvant could stimulate animals to produce sustained high-level antibodies and establish an effective protective barrier to protect mice from challenges with mouse-adapted strain. The vaccine based on mSM and Al/CpG adjuvant is a promising candidate vaccine to prevent the COVID-19 pandemic.
Collapse
Affiliation(s)
- Jing Chen
- College of Veterinary medicine, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, Changchun, China
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Wang Xu
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Letian Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Lichao Yi
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yuhang Jiang
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Pengfei Hao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhiqiang Xu
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Wancheng Zou
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Peiheng Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zihan Gao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Mingyao Tian
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ningyi Jin
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- *Correspondence: Chang Li, ; Linzhu Ren, ; Ningyi Jin,
| | - Linzhu Ren
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, Changchun, China
- *Correspondence: Chang Li, ; Linzhu Ren, ; Ningyi Jin,
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- *Correspondence: Chang Li, ; Linzhu Ren, ; Ningyi Jin,
| |
Collapse
|
9
|
Küchler J, Püttker S, Lahmann P, Genzel Y, Kupke S, Benndorf D, Reichl U. Absolute quantification of viral proteins during single-round replication of MDCK suspension cells. J Proteomics 2022; 259:104544. [PMID: 35240312 DOI: 10.1016/j.jprot.2022.104544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 11/17/2022]
Abstract
Madin-Darby canine kidney (MDCK) cells are widely used in basic research and for the propagation of influenza A viruses (IAV) for vaccine production. To identify targets for antiviral therapies and to optimize vaccine manufacturing, a detailed understanding of the viral life cycle is important. This includes the characterization of virus entry, the synthesis of the various viral RNAs and proteins, the transfer of viral compounds in the cell and virus budding. In case quantitative information is available, the analysis can be complemented by mathematical modelling approaches. While comprehensive studies focusing on IAV entry as well as viral mRNA, vRNA and cRNA accumulation in the nucleus of cells have been performed, quantitative data regarding IAV protein synthesis and accumulation was mostly lacking. In this study, we present a mass spectrometry (MS)-based method to evaluate whether an absolute quantification of viral proteins is possible for single-round replication in suspension MDCK cells. Using influenza A/PR/8/34 (H1N1, RKI) as a model strain at a multiplicity of infection of ten, defined amounts of isotopically labelled peptides of synthetic origin of four IAV proteins (hemagglutinin, neuraminidase, nucleoprotein, matrix protein 1) were added as an internal standard before tryptic digestion of samples for absolute quantification (AQUA). The first intracellular protein detected was NP at 1 h post infection (hpi). A maximum extracellular concentration of 7.7E+12 copies/mL was achieved. This was followed by hemagglutinin (3 hpi, maximum 4.1E+12 copies/mL at 13 hpi), matrix protein 1 (5 hpi, maximum 2.2E+12 copies/mL at 13 hpi) and neuraminidase (5 hpi, 6.0E+11 copies/mL at 13 hpi). In sum, for the first time absolute IAV protein copy numbers were quantified by a MS-based method for infected MDCK cells providing important insights into viral protein dynamics during single-round virus replication. SIGNIFICANCE: Influenza A virus is a significant human pathogen worldwide. To improve therapies against influenza and overcome bottlenecks in vaccine production in cell culture, it is critical to gain a detailed understanding of the viral life cycle. In addition to qPCR-based models, this study will examine the dynamics of influenza virus proteins during infection of producer cells to gain initial insights into changes in absolute copy numbers.
Collapse
Affiliation(s)
- Jan Küchler
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
| | - Sebastian Püttker
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Patrick Lahmann
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Sascha Kupke
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Dirk Benndorf
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany; Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany; Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
10
|
Escandell JM, Pais DA, Carvalho SB, Vincent K, Gomes-Alves P, Alves PM. Leveraging rAAV bioprocess understanding and next generation bioanalytics development. Curr Opin Biotechnol 2022; 74:271-277. [PMID: 35007989 DOI: 10.1016/j.copbio.2021.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/10/2021] [Accepted: 12/19/2021] [Indexed: 12/18/2022]
Abstract
Recombinant adeno-associated (rAAV) vector-based gene therapy has been the focus of intense research driven by the safety profile and several recent clinical breakthroughs. As of April 2021, there are two rAAV-based gene therapies approved and more than two-hundred active clinical trials (approximately thirty in Phase III). However, the expected increase in demand for rAAV vectors still poses several challenges. Discussed herein are key aspects related to R&D needs and Chemistry, Manufacturing and Control (CMC) efforts required to attend this growing demand. Authors provide their perspective on strategic topics for rAAV-based therapies success: scalability and productivity; improved safety; increased process understanding combined with development of orthogonal bioanalytics that are able to identify, monitor and control Critical Quality Attributes (CQAs) during bioprocessing.
Collapse
Affiliation(s)
- Jose M Escandell
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal; ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. Da República, Oeiras, 2780-157, Portugal
| | - Daniel Am Pais
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal; ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. Da República, Oeiras, 2780-157, Portugal
| | - Sofia B Carvalho
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal; ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. Da República, Oeiras, 2780-157, Portugal
| | - Karen Vincent
- SANOFI, 49 New York Avenue, Framingham, MA 01701, USA
| | - Patrícia Gomes-Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal; ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. Da República, Oeiras, 2780-157, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal; ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. Da República, Oeiras, 2780-157, Portugal.
| |
Collapse
|
11
|
Zahmati S, Taghizadeh M, Haghighat S, Jalalirad R, Mahdavi M. Recombinant hemagglutinin of swine H1N1 influenza virus expression in the insect cells: Formulation in Montanide ISA71 adjuvant and the potency studies. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1546-1553. [PMID: 35317113 PMCID: PMC8917850 DOI: 10.22038/ijbms.2021.57053.12716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/25/2021] [Indexed: 11/10/2022]
Abstract
Objectives Influenza is a highly contagious disease, which affects the respiratory system and seasonal influenza is common throughout the world. Influenza vaccination is an effective way to reduce the risk of death and hospitalization. This study aims at the expression of swine recombinant hemagglutinin protein in the baculovirus expression system and it offers a comparison of the immunologic parameters with the commercial vaccine. Materials and Methods The HA gene from the swine H1N1 strain of the Influenza virus was cloned into the Bac-To-Bac expression system in pFastBAC HTA vector and was transformed into Escherichia coli TOP10 strain. After the confirmation, the vector was transfected into the SF9 insect cell line. The recombinant HA was evaluated by SDS-PAGE and western blot. After formulation in Montanide ISA71 adjuvant, the immunization test was performed comparatively with Alum adjuvant, commercial vaccine in four groups of BALB/c mice, of which one group was control without any vaccination. Two weeks after the last immunization, the antibody response was assessed with HI assay, and experimental mice were challenged with mouse-adapted Influenza A/PR8/34 (H1N1) virus through nasal inhalation. Results The immunoassay results revealed that the candidate vaccine induced the antibody response as the commercial one did but it did not significantly reduce the mortality rate, body loss, and severe fever. Conclusion To summarize, the results showed that the recombinant protein with the MontanideTM ISA- 71 adjuvant developed a more appropriate level of immunity than Alum adjuvant, so it might be used as a safe and reliable vaccine against H1N1 virus for further research.
Collapse
Affiliation(s)
- Sara Zahmati
- Department of Microbiology, Faculty of Advanced science and Technology, Tehran Medical sciences Islamic Azad University, Tehran, Iran
| | - Morteza Taghizadeh
- Department of Research and Development, Razi Vaccine and Serum Research institute, Agricultural Research Education and Extension Organization
| | - Setareh Haghighat
- Department of Microbiology, Faculty of Advanced science and Technology, Tehran Medical sciences Islamic Azad University, Tehran, Iran
| | | | - Mehdi Mahdavi
- Production and Research Complex, Pasteur Institute of Iran, Karaj, Iran
- Advanced Therapy Medicinal Product Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education
- Culture and Research, Tehran, Iran
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Targovnik AM, Simonin JA, Mc Callum GJ, Smith I, Cuccovia Warlet FU, Nugnes MV, Miranda MV, Belaich MN. Solutions against emerging infectious and noninfectious human diseases through the application of baculovirus technologies. Appl Microbiol Biotechnol 2021; 105:8195-8226. [PMID: 34618205 PMCID: PMC8495437 DOI: 10.1007/s00253-021-11615-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/23/2022]
Abstract
Abstract
Baculoviruses are insect pathogens widely used as biotechnological tools in different fields of life sciences and technologies. The particular biology of these entities (biosafety viruses 1; large circular double-stranded DNA genomes, infective per se; generally of narrow host range on insect larvae; many of the latter being pests in agriculture) and the availability of molecular-biology procedures (e.g., genetic engineering to edit their genomes) and cellular resources (availability of cell lines that grow under in vitro culture conditions) have enabled the application of baculoviruses as active ingredients in pest control, as systems for the expression of recombinant proteins (Baculovirus Expression Vector Systems—BEVS) and as viral vectors for gene delivery in mammals or to display antigenic proteins (Baculoviruses applied on mammals—BacMam). Accordingly, BEVS and BacMam technologies have been introduced in academia because of their availability as commercial systems and ease of use and have also reached the human pharmaceutical industry, as incomparable tools in the development of biological products such as diagnostic kits, vaccines, protein therapies, and—though still in the conceptual stage involving animal models—gene therapies. Among all the baculovirus species, the Autographa californica multiple nucleopolyhedrovirus has been the most highly exploited in the above utilities for the human-biotechnology field. This review highlights the main achievements (in their different stages of development) of the use of BEVS and BacMam technologies for the generation of products for infectious and noninfectious human diseases. Key points • Baculoviruses can assist as biotechnological tools in human health problems. • Vaccines and diagnosis reagents produced in the baculovirus platform are described. • The use of recombinant baculovirus for gene therapy–based treatment is reviewed.
Collapse
Affiliation(s)
- Alexandra Marisa Targovnik
- Cátedra de Biotecnología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, 1113, Argentina.
- Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, CONICET -Universidad de Buenos Aires, Junín 956, Sexto Piso, C1113AAD, 1113, Buenos Aires, Argentina.
| | - Jorge Alejandro Simonin
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular, Área Virosis de Insectos, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Gregorio Juan Mc Callum
- Cátedra de Biotecnología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, 1113, Argentina
- Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, CONICET -Universidad de Buenos Aires, Junín 956, Sexto Piso, C1113AAD, 1113, Buenos Aires, Argentina
| | - Ignacio Smith
- Cátedra de Biotecnología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, 1113, Argentina
- Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, CONICET -Universidad de Buenos Aires, Junín 956, Sexto Piso, C1113AAD, 1113, Buenos Aires, Argentina
| | - Franco Uriel Cuccovia Warlet
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular, Área Virosis de Insectos, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - María Victoria Nugnes
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular, Área Virosis de Insectos, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - María Victoria Miranda
- Cátedra de Biotecnología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, 1113, Argentina
- Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, CONICET -Universidad de Buenos Aires, Junín 956, Sexto Piso, C1113AAD, 1113, Buenos Aires, Argentina
| | - Mariano Nicolás Belaich
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular, Área Virosis de Insectos, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| |
Collapse
|
13
|
Celis-Giraldo CT, López-Abán J, Muro A, Patarroyo MA, Manzano-Román R. Nanovaccines against Animal Pathogens: The Latest Findings. Vaccines (Basel) 2021; 9:vaccines9090988. [PMID: 34579225 PMCID: PMC8472905 DOI: 10.3390/vaccines9090988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
Nowadays, safe and efficacious vaccines represent powerful and cost-effective tools for global health and economic growth. In the veterinary field, these are undoubtedly key tools for improving productivity and fighting zoonoses. However, cases of persistent infections, rapidly evolving pathogens having high variability or emerging/re-emerging pathogens for which no effective vaccines have been developed point out the continuing need for new vaccine alternatives to control outbreaks. Most licensed vaccines have been successfully used for many years now; however, they have intrinsic limitations, such as variable efficacy, adverse effects, and some shortcomings. More effective adjuvants and novel delivery systems may foster real vaccine effectiveness and timely implementation. Emerging vaccine technologies involving nanoparticles such as self-assembling proteins, virus-like particles, liposomes, virosomes, and polymeric nanoparticles offer novel, safe, and high-potential approaches to address many vaccine development-related challenges. Nanotechnology is accelerating the evolution of vaccines because nanomaterials having encapsulation ability and very advantageous properties due to their size and surface area serve as effective vehicles for antigen delivery and immunostimulatory agents. This review discusses the requirements for an effective, broad-coverage-elicited immune response, the main nanoplatforms for producing it, and the latest nanovaccine applications for fighting animal pathogens.
Collapse
Affiliation(s)
- Carmen Teresa Celis-Giraldo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia;
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá 111166, Colombia
| | - Julio López-Abán
- Infectious and Tropical Diseases Research Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.L.-A.); (A.M.)
| | - Antonio Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.L.-A.); (A.M.)
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia;
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Health Sciences Division, Main Campus, Universidad Santo Tomás, Bogotá 110231, Colombia
- Correspondence: (M.A.P.); (R.M.-R.)
| | - Raúl Manzano-Román
- Infectious and Tropical Diseases Research Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.L.-A.); (A.M.)
- Correspondence: (M.A.P.); (R.M.-R.)
| |
Collapse
|
14
|
Mi Y, Xie T, Zhu B, Tan J, Li X, Luo Y, Li F, Niu H, Han J, Lv W, Wang J. Production of SARS-CoV-2 Virus-Like Particles in Insect Cells. Vaccines (Basel) 2021; 9:vaccines9060554. [PMID: 34073159 PMCID: PMC8227081 DOI: 10.3390/vaccines9060554] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/09/2021] [Accepted: 05/21/2021] [Indexed: 12/18/2022] Open
Abstract
Coronavirus disease (COVID-19) causes a serious threat to human health. Virus-like particles (VLPs) constitute a promising platform in SARS-CoV-2 vaccine development. In this study, the E, M, and S genes were cloned into multiple cloning sites of a new triple expression plasmid with one p10 promoter, two pPH promoters, and three multiple cloning sites. The plasmid was transformed into DH10 BacTMEscherichia coli competent cells to obtain recombinant bacmid. Then the recombinant bacmid was transfected in ExpiSf9TM insect cells to generate recombinant baculovirus. After ExpiSf9TM cells infection with the recombinant baculovirus, the E, M, and S proteins were expressed in insect cells. Finally, SARS-CoV-2 VLPs were self-assembled in insect cells after infection. The morphology and the size of SARS-CoV-2 VLPs are similar to the native virions.
Collapse
Affiliation(s)
- Youjun Mi
- Lanzhou Center for Tuberculosis Research and Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730070, China; (Y.M.); (T.X.); (F.L.); (H.N.); (J.H.); (W.L.); (J.W.)
| | - Tao Xie
- Lanzhou Center for Tuberculosis Research and Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730070, China; (Y.M.); (T.X.); (F.L.); (H.N.); (J.H.); (W.L.); (J.W.)
| | - Bingdong Zhu
- Lanzhou Center for Tuberculosis Research and Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730070, China; (Y.M.); (T.X.); (F.L.); (H.N.); (J.H.); (W.L.); (J.W.)
- Correspondence:
| | - Jiying Tan
- Institute of Immunology, School of Basic Medicine, Lanzhou University, Lanzhou 730070, China; (J.T.); (Y.L.)
| | - Xuefeng Li
- Institute of Combined Western and Chinese Traditional Medicine, Lanzhou University, Lanzhou 730070, China;
| | - Yanping Luo
- Institute of Immunology, School of Basic Medicine, Lanzhou University, Lanzhou 730070, China; (J.T.); (Y.L.)
| | - Fei Li
- Lanzhou Center for Tuberculosis Research and Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730070, China; (Y.M.); (T.X.); (F.L.); (H.N.); (J.H.); (W.L.); (J.W.)
| | - Hongxia Niu
- Lanzhou Center for Tuberculosis Research and Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730070, China; (Y.M.); (T.X.); (F.L.); (H.N.); (J.H.); (W.L.); (J.W.)
| | - Jiangyuan Han
- Lanzhou Center for Tuberculosis Research and Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730070, China; (Y.M.); (T.X.); (F.L.); (H.N.); (J.H.); (W.L.); (J.W.)
| | - Wei Lv
- Lanzhou Center for Tuberculosis Research and Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730070, China; (Y.M.); (T.X.); (F.L.); (H.N.); (J.H.); (W.L.); (J.W.)
| | - Juan Wang
- Lanzhou Center for Tuberculosis Research and Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730070, China; (Y.M.); (T.X.); (F.L.); (H.N.); (J.H.); (W.L.); (J.W.)
| |
Collapse
|
15
|
Li J, Li R, Zhang Q, Peng P, Wang X, Gu M, Hu Z, Jiao X, Peng D, Hu J, Liu X. H7N9 influenza virus-like particle based on BEVS protects chickens from lethal challenge with highly pathogenic H7N9 avian influenza virus. Vet Microbiol 2021; 258:109106. [PMID: 34004568 DOI: 10.1016/j.vetmic.2021.109106] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/06/2021] [Indexed: 01/11/2023]
Abstract
H7N9 avian influenza virus poses a dual threat to both poultry industry and public health. Therefore, it is highly urgent to develop an effective vaccine to reduce its pandemic potential. Virus-like particles (VLP) represent an effective approach for pandemic vaccine development. In this study, a recombinant baculovirus co-expressing the HA, NA and M1 genes of the H7N9 virus was constructed for generation of H7N9 VLP. Single immunization of chickens with 15 μg of the VLP or the commercial whole virus inactivated vaccine stimulates high hemagglutination inhibition, virus neutralizing and HA-specific IgY antibodies. Moreover, the antiserum had a good cross-reactivity with H7N9 field strains isolated in different years. Within 14 days after a lethal challenge with highly pathogenic (HP) H7N9 virus, no clinical symptoms and death were observed in the vaccinated chickens, and no virus was recovered from the organs. Compared to the non-vaccinated chickens, H7N9 VLP significantly reduced the proportion of animals shedding virus. Only 30 % of the VLP-vaccinated birds shed virus, whereas virus shedding was detected in 50 % of the chickens immunized with the commercial vaccine. Moreover, both vaccines dramatically alleviated pulmonary lesions caused by HP H7N9 virus, with a greater degree observed for the VLP. Altogether, our results indicated that the H7N9 VLP vaccine candidate confers a complete clinical protection against a lethal challenge with HP H7N9 virus, significantly inhibits virus shedding and abolishes viral replication in chickens. The VLP generated in this study represents a promising alternative strategy for the development of novel H7N9 avian influenza vaccines for chickens.
Collapse
Affiliation(s)
- Jun Li
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Rumeng Li
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Qi Zhang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Peipei Peng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Zenglei Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Daxin Peng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China.
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| |
Collapse
|