1
|
Monarca RI, Silva RFB, Gabriel SI, Cerveira AM, von Merten S. The Presence of a Shelter in an Open Field Test Has Differential Effects on the Behavior and Stress Response of Two Mouse Species. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025; 343:480-492. [PMID: 39868581 PMCID: PMC11959681 DOI: 10.1002/jez.2904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/25/2024] [Accepted: 01/08/2025] [Indexed: 01/28/2025]
Abstract
The open field test (OFT) is frequently used in research to assess anxiety-like behavior and locomotor activity. Its simple design can lead to the misconception that it is a standardized procedure comparable between laboratories. However, some modifications in the setup can cause changes in behavior. Different species might also react differently to the modifications introduced. There is thus need for a better understanding of the impact of modifications and their value for the species in question. Here, we tested two closely related mouse species, Mus musculus and Mus spretus, in an OFT with and without the presence of a shelter. We assessed mouse exploratory behavior through the analysis of multiple behavioral traits, and stress response through the measurement of circulating cortisol levels. Both species had elevated cortisol levels during the OFT in contrast to control animals which were not exposed to the OFT. While the presence of a shelter in the OFT increased the exploratory behavior in both mouse species, M. spretus, but not M. musculus, showed a reduction in cortisol levels. Also, other measured behaviors show a rather proactive coping strategy of the commensal M. musculus in contrast to a reactive strategy of the non-commensal M. spretus. Our study revealed a strong species-specific influence of the OFT design on the resulting behavior and stress levels of mice, illustrating the importance of OFT designs to account for the characteristics of the species under study. The addition of a shelter might be considered to improve experimental results by promoting animal welfare.
Collapse
Grants
- The research was funded by national funds, to CESAM by FCT/MCTES (UIDP/50017/2020|CESAM [https://doi.org/10.54499/UIDP/50017/2020], UIDB/50017/2020|CESAM [https://doi.org/10.54499/UIDB/50017/2020], LA/P/0094/2020|CESAM [https://doi.org/10.54499/UIDB/50017/2020]), and to CE3C by FCT/MCTES UIDP/00329/2020|cE3c (https://doi.org/10.54499/UIDP/00329/2020). AMC was funded by national funds (OE), through FCT-Fundação para a Ciência e a Tecnologia, I.P., in the scope of the framework contract foreseen in the numbers 4, 5, and 6 of the article 23, of the Decree-Law 57/2016, of August 29, changed by Law 57/2017, of July 19. SvM was partially funded through an FCT post-doc fellowship (SFRH/BPD/118053/2016).
Collapse
Affiliation(s)
- Rita I. Monarca
- Departamento de Biologia, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
- CESAM–Center for Environmental and Marine Studies, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
- CE3C–Center for Ecology, Evolution and Environmental Changes, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
| | - Ricardo F. B. Silva
- Departamento de Biologia, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
| | - Sofia I. Gabriel
- Departamento de Biologia, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
- CESAM–Center for Environmental and Marine Studies, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
- CE3C–Center for Ecology, Evolution and Environmental Changes, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
| | - Ana M. Cerveira
- CESAM–Center for Environmental and Marine Studies, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
- Departamento de BiologiaUniversidade de Aveiro, Campus Universitário de SantiagoAveiroPortugal
| | - Sophie von Merten
- Departamento de Biologia, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
- CESAM–Center for Environmental and Marine Studies, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
- Department of Environment and BiodiversityUniversity of SalzburgSalzburgAustria
| |
Collapse
|
2
|
Lemos CG, Wlisses da Silva A, Maciel JB, Ferreira MKA, Nunes da Rocha M, Marinho MM, Marinho ES, Pinto FDCL, Loiola OD, de Castro Gomes AF, de Menezes JESA, Dos Santos HS. Robinin Isolated From Solanum Asperum Exhibits Pharmacological Actions in the Central Nervous System of Adult Zebrafish (Danio rerio). Chem Biodivers 2025; 22:e202402173. [PMID: 39660673 DOI: 10.1002/cbdv.202402173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/12/2024]
Abstract
This study investigated the anxiolytic, anticonvulsant and memory preservation effects of the flavonoid robinin. The compound, administered at doses of 4, 20 and 40 mg/kg, did not show toxicity after 96 h of monitoring. In behavioural experiments with zebrafish, robinin did not cause significant changes in motor functions, but it impairs locomotor activity and demonstrates anxiolytic properties, evidenced by the increase in the time spent in the clean zone of the protector. A minimum effective dose (4 mg/kg) was blocked by flumazenil (FMZ), providing interaction with GABAA receptors and decreasing an anxiolytic profile similar to that of diazepam, without causing sedation. In addition, a dose of 40 mg/kg was able to reverse seizures, increasing the latency to enter the seizure stages, an effect that was also blocked by FMZ. Robinin (40 mg/kg) also prevented memory variation in an inhibitory avoidance test. In silico absorption, distribution, metabolism and excretion tests indicated that robinine presents gradual intestinal absorption and low distribution in the central nervous system. In molecular docking, the compound was exposed in the layer with CAII and GABAA receptors, corroborating the anxiolytic and anticonvulsant effects. The results suggest that robinine has therapeutic potential in the treatment of anxiety and seizures, in addition to offering memory protection, representing an advantageous alternative to benzodiazepines, with a promising neuroprotective potential for the pharmaceutical industry.
Collapse
Affiliation(s)
- Cecília Guimarães Lemos
- Department of Chemistry, State University of Ceará, Laboratory of Chemical-Pharmacological and Environmental Bioassays-LABQFAM, Fortaleza, Brazil
| | - Antonio Wlisses da Silva
- Department of Chemistry, State University of Ceará, Laboratory of Chemical-Pharmacological and Environmental Bioassays-LABQFAM, Fortaleza, Brazil
| | - Jéssica Bezerra Maciel
- Department of Chemistry, State University of Ceará, Laboratory of Chemical-Pharmacological and Environmental Bioassays-LABQFAM, Fortaleza, Brazil
| | - Maria Kueirislene Amâncio Ferreira
- Department of Chemistry, State University of Ceará, Laboratory of Chemical-Pharmacological and Environmental Bioassays-LABQFAM, Fortaleza, Brazil
- Department of Chemistry, State University Vale do Acaraú, Chemistry Course, Sobral, Brazil
| | - Matheus Nunes da Rocha
- Department of Chemistry, State University of Ceará Science Laboratory of Bioprospecting and Monitoring of Natural Resources-LMBRN, Fortaleza, Brazil
| | - Márcia Machado Marinho
- Department of Chemistry, State University of Ceará Science Laboratory of Bioprospecting and Monitoring of Natural Resources-LMBRN, Fortaleza, Brazil
| | - Emmanuel Silva Marinho
- Department of Chemistry, State University of Ceará Science Laboratory of Bioprospecting and Monitoring of Natural Resources-LMBRN, Fortaleza, Brazil
| | | | - Otília Deusdênia Loiola
- Department of Chemistry, Federal University of Ceará, Laboratory of Natural and Marine Products, Fortaleza, Brazil
| | | | - Jane Eire Silva Alencar de Menezes
- Department of Chemistry, State University of Ceará, Laboratory of Chemical-Pharmacological and Environmental Bioassays-LABQFAM, Fortaleza, Brazil
| | - Hélcio Silva Dos Santos
- Department of Chemistry, State University of Ceará, Laboratory of Chemical-Pharmacological and Environmental Bioassays-LABQFAM, Fortaleza, Brazil
- Department of Chemistry, State University Vale do Acaraú, Chemistry Course, Sobral, Brazil
| |
Collapse
|
3
|
van Staden C, Finger-Baier K, Weinshenker D, Botha TL, Brand L, Wolmarans DW. The number of conspecific alarm substance donors notably influences the behavioural responses of zebrafish subjected to a traumatic stress procedure. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:55. [PMID: 40009201 PMCID: PMC11865224 DOI: 10.1007/s10695-025-01468-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
Zebrafish (Danio rerio) represents a complementary pre-clinical model in stress and anxiety research. Conspecific alarm substance (CAS), an alarm pheromone secreted by injured fish, acts as a warning signal and modulates fear responses. Given their schooling nature and that injury precedes CAS release, varying fresh CAS concentrations extracted from different numbers of CAS-donating zebrafish may uniquely influence trauma-related behaviours. Thus, we investigated the behaviour of juvenile and adult zebrafish exposed to traumatic stress protocols, in the presence of CAS extracted from varying numbers of donating zebrafish. Juveniles were assessed for anxiety and boldness in the light-dark and open field tests (LDT and OFT), while adults were assessed in the novel tank test (NTT) and novel OFT (nOFT). We found that (1) trauma minimally impacted juvenile behaviour regardless of donor-derived CAS concentrations, (2) trauma-exposed adults displayed reduced exploration and heightened risk-taking behaviours in the NTT and nOFT compared to control-exposed fish, (3) NTT and nOFT freezing behaviours were distinctly emulated in adult fish and (4) post-trauma behaviour in adults was influenced by the number of donors. Therefore, CAS concentration as determined by donor number has age-related effects on anxiety- and risk-taking behaviours in trauma-exposed zebrafish, a valuable finding for studies utilising fresh CAS as a stress trigger. While we did not directly investigate CAS concentration through serial dilution, our data are of significant translational and ethological relevance, highlighting the importance of in-house method standardization in stress-related studies utilizing fresh CAS as an alarm cue.
Collapse
Affiliation(s)
- Cailin van Staden
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, 11 Hoffman Street, Potchefstroom, 2520, South Africa
| | - Karin Finger-Baier
- Department Genes - Circuits - Behavior, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Whitehead 301, Atlanta, GA, 30322, USA
| | - Tarryn L Botha
- Department of Zoology, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa
| | - Linda Brand
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, 11 Hoffman Street, Potchefstroom, 2520, South Africa
| | - De Wet Wolmarans
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, 11 Hoffman Street, Potchefstroom, 2520, South Africa.
| |
Collapse
|
4
|
Srivastava V, Muralidharan A, Swaminathan A, Poulose A. Anxiety in aquatics: Leveraging machine learning models to predict adult zebrafish behavior. Neuroscience 2025; 565:577-587. [PMID: 39675692 DOI: 10.1016/j.neuroscience.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024]
Abstract
Accurate analysis of anxiety behaviors in animal models is pivotal for advancing neuroscience research and drug discovery. This study compares the potential of DeepLabCut, ZebraLab, and machine learning models to analyze anxiety-related behaviors in adult zebrafish. Using a dataset comprising video recordings of unstressed and pre-stressed zebrafish, we extracted features such as total inactivity duration/immobility, time spent at the bottom, time spent at the top and turn angles (large and small). We observed that the data obtained using DeepLabCut and ZebraLab were highly correlated. Using this data, we annotated behaviors as anxious and not anxious and trained several machine learning models, including Logistic Regression, Decision Tree, K-Nearest Neighbours (KNN), Random Forests, Naive Bayes Classifiers, and Support Vector Machines (SVMs). The effectiveness of these machine learning models was validated and tested on independent datasets. We found that some machine learning models, such as Decision Tree and Random Forests, performed excellently to differentiate between anxious and non-anxious behavior, even in the control group, where the differences between subjects were more subtle. Our findings show that upcoming technologies, such as machine learning models, are able to effectively and accurately analyze anxiety behaviors in zebrafish and provide a cost-effective method to analyze animal behavior.
Collapse
Affiliation(s)
- Vartika Srivastava
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, Kerala, India.
| | - Anagha Muralidharan
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, Kerala, India.
| | - Amrutha Swaminathan
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, Kerala, India.
| | - Alwin Poulose
- School of Data Science, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, Kerala, India.
| |
Collapse
|
5
|
Li Z, Chen Y. Behavioral effects of polylactic acid microplastics on the tadpoles of Pelophylax nigromaculatus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117146. [PMID: 39378648 DOI: 10.1016/j.ecoenv.2024.117146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Polylactic acid microplastics (PLA-MPs), biobased plastics made from renewable resources, are considered to be a potential solution for alleviating the pollution pressure of plastics; however, the potential environmental risks of PLA-MPs must be further evaluated. In this study, the effects of PLA-MPs on the tadpoles of Pelophylax nigromaculatus were investigated by designing different PLA-MP exposure experiments. We found that PLA-MPs negatively affected the survival, growth and development of tadpoles. In addition, in open field tests, PLA-MPs also reduced tadpole locomotion while resulting in more repetitive searching behavior within a restricted area. This effect was more pronounced at higher concentrations of PLA-MPs (20 mg/mL) and in combination with the heavy metal Cd2+. In the tank tests, PLA-MPs increased tadpole aggregation, and their combined effect with Cd2+ resulted in a tendency for tadpole aggregation to increase and then decrease, with the distribution tending to favor aggregation in edge regions. PLA-MPs also strongly inhibited the spatiotemporal exploratory activities of tadpoles in the tanks. This study provides a more detailed investigation of the behavioral effects of PLA-MPs on tadpoles and provides a theoretical basis for subsequent ecotoxicological studies of PLA-MPs.
Collapse
Affiliation(s)
- Zihan Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youhua Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
6
|
Fortuna M, Varella ACC, Siqueira L, Soares SM, Freddo N, Nardi J, Barletto ÍP, Bertuol MZ, Barcellos LJG. Transgenerational effects of the levonorgestrel-based birth control pill in zebrafish offspring. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104540. [PMID: 39173986 DOI: 10.1016/j.etap.2024.104540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
The consumption of hormone-derived medicines, such as levonorgestrel (LNG), is increasing worldwide, and its discharge into the environment reaches non-target organisms. In our previous study, we exposed the parental generation of zebrafish to environmentally relevant concentrations of LNG during the developmental phase. Subsequently, they had grown in a tank with clean water until adulthood. Now, we allowed this parental generation to reproduce to obtain F1 progeny unexposed to LGN, in order to analyze the transgenerational effects of parental LNG exposure on the survival and hatching of unexposed F1 embryos and the stress and behavior of F1 larvae. Here, we found decreased survival rates with higher LNG concentrations, providing a transgenerational effect. This highlights the environmental impact of exposure to LNG, causing damage at the individual and population level and affecting the next generation at the beginning of development, impacting qualities in the survival of the species.
Collapse
Affiliation(s)
- Milena Fortuna
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | | | - Lisiane Siqueira
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Suelen Mendonça Soares
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Natália Freddo
- Graduate Programa in Bioexperimentation, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Jéssica Nardi
- Graduate Programa in Bioexperimentation, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Ísis Piasson Barletto
- Undergraduate Course of Veterinary Medicine, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Milena Zanoello Bertuol
- Undergraduate Course of Veterinary Medicine, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Leonardo José Gil Barcellos
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil; Graduate Programa in Bioexperimentation, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil; Undergraduate Course of Veterinary Medicine, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil.
| |
Collapse
|
7
|
Caioni G, Merola C, Perugini M, Angelozzi G, Amorena M, Benedetti E, Lucon-Xiccato T, Bertolucci C. Sodium valproate effects on the morphological and neurobehavioral phenotype of zebrafish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104500. [PMID: 38977114 DOI: 10.1016/j.etap.2024.104500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
The anticonvulsant sodium valproate (SV) is frequently administered as a medicament but bears several negative effects in case of exposure during development. We analyzed extensively these early development effects of using the zebrafish model. Zebrafish embryos were exposed as eggs to two sublethal concentrations of SV, 10 and 25 mg/L. A general embryo toxicity analysis revealed extended anomalies in the cardiovascular system, and in the craniofacial and the spinal skeleton, as well as high mortality, in the embryos exposed to SV. The teratogenic potential of SV was confirmed in hacthed larvae by morphometric and cartilage profile analysis. Last, neurobehavioral impairments due to SV were highlighted in subjects' activity, anxiety, response to stimulations, habituation learning, and daily synchronization of locomotor activity, overall mirroring typical phenotypes associated with autistic spectrum disorders. In conclusion, our results confirmed the presence of extended and multifaced impacts of exposure to SV during development.
Collapse
Affiliation(s)
- Giulia Caioni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy; Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy
| | - Carmine Merola
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy
| | - Monia Perugini
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Giovanni Angelozzi
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy
| | - Michele Amorena
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy
| | - Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
8
|
Yin JH, Horzmann KA. Embryonic Zebrafish as a Model for Investigating the Interaction between Environmental Pollutants and Neurodegenerative Disorders. Biomedicines 2024; 12:1559. [PMID: 39062132 PMCID: PMC11275083 DOI: 10.3390/biomedicines12071559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Environmental pollutants have been linked to neurotoxicity and are proposed to contribute to neurodegenerative disorders. The zebrafish model provides a high-throughput platform for large-scale chemical screening and toxicity assessment and is widely accepted as an important animal model for the investigation of neurodegenerative disorders. Although recent studies explore the roles of environmental pollutants in neurodegenerative disorders in zebrafish models, current knowledge of the mechanisms of environmentally induced neurodegenerative disorders is relatively complex and overlapping. This review primarily discusses utilizing embryonic zebrafish as the model to investigate environmental pollutants-related neurodegenerative disease. We also review current applicable approaches and important biomarkers to unravel the underlying mechanism of environmentally related neurodegenerative disorders. We found embryonic zebrafish to be a powerful tool that provides a platform for evaluating neurotoxicity triggered by environmentally relevant concentrations of neurotoxic compounds. Additionally, using variable approaches to assess neurotoxicity in the embryonic zebrafish allows researchers to have insights into the complex interaction between environmental pollutants and neurodegenerative disorders and, ultimately, an understanding of the underlying mechanisms related to environmental toxicants.
Collapse
Affiliation(s)
| | - Katharine A. Horzmann
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA;
| |
Collapse
|
9
|
Gatto E, Lucon-Xiccato T, Bertolucci C. Environmental conditions shape learning in larval zebrafish. Behav Processes 2024; 218:105045. [PMID: 38692461 DOI: 10.1016/j.beproc.2024.105045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Growing evidence reveals notable phenotypic plasticity in cognition among teleost fishes. One compelling example is the positive impact of enriched environments on learning performance. Most studies on this effect have focused on juvenile or later life stages, potentially overlooking the importance of early life plasticity. To address this gap, we investigated whether cognitive plasticity in response to environmental factors emerges during the larval stage in zebrafish. Our findings indicate that larvae exposed to an enriched environment after hatching exhibited enhanced habituation learning performance compared to their counterparts raised in a barren environment. This work underscores the presence of developmental phenotypic plasticity in cognition among teleost fish, extending its influence to the very earliest stages of an individual's life.
Collapse
Affiliation(s)
- Elia Gatto
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy; Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
10
|
Ribeiro Liberato H, Bezerra Maciel J, Wlisses Da Silva A, Eduarda Uchoa Bezerra M, San De Oliveira Brito L, Silva J, Kuerislene Amâncio Ferreira M, Machado Marinho M, Marinho GS, Deusdênia Loiola Pessoa O, Guedes MIF, Goberlânio De Barros Silva P, Ferreira de Castro Gomes A, Silva Alencar De Menezes JE, Silva Dos Santos H. Neuromodulation of Acid-Sensitive Ion Channels (ASICs) and Anti-Inflammatory Potential by Lichenxanthone in Adult Zebrafish (Danio rerio): Experimental and Docking Studies. Chem Biodivers 2024; 21:e202400063. [PMID: 38329295 DOI: 10.1002/cbdv.202400063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/09/2024]
Abstract
The xanthone lichenxanthone did not show toxic effects (LC50>1.0 mg/mL). lichenxanthone prevented nociceptive behavior induced by acidic saline, and its analgesic effect was blocked by amiloride, highlighting the involvement of neuromodulation of acid-sensitive ion channels (ASICs). In the analysis of anti-inflammatory activity, concentrations of 0.1 and 0.5 mg/mL of lichenxanthone reduced the edema induced by k-carrageenan 3.5 %, observed from the fourth hour of analysis. This effect was similar to that observed with ibuprofen (positive control). No leukocyte infiltrates were observed in lichenxanthone, suggesting that the compound acts in the acute inflammatory response. The results of the molecular docking study revealed that lichenxanthone exhibited better affinity energy when compared to the ibuprofen control against the two targets evaluated.
Collapse
Affiliation(s)
- Hortência Ribeiro Liberato
- Programa de Pós-graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Jéssica Bezerra Maciel
- Programa de Pós-graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | | | | | - Luana San De Oliveira Brito
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici s/n, Fortaleza, Ceará, Brazil
| | - Jacilene Silva
- Programa de Pós-graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | | | - Marcia Machado Marinho
- Programa de Pós-graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Gabrielle S Marinho
- Programa de Pós-graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Otília Deusdênia Loiola Pessoa
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici s/n, Fortaleza, Ceará, Brazil
| | - Maria Izabel F Guedes
- Centro de Ciências da Saúde, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | | | | | | | - Hélcio Silva Dos Santos
- Programa de Pós-graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
- Universidade Estadual do Vale do Acaraú, Centro de Ciências Exatas e Tecnologia, Sobral, Ceará, Brasil
| |
Collapse
|
11
|
Gore SV, Del Rosario Hernández T, Creton R. Behavioral effects of visual stimuli in adult zebrafish using a novel eight-tank imaging system. Front Behav Neurosci 2024; 18:1320126. [PMID: 38529416 PMCID: PMC10962262 DOI: 10.3389/fnbeh.2024.1320126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/12/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction Animals respond to various environmental cues. Animal behavior is complex, and behavior analysis can greatly help to understand brain function. Most of the available behavioral imaging setups are expensive, provide limited options for customization, and allow for behavioral imaging of one animal at a time. Methods The current study takes advantage of adult zebrafish as a model organism to study behavior in a novel behavioral setup allowing one to concurrently image 8 adult zebrafish. Results Our results indicate that adult zebrafish show a unique behavioral profile in response to visual stimuli such as moving lines. In the presence of moving lines, the fish spent more time exploring the tank and spent more time toward the edges of the tanks. In addition, the fish moved and oriented themselves against the direction of the moving lines, indicating a negative optomotor response (OMR). With repeated exposure to moving lines, we observed a reduced optomotor response in adult zebrafish. Discussion Our behavioral setup is relatively inexpensive, provides flexibility in the presentation of various animated visual stimuli, and offers improved throughput for analyzing behavior in adult zebrafish. This behavioral setup shows promising potential to quantify various behavioral measures and opens new avenues to understand complex behaviors.
Collapse
Affiliation(s)
- Sayali V. Gore
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | | | | |
Collapse
|
12
|
Wang J, Zou L, Jiang P, Yao M, Xu Q, Hong Q, Zhu J, Chi X. Vitamin A ameliorates valproic acid-induced autism-like symptoms in developing zebrafish larvae by attenuating oxidative stress and apoptosis. Neurotoxicology 2024; 101:93-101. [PMID: 38191030 DOI: 10.1016/j.neuro.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social deficits and repetitive/stereotyped behaviors. Prenatal exposure to valproic acid (VPA) has been reported to induce ASD-like symptoms in human and rodents. However, the etiology and pathogenesis of ASD have not been well elucidated. This study aimed to explore the mechanisms underlying VPA-induced ASD-like behaviors using zebrafish model and investigated whether vitamin A could prevent VPA-induced neurotoxicity. Here, zebrafish embryos were exposed to 0, 25 and 50 μM VPA from 4 to 96 h post fertilization (hpf) and the neurotoxicity was assessed. Our results showed that VPA affected the normal development of zebrafish larvae and induced ASD-like behaviors, including reduced locomotor activity, decreased distance near conspecifics, impaired social interaction and repetitive swimming behaviors. Exposure to VPA decreased the GFP signal in transgenic HuC:egfp zebrafish according to the negative effect of VPA on the expression of neurodevelopmental genes. In addition, VPA enhanced oxidative stress by promoting the production of reactive oxygen species (ROS) and hydrogen peroxide (H2O2) and inhibiting the activity of superoxide dismutase, then triggered apoptosis by upregulation of apoptotic genes. These adverse outcomes were mitigated by vitamin A, suggesting that vitamin A rescued VPA-induced ASD-like symptoms by inhibiting oxidative stress and apoptosis. Overall, this study identified vitamin A as a promising strategy for future therapeutic regulator of VPA-induced ASD-like behaviors.
Collapse
Affiliation(s)
- Jingyu Wang
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, PR China
| | - Li Zou
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, PR China; Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210036, PR China
| | - Peiyun Jiang
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, PR China
| | - Mengmeng Yao
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, PR China
| | - Qu Xu
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, PR China
| | - Qin Hong
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, PR China
| | - Jiansheng Zhu
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Xia Chi
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, PR China.
| |
Collapse
|
13
|
Merola C, Caioni G, Bertolucci C, Lucon-Xiccato T, Savaşçı BB, Tait S, Casella M, Camerini S, Benedetti E, Perugini M. Embryonic and larval exposure to propylparaben induces developmental and long-term neurotoxicity in zebrafish model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168925. [PMID: 38040379 DOI: 10.1016/j.scitotenv.2023.168925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
Parabens are preservatives found in cosmetics, processed foods, and medications. The harmful repercussions on the central nervous system by one of the most common parabens, propylparaben (PrP), are yet unknown, especially during development. In this study, the neurodevelopmental effects of PrP and long-term neurotoxicity were investigated in the zebrafish model, using an integrated approach. Zebrafish embryos were exposed to two different concentrations of PrP (10 and 1000 μg/L), then larvae were examined for their behavioral phenotypes (open-field behavior, startle response, and circadian rhythmicity) and relevant brain markers (cyp19a1b, pax6a, shank3a, and gad1b). Long-term behavioral and cognitive impacts on sociability, cerebral functional asymmetry and thigmotaxis were also examined on juveniles at 30 dpf and 60 dpf. Moreover, proteomics and gene expression analysis were assessed in brains of 60 dpf zebrafish. Interestingly, thigmotaxis was decreased by the high dose in larvae and increased by the low dose in juveniles. The expression of shank3a and gad1b genes was repressed by both PrP concentrations pointing to possible effects of PrP on neurodevelopment and synaptogenesis. Proteomics analysis evidenced alterations related to brain development and lipid metabolism. Overall, the results demonstrated that early-life exposure to PrP promotes developmental and persistent neurobehavioral alterations in the zebrafish model, affecting genes and protein levels possibly associated with brain diseases.
Collapse
Affiliation(s)
- Carmine Merola
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy.
| | - Giulia Caioni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Beste Başak Savaşçı
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Unit of Evolutionary Biology/Systematic Zoology, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
| | - Sabrina Tait
- Gender-specific prevention and health Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | - Marialuisa Casella
- Mass Spectrometry Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy.
| | - Serena Camerini
- Mass Spectrometry Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy.
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Monia Perugini
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy.
| |
Collapse
|
14
|
Mariën V, Piskin I, Zandecki C, Van houcke J, Arckens L. Age-related alterations in the behavioral response to a novel environment in the African turquoise killifish ( Nothobranchius furzeri). Front Behav Neurosci 2024; 17:1326674. [PMID: 38259633 PMCID: PMC10800983 DOI: 10.3389/fnbeh.2023.1326674] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
The African turquoise killifish (Nothobranchius furzeri) has emerged as a popular model organism for neuroscience research in the last decade. One of the reasons for its popularity is its short lifespan for a vertebrate organism. However, little research has been carried out using killifish in behavioral tests, especially looking at changes in their behavior upon aging. Therefore, we used the open field and the novel tank diving test to unravel killifish locomotion, exploration-related behavior, and behavioral changes over their adult lifespan. The characterization of this behavioral baseline is important for future experiments involving pharmacology to improve the aging phenotype. In this study, two cohorts of fish were used, one cohort was tested in the open field test and one cohort was tested in the novel tank diving test. Each cohort was tested from the age of 6 weeks to the age of 24 weeks and measurements were performed every three weeks. In the open field test, we found an increase in the time spent in the center zone from 18 weeks onward, which could indicate altered exploration behavior. However, upon aging, the fish also showed an increased immobility frequency and duration. In addition, after the age of 15 weeks, their locomotion decreased. In the novel tank diving test, we did not observe this aging effect on locomotion or exploration. Killifish spent around 80% of their time in the bottom half of the tank, and we could not observe habituation effects, indicating slow habituation to novel environments. Moreover, we observed that killifish showed homebase behavior in both tests. These homebases are mostly located near the edges of the open field test and at the bottom of the novel tank diving test. Altogether, in the open field test, the largest impact of aging on locomotion and exploration was observed beyond the age of 15 weeks. In the novel tank diving test, no effect of age was found. Therefore, to test the effects of pharmacology on innate behavior, the novel tank diving test is ideally suited because there is no confounding effect of aging.
Collapse
Affiliation(s)
- Valerie Mariën
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, Leuven, Belgium
| | - Ilayda Piskin
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, Leuven, Belgium
| | - Caroline Zandecki
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, Leuven, Belgium
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jolien Van houcke
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, Leuven, Belgium
| | - Lutgarde Arckens
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Lucon-Xiccato T, Savaşçı BB, Merola C, Benedetti E, Caioni G, Aliko V, Bertolucci C, Perugini M. Environmentally relevant concentrations of triclocarban affect behaviour, learning, and brain gene expression in fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166717. [PMID: 37657536 DOI: 10.1016/j.scitotenv.2023.166717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Many chemicals spilled in aquatic ecosystems can interfere with cognitive abilities and brain functions that control fitness-related behaviour. Hence, their harmful potential may be substantially underestimated. Triclocarban (TCC), one of the most common aquatic contaminants, is known to disrupt hormonal activity, but the consequences of this action on behaviour and its underlying cognitive mechanisms are unclear. We tried to fill this knowledge gap by analysing behaviour, cognitive abilities, and brain gene expression in zebrafish larvae exposed to TCC sublethal concentrations. TCC exposure substantially decreased exploratory behaviour and response to stimulation, while it increased sociability. Additionally, TCC reduced the cognitive performance of zebrafish in a habituation learning task. In the brain of TCC-exposed zebrafish, we found upregulation of c-fos, a gene involved in neural activity, and downregulation of bdnf, a gene that influences behavioural and cognitive traits such as activity, learning, and memory. Overall, our experiments highlight consistent effects of non-lethal TCC concentrations on behaviour, cognitive abilities, and brain functioning in a teleost fish, suggesting critical fitness consequences of these compounds in aquatic ecosystems as well as the potential to affect human health.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Beste Başak Savaşçı
- Unit of Evolutionary Biology/Systematic Zoology, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany; Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Carmine Merola
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giulia Caioni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Valbona Aliko
- Department of Biology, Faculty of Natural Sciences, University of Tirana, Tirana, Albania
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Monia Perugini
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| |
Collapse
|
16
|
Paquette SE, Martin NR, Rodd A, Manz KE, Allen E, Camarillo M, Weller HI, Pennell K, Plavicki JS. Evaluation of Neural Regulation and Microglial Responses to Brain Injury in Larval Zebrafish Exposed to Perfluorooctane Sulfonate. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:117008. [PMID: 37966802 PMCID: PMC10650473 DOI: 10.1289/ehp12861] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are biopersistent, global pollutants. Although some in vitro and epidemiological studies have explored the neurotoxic potential of perfluorooctane sulfonate (PFOS), a prevalent PFAS congener, it is unknown how developmental PFOS exposure affects neuronal signaling, microglia development, and microglial-neuron communication. OBJECTIVES We sought to determine the extent to which PFOS exposure disrupts brain health, neuronal activity, and microglia-neuron communication during development. In addition, although PFOS impairs humoral immunity, its impact on innate immune cells, including resident microglia, is unclear. As such, we investigated whether microglia are cellular targets of PFOS, and, if so, whether disrupted microglial development or function could contribute to or is influenced by PFOS-induced neural dysfunction. METHODS Zebrafish were chronically exposed to either a control solution [0.1% dimethyl sulfoxide (DMSO)], 7 μ M PFOS, 14 μ M PFOS, 28 μ M PFOS, or 64 μ M perfluorooctanoic acid (PFOA). We used in vivo imaging and gene expression analysis to assess microglial populations in the developing brain and to determine shifts in the microglia state. We functionally challenged microglia state using a brain injury model and, to assess the neuronal signaling environment, performed functional neuroimaging experiments using the photoconvertible calcium indicator calcium-modulated photoactivatable ratiometric integrator (CaMPARI). These studies were paired with optogenetic manipulations of neurons and microglia, an untargeted metabolome-wide association study (MWAS), and behavioral assays. RESULTS Developmental PFOS exposure resulted in a shift away from the homeostatic microglia state, as determined by functional and morphological differences in exposed larvae, as well as up-regulation of the microglia activation gene p2ry12. PFOS-induced effects on microglia state exacerbated microglia responses to brain injury in the absence of increased cell death or inflammation. PFOS exposure also heightened neural activity, and optogenetic silencing of neurons or microglia independently was sufficient to normalize microglial responses to injury. An untargeted MWAS of larval brains revealed PFOS-exposed larvae had neurochemical signatures of excitatory-inhibitory imbalance. Behaviorally, PFOS-exposed larvae also exhibited anxiety-like thigmotaxis. To test whether the neuronal and microglial phenotypes were specific to PFOS, we exposed embryos to PFOA, a known immunotoxic PFAS. PFOA did not alter thigmotaxis, neuronal activity, or microglial responses, further supporting a role for neuronal activity as a critical modifier of microglial function following PFOS exposure. DISCUSSION Together, this study provides, to our knowledge, the first detailed account of the effects of PFOS exposure on neural cell types in the developing brain in vivo and adds neuronal hyperactivity as an important end point to assess when studying the impact of toxicant exposures on microglia function. https://doi.org/10.1289/EHP12861.
Collapse
Affiliation(s)
- Shannon E. Paquette
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Nathan R. Martin
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - April Rodd
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Katherine E. Manz
- School of Engineering, Brown University, Providence, Rhode Island, USA
| | - Eden Allen
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Manuel Camarillo
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Hannah I. Weller
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Kurt Pennell
- School of Engineering, Brown University, Providence, Rhode Island, USA
| | - Jessica S. Plavicki
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
17
|
Pintos S, Lucon-Xiccato T, Vera LM, Bertolucci C. Daily rhythms in the behavioural stress response of the zebrafish Danio rerio. Physiol Behav 2023; 268:114241. [PMID: 37201692 DOI: 10.1016/j.physbeh.2023.114241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
In nature, animals are exposed to stressors that occur with different likelihood throughout the day, such as risk of predation and human disturbance. Hence, the stress response is expected to vary plastically to adaptively match these challenges. Several studies have supported this hypothesis in a wide range of vertebrate species, including some teleost fish, mostly through evidence of circadian variation in physiology. However, in teleost fish, circadian variation in behavioural stress responses is less understood. Here, we investigated the daily rhythm of stress response at the behavioural level in the zebrafish Danio rerio. We exposed individuals and shoals to an open field test every 4 h over a 24 h cycle, recording three behavioural indicators of stress and anxiety levels in novel environments (thigmotaxis, activity and freezing). Thigmotaxis and activity significantly varied throughout the day with a similar pattern, in line with a stronger stress response in the night phase. The same was suggested by analysis of freezing in shoals, but not in individual fish, in which variation appeared mostly driven by a single peak in the light phase. In a control experiment, we observed a set of subjects after familiarisation with the open-field apparatus. This experiment indicated that activity and freezing might present a daily rhythmicity that is unrelated to environmental novelty, and thus to stress responses. However, the thigmotaxis was constant through the day in the control condition, suggesting that the daily variation of this indicator is mostly attributable to the stress response. Overall, this research indicates that behavioural stress response of zebrafish does follow a daily rhythm, although this may be masked using behavioural indicators other than thigmotaxis. This rhythmicity can be relevant to improve welfare in aquaculture and reliability of behavioural research in fish models.
Collapse
Affiliation(s)
- Santiago Pintos
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.
| | - Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Luisa María Vera
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
18
|
Resmim CM, Borba JV, Pretzel CW, Santos LW, Rubin MA, Rosemberg DB. Assessing the exploratory profile of two zebrafish populations: influence of anxiety-like phenotypes and independent trials on homebase-related parameters and exploration. Behav Processes 2023:104912. [PMID: 37406867 DOI: 10.1016/j.beproc.2023.104912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/12/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Anxiety is a protective behavior when animals face aversive conditions. The open field test (OFT) is used to assess the spatio-temporal dynamics of exploration, in which both homebase formation and recognition of environmental cues may reflect habituation to unfamiliar conditions. Because emotional- and affective-like states influence exploration patterns and mnemonic aspects, we aimed to verify whether the exploratory behaviors of two zebrafish populations showing distinct baselines of anxiety differ in two OFT sessions. Firstly, we assessed the baseline anxiety-like responses of short fin (SF) and leopard (LEO) populations using the novel tank test (NTT) and light-dark test (LDT) in 6-min trials. Fish were later tested in two consecutive days in the OFT, in which the spatial occupancy and exploratory profile were analyzed for 30min. In general, LEO showed pronounced diving behavior and scototaxis in the NTT and LDT, respectively, in which an "anxiety index" corroborated their exacerbated anxiety-like behavior. In the OFT, the SF population spent less time to establish the homebase in the 1st trial, while only LEO showed a markedly reduction in the latency to homebase formation in the 2nd trial. Both locomotion and homebase-related activities were decreased in the 2nd trial, in which animals also revealed increased occupancy in the center area of the apparatus. Moreover, we verified a significant percentage of homebase conservation for both populations, while only SF showed reduced the number of trips and increased the average length of trips. Principal component analyses revealed that distinct factors accounted for total variances between trials for each population tested. While homebase exploration was reduced in the 2nd trial for SF, an increased occupancy in the center area and hypolocomotion were the main factors that contribute to the effects observed in LEO during re-exposure to the OFT. In conclusion, our novel data support the homebase conservation in zebrafish subjected to independent OFT sessions, as well as corroborate a population-dependent effect on specific behavioral parameters related to exploration.
Collapse
Affiliation(s)
- Cássio M Resmim
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| | - João V Borba
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Camilla W Pretzel
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Laura W Santos
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Maribel A Rubin
- Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
19
|
Biechele-Speziale D, Camarillo M, Martin NR, Biechele-Speziale J, Lein PJ, Plavicki JS. Assessing CaMPARI as new approach methodology for evaluating neurotoxicity. Neurotoxicology 2023; 97:109-119. [PMID: 37244562 PMCID: PMC10527633 DOI: 10.1016/j.neuro.2023.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
Developmental exposure to environmental toxicants has been linked to the onset of neurological disorders and diseases. Despite substantial advances in the field of neurotoxicology, there remain significant knowledge gaps in our understanding of cellular targets and molecular mechanisms that mediate the neurotoxicological endpoints associated with exposure to both legacy contaminants and emerging contaminants of concern. Zebrafish are a powerful neurotoxicological model given their high degree sequence conservation with humans and the similarities they share with mammals in micro- and macro-level brain structures. Many zebrafish studies have effectively utilized behavioral assays to predict the neurotoxic potential of different compounds, but behavioral phenotypes are rarely able to predict the brain structures, cell types, or mechanisms affected by chemical exposures. Calcium-modulated photoactivatable ratiometric integrator (CaMPARI), a recently developed genetically-encoded calcium indicator, undergoes a permanent green to red switch in the presence of elevated intracellular Ca2+ concentrations and 405-nm light, which allows for a "snapshot" of brain activity in freely-swimming larvae. To determine whether behavioral results are predictive of patterns of neuronal activity, we assessed the effects of three common neurotoxicants, ethanol, 2,2',3,5',6-pentachlorobiphenyl (PCB 95), and monoethylhexyl phthalate (MEHP), on both brain activity and behavior by combining the behavioral light/dark assay with CaMPARI imaging. We demonstrate that brain activity profiles and behavioral phenotypes are not always concordant and, therefore, behavior alone is not sufficient to understand how toxicant exposure affects neural development and network dynamics. We conclude that pairing behavioral assays with functional neuroimaging tools such as CaMPARI provides a more comprehensive understanding of the neurotoxic endpoints of compounds while still offering a relatively high throughput approach to toxicity testing.
Collapse
Affiliation(s)
- Dana Biechele-Speziale
- Department of Chemistry, Brown University, Providence, RI, USA; Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Manuel Camarillo
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Nathan R Martin
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | | | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Jessica S Plavicki
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA.
| |
Collapse
|
20
|
Luz TMD, Guimarães ATB, Matos SGDS, de Souza SS, Gomes AR, Rodrigues ASDL, Durigon EL, Charlie-Silva I, Freitas ÍN, Islam ARMT, Rahman MM, Silva AM, Malafaia G. Exposure of adult zebrafish (Danio rerio) to SARS-CoV-2 at predicted environmentally relevant concentrations: Outspreading warns about ecotoxicological risks to freshwater fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163269. [PMID: 37028679 PMCID: PMC10076041 DOI: 10.1016/j.scitotenv.2023.163269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/15/2023]
Abstract
While the multifaceted social, economic, and public health impacts associated with the COVID-19 pandemic are known, little is known about its effects on non-target aquatic ecosystems and organisms. Thus, we aimed to evaluate the potential ecotoxicity of SARS-CoV-2 lysate protein (SARS.CoV2/SP02.2020.HIAE.Br) in adult zebrafish (Danio rerio) at predicted environmentally relevant concentrations (0.742 and 2.226 pg/L), by 30 days. Although our data did not show locomotor alterations or anxiety-like or/and anxiolytic-like behavior, we noticed that exposure to SARS-CoV-2 negatively affected habituation memory and social aggregation of animals in response to a potential aquatic predator (Geophagus brasiliensis). An increased frequency of erythrocyte nuclear abnormalities was also observed in animals exposed to SARS-CoV-2. Furthermore, our data suggest that such changes were associated with a redox imbalance [↑ROS (reactive oxygen species), ↑H2O2 (hydrogen peroxide), ↓SOD (superoxide dismutase), and ↓CAT (catalase)], cholinesterasic effect [↑AChE (acetylcholinesterase) activity], as well as the induction of an inflammatory immune response [↑NO (nitric oxide), ↑IFN-γ (interferon-gamma), and ↓IL-10 (interleukin-10)]. For some biomarkers, we noticed that the response of the animals to the treatments was not concentration-dependent. However, principal component analysis (PCA) and the "Integrated Biomarker Response" index (IBRv2) indicated a more prominent ecotoxicity of SARS-CoV-2 at 2.226 pg/L. Therefore, our study advances knowledge about the ecotoxicological potential of SARS-CoV-2 and reinforces the presumption that the COVID-19 pandemic has negative implications beyond its economic, social, and public health impacts.
Collapse
Affiliation(s)
- Thiarlen Marinho da Luz
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | | | - Sindoval Silva de Souza
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| | - Alex Rodrigues Gomes
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Aline Sueli de Lima Rodrigues
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | - Edison Luiz Durigon
- Laboratory of Clinical and Molecular Virology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Ives Charlie-Silva
- Chemistry Institute, São Paulo State University (UNESP) - Campus Araraquara, Brazil
| | - Ítalo Nascimento Freitas
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | | | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Abner Marcelino Silva
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Brazilian Academy of Young Scientists (ABJC), Brazil.
| |
Collapse
|
21
|
Bezerra FMDH, Vieira-Neto AE, Benevides SC, Tavares KCS, Ribeiro ADDC, Santos SAAR, Leite GDO, Alves Magalhães FE, Campos AR. Pharmacological Potential of cis-jasmone in Adult Zebrafish (Danio rerio). PLANTA MEDICA 2023; 89:539-550. [PMID: 36720229 DOI: 10.1055/a-1988-2098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This study evaluates the pharmacological potential of cis-jasmone (CJ) in adult zebrafish (Danio rerio; aZF). Initially, aZF (n = 6/group) were pretreated (20 µL; p. o.) with CJ (0.1 or 0.3 or 1.0 mg/mL) or vehicle (0.5% Tween 80). The animals were submitted to acute toxicity and locomotion tests, pentylenetetrazole-induced seizure, carrageenan-induced abdominal edema, and cinnamaldehyde-, capsaicin-, menthol-, glutamate-, and acid saline-induced orofacial nociception. The possible mechanisms of anticonvulsant, anxiolytic, and antinociceptive action were evaluated. The involvement of central afferent fibers sensitive to cinnamaldehyde and capsaicin and the effect of CJ on the relative gene expression of TRPA1 and TRPV1 in the brain of aZF were also analyzed, in addition to the study of molecular docking between CJ and TRPA1, TRPV1 channels, and GABAA receptors. CJ did not alter the locomotor behavior and showed pharmacological potential in all tested models with no toxicity. The anticonvulsant effect of CJ was prevented by flumazenil (GABAergic antagonist). The anxiolytic-like effect of CJ was prevented by flumazenil and serotonergic antagonists. The antinociceptive effect was prevented by TRPA1 and TRPV1 antagonists. Chemical ablation with capsaicin and cinnamaldehyde prevented the orofacial antinociceptive effect of CJ. Molecular docking studies indicate that CJ interacted with TRPA1, TRPV1, and GABAA receptors. CJ inhibited the relative gene expression of TRPA1 and TRPV1. CJ has pharmacological potential for the treatment of seizures, anxiety, inflammation, and acute orofacial nociception. These effects are obtained by modulating the GABAergic and serotonergic systems, as well as the TRPs and ASIC channels.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Francisco Ernani Alves Magalhães
- Universidade de Fortaleza, Núcleo de Biologia Experimental (NUBEX), Fortaleza, Ceará, Brazil
- Universidade Estadual do Ceará (UECE- CECITEC), Laboratório de Bioprospecção de Produtos Naturais e Biotecnologia (LBPNB), Tauá, Ceará, Brazil
| | - Adriana Rolim Campos
- Universidade de Fortaleza, Núcleo de Biologia Experimental (NUBEX), Fortaleza, Ceará, Brazil
| |
Collapse
|
22
|
Lucon-Xiccato T, Gatto E, Fontana CM, Bisazza A. Quantity discrimination in newly hatched zebrafish suggests hardwired numerical abilities. Commun Biol 2023; 6:247. [PMID: 36959336 PMCID: PMC10036331 DOI: 10.1038/s42003-023-04595-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 02/14/2023] [Indexed: 03/25/2023] Open
Abstract
An intriguing hypothesis to explain the ubiquity of numerical abilities is that all vertebrates are born with hardwired neuronal networks for processing numbers. To date, only studies on human foetuses have clearly supported this hypothesis. Zebrafish hatch 48-72 h after fertilisation with an embryonic nervous system, providing a unique opportunity for investigating this hypothesis. Here, we demonstrated that zebrafish larvae exposed to vertical bars at birth acquired an attraction for bar stimuli and we developed a numerical discrimination task based on this preference. When tested with a series of discriminations of increasing difficulty (1vs.4, 1vs.3, 1vs.2, and 2vs.4 bars), zebrafish larvae reliably selected the greater numerosity. The preference was significant when stimuli were matched for surface area, luminance, density, and convex hull, thereby suggesting a true capacity to process numerical information. Converging results from two phylogenetically distant species suggests that numerical abilities might be a hallmark feature of vertebrates' brains.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Elia Gatto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | | | - Angelo Bisazza
- Department of General Psychology, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
23
|
Rodrigues Garcia T, Freire PDTC, da Silva AW, Ferreira MKA, Rebouças EDL, Mendes FRS, Marinho EM, Marinho MM, Teixeira AMR, Marinho ES, Bandeira PN, de Menezes JESA, Dos Santos HS. Anxiolytic and anticonvulsant effect of Ibuprofen derivative through GABAergic neuromodulation in adult Zebrafish. J Biomol Struct Dyn 2023; 41:12055-12062. [PMID: 36695084 DOI: 10.1080/07391102.2023.2170915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/27/2022] [Indexed: 01/26/2023]
Abstract
Anxiety and epilepsy affect millions of people worldwide, and the treatment of these pathologies involves the use of Benzodiazepines, drugs that have serious adverse effects such as dependence and sedation, so the discovery of new anxiolytic and antiepileptic drugs are necessary. Many routes for synthesizing ibuprofen derivatives have been developed, and these derivatives have shown promising pharmacological effects. Therefore, this study aims to evaluate its anxiolytic and anticonvulsant effect against the adult Zebrafish animal model of Ibuprofen (IBUACT) and its interaction with the GABAergic receptor through in silico studies. The light/dark preference test (Scototaxis test) was used to evaluate the anxiolytic behavior of adult Zebrafish acutely treated with IBUACT and Diazepam, and their anticonvulsant effects were investigated through the pentylenetetrazol (PTZ)-induced seizure model. Animals treated with IBUACT showed anxiolytic behavior similar to Diazepam, and pretreatment with flumazenil reversed this behavior. PTZ-induced seizures were delayed by IBUACT in all three stages and were shown to bind strongly in the Diazepam region of GABAA. In addition, this work presents evidence of new pharmacological applications of ibuprofen derivative in pathologies of the central nervous system (CNS), opening the horizon for new studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Antonio Wlisses da Silva
- Postgraduate Program in Biotechnology, RENORBIO, State University of Ceara, Fortaleza, CE, Brazil
| | | | | | | | | | | | - Alexandre Magno Rodrigues Teixeira
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
- Postgraduate Program in Biotechnology, RENORBIO, State University of Ceara, Fortaleza, CE, Brazil
| | - Emmanuel Silva Marinho
- Department of Chemistry, State University of Ceara, Limoeiro do Norte, CE, Brazil
- State University of Ceara, Graduate Program in Natural Sciences, Fortaleza, CE, Brazil
| | | | | | - Helcio Silva Dos Santos
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
- Postgraduate Program in Biotechnology, RENORBIO, State University of Ceara, Fortaleza, CE, Brazil
- State University of Vale do Acaraú, Chemistry Course, Sobral, CE, Brazil
- State University of Ceara, Graduate Program in Natural Sciences, Fortaleza, CE, Brazil
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceara, Fortaleza, CE, Brazil
| |
Collapse
|
24
|
Mendes FRS, da Silva AW, Ferreira MKA, Rebouças EDL, Moura Barbosa I, da Rocha MN, Henrique Ferreira Ribeiro W, Menezes RRPPBD, Magalhães EP, Marinho EM, Marinho MM, Bandeira PN, de Menezes JESA, Marinho ES, Dos Santos HS. GABA A and serotonergic receptors participation in anxiolytic effect of chalcones in adult zebrafish. J Biomol Struct Dyn 2023; 41:12426-12444. [PMID: 36644862 DOI: 10.1080/07391102.2023.2167116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/03/2023] [Indexed: 01/17/2023]
Abstract
The prevalence of anxiety is a significant public health problem, being the 24th leading cause of disability in individuals affected by this disorder. In this context, chalcones, a flavonoid subclass obtained from natural or synthetic sources, interact with central nervous system (CNS) receptors at the same binding site as benzodiazepines, the primary drugs used in the treatment of anxiety. Thus, our study investigates the anxiolytic effect of synthetic chalcones derived from the natural product 2-hydroxy-3,4,6-trimethoxyacetophenone isolated from Croton anisodontus Müll.Arg. in modulating anxiolytic activity via GABAergic and serotoninergic neurotransmission in an adult zebrafish model. Chalcones 1 and 2 were non-toxic to adult zebrafish and showed anxiolytic activity via GABAA receptors. Chalcone 2 also had its anxiolytic action reversed by the antagonist granisetron, indicating the participation of serotonergic receptors 5HTR3A/3B in the anxiolytic effect. In addition, molecular docking results showed that chalcones have a higher affinity for the GABAA receptor than DZP and binding in the same region of the DZP binding site, indicating a similar effect to the drug. Furthermore, the interaction of chalcones with GABAA and 5-HT3A receptors demonstrates the anxiolytic effect potential of these molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | | | | | - Italo Moura Barbosa
- Graduate Program in Natural Sciences, State University of Ceara, Fortaleza, Ceará, Brazil
| | - Matheus Nunes da Rocha
- Department of Chemistry, Limoeiro do Norte, State University of Ceara, Limoeiro do Norte, Ceará, Brazil
| | | | | | - Emanuel Paula Magalhães
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Emanuelle Machado Marinho
- Department of Analytical and Physical Chemistry, Federal University of Ceara, Fortaleza, Ceará, Brazil
| | | | | | | | - Emmanuel Silva Marinho
- Graduate Program in Natural Sciences, State University of Ceara, Fortaleza, Ceará, Brazil
- Department of Chemistry, Limoeiro do Norte, State University of Ceara, Limoeiro do Norte, Ceará, Brazil
| | - Hélcio Silva Dos Santos
- Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará, Brazil
- Graduate Program of Biotechnology, State University of Ceara, Fortaleza, Ceará, Brazil
- Graduate Program in Natural Sciences, State University of Ceara, Fortaleza, Ceará, Brazil
- Chemistry Course, State University of Vale do Acaraú, Sobral, Ceará, Brazil
| |
Collapse
|
25
|
Salam M, Rana M, Baral P, Rahman M, Ahmed S, Rahman R, Jahan N, Mazumder T, Islam M, Hussain M. Glipizide has Low Influences on Lipid Index and Major Organs Weight Variation and Considerable Anxiolytic Properties: An in vivo Investigation. JOURNAL OF MEDICAL SCIENCES 2023. [DOI: 10.3923/jms.2023.7.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
26
|
Mrinalini R, Tamilanban T, Naveen Kumar V, Manasa K. Zebrafish - The Neurobehavioural Model in Trend. Neuroscience 2022; 520:95-118. [PMID: 36549602 DOI: 10.1016/j.neuroscience.2022.12.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Zebrafish (Danio rerio) is currently in vogue as a prevalently used experimental model for studies concerning neurobehavioural disorders and associated fields. Since the 1960s, this model has succeeded in breaking most barriers faced in the hunt for an experimental model. From its appearance to its high parity with human beings genetically, this model renders itself as an advantageous experimental lab animal. Neurobehavioural disorders have always posed an arduous task in terms of their detection as well as in determining their exact etiology. They are still, in most cases, diseases of interest for inventing or discovering novel pharmacological interventions. Thus, the need for a harbinger experimental model for studying neurobehaviours is escalating. Ensuring the same model is used for studying several neuro-studies conserves the results from inter-species variations. For this, we need a model that satisfies all the pre-requisite conditions to be made the final choice of model for neurobehavioural studies. This review recapitulates the progress of zebrafish as an experimental model with its most up-to-the-minute advances in the area. Various tests, assays, and responses employed using zebrafish in screening neuroactive drugs have been tabulated effectively. The tools, techniques, protocols, and apparatuses that bolster zebrafish studies are discussed. The probable research that can be done using zebrafish has also been briefly outlined. The various breeding and maintenance methods employed, along with the information on various strains available and most commonly used, are also elaborated upon, supplementing Zebrafish's use in neuroscience.
Collapse
Affiliation(s)
- R Mrinalini
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur, India - 603203
| | - T Tamilanban
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur, India - 603203
| | - V Naveen Kumar
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur, India - 603203.
| | - K Manasa
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur, India - 603203
| |
Collapse
|
27
|
Fortuna M, Soares SM, Pompermaier A, Freddo N, Nardi J, Mozzato MT, Varela ACC, Costa VC, Siqueira L, Menegasso AS, da Costa Maffi V, Barcellos LJG. Exposure to levonorgestrel-based birth control pill in early life and its persistent effects in zebrafish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:104006. [PMID: 36328330 DOI: 10.1016/j.etap.2022.104006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/01/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The consumption of progestins has increased considerably in recent decades, as has their disposal into the environment. These substances can negatively affect the reproduction, physiology, and behavior of non-target organisms, such as fish. We aimed to evaluate the effects of exposure to environmentally relevant concentrations of levonorgestrel-control birth based (1.3, 13.3, 133, and 1330 ng/L) on the development and behavior of zebrafish (Danio rerio) in terms of mortality, hatching, spontaneous movement, and larval and adult behavioral tests. Exposure caused anxiogenic-like behavior in larvae, which persisted in adults, as demonstrated by the light-dark test. In contrast, it caused anxiolytic-like behavior in the novel tank test. There was a high mortality rate at all tested concentrations and increases in the hormone cortisol at 13.3 ng/L that affected the sex ratio. These changes may lead to an ecological imbalance, emphasizing the risk of early exposure to progestins in the environment.
Collapse
Affiliation(s)
- Milena Fortuna
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Suelen Mendonça Soares
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Aline Pompermaier
- Programa de Pós-graduação em Bioexperimentação, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Natália Freddo
- Programa de Pós-graduação em Bioexperimentação, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Jéssica Nardi
- Programa de Pós-graduação em Bioexperimentação, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Mateus Timbola Mozzato
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Amanda Carolina Cole Varela
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Vitória Cadore Costa
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Lisiane Siqueira
- Programa de Pós-graduação em Bioexperimentação, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Aloma Santin Menegasso
- Programa de Pós-graduação em Bioexperimentação, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Victoria da Costa Maffi
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Leonardo José Gil Barcellos
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil; Programa de Pós-graduação em Bioexperimentação, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil; Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil.
| |
Collapse
|
28
|
Microcapsules based on alginate and guar gum for co-delivery of hydrophobic antitumor bioactives. Carbohydr Polym 2022; 301:120310. [DOI: 10.1016/j.carbpol.2022.120310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/14/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
29
|
Lin LY, Horng JL, Cheng CA, Chang CY, Cherng BW, Liu ST, Chou MY. Sublethal ammonia induces alterations of emotions, cognition, and social behaviors in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114058. [PMID: 36108432 DOI: 10.1016/j.ecoenv.2022.114058] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/27/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Ammonia pollutants were usually found in aquatic environments is due to urban sewage, industrial wastewater discharge, and agricultural runoff and concentrations as high as 180 mg/L (NH4+) have been reported in rivers. High ammonia levels are known to impair multiple tissue and cell functions and cause fish death. Although ammonia is a potent neurotoxin, how sublethal concentrations of ammonia influence the central nervous system (CNS) and the complex behaviors of fish is still unclear. In the present study, we demonstrated that acute sublethal ammonia exposure can change social behavior of adult zebrafish. The exposure to 90 mg /L of (NH4+) for 4 h induced a strong fear response and lower shoaling cohesion; exposure to 180 mg /L of (NH4+) for 4 h reduced the aggressiveness, and social recognition, while the anxiety, social preference, learning, and short-term memory were not affected. Messenger RNA expressions of glutaminase and glutamate dehydrogenase in the brain were induced, suggesting that ammonia exposure altered glutamate neurotransmitters in the CNS. Our findings in zebrafish provided delicate information of ammonia neurotoxicity in complex higher-order social behaviors, which has not been revealed previously. In conclusion, sublethal and acute ammonia exposure can change specific behaviors of fish, which might lead to reductions in individual and population fitness levels.
Collapse
Affiliation(s)
- Li-Yih Lin
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
| | - Chieh-An Cheng
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chun-Yung Chang
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Bor-Wei Cherng
- Department of Life Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Sian-Tai Liu
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
30
|
Feng M, Luo J, Wan Y, Zhang J, Lu C, Wang M, Dai L, Cao X, Yang X, Wang Y. Polystyrene Nanoplastic Exposure Induces Developmental Toxicity by Activating the Oxidative Stress Response and Base Excision Repair Pathway in Zebrafish ( Danio rerio). ACS OMEGA 2022; 7:32153-32163. [PMID: 36119974 PMCID: PMC9476205 DOI: 10.1021/acsomega.2c03378] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/22/2022] [Indexed: 02/05/2023]
Abstract
The widespread accumulation of nanoplastics is a growing concern for the environmental and human health. However, studies on the mechanisms of nanoplastic-induced developmental toxicity are still limited. Here, we systematically investigated the potential biological roles of nanoplastic exposure in zebrafish during the early developmental stage. The zebrafish embryos were subjected to exposure to 100 nm polystyrene nanoplastics with different concentrations (0, 100, 200, and 400 mg/L). The results indicated that nanoplastic exposure could decrease the hatching and survival rates of zebrafish embryos. In addition, the developmental toxicity test indicated that nanoplastic exposure exhibits developmental toxicity via the inhibition of the heart rate and body length in zebrafish embryos. Besides, behavioral activity was also significantly suppressed after 96 h of nanoplastic exposure in zebrafish larvae. Further biochemical assays revealed that nanoplastic-induced activation of the oxidative stress responses, including reactive oxygen species accumulation and enhanced superoxide dismutase and catalase activities, might affect developmental toxicity in zebrafish embryos. Furthermore, a quantitative polymerase chain reaction assay demonstrated that the mRNA levels of the base excision repair (BER) pathway-related genes, including lig1, lig3, polb, parp1, pold, fen1, nthl1, apex, xrcc1, and ogg1, were altered in zebrafish embryos for 24 h after nanoplastic exposure, indicating that the activation of the BER pathway would be stimulated after nanoplastic exposure in zebrafish embryos. Therefore, our findings illustrated that nanoplastics could induce developmental toxicity through activation of the oxidative stress response and BER pathways in zebrafish.
Collapse
Affiliation(s)
- Meilan Feng
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, China
| | - Juanjuan Luo
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, China
| | - Yiping Wan
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, China
| | - Jiannan Zhang
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, China
| | - Chunjiao Lu
- Guangdong
Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Maya Wang
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, China
| | - Lu Dai
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, China
| | - Xiaoqian Cao
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, China
| | - Xiaojun Yang
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou 515041,China
| | - Yajun Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| |
Collapse
|
31
|
Pompermaier A, Varela ACC, Mozzato MT, Soares SM, Fortuna M, Alves C, Tamagno WA, Barcellos LJG. Impaired initial development and behavior in zebrafish exposed to environmentally relevant concentrations of widely used pesticides. Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109328. [PMID: 35292329 DOI: 10.1016/j.cbpc.2022.109328] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/16/2022] [Accepted: 03/09/2022] [Indexed: 12/24/2022]
Abstract
Pesticides reach water bodies through different routes, either owing to incorrect packaging disposal, direct application to control macrophytes, leaching from fields, or natural degradation processes. In the aquatic environment, adverse effects in non-target species that come in contact with these substances are poorly understood. Currently, the most used pesticides are glyphosate (GBH) and 2,4-dichlorophenoxyacetic acid-based herbicides (DBH), as its presence in water bodies is already known, we used environmental concentrations and our exposure time comprised the entire period of organogenesis (3-120 h post-fertilization). We evaluated the response of embryos in their early development with the parameters of mortality, hatching, spontaneous movement, and heart rate; and it's through behavior the open field test and aversive stimulus, as well as biochemical analyzes of acetylcholinesterase activity (AChE), catalase (CTL) and superoxide dismutase (SOD) as a possible mechanism of action. Exposure to GBH decreased survival, caused hypermobility and anxiolytic behavior, negatively affected the anti-predatory behavior of the larvae, and increases acetylcholinesterase activity, whereas exposure to DBH caused only slight hypermobility in the larvae and increases acetylcholinesterase activity. These changes may compromise the perpetuation of the species, the search for partners/food, and facilitate the action of predators, which can result in serious ecological consequences.
Collapse
Affiliation(s)
- Aline Pompermaier
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo, BR 285, São José, Passo Fundo, Rio Grande do Sul, Brazil
| | - Amanda Carolina Cole Varela
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Mateus Timbola Mozzato
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Suelen Mendonça Soares
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Milena Fortuna
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Carla Alves
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo, BR 285, São José, Passo Fundo, Rio Grande do Sul, Brazil
| | - Wagner Antonio Tamagno
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil; Laboratório de Bioquímica e Biologia Molecular do Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul - Campus Sertão, Sertão, Rio Grande do Sul, Brazil
| | - Leonardo José Gil Barcellos
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo, BR 285, São José, Passo Fundo, Rio Grande do Sul, Brazil; Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
32
|
Shenoy A, Banerjee M, Upadhya A, Bagwe-Parab S, Kaur G. The Brilliance of the Zebrafish Model: Perception on Behavior and Alzheimer's Disease. Front Behav Neurosci 2022; 16:861155. [PMID: 35769627 PMCID: PMC9234549 DOI: 10.3389/fnbeh.2022.861155] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) has become increasingly prevalent in the elderly population across the world. It's pathophysiological markers such as overproduction along with the accumulation of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFT) are posing a serious challenge to novel drug development processes. A model which simulates the human neurodegenerative mechanism will be beneficial for rapid screening of potential drug candidates. Due to the comparable neurological network with humans, zebrafish has emerged as a promising AD model. This model has been thoroughly validated through research in aspects of neuronal pathways analogous to the human brain. The cholinergic, glutamatergic, and GABAergic pathways, which play a role in the manifested behavior of the zebrafish, are well defined. There are several behavioral models in both adult zebrafish and larvae to establish various aspects of cognitive impairment including spatial memory, associative memory, anxiety, and other such features that are manifested in AD. The zebrafish model eliminates the shortcomings of previously recognized mammalian models, in terms of expense, extensive assessment durations, and the complexity of imaging the brain to test the efficacy of therapeutic interventions. This review highlights the various models that analyze the changes in the normal behavioral patterns of the zebrafish when exposed to AD inducing agents. The mechanistic pathway adopted by drugs and novel therapeutic strategies can be explored via these behavioral models and their efficacy to slow the progression of AD can be evaluated.
Collapse
Affiliation(s)
| | | | | | | | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s Narsee Monjee Institute of Management Studies, Mumbai, India
| |
Collapse
|
33
|
Liu Z, Wang J, Xu Q, Wu Z, You L, Hong Q, Zhu J, Chi X. Vitamin A supplementation ameliorates prenatal valproic acid-induced autism-like behaviors in rats. Neurotoxicology 2022; 91:155-165. [PMID: 35594946 DOI: 10.1016/j.neuro.2022.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/28/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social deficits and repetitive stereotyped behaviors. Prenatal exposure to the anticonvulsant drug valproic acid (VPA) is reported to induce ASD in human and ASD-like phenotypes in rodents. Unfortunately, the etiology and pathogenesis of ASD remains unclear. METHODS Pregnant rats received an intraperitoneal injection of 600 mg/kg VPA on E12.5 to construct the ASD rat model in offspring. The different expression of long non-coding RNA (lncRNA) and mRNA profiles in the hippocampus were determined by RNA sequencing to investigate potential mechanisms of VPA-induced ASD. Gene Ontology (GO) and pathway enrichment analysis were performed to predict the function of dysregulated lncRNAs. Co-expression network and real-time polymerase chain reaction (RT-PCR) analysis were conducted to validate the potential regulatory lncRNA-mRNA network. RESULTS VPA increased the total distance, time spent in the central zone and self-grooming (open field test) in rats. Meanwhile, VPA induced social impairment (three-chamber sociability test) and repetitive behaviors (marble burying test). A total of 238 lncRNAs and 354 mRNAs were differentially expressed in the VPA group. In addition, the dysregulated lncRNAs were involved in neural function and developmental processes of ASD. 5 lncRNAs and 7 mRNAs were differently expressed and included in the lncRNA-mRNA co-expression network. RT-PCR confirmed the upregulation of 4 lncRNAs and 6 mRNAs, and identified a potential regulatory network of NONRATT021475.2 (lncRNA) and Desert hedgehog (Dhh). Moreover, VPA decreased the serum vitamin A (VA) levels in offspring rats on postnatal day (PND) 21 and 49. Importantly, VA supplementation significantly restored VPA-induced autism-related behaviors and upregulation of NONRATT021475.2 and Dhh in the hippocampus of ASD rats. CONCLUSION This study not only contributed to understand the importance of lncRNAs and mRNAs in the progression of ASD, but also identified VA as a potential therapy for the condition. DATA AVAILABILITY The data that support the findings of this study are available from the corresponding author with reasonable request.
Collapse
Affiliation(s)
- Zhonghui Liu
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Alley, Mochou Road, Nanjing 210004, PR China; Institute of Pediatrics, Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, PR China
| | - Jingyu Wang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Alley, Mochou Road, Nanjing 210004, PR China; Institute of Pediatrics, Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, PR China
| | - Qu Xu
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Alley, Mochou Road, Nanjing 210004, PR China
| | - Zhenggang Wu
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Alley, Mochou Road, Nanjing 210004, PR China
| | - Lianghui You
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Alley, Mochou Road, Nanjing 210004, PR China
| | - Qin Hong
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Alley, Mochou Road, Nanjing 210004, PR China
| | - Jiansheng Zhu
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Alley, Mochou Road, Nanjing 210004, PR China.
| | - Xia Chi
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Alley, Mochou Road, Nanjing 210004, PR China; Institute of Pediatrics, Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, PR China.
| |
Collapse
|
34
|
GABAA receptor participation in anxiolytic and anticonvulsant effects of (E)-3-(furan-2-yl)-1-(2hydroxy-3,4,6-trimethoxyphenyl)prop-2-en-1-one in adult zebrafish. Neurochem Int 2022; 155:105303. [DOI: 10.1016/j.neuint.2022.105303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/04/2023]
|
35
|
Scaramella C, Alzagatiti JB, Creighton C, Mankatala S, Licea F, Winter GM, Emtage J, Wisnieski JR, Salazar L, Hussain A, Lee FM, Mammootty A, Mammootty N, Aldujaili A, Runnberg KA, Hernandez D, Zimmerman-Thompson T, Makwana R, Rouvere J, Tahmasebi Z, Zavradyan G, Campbell CS, Komaranchath M, Carmona J, Trevitt J, Glanzman D, Roberts AC. Bisphenol A Exposure Induces Sensory Processing Deficits in Larval Zebrafish during Neurodevelopment. eNeuro 2022; 9:ENEURO.0020-22.2022. [PMID: 35508370 PMCID: PMC9116930 DOI: 10.1523/eneuro.0020-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/10/2022] [Accepted: 04/01/2022] [Indexed: 11/21/2022] Open
Abstract
Because of their ex utero development, relatively simple nervous system, translucency, and availability of tools to investigate neural function, larval zebrafish are an exceptional model for understanding neurodevelopmental disorders and the consequences of environmental toxins. Furthermore, early in development, zebrafish larvae easily absorb chemicals from water, a significant advantage over methods required to expose developing organisms to chemical agents in utero Bisphenol A (BPA) and BPA analogs are ubiquitous environmental toxins with known molecular consequences. All humans have measurable quantities of BPA in their bodies. Most concerning, the level of BPA exposure is correlated with neurodevelopmental difficulties in people. Given the importance of understanding the health-related effects of this common toxin, we have exploited the experimental advantages of the larval zebrafish model system to investigate the behavioral and anatomic effects of BPA exposure. We discovered that BPA exposure early in development leads to deficits in the processing of sensory information, as indicated by BPA's effects on prepulse inhibition (PPI) and short-term habituation (STH) of the C-start reflex. We observed no changes in locomotion, thigmotaxis, and repetitive behaviors (circling). Despite changes in sensory processing, we detected no regional or whole-brain volume changes. Our results show that early BPA exposure can induce sensory processing deficits, as revealed by alterations in simple behaviors that are mediated by a well-defined neural circuit.
Collapse
Affiliation(s)
- Courtney Scaramella
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Joseph B Alzagatiti
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Christopher Creighton
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Samandeep Mankatala
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Fernando Licea
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Gabriel M Winter
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Jasmine Emtage
- Department of Biology, California Institute of Technology, Pasadena, CA 91125
| | - Joseph R Wisnieski
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Luis Salazar
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Anjum Hussain
- Department of Neuroscience, University of California, Riverside, Riverside, CA 92521
| | - Faith M Lee
- Department of Society and Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Asma Mammootty
- Saint Louis University School of Medicine, St. Louis, MO 63104
| | | | - Andrew Aldujaili
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Kristine A Runnberg
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Daniela Hernandez
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | | | - Rikhil Makwana
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Julien Rouvere
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Zahra Tahmasebi
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Gohar Zavradyan
- Department of Neuroscience, University of California, Riverside, Riverside, CA 92521
| | | | - Meghna Komaranchath
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Javier Carmona
- Department of Physics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Jennifer Trevitt
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - David Glanzman
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095
- Integrative Center for Learning and Memory, Brain Research Institute, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095
| | - Adam C Roberts
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| |
Collapse
|
36
|
Malafaia G, Ahmed MAI, Souza SSD, Rezende FNE, Freitas ÍN, da Luz TM, da Silva AM, Charlie-Silva I, Braz HLB, Jorge RJB, Sanches PRS, Mendonça-Gomes JM, Cilli EM, Araújo APDC. Toxicological impact of SARS-CoV-2 on the health of the neotropical fish, Poecilia reticulata. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106104. [PMID: 35176694 PMCID: PMC8830931 DOI: 10.1016/j.aquatox.2022.106104] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 05/12/2023]
Abstract
There have been significant impacts of the current COVID-19 pandemic on society including high health and economic costs. However, little is known about the potential ecological risks of this virus despite its presence in freshwater systems. In this study, we aimed to evaluate the exposure of Poecilia reticulata juveniles to two peptides derived from Spike protein of SARS-CoV-2, which was synthesized in the laboratory (named PSPD-2002 and PSPD-2003). For this, the animals were exposed for 35 days to the peptides at a concentration of 40 µg/L and different toxicity biomarkers were assessed. Our data indicated that the peptides were able to induce anxiety-like behavior in the open field test and increased acetylcholinesterase (AChE) activity. The biometric evaluation also revealed that the animals exposed to the peptides displayed alterations in the pattern of growth/development. Furthermore, the increased activity of superoxide dismutase (SOD) and catalase (CAT) enzymes were accompanied by increased levels of malondialdehyde (MDA), reactive oxygen species (ROS) and hydrogen peroxide (H2O2), which suggests a redox imbalance induced by SARS-CoV-2 spike protein peptides. Moreover, molecular docking analysis suggested a strong interaction of the peptides with the enzymes AChE, SOD and CAT, allowing us to infer that the observed effects are related to the direct action of the peptides on the functionality of these enzymes. Consequently, our study provided evidence that the presence of SARS-CoV-2 viral particles in the freshwater ecosystems offer a health risk to fish and other aquatic organisms.
Collapse
Affiliation(s)
- Guilherme Malafaia
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Rodovia Geraldo Silva Nascimento, 2,5km, Zona Rural CEP, Urutaí, GO 75790-000, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Goiano Federal Institution and Federal University of Goiás, GO, Brazil; Post-Graduation Program in Ecology and Conservation of Natural Resources, Federal University of Uberlândia, Uberlândia MG, Brazil.
| | | | - Sindoval Silva de Souza
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Rodovia Geraldo Silva Nascimento, 2,5km, Zona Rural CEP, Urutaí, GO 75790-000, Brazil
| | - Fernanda Neves Estrela Rezende
- Post-Graduation Program in Biotechnology and Biodiversity, Goiano Federal Institution and Federal University of Goiás, GO, Brazil
| | - Ítalo Nascimento Freitas
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Rodovia Geraldo Silva Nascimento, 2,5km, Zona Rural CEP, Urutaí, GO 75790-000, Brazil
| | - Thiarlen Marinho da Luz
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Rodovia Geraldo Silva Nascimento, 2,5km, Zona Rural CEP, Urutaí, GO 75790-000, Brazil
| | - Abner Marcelino da Silva
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Rodovia Geraldo Silva Nascimento, 2,5km, Zona Rural CEP, Urutaí, GO 75790-000, Brazil
| | - Ives Charlie-Silva
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, SP, Brazil
| | - Helyson Lucas Bezerra Braz
- Drug Research and Development Center, Federal University of Ceará, CE, Brazil; Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, CE, Brazil
| | - Roberta Jeane Bezerra Jorge
- Drug Research and Development Center, Federal University of Ceará, CE, Brazil; Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, CE, Brazil
| | - Paulo R S Sanches
- Instituto de Química, Universidade Estadual Paulista, Araraquara, SP, Brazil
| | | | - Eduardo M Cilli
- Instituto de Química, Universidade Estadual Paulista, Araraquara, SP, Brazil
| | | |
Collapse
|
37
|
Li S, Zhang Y, Xue H, Zhang Q, Chen N, Wan J, Sun L, Chen Q, Zong Y, Zhuang F, Gu P, Zhang A, Cui F, Tu Y. Integrative effects based on behavior, physiology and gene expression of tritiated water on zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112770. [PMID: 34536793 DOI: 10.1016/j.ecoenv.2021.112770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Tritium is a water-soluble hydrogen isotope that releases beta rays during decay. In nature, tritium primarily exists as tritiated water (HTO), and its main source is nuclear power/processing plants. In recent decades, with the development of nuclear power industry, it is necessary to evaluate the impact of tritium on organisms. In this study, fertilized zebrafish embryos are treated with different HTO concentrations (3.7 × 103 Bq/ml, 3.7 × 104 Bq/ml, 3.7 × 105 Bq/ml). After treatment with HTO, the zebrafish embryos developed without evident morphological changes. Nevertheless, the heart rate increased and locomotor activity decreased significantly. In addition, RNA-sequencing shows that HTO can affect gene expressions. The differentially expressed genes are enriched through many physiological processes and intracellular signaling pathways, including cardiac, cardiovascular, and nervous system development and the metabolism of xenobiotics by cytochrome P450. Moreover, the concentrations of thyroid hormones in the zebrafish decrease and the expression of thyroid hormone-related genes is disordered after HTO treatment. Our results suggest that exposure to HTO may affect the physiology and behaviors of zebrafish through physiological processes and intracellular signaling pathways and provide a theoretical basis for ecological risk assessment of tritium.
Collapse
Affiliation(s)
- Shengri Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, PR China
| | - Yefeng Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; School of Public Health, Soochow University, Suzhou 215123, PR China
| | - Huiyuan Xue
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, PR China
| | - Qixuan Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, PR China
| | - Na Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, PR China
| | - Jun Wan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, PR China
| | - Liang Sun
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, PR China
| | - Qiu Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, PR China
| | - Ying Zong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Fenghui Zhuang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Pengcheng Gu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Anqi Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Fengmei Cui
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, PR China.
| | - Yu Tu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, PR China.
| |
Collapse
|
38
|
Fernandes Silva BW, Leite-Ferreira ME, Menezes FP, Luchiari AC. Covariation among behavioral traits and hatching time in zebrafish. Behav Processes 2021; 194:104546. [PMID: 34800606 DOI: 10.1016/j.beproc.2021.104546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/20/2021] [Accepted: 11/11/2021] [Indexed: 11/02/2022]
Abstract
Individuals of the same population differ in several ways. For instance, in fish populations, individuals who hatch earlier show more active behavior and are more explorative than those that hatch later, which is a characteristic of the behavioral personality type. One of the aspects relevant to this theory is the consistency of behavioral differences between contexts and over time. Thus, the present study evaluated the relationship between hatching time and behavioral consistency in two ontogenetic stages: juvenile and adult, and different contexts in zebrafish (Danio rerio). For this, the animals were separated according to hatching time into early-hatching (EH) and late-hatching (LH) fish and tested in an anxiety-like context (black-white paradigm) at the 30th-day post fertilization (dpf) and the 120th dpf. The animals were also tested in a novel tank paradigm and novel object paradigm to access explorativeness and boldness, respectively. In the black-white test, EH animals presented shorter latency to enter the white area and stayed longer in the black area than LH animals. The EH individuals were more explorative and bold in the novel tank and novel object tests and showed less anxiety-like behavior than the LH. In general, the results obtained suggest that hatching time may indicate consistent differences for zebrafish behavioral profiles.
Collapse
Affiliation(s)
| | - Maria Elisa Leite-Ferreira
- Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Fabiano Peres Menezes
- Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Ana Carolina Luchiari
- Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil.
| |
Collapse
|
39
|
Gatto E, Bruzzone M, Lucon-Xiccato T. Innate visual discrimination abilities of zebrafish larvae. Behav Processes 2021; 193:104534. [PMID: 34755638 DOI: 10.1016/j.beproc.2021.104534] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022]
Abstract
The ability to discriminate between objects visually plays a key role in animals' interactions with their environment because it enables them to recognise companions, prey, and predators. In the zebrafish, Danio rerio, hatching occurs early on during development (48-72 h post fertilisation), and the larvae must forage and evade predators despite their immature sensory and cognitive systems. Using a preference paradigm, we investigated whether larval zebrafish are nonetheless capable of discriminating between visual stimuli. We found that larvae discriminated not only between figures with different colours or different shapes, but also between two identical figures with different orientations and between sets of figures with different numerosities. By manipulating larvae's exposure to objects before the test, we demonstrated that their discrimination abilities are innate and do not depend upon experience. This study highlighted that zebrafish possess relatively sophisticated visual discrimination abilities even at the larval stage. These abilities likely improve larval survival via the recognition of biologically relevant stimuli.
Collapse
Affiliation(s)
- Elia Gatto
- Department of General Psychology, University of Padova, Padova, Italy.
| | - Matteo Bruzzone
- Department of General Psychology, University of Padova, Padova, Italy; Padua Neuroscience Center - PNC, University of Padova, Padova, Italy
| | - Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
40
|
Lachowicz J, Niedziałek K, Rostkowska E, Szopa A, Świąder K, Szponar J, Serefko A. Zebrafish as an Animal Model for Testing Agents with Antidepressant Potential. Life (Basel) 2021; 11:life11080792. [PMID: 34440536 PMCID: PMC8401799 DOI: 10.3390/life11080792] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 12/28/2022] Open
Abstract
Depression is a serious mental disease that, according to statistics, affects 320 million people worldwide. Additionally, a current situation related to the COVID-19 pandemic has led to a significant deterioration of mental health in people around the world. So far, rodents have been treated as basic animal models used in studies on this disease, but in recent years, Danio rerio has emerged as a new organism that might serve well in preclinical experiments. Zebrafish have a lot of advantages, such as a quick reproductive cycle, transparent body during the early developmental stages, high genetic and physiological homology to humans, and low costs of maintenance. Here, we discuss the potential of the zebrafish model to be used in behavioral studies focused on testing agents with antidepressant potential.
Collapse
Affiliation(s)
- Joanna Lachowicz
- Student’s Scientific Circle at Laboratory of Preclinical Testing, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (J.L.); (K.N.)
| | - Karolina Niedziałek
- Student’s Scientific Circle at Laboratory of Preclinical Testing, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (J.L.); (K.N.)
| | | | - Aleksandra Szopa
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
- Correspondence: (A.S.); (A.S.)
| | - Katarzyna Świąder
- Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| | - Jarosław Szponar
- Clinical Department of Toxicology and Cardiology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
- Toxicology Clinic, Stefan Wyszyński Regional Specialist Hospital in Lublin, Al. Kraśnicka 100, 20-718 Lublin, Poland
| | - Anna Serefko
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
- Correspondence: (A.S.); (A.S.)
| |
Collapse
|
41
|
da Silva AW, Ferreira MKA, Rebouças EL, Mendes FRS, Dos S Moura AL, de Menezes JESA, Marinho MM, Marinho ES, Santos HS, Teixeira AMR. Anxiolytic-like effect of natural product 2-hydroxy-3,4,6-trimethoxyacetophenone isolated from Croton anisodontus in adult zebrafish via serotonergic neuromodulation involvement of the 5-HT system. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:2023-2032. [PMID: 34251503 DOI: 10.1007/s00210-021-02116-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/22/2021] [Indexed: 10/20/2022]
Abstract
Benzodiazepines are highly effective in combating anxiety; however, they have considerable adverse effects, so it is important to discover new safe anxiolytic agents. This study was designed to investigate the effect of the natural product 2-hydroxy-3,4,6-trimethoxyacetophenone (HTMCX) on anxiety and seizure behavior in adult zebrafish and its possible mechanisms of action. The acute toxicity of 96 h of HTMCX was analyzed, and the open and light/dark field tests (n = 6 animals/group) were used to assess the anxiety behavior of animals treated with HTMCX. In addition, the mechanisms of action were investigated with antagonists of the GABAA, 5-HT receptors, and molecular anchorage study. Pentylenetetrazole (PTZ) was used to induce seizure by immersion. As a result, acetophenone HTMCX (1, 3 and 10 mg/kg; v.o.) was non-toxic and affected locomotor activity. The higher doses (3 and 10 mg/kg; v.o.) produced signs of anxiolytic action in the light/dark test, and this effect was reversed by the pizotifen (antagonist 5HTR1 and 5HTR2A/2C), having the potential to form a complex with 5HTR1B. However, the anxiolytic effect of HTMCX has not been abolished by flumazenil (antagonist GABAA), cyproheptadine (antagonist 5HTR2A), and granisetron (antagonist 5HTR3A/3B). Therefore, HTMCX demonstrated an anxiolytic effect, suggesting that the 5HTR1 and 5HTR2C receptors may be involved in the pharmacological performance of this acetophenone in the central nervous system.
Collapse
Affiliation(s)
- Antonio Wlisses da Silva
- Graduate Program in Biotechnology, Northeast Biotechnology Network, State University of Ceará, Fortaleza, CE, Brazil
| | - Maria Kueirislene A Ferreira
- Graduate Program in Natural Sciences, Natural Products Chemistry Laboratory, State University of Ceará, Fortaleza, CE, Brazil
| | - Emanuela L Rebouças
- Graduate Program in Biotechnology, Northeast Biotechnology Network, State University of Ceará, Fortaleza, CE, Brazil
| | - Francisco Rogenio S Mendes
- Graduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brasil
| | - Atilano Lucas Dos S Moura
- Graduate Program in Natural Sciences, Natural Products Chemistry Laboratory, State University of Ceará, Fortaleza, CE, Brazil
| | - Jane Eire S A de Menezes
- Graduate Program in Natural Sciences, Natural Products Chemistry Laboratory, State University of Ceará, Fortaleza, CE, Brazil
| | - Márcia Machado Marinho
- Faculty of Philosophy Dom Aureliano Matos, State University of Ceará, Limoeiro do Norte, CE, Brazil
| | - Emmanuel Silva Marinho
- Faculty of Philosophy Dom Aureliano Matos, State University of Ceará, Limoeiro do Norte, CE, Brazil
| | - Hélcio S Santos
- Graduate Program in Biotechnology, Northeast Biotechnology Network, State University of Ceará, Fortaleza, CE, Brazil.,Graduate Program in Natural Sciences, Natural Products Chemistry Laboratory, State University of Ceará, Fortaleza, CE, Brazil.,Graduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brasil.,Science and Technology Centre, Course of Chemistry, State University Vale do Acaraú, Sobral, CE, Brazil
| | - Alexandre M R Teixeira
- Graduate Program in Biotechnology, Northeast Biotechnology Network, State University of Ceará, Fortaleza, CE, Brazil. .,Graduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brasil.
| |
Collapse
|
42
|
Merola C, Lucon-Xiccato T, Bertolucci C, Perugini M. Behavioural effects of early-life exposure to parabens in zebrafish larvae. J Appl Toxicol 2021; 41:1852-1862. [PMID: 33826164 DOI: 10.1002/jat.4171] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022]
Abstract
Parabens are classified as endocrine disrupting chemicals due to their ability to activate several nuclear receptors causing changes in hormones-dependent signalling pathways. Central nervous system of developing organisms is particularly vulnerable to changes in hormonal pathways, which could lead to altered brain function, abnormal behaviour and even diseases later in life. The aim of the present study was to investigate the effects of exposure to butylparaben (BuP), ethylparaben (EtP) and methylparaben (MeP) during early development on nervous system using zebrafish larvae's behavioural models. Zebrafish were exposed until 4 days post fertilization (dpf) to three concentrations of each paraben chosen considering the environmentally realistic concentrations of human exposure and the benchmark-dose lower bound calculated for zebrafish larvae (BuP: 5, 50 and 500 μg/L; EtP: 50, 500 and 5000 μg/L; MeP: 100, 1000 and 10,000 μg/L). Activity in novel and in familiar environment, thigmotaxis, visual startle response and photic synchronization of the behavioural circadian rhythms were analysed at 4, 5 and 6 dpf. Zebrafish larvae exposed to BuP 500 μg/L and EtP 5000 μg/L revealed increased anxiety-like behaviour in novel environment. Larvae treated with 500 μg/L of BuP showed reduced activity in familiar and marginally in unfamiliar environment, and larvae exposed to 5000 μg/L of EtP exhibited hyperactivity in familiar environment. Parabens exposure did not influence the visual startle response and the photic synchronization of circadian rhythms in zebrafish larvae. This research highlighted as the exposure to parabens has the potential to interfere with behavioural development of zebrafish.
Collapse
Affiliation(s)
- Carmine Merola
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Monia Perugini
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| |
Collapse
|
43
|
De Serrano AR, Hughes KA, Rodd FH. Paternal exposure to a common pharmaceutical (Ritalin) has transgenerational effects on the behaviour of Trinidadian guppies. Sci Rep 2021; 11:3985. [PMID: 33597600 PMCID: PMC7889922 DOI: 10.1038/s41598-021-83448-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/02/2021] [Indexed: 01/04/2023] Open
Abstract
Evidence is emerging that paternal effects, the nongenetic influence of fathers on their offspring, can be transgenerational, spanning several generations. Methylphenidate hydrochloride (MPH; e.g. Ritalin) is a dopaminergic drug that is highly prescribed to adolescent males for the treatment of Attention-deficit/hyperactivity disorder. It has been suggested that MPH could cause transgenerational effects because MPH can affect the male germline in rodents and because paternal effects have been observed in individuals taking similar drugs (e.g. cocaine). Despite these concerns, the transgenerational effects of paternal MPH exposure are unknown. Therefore, we exposed male and female Trinidadian guppies (Poecilia reticulata) to a low, chronic dose of MPH and observed that MPH affected the anxiety/exploratory behaviour of males, but not females. Because of this male-specific effect, we investigated the transgenerational effects of MPH through the paternal line. We observed behavioural effects of paternal MPH exposure on offspring and great-grandoffspring that were not directly administered the drug, making this the first study to demonstrate that paternal MPH exposure can affect descendants. These effects were not due to differential mortality or fecundity between control and MPH lines. These results highlight the transgenerational potential of MPH.
Collapse
Affiliation(s)
- Alex R De Serrano
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada.
| | - Kimberly A Hughes
- Department of Biological Science, Florida State University, 319 Stadium Dr, Tallahassee, FL, 32304, USA
| | - F Helen Rodd
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
44
|
de Oliveira JPJ, Estrela FN, Rodrigues ASDL, Guimarães ATB, Rocha TL, Malafaia G. Behavioral and biochemical consequences of Danio rerio larvae exposure to polylactic acid bioplastic. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124152. [PMID: 33068943 DOI: 10.1016/j.jhazmat.2020.124152] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
The literature has largely shown the toxicity of petroleum-based PLA biomicroplastics (PLABioMPs) and encouraged the production of alternative materials to replace their use, such as biopolymers. However, knowledge concerning the effects of biopolymers on aquatic organisms remains under development. The hypothesis that the acute exposure (five days) to polylactic acid (PLA) biopolymers may lead to behavioral and biochemical changes and to their accumulation in Danio rerio larvae was tested. Based on the results, PLA biomicroplastics (PLA BioMPs) at concentration of 3 and 9 mg/L decreased swimming distance and speed of larvae in the open field test. This outcome suggests effects on animals' locomotor and exploration activities. Larvae's longer immobility time and greater permanence in the peripheral zone of the apparatus is indicative of anxiety-like behavior caused by the exposure to PLA BioMPs. Zebrafish larvae accumulated PLA BioMPs and their acetylcholinesterase activity was inhibited by their presence, which reinforces the accumulative potential of biopolymers and their direct or indirect role as anxiogenic agents, even at sublethal concentrations. The decreased activity of acetylcholinesterase reinforces the neurotoxic action in groups exposed to PLA BioMPs. The current study has confirmed the initial hypothesis and is an insight about the toxicity of these biopolymers in D. rerio larvae, since it deepens the discussion about the environmental risk of these substances in freshwater ecosystems.
Collapse
Affiliation(s)
| | - Fernanda Neves Estrela
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Goiânia, Brazil
| | | | - Abraão Tiago Batista Guimarães
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Goiânia, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Guilherme Malafaia
- Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, Goiás, Brazil; Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Goiânia, Brazil.
| |
Collapse
|
45
|
Campos A, Alexandre A, de Castro F, Alves Batista F, Rodrigues Santos SA, Mendes FDS, Gonçalves G, Monteiro-Moreira ADO, Queiroz de Souza A, Canuto K, Alves Magalhães F. Chemical profile and anxiolytic- and anticonvulsant-like effects of Miconia albicans (Sw.) Triana (Melastomataceae) leaves in adult zebrafish. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_176_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
46
|
Martinez O, Sire S, Saunier A, Malgouyres JM, Fournier A, Vignet C. Behavioral responses of three freshwater planaria species to light, visual and olfactory stimuli: Setting the stage for further ecotoxicological studies. Behav Processes 2020; 183:104295. [PMID: 33383124 DOI: 10.1016/j.beproc.2020.104295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 11/17/2022]
Abstract
Planarians are freshwater flatworms commonly used as environmental bioindicator due to their sensitivity of response and their ease of culturing in lab. Nevertheless, to date, very few studies describing their behavior have been led. This work aims to fill the literature gap by providing preliminary results through six behavioral challenges (locomotion, exploration, light stress, planarian light/dark test, shoaling and foraging) conducted with three different species Dugesia tigrina, Schmidtea mediterranea and Schmidtea polychroa. The behavioral responses of every species in each of these six assays were recorded and differences between species were highlighted, depending on the assays and conditions. Schmidtea polychroa is less active than the two others and had the highest light aversion. Reactions observed in response to diverse and realistic stimuli helped us to select the most suitable tests and choose the species that seem the most appropriate for future ecotoxicological and neurophysiological tests. Four tests - out of the six tested- seem reliable in order to standardize planarian behavioral tests.
Collapse
Affiliation(s)
- Odile Martinez
- Biochimie et Toxicologie des Substances Bioactives (BTSB), EA7417, INU Champollion, Place de Verdun, 81000, Albi, France
| | - Sacha Sire
- Biochimie et Toxicologie des Substances Bioactives (BTSB), EA7417, INU Champollion, Place de Verdun, 81000, Albi, France
| | - Alice Saunier
- Biochimie et Toxicologie des Substances Bioactives (BTSB), EA7417, INU Champollion, Place de Verdun, 81000, Albi, France
| | - Jean-Michel Malgouyres
- Biochimie et Toxicologie des Substances Bioactives (BTSB), EA7417, INU Champollion, Place de Verdun, 81000, Albi, France
| | - Alice Fournier
- Biochimie et Toxicologie des Substances Bioactives (BTSB), EA7417, INU Champollion, Place de Verdun, 81000, Albi, France
| | - Caroline Vignet
- Biochimie et Toxicologie des Substances Bioactives (BTSB), EA7417, INU Champollion, Place de Verdun, 81000, Albi, France.
| |
Collapse
|
47
|
Induction of Short-Term Sensitization by an Aversive Chemical Stimulus in Zebrafish Larvae. eNeuro 2020; 7:ENEURO.0336-19.2020. [PMID: 33004417 PMCID: PMC7729299 DOI: 10.1523/eneuro.0336-19.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Larval zebrafish possess a number of molecular and genetic advantages for rigorous biological analyses of learning and memory. These advantages have motivated the search for novel forms of memory in these animals that can be exploited for understanding the cellular and molecular bases of vertebrate memory formation and consolidation. Here, we report a new form of behavioral sensitization in zebrafish larvae that is elicited by an aversive chemical stimulus [allyl isothiocyanate (AITC)] and that persists for ≥30 min. This form of sensitization is expressed as enhanced locomotion and thigmotaxis, as well as elevated heart rate. To characterize the neural basis of this nonassociative memory, we used transgenic zebrafish expressing the fluorescent calcium indicator GCaMP6 (Chen et al., 2013); because of the transparency of larval zebrafish, we could optically monitor neural activity in the brain of intact transgenic zebrafish before and after the induction of sensitization. We found a distinct brain area, previously linked to locomotion, that exhibited persistently enhanced neural activity following washout of AITC; this enhanced neural activity correlated with the behavioral sensitization. These results establish a novel form of memory in larval zebrafish and begin to unravel the neural basis of this memory.
Collapse
|
48
|
Pippi B, Joaquim AR, Merkel S, Zanette RA, Nunes MEM, da Costa Silva DG, Schimith LE, Teixeira ML, Franco JL, Fernandes de Andrade S, Fuentefria AM. Antifungal activity and toxicological parameters of 8-hydroxyquinoline-5-sulfonamides using alternative animal models. J Appl Microbiol 2020; 130:1925-1934. [PMID: 33128257 DOI: 10.1111/jam.14915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/14/2020] [Accepted: 10/26/2020] [Indexed: 11/29/2022]
Abstract
AIM The purpose of this study was to evaluate the antifungal activity and toxicological parameters of 8-hydroxyquinoline derivatives PH151 and PH153 using alternative animal models, to understand their behaviour when subjected to in vivo experiments. METHODS AND RESULTS We used Toll-deficient Drosophila melanogaster to test the protective effect of compounds against Candida albicans infection. Toxicological parameters were investigated in chicken and zebrafish embryos. PH151 and PH153 showed low toxicity and the treated flies with these compounds had a significantly higher survival rate than untreated flies after 7 days of infection. The compounds did not cause interruption of chicken embryogenesis. Zebrafish embryos exposed to compounds showed dose-dependent toxicity. CONCLUSIONS The data supported the potential of PH151 and PH153 for the treatment of systemic candidiasis and demonstrated to be appropriate drug candidates for further studies using mammalian models. SIGNIFICANCE AND IMPACT OF THE STUDY The increased incidence of Candida infections resistant to antifungals currently available requires acceleration of the discovery of new agents with properties of inhibiting this fungal pathogen. In this study, we have described the antifungal potential and toxicity of two 8-hydroxyquinoline derivatives using in vivo alternative models, and the results confirm their potential to be developed as new drug candidates.
Collapse
Affiliation(s)
- B Pippi
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - A R Joaquim
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - S Merkel
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - R A Zanette
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - M E M Nunes
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica e Toxicologia, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - D G da Costa Silva
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal do Pampa, São Gabriel, Brazil
| | - L E Schimith
- Faculdade de Biotecnologia, Universidade Federal do Pampa, São Gabriel, Brazil
| | - M L Teixeira
- Laboratório de Farmacologia, Instituto Federal Catarinense, Concórdia, Brazil
| | - J L Franco
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal do Pampa, São Gabriel, Brazil
| | - S Fernandes de Andrade
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - A M Fuentefria
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
49
|
Development of Open-Field Behaviour in the Medaka, Oryzias latipes. BIOLOGY 2020; 9:biology9110389. [PMID: 33182555 PMCID: PMC7696969 DOI: 10.3390/biology9110389] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/01/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022]
Abstract
Simple Summary Animal models play an important role in research on behaviour and its impairment. Fish larvae allow researchers to conduct experiments on large samples in just a few days and with small-scale experimental infrastructure, substantially increasing research output. However, several aspects of larval biology, including their behaviour, are frequently unknown. Our study has demonstrated that the most important behavioural paradigm for studying anxiety and stress in animals, the open-field test, can be used in the larvae of an important fish genetic model, the medaka. This finding will allow researchers to develop models to study anxiety and stress disorders based on medaka larvae. Abstract The use of juvenile and larval fish models has been growing in importance for several fields. Accordingly, the evaluation of behavioural tests that can be applied to larvae and juveniles is becoming increasingly important. We tested medaka at four different ages (1, 10, 30, and 120 dph) in the open field test, one of the most commonly used behavioural assays, to investigate its suitability for larvae and juveniles of this species. We also explored ontogenetic variation in behaviour during this test. On average, adult 120-day-old medaka showed higher locomotor activity in terms of distance moved compared with younger fish. Our analysis suggests that this effect was derived from both quantitative changes in locomotion related to the ontogenetic increase in fish size as well as qualitative changes in two aspects of locomotor behaviour. Specifically, time spent moving was similar between 1- and 10-day-old medaka, but progressively increased with development. In addition, we revealed that adult medaka showed constant levels of activity, whereas younger medaka progressively reduced their activity over the course of the entire experiment. The thigmotaxis behaviour typically used to assess anxiety in the open field test emerged at 120 days post-hatching, even though a difference in the temporal pattern of spatial preference emerged earlier, between 10 and 30 days post-hatching. In conclusion, some measures of the open field test such as total distance moved allow behavioural phenotyping in the medaka of all ages, although with some degree of quantitative and qualitative developmental variation. In contrast, immature medaka appear not to exhibit thigmotactic behaviour.
Collapse
|
50
|
Sousa JMS, de Abreu FAP, Ruiz ALTG, da Silva GG, Machado SL, Garcia CPG, Filho FO, Wurlitzer NJ, de Figueiredo EAT, Magalhães FEA, Muniz CR, Zocolo GJ, Dionísio AP. Cashew apple ( Anacardium occidentale L.) extract from a by-product of juice processing: assessment of its toxicity, antiproliferative and antimicrobial activities. Journal of Food Science and Technology 2020; 58:764-776. [PMID: 33568870 DOI: 10.1007/s13197-020-04594-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/05/2020] [Accepted: 06/17/2020] [Indexed: 10/24/2022]
Abstract
Cashew apple extract (CAE) is a product with intense yellow color obtained from residual fibers of juice processing. Although CAE is known to be rich in carotenoids and anacardic acids, the biological activities of this potential natural food colorant remain unexplored. The present study is the first to investigate the toxicity, antiproliferative and antimicrobial activities of the lyophilized CAE (L-CAE) and its encapsulated products, using maltodextrin (M-CAE) or cashew gum (CG-CAE) as carriers. In addition to their high carotenoid content, the phenolic contents in all materials was determined using UPLC-QTOF-MSE. The acute toxicity was performed using adult zebrafish (Danio rerio); antiproliferative activity was assessed using seven different human tumor cell lines [U-251 (glioblastoma), MCF-7 (breast, adenocarcinoma), NCI-ADR/RES (multidrug-resistant ovarian adenocarcinoma), NCI-H-460 (lung, large cell carcinoma), PC-3 (prostate, adenocarcinoma), OVCAR-3 (ovarian adenocarcinoma), and HT-29 (colon, adenocarcinoma)] and an immortalized human keratinocyte (HaCaT) while the antimicrobioal activity was evaluated on Staphylococcus aureus ATCC 25923, Listeria monocytogenes ATCC 19115, Escherichia coli ATCC 25922 and Salmonella Typhimurium ATCC 51812 microorganisms. Both lyophilized and encapsulated CAE samples did not exert acute toxicity against zebrafish neither antiproliferative effect against human tumor and non-tumor cell lines. Further, L-CAE showed potential antimicrobial activity against Listeria monocytogenes, which was confirmed using electron microscopy. The current findings demonstrated that CAE is a potential source of bioactive compounds to use as an additive in the food industry.
Collapse
Affiliation(s)
| | | | | | - Gisele Goulart da Silva
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, SP 13414-903 Brazil
| | - Sandra Lira Machado
- Department of Nutrition, State University of Ceara, Fortaleza, CE 60714-903 Brazil
| | | | - Francisco Oiram Filho
- Department of Food Technology, Federal University of Ceara, Fortaleza, CE 60356-000 Brazil
| | - Nedio Jair Wurlitzer
- Embrapa Agroindústria Tropical, Dra Sara Mesquita Street, 2270, Fortaleza, CE 60511-110 Brazil
| | | | | | - Celli Rodrigues Muniz
- Embrapa Agroindústria Tropical, Dra Sara Mesquita Street, 2270, Fortaleza, CE 60511-110 Brazil
| | - Guilherme Julião Zocolo
- Embrapa Agroindústria Tropical, Dra Sara Mesquita Street, 2270, Fortaleza, CE 60511-110 Brazil
| | - Ana Paula Dionísio
- Embrapa Agroindústria Tropical, Dra Sara Mesquita Street, 2270, Fortaleza, CE 60511-110 Brazil
| |
Collapse
|