1
|
Zhao H, Niu X, Wei S, Lin W, Luo H, Zou B, Chen Q, Xing H, Lai Q. Graphene oxide and in-situcarbon reinforced hydroxyapatite scaffolds via ultraviolet-curing 3D printing technology with high osteoinductivity for bone regeneration. Biofabrication 2025; 17:025028. [PMID: 40043366 DOI: 10.1088/1758-5090/adbcdd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 03/05/2025] [Indexed: 03/21/2025]
Abstract
Ultraviolet photopolymerization additive manufacturing has been used to fabricate calcium phosphate (Ca-P) ceramic scaffolds for repairing bone defects, but it is still a challenge for 3D printed Ca-P scaffolds to simultaneously enhance the mechanical strength and osteoinductivity. Here, we successfully developed a high-performance hydroxyapatite (HA) scaffold containingin-situcarbon and graphene oxide (GO) by precisely regulating the degreasing and sintering atmosphere. The results indicated that the mechanical properties of HA scaffolds could be significantly improved by regulating the amount ofin-situcarbon. The HA scaffold containing 0.27 wt.% carbon achieved the maximum compressive strength of 12.5 MPa with a porosity of approximately 70%. The RNA transcriptome sequencing analysis revealed thatin-situcarbon could promote osteogenic differentiation by improving oxygen transport and promoting the expression of multiple angiogenic factors. More importantly, in the absence of osteoinductive agents, thein-situcarbon and GO synergistically promoted more effective bone mineralization, demonstrating enhanced osteoinductivityin vitro.In a rodent model, the bioceramic scaffolds also exhibited improved osteogenesis in critical bone defects. Therefore,in-situcarbon and GO could simultaneously enhance the mechanical strength and osteoinductivity of HA scaffolds, effectively achieving substantial endogenous bone regeneration. This strategy will provide a simple and energy-efficient approach for engineering osteoinductive ceramic scaffolds for repairing bone defects.
Collapse
Affiliation(s)
- Hongyu Zhao
- Centre of Stomatology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, People's Republic of China
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan 250012, People's Republic of China
| | - Xiao Niu
- Centre of Stomatology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, People's Republic of China
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan 250012, People's Republic of China
| | - Shitong Wei
- School of Mechanical and Electronic Engineering, Shandong Jianzhu University, Jinan, People's Republic of China
| | - Wei Lin
- Centre of Stomatology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, People's Republic of China
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan 250012, People's Republic of China
| | - Hao Luo
- Centre of Stomatology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, People's Republic of China
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan 250012, People's Republic of China
| | - Bin Zou
- Center for Advanced Jet Engineering Technology (CaJET), School of Mechanical Engineering, Shandong University, Jinan 250061, People's Republic of China
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Shandong University, Ministry of Education, Jinan 250061, People's Republic of China
- National Demonstration Center for Experimental Mechanical Engineering Education (Shandong University), Shandong, People's Republic of China
| | - Qinghua Chen
- Center for Advanced Jet Engineering Technology (CaJET), School of Mechanical Engineering, Shandong University, Jinan 250061, People's Republic of China
| | - Hongyu Xing
- School of Mechanical and Electronic Engineering, Shandong Jianzhu University, Jinan, People's Republic of China
| | - Qingguo Lai
- Centre of Stomatology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, People's Republic of China
- Research Center of 3D Printing in Stomatology of Shandong University, Shandong, People's Republic of China
| |
Collapse
|
2
|
Bhushan S, Singh S, Maiti TK, Das A, Barui A, Chaudhari LR, Joshi MG, Dutt D. Zinc-doped hydroxyapatite loaded chitosan gelatin nanocomposite scaffolds as a promising platform for bone regeneration. Biomed Mater 2025; 20:025006. [PMID: 39740350 DOI: 10.1088/1748-605x/ada477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 12/31/2024] [Indexed: 01/02/2025]
Abstract
The advancement in the arena of bone tissue engineering persuades us to develop novel nanocomposite scaffolds in order to improve antibacterial, osteogenic, and angiogenic properties that show resemblance to natural bone extracellular matrix. Here, we focused on the development of novel zinc-doped hydroxyapatite (ZnHAP) nanoparticles (1, 2 and 3 wt%; size: 50-60 nm) incorporated chitosan-gelatin (CG) nanocomposite scaffold, with an interconnected porous structure. The addition of ZnHAP nanoparticles decreases the pore size (∼30 µm) of the CG scaffolds. It was observed that with the increase in the concentration of ZnHAP nanoparticles (3 wt%) in CG scaffolds, the swelling ratio (1760% ± 2.0%), porosity (71% ± 0.98%) and degradation rate (35%) decreased, whereas mechanical property (1 MPa) increased, which was better as compared to control (CG) samples. Similarly, the high deposition of apatite crystals especially CG-ZnHAP3nanocomposite scaffold revealed the excellent osteoconductive potential among all other scaffolds. MC3T3-E1 osteoblastic cells seeded with CG-ZnHAP nanocomposite scaffolds depicted better cell adhesion, proliferation and differentiation to osteogenic lineages. Finally, the chorioallantoic membrane (CAM) assay revealed better angiogenesis of ZnHAP nanoparticles (3 wt%) loaded CG scaffolds supporting vascularization after 7th day incubation in the CAM area. Overall, the results showed that the CG-ZnHAP3nanocomposite scaffold could be a potential candidate for bone defect repair.
Collapse
Affiliation(s)
- Sakchi Bhushan
- Department of Paper Technology, IIT Roorkee, Saharanpur 247001, India
| | - Sandhya Singh
- Department of Paper Technology, IIT Roorkee, Saharanpur 247001, India
| | - Tushar Kanti Maiti
- Department of Polymer and Process Engineering, IIT Roorkee, Saharanpur 247001, India
| | - Ankita Das
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, India
| | - Ananya Barui
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, India
| | - Leena R Chaudhari
- Department of Stem Cells and Regenerative Medicine, D.Y. Patil Education Society (Deemed to be University), Kolhapur, India
| | - Meghnad G Joshi
- Department of Stem Cells and Regenerative Medicine, D.Y. Patil Education Society (Deemed to be University), Kolhapur, India
| | - Dharm Dutt
- Department of Paper Technology, IIT Roorkee, Saharanpur 247001, India
| |
Collapse
|
3
|
Challa AA, Saha N, Zhivkova T, Alexandrova R, Saha P. Bacterial Cellulose/Graphene Oxide/Hydroxyapatite Biocomposite: A Scaffold from Sustainable Sources for Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2025; 17:572-582. [PMID: 39698804 PMCID: PMC11783358 DOI: 10.1021/acsami.4c17306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Bone tissue engineering demands advanced biomaterials with tailored properties. In this regard, composite scaffolds offer a strategy to integrate the desired functionalities. These scaffolds are expected to provide sufficient cellular activities while maintaining the required strength necessary for the bone repair for which they are intended. Hence, attempts to obtain efficient composites are growing. However, in most cases, the conventional production methods of scaffolds are energy-intensive and leave an impact on the environment. This work aims to develop a biocomposite scaffold integrating bacterial cellulose (BC), hydroxyapatite (HAp), and graphene oxide (GO), designated as "BC/HAp/GO". All components are sourced primarily from agricultural and food waste as alternative means. BC, known for its biocompatibility, fine fiber network, and high porosity, serves as an ideal scaffold material. HAp, a naturally occurring bone component, contributes osteoconductive properties, while GO provides mechanical strength and biofunctionalization capabilities. The biomaterials were analyzed and characterized using a scanning electron microscope, a X-ray diffractometer, and a Fourier transform infrared spectrometer. The produced biocomposite scaffolds were tested for thermal stability, mechanical strength, and biocompatibility. The results showed a nanofibrous, porous network of BC, highly crystalline HAp particles, and well-oxygenated GO flakes with slight structural deformities. The synthesized biocomposite demonstrated promising characteristics, such as increased tensile strength due to added GO particles and higher bioactivity through the introduction of HAp. These inexpensively synthesized materials, marked by suitable surface morphology and cell adhesion properties, open potential applications in bone repair and regeneration.
Collapse
Affiliation(s)
- Adam Aberra Challa
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlin, třída Tomáše Bati 5678, 76001 Zlín, Czech Republic
| | - Nabanita Saha
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlin, třída Tomáše Bati 5678, 76001 Zlín, Czech Republic
| | - Tanya Zhivkova
- Institute
of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 25, 1113 Sofia, Bulgaria
| | - Radostina Alexandrova
- Institute
of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 25, 1113 Sofia, Bulgaria
| | - Petr Saha
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlin, třída Tomáše Bati 5678, 76001 Zlín, Czech Republic
| |
Collapse
|
4
|
Arpacay BM, Ciftci F, Özarslan AC, Unal M, Kucak M, Yelkenci A. Resveratrol-loaded PCL-PEG/GO/HAP biocomposite bone membranes: Evaluation of mechanical properties, release kinetics, and cellular response. J Appl Biomater Funct Mater 2025; 23:22808000251314087. [PMID: 39894962 DOI: 10.1177/22808000251314087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
In this study, biocomposite membranes were developed by incorporating resveratrol (RSV)-loaded PCL-PEG composites, modified with graphene oxide (GO) and hydroxyapatite (HAP). The aim was to enhance hydrophilicity with GO and improve bioactivity with HAP. The release kinetics of RSV was evaluated by using Franz diffusion cells and compared with various kinetic models, including Korsmeyer-Peppas, Higuchi, and Baker, all of which showed high correlation coefficients (R²) close to 0.99. Mechanical tests was performed to determine the suitability of these membranes for tissue engineering applications. The composite membrane modified with GO and HAP exhibited tensile strength of 105.2 ± 5.8 MPa, tensile modulus of 3895 ± 159 MPa, elongation at break of 8.4 ± 0.9%, and toughness of 5.88 ± 0.46 MJ/m³. In vitro cell adhesion studies, visualized using DAPI fluorescence staining, demonstrated increased cell adhesion to the composite membranes over periods of 1, 3, 5, 7, and 14 days. These findings highlight the potential of the RSV-loaded PCL-PEG membranes, enhanced with GO and HAP, for applications in bone tissue engineering.
Collapse
Affiliation(s)
- Betül Meryem Arpacay
- Department of Biomedical Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul, Turkey
| | - Fatih Ciftci
- Department of Biomedical Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul, Turkey
- Department of Technology Transfer Office, Fatih Sultan Mehmet Vakıf University, Istanbul, Turkey
| | - Ali Can Özarslan
- Faculty of Engineering, Department of Metallurgical and Materials Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey
| | - Mustafa Unal
- Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA
- Center for Advanced Orthopedics Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Mine Kucak
- Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, Turkey
| | - Aslihan Yelkenci
- Faculty of Dentistry, Department of Pediatric Dentistry, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
5
|
Srivastava E, Qayoom I, Kumar A. Reduced Graphene Oxide-Substituted Nanohydroxyapatite: Rejuvenating Bone-Nerve Crosstalk with Electrical Cues in a Fragility Fracture Rat Model under Hyperglycemia. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59738-59751. [PMID: 39467155 DOI: 10.1021/acsami.4c10206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Diabetes has currently acquired the status of epidemic worldwide, and among its various pathological consequences like retinopathy and nephropathy, bone fragility fractures from diabetic osteopathy occurs in later stages and is equally destructive. Chronic hyperglycemia culminates into deteriorating microvasculature and quality of bone, making it prone to fractures. Among these, hip fractures are most common, especially in older diabetic patients apart from underlying neuropathy. Our study is an attempt to ameliorate hip fragility fracture and nerve trauma with electrical stimulation as an interface in a chronic diabetic rat model. We have fabricated reduced graphene oxide-substituted hydroxyapatite as an electroactive bone substitute and incorporated it into chitosan gelatin cryogels. The in situ reduction of graphene oxide during sintering of hydroxyapatite imparts higher potential to the fabricated composite in dealing with problem at question. The cryogels depicted optimum in vitro biocompatibility and enhanced mineralization after ectopic subcutaneous implantation in rats. The therapeutic potency of composite cryogels was evaluated in a hip fracture model with compression to the sciatic nerve in diabetic rats, mimicking the severe clinical trauma. The presence of cryogels in the femoral neck canal coupled with electrical stimulation and biochemical factors significantly improved bone regeneration in diabetic rats as depicted with microcomputed tomography analysis and histology images. The application of electrical stimulation also ameliorated the nerve trauma observed with 70% improvement in electrophysiological parameters such as the compound muscle action potential with combinatorial therapy. We therefore report the successful implication of a multitarget therapy in a chronic diabetic rat model unraveling the bone-nerve crosstalk with electroactive smart cryogels.
Collapse
Affiliation(s)
- Ekta Srivastava
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Irfan Qayoom
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Centre of Excellence in Orthopaedics and Prosthetics, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
- Center for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Centre of Excellence for Materials in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
6
|
Oladipupo OF, Adekola AH, Ofudje EA, Al-Ahmary KM, Al-Mhyawi SR, Alshdoukhi IF, Alrahili MR, Alsaiari AA. Eggshell derived scaffold of hydroxyapatite-ammonium bicarbonate nano-composite: Bioactivity and cytotoxicity studies. Heliyon 2024; 10:e36493. [PMID: 39295995 PMCID: PMC11407944 DOI: 10.1016/j.heliyon.2024.e36493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/21/2024] Open
Abstract
This work investigated the facile synthesis of porous scaffold eggshell derived hydroxylapatite (ESHAp) as a composite with ammonium bicarbonate (AMB) for potential biomaterial in tissue engineering application. The phase purity, composition, size, functional groups and morphology of the apatite were elucidated using high resolution transmission electron microscopy (HTEM), X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and scanning electron microscopy (SEM). The results showed that hydroxylapatite (HAp) nanoparticles have round morphologies with average diameters between 20 nm and 80 nm, FT-IR analysis confirmed significant hydroxylapatite functional groups like carbonate, phosphate, and hydroxyl groups, while XRD analysis revealed a well crystalline monophasic HAp powder. The scaffold samples containing 10, 20, 25 and 30 % of AMB withstood a compressive stress up to 5, 20, 30 and 42 N/mm2 respectively which indicates that the compressive stress increased with the AMB content introduced as the pore forming agent. MTT assay performed using MG63 osteosarcoma cell lines showed that on comparing the sample of ESTHAp which contained 0 % AMB with other samples in the range of 0.01-1 mM, viability of above 85 % MG63 cells was achieved except for ESTHAp with 40 % AMB, which showed some level of toxicity. The cell adhesion studies of sintered ESTHAp porous scaffold with different weight percent of the pore forming agents using inverted microscopic images of MG 63 cells incubated with ESTHAp samples and treated with heat at 1000 °C appeared to be unstable in the media used with particle leaching observed, and no cells observed near to the samples.
Collapse
Affiliation(s)
- Oladoyinbo Fatai Oladipupo
- Department of Chemistry, College of Physical Sciences, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Adesokan Hameed Adekola
- Department of Chemistry, College of Physical Sciences, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Edwin Andrew Ofudje
- Department of Chemical Sciences, Mountain Top University, Ogun State, Nigeria
| | | | - Saedah R Al-Mhyawi
- Department of Chemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ibtehaj F Alshdoukhi
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Science, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Mazen R Alrahili
- Physics Department, School of Science, Taibah University, Medina, 42353, Saudi Arabia
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Science, College of Applied Medical Science, Taif University, Taif, Saudi Arabia
| |
Collapse
|
7
|
Singh R, Rawat H, Kumar A, Gandhi Y, Kumar V, Mishra SK, Narasimhaji CV. Graphene and its hybrid nanocomposite: A Metamorphoses elevation in the field of tissue engineering. Heliyon 2024; 10:e33542. [PMID: 39040352 PMCID: PMC11261797 DOI: 10.1016/j.heliyon.2024.e33542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/06/2024] [Accepted: 06/23/2024] [Indexed: 07/24/2024] Open
Abstract
In this discourse, we delve into the manifold applications of graphene-based nanomaterials (GBNs) in the realm of biomedicine. Graphene, characterized by its two-dimensional planar structure, superconductivity, mechanical robustness, chemical inertness, extensive surface area, and propitious biocompatibility, stands as an exemplary candidate for diverse biomedical utility. Graphene include various distinctive characteristics of its two-dimensional planar structure, enormous surface area, mechanical and chemical stability, high conductivity, and exceptional biocompatibility. We investigate graphene and its diverse derivatives, which include reduced graphene oxides (rGOs), graphene oxides (GOs), and graphene composites, with a focus on elucidating the unique attributes relevant to their biomedical utility. In this review article it highlighted the unique properties of graphene, synthesis methods of graphene and functionalization methods of graphene. In the quest for novel materials to advance regenerative medicine, researchers have increasingly turned their attention to graphene-based materials, which have emerged as a prominent innovation in recent years. Notably, it highlights their applications in the regeneration of various tissues, including nerves, skeletal muscle, bones, skin, cardiac tissue, cartilage, and adipose tissue, as well as their influence on induced pluripotent stem cells, marking significant breakthroughs in the field of regenerative medicine. Additionally, this review article explores future prospects in this evolving area of study.
Collapse
Affiliation(s)
- Rajesh Singh
- Department of Chemistry, Central Ayurveda Research Institute Jhansi, U.P, 284003, India
| | - Hemant Rawat
- Department of Chemistry, Central Ayurveda Research Institute Jhansi, U.P, 284003, India
| | - Ashwani Kumar
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Yashika Gandhi
- Department of Chemistry, Central Ayurveda Research Institute Jhansi, U.P, 284003, India
| | - Vijay Kumar
- Department of Chemistry, Central Ayurveda Research Institute Jhansi, U.P, 284003, India
| | - Sujeet K. Mishra
- Department of Chemistry, Central Ayurveda Research Institute Jhansi, U.P, 284003, India
| | | |
Collapse
|
8
|
Govindarajan D, Saravanan S, Sudhakar S, Vimalraj S. Graphene: A Multifaceted Carbon-Based Material for Bone Tissue Engineering Applications. ACS OMEGA 2024; 9:67-80. [PMID: 38222554 PMCID: PMC10785094 DOI: 10.1021/acsomega.3c07062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024]
Abstract
Tissue engineering is an emerging technological field that aims to restore and replace human tissues. A significant number of individuals require bone replacement annually as a result of skeletal abnormalities or accidents. In recent decades, notable progress has been made in the field of biomedical research, specifically in the realm of sophisticated and biocompatible materials. The purpose of these biomaterials is to facilitate bone tissue regeneration. Carbon nanomaterial-based scaffolds are particularly notable due to their accessibility, mechanical durability, and biofunctionality. The scaffolds exhibit the capacity to enhance cellular proliferation, mitigate cell damage, induce bone tissue growth, and maintain biological compatibility. Therefore, they play a crucial role in the development of the bone matrix and the necessary cellular interactions required for bone tissue restoration. The attachment, growth, and specialization of osteogenic stem cells on biomaterial scaffolds play critical roles in bone tissue engineering. The optimal biomaterial should facilitate the development of bone tissue in a manner that closely resembles that of human bone. This comprehensive review encompasses the examination of graphene oxide (GO), carbon nanotubes (CNTs), fullerenes, carbon dots (CDs), nanodiamonds, and their respective derivatives. The biomaterial frameworks possess the ability to replicate the intricate characteristics of the bone microenvironment, thereby rendering them suitable for utilization in tissue engineering endeavors.
Collapse
Affiliation(s)
- Dharunya Govindarajan
- Department
of Biotechnology, Stem Cell and Molecular Biology Laboratory, Bhupat
& Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600 036, Tamil Nadu, India
| | - Sekaran Saravanan
- Department
of Prosthodontics, Saveetha Dental College and Hospital, Saveetha
Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, Tamil Nadu, India
| | - Swathi Sudhakar
- Department
of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology-Madras, Chennai 600 036, Tamil Nadu, India
| | - Selvaraj Vimalraj
- Department
of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology-Madras, Chennai 600 036, Tamil Nadu, India
| |
Collapse
|
9
|
Polo-Montalvo A, Cicuéndez M, Casarrubios L, Barroca N, da Silva D, Feito MJ, Diez-Orejas R, Serrano MC, Marques PAAP, Portolés MT. Effects of graphene oxide and reduced graphene oxide nanomaterials on porcine endothelial progenitor cells. NANOSCALE 2023; 15:17173-17183. [PMID: 37853851 DOI: 10.1039/d3nr03145d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Graphene oxide (GO) and reduced graphene oxide (rGO) have been widely used in the field of tissue regeneration and various biomedical applications. In order to use these nanomaterials in organisms, it is imperative to possess an understanding of their impact on different cell types. Due to the potential of these nanomaterials to enter the bloodstream, interact with the endothelium and accumulate within diverse tissues, it is highly relevant to probe them when in contact with the cellular components of the vascular system. Endothelial progenitor cells (EPCs), involved in blood vessel formation, have great potential for tissue engineering and offer great advantages to study the possible angiogenic effects of biomaterials. Vascular endothelial growth factor (VEGF) induces angiogenesis and regulates vascular permeability, mainly activating VEGFR2 on endothelial cells. The effects of GO and two types of reduced GO, obtained after vacuum-assisted thermal treatment for 15 min (rGO15) and 30 min (rGO30), on porcine endothelial progenitor cells (EPCs) functionality were assessed by analyzing the nanomaterial intracellular uptake, reactive oxygen species (ROS) production and VEGFR2 expression by EPCs. The results evidence that short annealing (15 and 30 minutes) at 200 °C of GO resulted in the mitigation of both the increased ROS production and decline in VEGFR2 expression of EPCs upon GO exposure. Interestingly, after 72 hours of exposure to rGO30, VEGFR2 was higher than in the control culture, suggesting an early angiogenic potential of rGO30. The present work reveals that discrete variations in the reduction of GO may significantly affect the response of porcine endothelial progenitor cells.
Collapse
Affiliation(s)
- Alberto Polo-Montalvo
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040-Madrid, Spain
| | - Mónica Cicuéndez
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040-Madrid, Spain
| | - Laura Casarrubios
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040-Madrid, Spain.
| | - Nathalie Barroca
- Centre for Mechanical Technology & Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
- LASI-Intelligent Systems Associate Laboratory, 4804-533 Guimaräes, Portugal
| | - Daniela da Silva
- Centre for Mechanical Technology & Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
- LASI-Intelligent Systems Associate Laboratory, 4804-533 Guimaräes, Portugal
| | - María José Feito
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040-Madrid, Spain.
| | - Rosalía Diez-Orejas
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040-Madrid, Spain
| | - María Concepción Serrano
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain
| | - Paula A A P Marques
- Centre for Mechanical Technology & Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
- LASI-Intelligent Systems Associate Laboratory, 4804-533 Guimaräes, Portugal
| | - María Teresa Portolés
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040-Madrid, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, ISCIII, 28040-Madrid, Spain
| |
Collapse
|
10
|
Dong X, Zang C, Sun Y, Zhang S, Liu C, Qian J. Hydroxyapatite nanoparticles induced calcium overload-initiated cancer cell-specific apoptosis through inhibition of PMCA and activation of calpain. J Mater Chem B 2023; 11:7609-7622. [PMID: 37403708 DOI: 10.1039/d3tb00542a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Hydroxyapatite nanoparticles (HAPNs) have been reported to specifically induce apoptosis and sustained elevation of intracellular Ca2+ concentration ([Ca2+]i) in cancer cells. However, it remains unclear whether calcium overload, the abnormal intracellular accumulation of Ca2+, is the intrinsic cause of cell apoptosis, how HAPNs specifically evoke calcium overload in cancer cells, and which potential pathways were involved in apoptosis initiation in response to calcium overload. In this study, using various cancer and normal cells, we observed a positive correlation between the degree of increased [Ca2+]i and the specific toxicity of HAPNs. Moreover, chelating intracellular Ca2+ with BAPTA-AM inhibited HAPN-induced calcium overload and apoptosis, thus demonstrating that calcium overload was the main cause of HAPN-induced cytotoxicity in cancer cells. Notably, the dissolution of particles outside the cells did not affect cell viability or [Ca2+]i. In contrast, internalized HAPNs dissolved more readily in cancer cells than in normal cells and inhibited the activity of plasma membrane calcium-ATPase solely in cancer cells to prevent extrusion of excessive Ca2+, hence leading to calcium overload in tumor cells. Upon exposure to HAPNs, the Ca2+-sensitive cysteine protease calpain was activated and then cleaved the BH3-only protein Bid. Consequently, cytochrome c was released, and caspase-9 and -3 were activated, leading to mitochondrial apoptosis. However, these effects were alleviated by the calpain inhibitor calpeptin, confirming the involvement of calpain in HANP-induced apoptosis. Therefore, our results demonstrated that calcium overload induced by HAPNs caused cancer cell-specific apoptosis by inhibiting PMCA and activating calpain in tumor cells and thus may contribute to a more comprehensive understanding of biological effects of this nanomaterial and facilitate the development of calcium overload cancer therapy.
Collapse
Affiliation(s)
- Xiulin Dong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Chunyu Zang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Yi Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Shuiquan Zhang
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Changsheng Liu
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jiangchao Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| |
Collapse
|
11
|
Li X, Yang B, Xu M, Li F, Geng Z, Cui W, Sun X, Li Y, Liu Y. Doped Multiple Nanoparticles with Hydroxyapatite Coating Show Diverse Health Effects in vivo. Int J Nanomedicine 2023; 18:5031-5054. [PMID: 37701820 PMCID: PMC10493156 DOI: 10.2147/ijn.s417929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023] Open
Abstract
Introduction The lack of osteoinductive, angiogenic and antimicrobial properties of hydroxyapatite coatings (HA) on titanium surfaces severely limits their use in orthopedic and dental implants. Therefore, we doped SiO2, Gd2O3 and CeO2 nanoparticles into HA to fabricate a HASiGdCe coating with a combination of decent antibacterial, angiogenic and osteogenic properties by the plasma spraying technique. Methods The HASiGdCe coating was analyzed by SEM (EDS), surface roughness tests, contact angle tests, XRD, FTIR spectroscopy, tensile tests and electrochemical dynamic polarization tests. Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (PAO-1) were used as representative bacteria to verify the antibacterial properties of the HASiGdCe coating. We evaluated the cytocompatibility and in vitro osteoinductivity of the HASiGdCe coating by investigating its effect on the cell viability and osteogenic differentiation of MC3T3-E1 cells. We assessed the in vitro angiogenic activity of the HASiGdCe coating by migration assay, tube formation assay, and RT‒PCR analysis of angiogenic genes in HUVECs. Finally, we used infected animal femur models to investigate the biosafety, antimicrobial and osteointegration properties of the HASiGdCe coating in vivo. Results Through various characterization experiments, we demonstrated that the HASiGdCe coating has suitable microscopic morphology, physical phase characteristics, bonding strength and bioactivity to meet the coating criteria for orthopedic implants. The HASiGdCe coating can release Gd3+ and Ce4+, showing strong antibacterial properties against MRSA and PAO-1. The HASiGdCe coating has been shown to have superior osteogenic and angiogenic properties compared to the HA coating in in vitro cellular experiments. Animal implantation experiments have shown that the HASiGdCe coating also has excellent biosafety, antimicrobial and osteogenic properties in vivo. Conclusion The HASiGdCe coating confers excellent antibacterial, angiogenic and osteogenic properties on titanium implants, which can effectively enhance implant osseointegration and prevent bacterial infections, and it accordingly has promising applications in the treatment of bone defects related to orthopedic and dental sciences.
Collapse
Affiliation(s)
- Xinlin Li
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, People’s Republic of China
| | - Baojuan Yang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, 250061, People’s Republic of China
- National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, 250061, People’s Republic of China
| | - Mengfei Xu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, People’s Republic of China
| | - Fangyi Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, 250061, People’s Republic of China
- National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, 250061, People’s Republic of China
| | - Zhaoli Geng
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, People’s Republic of China
| | - Weiqiang Cui
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, 250061, People’s Republic of China
- National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, 250061, People’s Republic of China
| | - Xingfu Sun
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, 250061, People’s Republic of China
- National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, 250061, People’s Republic of China
| | - Yanle Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, 250061, People’s Republic of China
- National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, 250061, People’s Republic of China
| | - Yi Liu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, People’s Republic of China
| |
Collapse
|
12
|
Achôa GL, Mattos PA, Clements A, Roca Y, Brooks Z, Ferreira JRM, Canal R, Fernandes TL, Riera R, Amano MT, Hokugo A, Jarrahy R, Lenz E Silva GF, Bueno DF. A scoping review of graphene-based biomaterials for in vivo bone tissue engineering. J Biomater Appl 2023; 38:313-350. [PMID: 37493398 DOI: 10.1177/08853282231188805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The growing demand for more efficient materials for medical applications brought together two previously distinct fields: medicine and engineering. Regenerative medicine has evolved with the engineering contributions to improve materials and devices for medical use. In this regard, graphene is one of the most promising materials for bone tissue engineering and its potential for bone repair has been studied by several research groups. The aim of this study is to conduct a scoping review including articles published in the last 12 years (from 2010 to 2022) that have used graphene and its derivatives (graphene oxide and reduced graphene) in preclinical studies for bone tissue regeneration, searching in PubMed/MEDLINE, Embase, Web of Science, Cochrane Central, and clinicaltrials.gov (to confirm no study has started with clinical trial). Boolean searches were performed using the defined key words "bone" and "graphene", and manuscript abstracts were uploaded to Rayyan, a web-tool for systematic and scoping reviews. This scoping review was conducted based on Joanna Briggs Institute Manual for Scoping Reviews and the report follows the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses - Extension for Scoping Reviews (PRISMA-ScR) statement. After the search protocol and application of the inclusion criteria, 77 studies were selected and evaluated by five blinded researchers. Most of the selected studies used composite materials associated with graphene and its derivatives to natural and synthetic polymers, bioglass, and others. Although a variety of graphene materials were analyzed in these studies, they all concluded that graphene, its derivatives, and its composites improve bone repair processes by increasing osteoconductivity, osteoinductivity, new bone formation, and angiogenesis. Thus, this systematic review opens up new opportunities for the development of novel strategies for bone tissue engineering with graphene.
Collapse
Affiliation(s)
- Gustavo L Achôa
- Instituto de Ensino e Pesquisa, Hospital Sírio-Libanês, São Paulo, Brazil
| | | | | | | | | | | | - Raul Canal
- Universidade Corporativa ANADEM, Brasília, Brazil
| | - Tiago L Fernandes
- Instituto de Ensino e Pesquisa, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Rachel Riera
- Instituto de Ensino e Pesquisa, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Mariane T Amano
- Instituto de Ensino e Pesquisa, Hospital Sírio-Libanês, São Paulo, Brazil
| | | | | | | | - Daniela F Bueno
- Instituto de Ensino e Pesquisa, Hospital Sírio-Libanês, São Paulo, Brazil
- Engenharia Metalúrgica e de Materiais, USP, São Paulo, Brazil
- Universidade Corporativa ANADEM, Brasília, Brazil
| |
Collapse
|
13
|
Sharma A, Kokil GR, He Y, Lowe B, Salam A, Altalhi TA, Ye Q, Kumeria T. Inorganic/organic combination: Inorganic particles/polymer composites for tissue engineering applications. Bioact Mater 2023; 24:535-550. [PMID: 36714332 PMCID: PMC9860401 DOI: 10.1016/j.bioactmat.2023.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
Biomaterials have ushered the field of tissue engineering and regeneration into a new era with the development of advanced composites. Among these, the composites of inorganic materials with organic polymers present unique structural and biochemical properties equivalent to naturally occurring hybrid systems such as bones, and thus are highly desired. The last decade has witnessed a steady increase in research on such systems with the focus being on mimicking the peculiar properties of inorganic/organic combination composites in nature. In this review, we discuss the recent progress on the use of inorganic particle/polymer composites for tissue engineering and regenerative medicine. We have elaborated the advantages of inorganic particle/polymer composites over their organic particle-based composite counterparts. As the inorganic particles play a crucial role in defining the features and regenerative capacity of such composites, the review puts a special emphasis on the various types of inorganic particles used in inorganic particle/polymer composites. The inorganic particles that are covered in this review are categorised into two broad types (1) solid (e.g., calcium phosphate, hydroxyapatite, etc.) and (2) porous particles (e.g., mesoporous silica, porous silicon etc.), which are elaborated in detail with recent examples. The review also covers other new types of inorganic material (e.g., 2D inorganic materials, clays, etc.) based polymer composites for tissue engineering applications. Lastly, we provide our expert analysis and opinion of the field focusing on the limitations of the currently used inorganic/organic combination composites and the immense potential of new generation of composites that are in development.
Collapse
Affiliation(s)
- Astha Sharma
- School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
| | - Ganesh R. Kokil
- School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- School of Pharmacy, University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Yan He
- Institute of Regenerative and Translational Medicine, Department of Stomatology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430030, China
| | - Baboucarr Lowe
- School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
| | - Arwa Salam
- Chemistry Department, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Tariq A. Altalhi
- Chemistry Department, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Qingsong Ye
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tushar Kumeria
- School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- School of Pharmacy, University of Queensland, Woolloongabba, QLD, 4102, Australia
| |
Collapse
|
14
|
Li D, Dai D, Xiong G, Lan S, Zhang C. Composite Nanocoatings of Biomedical Magnesium Alloy Implants: Advantages, Mechanisms, and Design Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300658. [PMID: 37097626 PMCID: PMC10288271 DOI: 10.1002/advs.202300658] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/25/2023] [Indexed: 06/19/2023]
Abstract
The rapid degradation of magnesium (Mg) alloy implants erodes mechanical performance and interfacial bioactivity, thereby limiting their clinical utility. Surface modification is among the solutions to improve corrosion resistance and bioefficacy of Mg alloys. Novel composite coatings that incorporate nanostructures create new opportunities for their expanded use. Particle size dominance and impermeability may increase corrosion resistance and thereby prolong implant service time. Nanoparticles with specific biological effects may be released into the peri-implant microenvironment during the degradation of coatings to promote healing. Composite nanocoatings provide nanoscale surfaces to promote cell adhesion and proliferation. Nanoparticles may activate cellular signaling pathways, while those with porous or core-shell structures may carry antibacterial or immunomodulatory drugs. Composite nanocoatings may promote vascular reendothelialization and osteogenesis, attenuate inflammation, and inhibit bacterial growth, thus increasing their applicability in complex clinical microenvironments such as those of atherosclerosis and open fractures. This review combines the physicochemical properties and biological efficiency of Mg-based alloy biomedical implants to summarize the advantages of composite nanocoatings, analyzes their mechanisms of action, and proposes design and construction strategies, with the purpose of providing a reference for promoting the clinical application of Mg alloy implants and to further the design of nanocoatings.
Collapse
Affiliation(s)
- Dan Li
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Danni Dai
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Gege Xiong
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Shuquan Lan
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Chao Zhang
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| |
Collapse
|
15
|
Boyapati PCS, Srinivas K, Akhil S, Bollikolla HB, Chandu B. A Comprehensive Review on Novel Graphene‐Hydroxyapatite Nanocomposites For Potential Bioimplant Applications. ChemistrySelect 2023. [DOI: 10.1002/slct.202204585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
| | - Kolla Srinivas
- Dept. of Mechanical Engineering RVR & JC College of Engineering Guntur, Andhra Pradesh 522019 India
| | - Syed Akhil
- Dept. of Nanotechnology Acharya Nagarjuna University Guntur, Andhra Pradesh 522510 India
| | - Hari Babu Bollikolla
- Dept. of Chemistry Acharya Nagarjuna University Guntur, Andhra Pradesh 522510 India
| | - Basavaiah Chandu
- Dept. of Nanotechnology Acharya Nagarjuna University Guntur, Andhra Pradesh 522510 India
| |
Collapse
|
16
|
Nguyen T, Maniyar A, Sarkar M, Sarkar TR, Neelgund GM. The Cytotoxicity of Carbon Nanotubes and Hydroxyapatite, and Graphene and Hydroxyapatite Nanocomposites against Breast Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:556. [PMID: 36770518 PMCID: PMC9919526 DOI: 10.3390/nano13030556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Cancer is a current dreadful disease and the leading cause of death. Next to cardiovascular diseases, cancer is the most severe threat to human life and health. Breast cancer is the most common invasive cancer diagnosed in women. Each year about 2.3 million women are diagnosed with breast cancer. In consideration of the severity of breast cancer, herein we designed the biocompatible nanomaterials, CNTs-HAP and GR-HAP, through grafting of hydroxyapatite (HAP) to carbon nanotubes (CNTs) and graphene (GR) nanosheets. CNTs-HAP and GR-HAP have been tested for their cytotoxicity, growth and motility inhibitory effects, and their effects on the mesenchymal markers. All these demonstrated significant dose-dependent and time-dependent in vitro cytotoxicity against SUM-159 and MCF-7 breast cancer cell lines. The cell viability assay showed that the CNTs-HAP was more effective over SUM-159 cells than MCF-7 cells. It found that the increase in the concentration of GR-HAP has inhibited the clonogenic ability of breast cancer cells. The GR-HAP exhibited a substantial inhibitory effect on the cell motility of SUM-159 cell lines. It was investigated that the expression of vimentin (mesenchymal marker) was majorly reduced in SUM-159 cells by GR-HAP.
Collapse
Affiliation(s)
- Tristan Nguyen
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Anuj Maniyar
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Mrinmoy Sarkar
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | | | - Gururaj M. Neelgund
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA
| |
Collapse
|
17
|
Rasyida A, Halimah S, Wijayanti ID, Wicaksono ST, Nurdiansah H, Silaen YMT, Ni’mah YL, Ardhyananta H, Purniawan A. A Composite of Hydrogel Alginate/PVA/r-GO for Scaffold Applications with Enhanced Degradation and Biocompatibility Properties. Polymers (Basel) 2023; 15:polym15030534. [PMID: 36771834 PMCID: PMC9921136 DOI: 10.3390/polym15030534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/22/2023] Open
Abstract
We reported in this study the interrelation between the addition of 0.4, 0.8, 1.2, and 1.6 wt. % reduced graphene oxide (r-GO) into PVA/Alginate and their degradation and biocompatibility properties. The r-GO was synthesized by using the Hummer's method. A crosslinker CaSO4 was added to prepare Alginate/PVA/r-GO Hydrogel composite. A Field Emission in Lens (FEI)-scanning electron microscopy (SEM), along with X-ray energy dispersive spectroscopy (EDS), was performed, characterizing the morphology of the composite. A compressive test was conducted, determining the mechanical properties of the composite with the highest achieved 0.0571 MPa. Furthermore, in vitro cytotoxicity was conducted to determine the biocompatibility properties of the studied composite. An MTT assay was applied to measure cell viability. In general, the presence of r-GO was found to have no significant effect on the morphology of the hydrogel. Indeed, adding 0.4% r-GO to the PVA/Alginate increased the cell viability up to 122.26 ± 0.93, indicating low toxicity. The studied composites have almost no changes in weight and shape, which proves that low degradation occurred in addition to this after 28 days of immersion in saline phosphate buffer solution. In conclusion, achieving minimal degradation and outstanding biocompatibility lead to PVA/Alginate/r-GO hydrogel composites being the most attractive materials for tissue engineering applications.
Collapse
Affiliation(s)
- Amaliya Rasyida
- Department of Materials and Metallurgical Engineering, Faculty of Industrial Technology and System Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
- Correspondence: or
| | - Salma Halimah
- Department of Materials and Metallurgical Engineering, Faculty of Industrial Technology and System Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Ika Dewi Wijayanti
- Department of Mechanical Engineering, Faculty of Industrial Technology and System Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Sigit Tri Wicaksono
- Department of Materials and Metallurgical Engineering, Faculty of Industrial Technology and System Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Haniffudin Nurdiansah
- Department of Materials and Metallurgical Engineering, Faculty of Industrial Technology and System Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Yohannes Marudut Tua Silaen
- Department of Materials and Metallurgical Engineering, Faculty of Industrial Technology and System Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Yatim Lailun Ni’mah
- Department of Chemistry, Faculty of Sains and Analytica Data, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Hosta Ardhyananta
- Department of Materials and Metallurgical Engineering, Faculty of Industrial Technology and System Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Agung Purniawan
- Department of Materials and Metallurgical Engineering, Faculty of Industrial Technology and System Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| |
Collapse
|
18
|
Khoramgah MS, Ghanbarian H, Ranjbari J, Ebrahimi N, Tabatabaei Mirakabad FS, Ahmady Roozbahany N, Abbaszadeh HA, Hosseinzadeh S. Repairing rat calvarial defects by adipose mesenchymal stem cells and novel freeze-dried three-dimensional nanofibrous scaffolds. BIOIMPACTS : BI 2023; 13:31-42. [PMID: 36817003 PMCID: PMC9923815 DOI: 10.34172/bi.2021.23711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/14/2021] [Accepted: 07/24/2021] [Indexed: 11/09/2022]
Abstract
Introduction: Treatment of critical-sized bone defects is challenging. Tissue engineering as a state-of-the-art method has been concerned with treating these non-self-healing bone defects. Here, we studied the potentials of new three-dimensional nanofibrous scaffolds (3DNS) with and without human adipose mesenchymal stem cells (ADSCs) for reconstructing rat critical-sized calvarial defects (CSCD). Methods: Scaffolds were made from 1- polytetrafluoroethylene (PTFE), and polyvinyl alcohol (PVA) (PTFE/ PVA group), and 2- PTFE, PVA, and graphene oxide (GO) nanoparticle (PTFE/ PVA/GO group) and seeded by ADSCs and incubated in osteogenic media (OM). The expression of key osteogenic proteins including Runt-related transcription factor 2 (Runx2), collagen type Iα (COL Iα), osteocalcin (OCN), and osteonectin (ON) at days 14 and 21 of culture were evaluated by western blot and immunocytochemistry methods. Next, 40 selected rats were assigned to five groups (n=8) to create CSCD which will be filled by scaffolds or cell-containing scaffolds. The groups were denominated as the following order: Control (empty defects), PTFE/PVA (PTFE/PVA scaffolds implant), PTFE/PVA/GO (PTFE/PVA/GO scaffolds implant), PTFE/PVA/Cell group (PTFE/PVA scaffolds containing ADSCs implant), and PTFE/PVA/GO/Cell group (PTFE/PVA/GO scaffolds containing ADSCs implant). Six and 12 weeks after implantation, the animals were sacrificed and bone regeneration was evaluated using computerized tomography (CT), and hematoxylin-eosin (H&E) staining. Results: Based on the in-vitro study, expression of bone-related proteins in ADSCs seeded on PTFE/PVA/GO scaffolds were significantly higher than PTFE/PVA scaffolds and TCPS (P<0.05). Based on the in-vivo study, bone regeneration in CSCD were filled with PTFE/PVA/GO scaffolds containing ADSCs were significantly higher than PTFE/PVA scaffolds containing ADSCs (P<0.05). CSCD filled with cell-seeded scaffolds showed higher bone regeneration in comparison with CSCD filled with scaffolds only (P<0.05). Conclusion: The data provided evidence showing new freeze-dried nanofibrous scaffolds formed from hydrophobic (PTFE) and hydrophilic (PVA) polymers with and without GO provide a suitable environment for ADSCs due to the expression of bone-related proteins. ADSCs and GO in the implanted scaffolds had a distinct effect on the bone regeneration process in this in-vivo study.
Collapse
Affiliation(s)
- Maryam Sadat Khoramgah
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbarian
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Ranjbari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nilufar Ebrahimi
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Department of Biomedical Engineering, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Sadat Tabatabaei Mirakabad
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Ahmady Roozbahany
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Private Practice, Bradford ON, Canada
| | - Hojjat Allah Abbaszadeh
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Corresponding authors: Hojjat-Allah Abbaszadeh, ; Simzar Hosseinzadeh,
| | - Simzar Hosseinzadeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Corresponding authors: Hojjat-Allah Abbaszadeh, ; Simzar Hosseinzadeh,
| |
Collapse
|
19
|
Khan PA, Thoutam AK, Gopal V, Gurumallesh A, Joshi S, Palaniappan A, Markocsan N, Manivasagam G. Influence of Graphene Nanoplatelets on the Performance of Axial Suspension Plasma-Sprayed Hydroxyapatite Coatings. Bioengineering (Basel) 2022; 10:bioengineering10010044. [PMID: 36671618 PMCID: PMC9854845 DOI: 10.3390/bioengineering10010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 12/31/2022] Open
Abstract
Axial suspension plasma spraying (ASPS) is an alternative technique to atmospheric plasma spraying (APS), which uses a suspension of much finer powders (<5-micron particle size) as the feedstock. It can produce more refined microstructures than APS for biomedical implants. This paper highlights the influence of incorporated graphene nanoplatelets (GNPs) on the behavior of ASPS hydroxyapatite (HAp) coatings. The characterization of the ASPS coatings (HAp + varying GNP contents) was carried out using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), confocal Raman microscopy (CRM), white light interferometry (WLI), and contact angle measurements. The evaluation of the mechanical properties such as the hardness, roughness, adhesion strength, and porosity was carried out, along with a fretting wear performance. Additionally, the biocompatibility of the Hap + GNP coatings was evaluated using cytotoxicity testing which revealed a decrease in the cell viability from 92.7% to 85.4%, with an increase in the GNP wt.%. The visualization of the cell’s components was carried out using SEM and Laser Scanning Microscopy. Furthermore, the changes in the genetic expression of the various cellular markers were assessed to analyze the epigenetic changes in human mesenchymal stem cells. The gene expression changes suggested that GNPs upregulated the proliferation marker and downregulated the pluripotent markers by a minimum of three folds.
Collapse
Affiliation(s)
- Pearlin Amaan Khan
- Centre for Biomaterials, Cellular & Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore 632014, India
| | - Aravind Kumar Thoutam
- Division of Subtractive and Additive Manufacturing, University West, 461 86 Trollhättan, Sweden
| | - Vasanth Gopal
- Centre for Biomaterials, Cellular & Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore 632014, India
- School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India
| | - Aswin Gurumallesh
- Centre for Biomaterials, Cellular & Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore 632014, India
- School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India
| | - Shrikant Joshi
- Division of Subtractive and Additive Manufacturing, University West, 461 86 Trollhättan, Sweden
| | - Arunkumar Palaniappan
- Centre for Biomaterials, Cellular & Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore 632014, India
| | - Nicolaie Markocsan
- Division of Subtractive and Additive Manufacturing, University West, 461 86 Trollhättan, Sweden
| | - Geetha Manivasagam
- Centre for Biomaterials, Cellular & Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore 632014, India
- Correspondence: ; Tel.: +91-416-220-295 (ext. 2296)
| |
Collapse
|
20
|
Shi J, Dai W, Gupta A, Zhang B, Wu Z, Zhang Y, Pan L, Wang L. Frontiers of Hydroxyapatite Composites in Bionic Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15238475. [PMID: 36499970 PMCID: PMC9738134 DOI: 10.3390/ma15238475] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 05/31/2023]
Abstract
Bone defects caused by various factors may cause morphological and functional disorders that can seriously affect patient's quality of life. Autologous bone grafting is morbid, involves numerous complications, and provides limited volume at donor site. Hence, tissue-engineered bone is a better alternative for repair of bone defects and for promoting a patient's functional recovery. Besides good biocompatibility, scaffolding materials represented by hydroxyapatite (HA) composites in tissue-engineered bone also have strong ability to guide bone regeneration. The development of manufacturing technology and advances in material science have made HA composite scaffolding more closely related to the composition and mechanical properties of natural bone. The surface morphology and pore diameter of the scaffold material are more important for cell proliferation, differentiation, and nutrient exchange. The degradation rate of the composite scaffold should match the rate of osteogenesis, and the loading of cells/cytokine is beneficial to promote the formation of new bone. In conclusion, there is no doubt that a breakthrough has been made in composition, mechanical properties, and degradation of HA composites. Biomimetic tissue-engineered bone based on vascularization and innervation show a promising future.
Collapse
Affiliation(s)
- Jingcun Shi
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Wufei Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Tissue Engineering Key Laboratory, Shanghai Research Institute of Plastic and Reconstructive Surgey, Shanghai 200011, China
| | - Anand Gupta
- Department of Dentistry, Government Medical College & Hospital, Chandigarh 160017, India
| | - Bingqing Zhang
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Ziqian Wu
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Yuhan Zhang
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Lisha Pan
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Lei Wang
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| |
Collapse
|
21
|
Devi G.V. Y, Nagendra AH, Shenoy P. S, Chatterjee K, Venkatesan J. Fucoidan-Incorporated Composite Scaffold Stimulates Osteogenic Differentiation of Mesenchymal Stem Cells for Bone Tissue Engineering. Mar Drugs 2022; 20:589. [PMID: 36286414 PMCID: PMC9604642 DOI: 10.3390/md20100589] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Globally, millions of bone graft procedures are being performed by clinicians annually to treat the rising prevalence of bone defects. Here, the study designed a fucoidan from Sargassum ilicifolium incorporated in an osteo-inductive scaffold comprising calcium crosslinked sodium alginate-nano hydroxyapatite-nano graphene oxide (Alg-HA-GO-F), which tends to serve as a bone graft substitute. The physiochemical characterization that includes FT-IR, XRD, and TGA confirms the structural integration between the materials. The SEM and AFM reveal highly suitable surface properties, such as porosity and nanoscale roughness. The incorporation of GO enhanced the mechanical strength of the Alg-HA-GO-F. The findings demonstrate the slower degradation and improved protein adsorption in the fucoidan-loaded scaffolds. The slow and sustained release of fucoidan in PBS for 120 h provides the developed system with an added advantage. The apatite formation ability of Alg-HA-GO-F in the SBF solution predicts the scaffold's osteointegration and bone-bonding capability. In vitro studies using C3H10T1/2 revealed a 1.5X times greater cell proliferation in the fucoidan-loaded scaffold than in the control. Further, the results determined the augmented alkaline phosphatase and mineralization activity. The physical, structural, and enriching osteogenic potential results of Alg-HA-GO-F indicate that it can be a potential bone graft substitute for orthopedic applications.
Collapse
Affiliation(s)
- Yashaswini Devi G.V.
- Biomaterial Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Apoorva H Nagendra
- Stem Cells and Regenerative Medicine and Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Sudheer Shenoy P.
- Stem Cells and Regenerative Medicine and Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Kaushik Chatterjee
- Departmental of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Jayachandran Venkatesan
- Biomaterial Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| |
Collapse
|
22
|
Improvement of medical applicability of hydroxyapatite/graphene oxide nanocomposites via additional yttrium oxide nanoparticles. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Dai D, Zhou D, Xie H, Wang J, Zhang C. The design, construction and application of graphene family composite nanocoating on dental metal surface. BIOMATERIALS ADVANCES 2022; 140:213087. [PMID: 36029723 DOI: 10.1016/j.bioadv.2022.213087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Enhancement of the biological and mechanical properties of dental metals is important for accommodation with therapeutic schemes in different stomatological disciplines. Nanocoatings based on graphene family nanomaterials (GFNs) improve the topological structure and physicochemical properties of metal surfaces, endowing them with new properties while maintaining inherent mechanical properties. Nano-composite coatings, composed of GFNs with one or more type of polymer, metal, oxide, and inorganic nonmetallic compound, offer more matching modification schemes to meet multifunctional oral treatment requirements (e.g., anti-bacterial and anti-corrosive activity, osteogenesis and angiogenesis). This review describes recent progress in the development of GFN composite nanocoatings for the modification of dental metals, focus on biological effects in clinical settings. Underlying molecular mechanisms, critical modification schemes, and technical innovation in preparation methods are also discussed. The key parameters of GFN composite nanocoating surface modification are summarized according to effects on cellular responses and antibacterial activity. This review provides a theoretical reference for the optimization of the biological effects and application of GFN composite nanocoatings for dental metals, and the promotion of the environmentally friendly large-scale production of high-quality multifunctional GFN-based nanocoatings in the field of oral science.
Collapse
Affiliation(s)
- Danni Dai
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Dongshuai Zhou
- School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Hanshu Xie
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jianrong Wang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Chao Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
24
|
Valencia-Gómez LE, Muzquiz-Ramos EM, Fausto-Reyes AD, Rodríguez-Arrellano PI, Rodríguez-González CA, Hernández-Paz JF, Reyes-Blas H, Olivas-Armendáriz I. O-carboxymethyl chitosan/gelatin/silver-copper hydroxyapatite composite films with enhanced antibacterial and wound healing properties. J Biomater Appl 2022; 37:773-785. [DOI: 10.1177/08853282221121879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Wound dressing composite films of O-carboxymethyl chitosan (OCMC) and gelatin were prepared and mixed with hydroxyapatite (HA) composited with Silver (Ag) and Copper (Cu) at different concentrations. The chemical, thermal, morphological, and biological properties of the composite films were studied. The analysis by FTIR confirmed the presence of interactions between gelatin and OCMC, and at the same time, the polymer matrix interactions with Ag-Cu/HA complex. The inclusion of nanoparticle to the composite was associated with an improvement of the thermal stability, morphological roughness, a 9–12% more hydrophobic behavior (composite C1, C5, and C8), increase in antibacterial activity from 23.2 to 33.1% for gram negative bacteria and from 37.28 to 40.59% for gram positive bacteria, and with a cell viability greater than 100% for 24 and 72 h. The films obtained can serve as a wound healing dressing and regenerating biomaterial.
Collapse
Affiliation(s)
- Laura-E Valencia-Gómez
- Universidad Autónoma de Ciudad Juárez, Instituto de Ingeniería y Tecnología, Juárez, México
| | - Elia-M Muzquiz-Ramos
- Universidad Autónoma de Coahuila, Facultad de Ciencias Químicas, Saltillo, México
| | - Abril-D Fausto-Reyes
- Universidad Autónoma de Ciudad Juárez, Instituto de Ingeniería y Tecnología, Juárez, México
| | | | | | - Juan-F Hernández-Paz
- Universidad Autónoma de Ciudad Juárez, Instituto de Ingeniería y Tecnología, Juárez, México
| | - Hortensia Reyes-Blas
- Universidad Autónoma de Ciudad Juárez, Instituto de Ingeniería y Tecnología, Juárez, México
| | | |
Collapse
|
25
|
George SM, Nayak C, Singh I, Balani K. Multifunctional Hydroxyapatite Composites for Orthopedic Applications: A Review. ACS Biomater Sci Eng 2022; 8:3162-3186. [PMID: 35838237 DOI: 10.1021/acsbiomaterials.2c00140] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Being a bioactive material, hydroxyapatite (HAp) is regarded as one of the most attractive ceramic biomaterials for bone and hard-tissue replacement and regeneration. Despite its substantial biocompatibility, osteoconductivity, and compositional similarity to that of bone, the employment of HAp is still limited in orthopedic applications due to its poor mechanical (low fracture toughness and bending strength) and antibacterial properties. These significant challenges lead to the notion of developing novel HAp-based composites via different fabrication routes. HAp, when efficaciously combined with functionally graded materials and antibacterial agents, like Ag, ZnO, Co, etc., form composites that render remarkable crack resistance and toughening, as well as enhance its bactericidal efficacy. The addition of different materials and a fabrication method, like 3D printing, greatly influence the porosity of the structure and, in turn, control cell adhesion, thereby enabling biological fixation of the material. This article encompasses an elaborate discussion on different multifunctional HAp composites developed for orthopedic applications with particular emphasis on the incorporation of functionally graded materials and antibacterial agents. The influence of 3D printing on the fabrication of HAp-based scaffolds, and the different in vitro and in vivo studies conducted on these, have all been included here. Furthermore, the present review not only provides insights and broad understanding by elucidating recent advancements toward 4D printing but also directs the reader to future research directions in design and application of HAp-based composite coatings and scaffolds.
Collapse
Affiliation(s)
- Suchi Mercy George
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Chinmayee Nayak
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Indrajeet Singh
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Kantesh Balani
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.,Advanced Centre for Materials Science, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
26
|
Zakaria KA, Yatim NI, Ali N, Rastegari H. Recycling phosphorus and calcium from aquaculture waste as a precursor for hydroxyapatite (HAp) production: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46471-46486. [PMID: 35508846 DOI: 10.1007/s11356-022-20521-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Water contaminated with phosphorus needs to be managed efficiently to ensure that clean water sources will be preserved. Aquaculture plays an essential role in supplying food and generating high revenue. However, the quantity of phosphorus released from aquaculture effluents is among the major concerns for the environment. Phosphorus is a non-renewable, spatially concentrated material essential for global food production. Phosphorus is also known as a primary source of eutrophication. Hence, phosphorus recovery and separation from different wastewater streams are mandatory. This paper reviews the source of phosphorus in the environment, focusing on aquaculture wastewater as a precursor for hydroxyapatite formation evaluates the research progress on maximizing phosphorus removal from aquaculture wastewater effluents and converting it into a conversion. Shrimp shell waste appears to be an essential resource for manufacturing high-value chemicals, given current trends in wealth creation from waste. Shrimp shell waste is the richest source of calcium carbonate and has been used to produce hydroxyapatite after proper treatment is reviewed. There have been significant attempts to create safe and long-term solutions for the disposal of shrimp shell debris. Through the discussion, the optimum condition of the method, the source of phosphorus, and the calcium are the factors that influence the formation of hydroxyapatite as a pioneer in zero-waste management for sustainability and profitable approach. This review will provide comprehensive documentation on resource utilization and product development from aquaculture wastewater and waste to achieve a zero-waste approach.
Collapse
Affiliation(s)
- Kamalia A Zakaria
- Faculty of Ocean Engineering Technology & Informatics, University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Norhafiza I Yatim
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Nora'aini Ali
- Faculty of Ocean Engineering Technology & Informatics, University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Hajar Rastegari
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
27
|
Kumar M, Kumar R, Kumar S. Nanomaterial reinforced composite for biomedical implants applications: a mini-review. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2022. [DOI: 10.1680/jbibn.21.00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
There is heavy demand for suitable implant materials with improved mechanical and biological properties. Classically, the demand was catered by conventional materials like metals, alloys, and polymer-based materials. Recently, nanomaterial reinforced composites have played a significant role in replacing conventional materials due to their excellent properties such as biocompatibility, bioactivity, high strength to weight ratio, long life, corrosion & wear resistance, and tailor-ability. Herein, we composed a systematic focus review on the role of nanoparticles in the form of composite materials for the advancements in orthopedic implants. Several nano materials-based reinforcements have been reviewed with various matrix materials, including metals, alloys, ceramics, composites, and polymers for biomedical implant applications. Moreover, the improved biological properties, mechanical properties, and other functionalities like infection resistance, drug delivery at the target, sensing, and detection of bone diseases, and corrosion & wear resistance are elaborated. At last, a particular focus has been given to the un-resolved challenges in orthopedic implant development.
Collapse
Affiliation(s)
- Manjeet Kumar
- Department of Mechanical Engineering, UIET, Panjab University, Chandigarh, India
| | - Rajesh Kumar
- Department of Mechanical Engineering, UIET, Panjab University, Chandigarh, India
| | - Sandeep Kumar
- Department of Bio and Nanotechnology, Guru Jambheshwar University, Hissar, India
| |
Collapse
|
28
|
Sans J, Arnau M, Turon P, Alemán C. Permanently polarized hydroxyapatite, an outstanding catalytic material for carbon and nitrogen fixation. MATERIALS HORIZONS 2022; 9:1566-1576. [PMID: 35357375 DOI: 10.1039/d1mh02057a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydroxyapatite (HAp) is a well-known ceramic material widely used in the biomedical field. This review summarizes the very recent developments on permanently polarized HAp (pp-HAp), a HAp variety with tuned electrical properties that confer remarkable catalytic activity. pp-HAp is obtained by applying a thermal stimulation polarization process (TSP), which consists on a DC electric voltage of 500 V at 1000 °C, to previously sintered HAp. The TSP not only increases the crystallinity, reducing the defects in the crystal lattice, but also creates charges that accumulate at the crystalline boundaries and at the surface of microscopic grains, boosting the electrical conductivity. Finally, the successful utilization of pp-HAp in the catalytic fixation of carbon and nitrogen from CO2 and N2 gases, respectively, is reported and the formation of different products of chemical interest (e.g. amino acids, ethanol and ammonium) as a function of the reaction conditions (i.e. feeding gases and presence/absence of UV illumination) and catalyst plasticity is discussed. pp-HAp exhibits important advantages with respect to other consolidated catalysts, which drastically increases the final energetic net balance of the reactions.
Collapse
Affiliation(s)
- Jordi Sans
- Departament d'Enginyeria Química and Barcelona Research Center in Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, 08019, Barcelona, Spain.
| | - Marc Arnau
- Departament d'Enginyeria Química and Barcelona Research Center in Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, 08019, Barcelona, Spain.
| | - Pau Turon
- B. Braun Surgical, S.A.U. Carretera de Terrassa 121, 08191, Rubí (Barcelona), Spain.
| | - Carlos Alemán
- Departament d'Enginyeria Química and Barcelona Research Center in Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, 08019, Barcelona, Spain.
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| |
Collapse
|
29
|
Effects of Diatomite Contents on Microstructure, Microhardness, Bioactivity and Biocompatibility of Gradient Bioceramic Coating Prepared by Laser Cladding. METALS 2022. [DOI: 10.3390/met12060931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biometallic materials are widely used in medicine because of excellent mechanical properties. However, biometallic materials are limited in the application of biomaterials due to their lack of bioactivity. To solve this problem, a gradient bioceramic coating doped with diatomite (DE) was successfully fabricated on the surface of Ti6Al4V alloy by using the broadband-laser cladding process to improve the bioactivity of metal materials. As well as the DE contents on the microstructure, microhardness, bioactivity and biocompatibility were investigated. The experimental results demonstrate that the addition of moderate amounts of DE is effective in reducing the number of cracks. The X-ray diffraction (XRD) results reveal that the bioceramic coating doped with DE mainly consists of CaTiO3, hydroxyapatite (HA), tricalcium phosphate (TCP) and silicate, and that the amount of HA and TCP in the coating reached maximum when the bioceramic coating was doped with 10wt% DE. The bioceramic coating doped with 10wt% DE has favorable ability to deposit bone-like apatite. These results indicate that the addition of DE can improve cracking sensibility, bioactivity and biocompatibility of the coating.
Collapse
|
30
|
Gaihre B, Potes MA, Serdiuk V, Tilton M, Liu X, Lu L. Two-dimensional nanomaterials-added dynamism in 3D printing and bioprinting of biomedical platforms: Unique opportunities and challenges. Biomaterials 2022; 284:121507. [PMID: 35421800 PMCID: PMC9933950 DOI: 10.1016/j.biomaterials.2022.121507] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/17/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022]
Abstract
The nanomaterials research spectrum has seen the continuous emergence of two-dimensional (2D) materials over the years. These highly anisotropic and ultrathin materials have found special attention in developing biomedical platforms for therapeutic applications, biosensing, drug delivery, and regenerative medicine. Three-dimensional (3D) printing and bioprinting technologies have emerged as promising tools in medical applications. The convergence of 2D nanomaterials with 3D printing has extended the application dynamics of available biomaterials to 3D printable inks and bioinks. Furthermore, the unique properties of 2D nanomaterials have imparted multifunctionalities to 3D printed constructs applicable to several biomedical applications. 2D nanomaterials such as graphene and its derivatives have long been the interest of researchers working in this area. Beyond graphene, a range of emerging 2D nanomaterials, such as layered silicates, black phosphorus, transition metal dichalcogenides, transition metal oxides, hexagonal boron nitride, and MXenes, are being explored for the multitude of biomedical applications. Better understandings on both the local and systemic toxicity of these materials have also emerged over the years. This review focuses on state-of-art 3D fabrication and biofabrication of biomedical platforms facilitated by 2D nanomaterials, with the comprehensive summary of studies focusing on the toxicity of these materials. We highlight the dynamism added by 2D nanomaterials in the printing process and the functionality of printed constructs.
Collapse
Affiliation(s)
- Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Maria Astudillo Potes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Vitalii Serdiuk
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Maryam Tilton
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States.
| |
Collapse
|
31
|
Brunello G, Zanotti F, Trentini M, Zanolla I, Pishavar E, Favero V, Favero R, Favero L, Bressan E, Bonora M, Sivolella S, Zavan B. Exosomes Derived from Dental Pulp Stem Cells Show Different Angiogenic and Osteogenic Properties in Relation to the Age of the Donor. Pharmaceutics 2022; 14:pharmaceutics14050908. [PMID: 35631496 PMCID: PMC9146046 DOI: 10.3390/pharmaceutics14050908] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Craniofacial tissue reconstruction still represents a challenge in regenerative medicine. Mesenchymal stem cell (MSC)-based tissue engineering strategies have been introduced to enhance bone tissue repair. However, the risk of related complications is limiting their usage. To overcome these drawbacks, exosomes (EXOs) derived from MSCs have been recently proposed as a cell-free alternative to MSCs to direct tissue regeneration. It was hypothesized that there is a correlation between the biological properties of exosomes derived from the dental pulp and the age of the donor. The aim of the study was to investigate the effect of EXOs derived from dental pulp stem cells of permanent teeth (old donor group) or exfoliated deciduous teeth (young donor group) on MSCs cultured in vitro. Proliferation potential was evaluated by doubling time, and commitment ability by gene expression and biochemical quantification for tissue-specific factors. Results showed a well-defined proliferative influence for the younger donor aged group. Similarly, a higher commitment ability was detected in the young group. In conclusion, EXOs could be employed to promote bone regeneration, likely playing an important role in neo-angiogenesis in early healing phases.
Collapse
Affiliation(s)
- Giulia Brunello
- Department of Neurosciences, School of Dentistry, University of Padua, 35128 Padua, Italy; (G.B.); (R.F.); (L.F.); (E.B.); (S.S.)
- Department of Oral Surgery, University Hospital of Düsseldorf, 40225 Dusseldorf, Germany
| | - Federica Zanotti
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.Z.); (M.T.); (I.Z.); (E.P.)
| | - Martina Trentini
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.Z.); (M.T.); (I.Z.); (E.P.)
| | - Ilaria Zanolla
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.Z.); (M.T.); (I.Z.); (E.P.)
| | - Elham Pishavar
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.Z.); (M.T.); (I.Z.); (E.P.)
| | - Vittorio Favero
- Unit of Maxillofacial Surgery and Dentistry, University of Verona, 37129 Verona, Italy;
| | - Riccardo Favero
- Department of Neurosciences, School of Dentistry, University of Padua, 35128 Padua, Italy; (G.B.); (R.F.); (L.F.); (E.B.); (S.S.)
| | - Lorenzo Favero
- Department of Neurosciences, School of Dentistry, University of Padua, 35128 Padua, Italy; (G.B.); (R.F.); (L.F.); (E.B.); (S.S.)
| | - Eriberto Bressan
- Department of Neurosciences, School of Dentistry, University of Padua, 35128 Padua, Italy; (G.B.); (R.F.); (L.F.); (E.B.); (S.S.)
| | - Massimo Bonora
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Stefano Sivolella
- Department of Neurosciences, School of Dentistry, University of Padua, 35128 Padua, Italy; (G.B.); (R.F.); (L.F.); (E.B.); (S.S.)
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.Z.); (M.T.); (I.Z.); (E.P.)
- Correspondence:
| |
Collapse
|
32
|
Li D, Chen M, Guo W, Li P, Wang H, Ding W, Li M, Xu Y. In Situ Grown Nanohydroxyapatite Hybridized Graphene Oxide: Enhancing the Strength and Bioactivity of Polymer Scaffolds. ACS OMEGA 2022; 7:12242-12254. [PMID: 35449948 PMCID: PMC9016834 DOI: 10.1021/acsomega.2c00629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Graphene oxide (GO) and nanohydroxyapatite (nHA) are usually used for improving the strength and bioactivity of polymer scaffolds. However, due to the nano-aggregation effect, these applications often face the problems of uneven dispersion and poor interface bonding. In this work, their hybrids (GO@nHA) were constructed by combining chemical modification and in situ growth methods, realizing the perfect combination of nHA and GO. First, the functionalization of GO was realized through oxidative self-polymerization of dopamine (DA), and the product was denoted GO@DA. Furthermore, the in situ growth of nHA on GO@DA was induced by hydrothermal reactions to prepare GO@nHA hybrids. Then, the obtained hybrid was added to the polymer matrix, and a composite scaffold was prepared through a selective laser sintering process. The results demonstrated that with the addition of GO@DA and GO@nHA, the ultimate strength was increased to 16.8 and 18.6 MPa, respectively, which is 66 and 84% higher than the 10.1 MPa of the polylactic acid (PLA) scaffold. In addition, composite scaffolds exhibited good biomineralization ability in vitro and also promoted the adhesion and proliferation of MG63 cells.
Collapse
|
33
|
Dalili F, Aghdam RM, Soltani R, Saremi M. Corrosion, mechanical and bioactivity properties of HA-CNT nanocomposite coating on anodized Ti6Al4V alloy. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:34. [PMID: 35347447 PMCID: PMC8960600 DOI: 10.1007/s10856-022-06655-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Hydroxyapatite-carbon nanotubes (HA-CNTs) nanocomposite coating was applied by electrophoretic method on anodized Ti alloy to investigate its stability in simulated body fluid (SBF). The biocoating was characterized by using scanning electron microscope (SEM) for microstructure, X-ray diffraction (XRD) for crystallography. The effect of CNTs concentration on the coating properties was also investigated and found out that CNTs up to 5% has various improving effect on the system. It increased corrosion resistance and adhesion of the coating to the substrate and decreased the number of cracks on the coating. The results of the in vitro test showed that the cell viability increased with increasing the concentration of CNTs to 3 wt.% CNTs. Graphical abstract.
Collapse
Affiliation(s)
- Faezeh Dalili
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran
| | - Rouhollah Mehdinavaz Aghdam
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran.
| | - Reza Soltani
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran
| | - Mohsen Saremi
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran.
| |
Collapse
|
34
|
Ahmed MK, Awwad NS, Ibrahium HA, Mostafa MS, Alqahtani MS, El-Morsy MA. Hydroxyapatite and Er2O3 are embedded within graphene oxide nanosheets for high improvement of their hardness and biological responses. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02249-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Yang G, Kong H, Chen Y, Liu B, Zhu D, Guo L, Wei G. Recent advances in the hybridization of cellulose and carbon nanomaterials: Interactions, structural design, functional tailoring, and applications. Carbohydr Polym 2022; 279:118947. [PMID: 34980360 DOI: 10.1016/j.carbpol.2021.118947] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/15/2021] [Accepted: 11/26/2021] [Indexed: 01/13/2023]
Abstract
Due to the good biocompatibility and flexibility of cellulose and the excellent optical, electronic, as well as mechanical properties of carbon nanomaterials (CNMs), cellulose/CNM hybrid materials have been widely synthesized and used in energy storage, sensors, adsorption, biomedicine, and many other fields. In this review, we present recent advances (2016-current) in the design, structural design, functional tailoring and various applications of cellulose/CNM hybrid materials. For this aim, first the interactions between cellulose and CNMs for promoting the formation of cellulose/CNM materials are analyzed, and then the hybridization between cellulose with various CNMs for tailoring the structures and functions of hybrid materials is introduced. Further, abundant applications of cellulose/CNM hybrid materials in various fields are presented and discussed. This comprehensive review will be helpful for readers to understand the functional design and facile synthesis of cellulose-based nanocomposites, and to promote the high-performance utilization and sustainability of biomass materials in the future.
Collapse
Affiliation(s)
- Guozheng Yang
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Hao Kong
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Yun Chen
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Bin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Lei Guo
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, 266071 Qingdao, PR China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China.
| |
Collapse
|
36
|
Zheng Y, Gao A, Bai J, Liao Q, Wu Y, Zhang W, Guan M, Tong L, Geng D, Zhao X, Chu PK, Wang H. A programmed surface on polyetheretherketone for sequentially dictating osteoimmunomodulation and bone regeneration to achieve ameliorative osseointegration under osteoporotic conditions. Bioact Mater 2022; 14:364-376. [PMID: 35386814 PMCID: PMC8964985 DOI: 10.1016/j.bioactmat.2022.01.042] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/16/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023] Open
Abstract
Polyetheretherketone (PEEK) is a desirable alternative to conventional biomedical metals for orthopedic implants due to the excellent mechanical properties. However, the inherent bioinertness of PEEK contributes to inferior osseointegration of PEEK implants, especially under pathological conditions of osteoporosis. Herein, a programmed surface is designed and fabricated on PEEK to dictate osteoimmunomodulation and bone regeneration sequentially. A degradable hybrid coating consisting of poly(lactide-co-glycolide) and alendronate (ALN) loaded nano-hydroxyapatite is deposited on PEEK and then interleukin-4 (IL-4) is grafted onto the outer surface of the hybrid coating with the aid of N2 plasma immersion ion implantation and subsequent immersion in IL-4 solution. Dominant release of IL-4 together with ALN and Ca2+ during the first few days synergistically mitigates the early acute inflammatory reactions and creates an osteoimmunomodulatory microenvironment that facilitates bone regeneration. Afterwards, slow and sustained delivery of ALN and Ca2+ in the following weeks boosts osteogenesis and suppresses osteoclastogenesis simultaneously, consequently ameliorating bone-implant osseointegration even under osteoporotic conditions. By taking into account the different phases in bone repair, this strategy of constructing advanced bone implants with sequential functions provides customizable and clinically viable therapy to osteoporotic patients. A programmed surface is designed and fabricated on PEEK to dictate osteoimmunomodulation and bone regeneration sequentially. A degradable coating consisting ALN loaded nano-HA is deposited on PEEK, with IL-4 being grafted onto the outmost surface. Dominant release of IL-4 together with ALN and Ca2+ synergistically mitigates the early acute inflammatory reactions. Slow and sustained delivery of ALN and Ca2+ boosts osteogenesis and suppresses osteoclastogenesis simultaneously. Sequential regulation of peri-implant biological responses is achieved to match the dynamic process of bone regeneration.
Collapse
Affiliation(s)
- Yanyan Zheng
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Basic Medical Sciences and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Ang Gao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jiaxiang Bai
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Qing Liao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yuzheng Wu
- Department of Physics, Department of Materials Science and Engineering, Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Wei Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Min Guan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liping Tong
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Corresponding author
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Corresponding author
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Paul K. Chu
- Department of Physics, Department of Materials Science and Engineering, Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Corresponding author
| |
Collapse
|
37
|
Ferretti A, Sinha S, Sagresti L, Araya-Hermosilla E, Prato M, Mattoli V, Pucci A, Brancato G. One-step functionalization of mildly and strongly reduced graphene oxide with maleimide: an experimental and theoretical investigation of the Diels-Alder [4+2] cycloaddition reaction. Phys Chem Chem Phys 2022; 24:2491-2503. [PMID: 35023509 DOI: 10.1039/d1cp04121e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For large-scale graphene applications, such as the production of polymer-graphene nanocomposites, exfoliated graphene oxide (GO) and its reduced form (rGO) are presently considered to be very suitable starting materials, showing enhanced chemical reactivity with respect to pristine graphene, in addition to suitable electronic properties (i.e., tunable band gap). Among other chemical processes, a suitable way to obtain surface decoration of graphene is through a direct one-step Diels-Alder (DA) reaction, e.g. through the use of dienophile or diene moieties. However, the feasibility and extent of decoration largely depends on the specific graphene microstructure that in the case of rGO sheets is not easy to control and generally presents a high degree of inhomogeneity owing to various on-plane functionalization (e.g., epoxide and hydroxyl groups) or in-plane lattice defects. In an effort to gain some insights into the covalent functionalization of variably reduced GO samples, we present a combined experimental and theoretical study on the DA cycloaddition reaction of maleimide, a dienophile functional unit well-suited for chemical conjugation of polymers and macromolecules. In particular, we considered both mildly and strongly reduced GOs. Using thermogravimetry, Raman and X-Ray photoelectron spectroscopy, and elemental analysis we show evidence of variable chemical reactivity of rGO as a function of the residual oxygen content. Moreover, from quantum mechanical calculations carried out at the DFT level on different graphene reaction sites, we provide a more detailed molecular view to interpret experimental findings and to assess the reactivity series of different graphene modifications.
Collapse
Affiliation(s)
- Alfonso Ferretti
- Università di Pisa, Dipartimento di Ingegneria Civile ed Industriale, Largo Lucio Lazzarino 2, I-56124 Pisa, Italy
| | - Sourab Sinha
- Scuola Normale Superiore and CSGI, Piazza dei Cavalieri 7, I-56126 Pisa, Italy.
| | - Luca Sagresti
- Scuola Normale Superiore and CSGI, Piazza dei Cavalieri 7, I-56126 Pisa, Italy. .,Istituto Nazionale di Fisica Nucleare (INFN) sezione di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
| | - Esteban Araya-Hermosilla
- Center for Materials Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Mirko Prato
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Virgilio Mattoli
- Center for Materials Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Andrea Pucci
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy.,CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Giuseppe Brancato
- Scuola Normale Superiore and CSGI, Piazza dei Cavalieri 7, I-56126 Pisa, Italy. .,Istituto Nazionale di Fisica Nucleare (INFN) sezione di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
| |
Collapse
|
38
|
Memarian P, Pishavar E, Zanotti F, Trentini M, Camponogara F, Soliani E, Gargiulo P, Isola M, Zavan B. Active Materials for 3D Printing in Small Animals: Current Modalities and Future Directions for Orthopedic Applications. Int J Mol Sci 2022; 23:ijms23031045. [PMID: 35162968 PMCID: PMC8834768 DOI: 10.3390/ijms23031045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
The successful clinical application of bone tissue engineering requires customized implants based on the receiver's bone anatomy and defect characteristics. Three-dimensional (3D) printing in small animal orthopedics has recently emerged as a valuable approach in fabricating individualized implants for receiver-specific needs. In veterinary medicine, because of the wide range of dimensions and anatomical variances, receiver-specific diagnosis and therapy are even more critical. The ability to generate 3D anatomical models and customize orthopedic instruments, implants, and scaffolds are advantages of 3D printing in small animal orthopedics. Furthermore, this technology provides veterinary medicine with a powerful tool that improves performance, precision, and cost-effectiveness. Nonetheless, the individualized 3D-printed implants have benefited several complex orthopedic procedures in small animals, including joint replacement surgeries, critical size bone defects, tibial tuberosity advancement, patellar groove replacement, limb-sparing surgeries, and other complex orthopedic procedures. The main purpose of this review is to discuss the application of 3D printing in small animal orthopedics based on already published papers as well as the techniques and materials used to fabricate 3D-printed objects. Finally, the advantages, current limitations, and future directions of 3D printing in small animal orthopedics have been addressed.
Collapse
Affiliation(s)
- Parastoo Memarian
- Department of Animal Medicine, Productions and Health, University of Padova, 35020 Padova, Italy; (P.M.); (M.I.)
| | - Elham Pishavar
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.P.); (F.Z.); (M.T.); (F.C.)
| | - Federica Zanotti
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.P.); (F.Z.); (M.T.); (F.C.)
| | - Martina Trentini
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.P.); (F.Z.); (M.T.); (F.C.)
| | - Francesca Camponogara
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.P.); (F.Z.); (M.T.); (F.C.)
| | - Elisa Soliani
- Engineering Department, King’s College, London WC2R 2LS, UK;
| | - Paolo Gargiulo
- Institute for Biomedical and Neural Engineering, Reykjavík University, 101 Reykjavík, Iceland;
- Department of Science, Landspítali, 101 Reykjavík, Iceland
| | - Maurizio Isola
- Department of Animal Medicine, Productions and Health, University of Padova, 35020 Padova, Italy; (P.M.); (M.I.)
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.P.); (F.Z.); (M.T.); (F.C.)
- Correspondence:
| |
Collapse
|
39
|
Wang M, Yang T, Bao Q, Yang M, Mao C. Binding Peptide-Promoted Biofunctionalization of Graphene Paper with Hydroxyapatite for Stimulating Osteogenic Differentiation of Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:350-360. [PMID: 34962367 DOI: 10.1021/acsami.1c20740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Graphene paper (GP), a macroscopic self-supporting material, has exceptional flexibility and preserves the excellent physical and chemical properties of graphene nanomaterials. But its applications in regenerative medicine remain to be further explored. Here, we biologically functionalized GP with hydroxyapatite (HA) nanorods by the use of GP-binding peptides as an affinity linker. This strategy solved two daunting challenges for regenerative medicine applications of GP: the lack of good hydrophilicity for supporting cell growth and the difficulty in forming composites by binding with nanobiomaterials. Briefly, we first screened a high-affinity GP-binding peptide (TWWNPRLVYFDY) by the phage display technique. Then we chemically conjugated the GP-binding peptide to the synthetic HA nanorods. The GP-binding peptide on the resultant HA nanorods enabled them to be bound and assembled onto the GP substrate with high affinity, forming a GP-peptide-HA composite with significantly improved hydrophilicity of GP. The composite promoted the attachment and proliferation of mesenchymal stem cells (MSCs), demonstrating its outstanding biocompatibility. Due to the unique compositions of the composite, it was also found to induce osteogenic differentiation of MSCs in vitro in the absence of other inducers in the medium, by verifying the expression of the osteogenic markers including collagen-1, bone morphogenetic proteins 2, runx-related transcription factor 2, osteocalcin, and alkaline phosphatase. Our work suggests that the GP-binding peptide can be used to link inorganic nanoparticles onto GP to facilitate the biomedical applications of GP.
Collapse
Affiliation(s)
- Mengjia Wang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 Zhejiang, P. R. China
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 Zhejiang, P. R. China
| | - Qing Bao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 Zhejiang, P. R. China
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058 Zhejiang, P. R. China
| | - Chuanbin Mao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 Zhejiang, P. R. China
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019-5251, United States
| |
Collapse
|
40
|
Jagadeeshanayaka N, Awasthi S, Jambagi SC, Srivastava C. Bioactive Surface Modifications through Thermally Sprayed Hydroxyapatite Composite Coatings: A Review over Selective Reinforcements. Biomater Sci 2022; 10:2484-2523. [DOI: 10.1039/d2bm00039c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxyapatite (HA) has been an excellent replacement for the natural bone in orthopedic applications, owing to its close resemblance; however, it is brittle and has low strength. Surface modification techniques...
Collapse
|
41
|
Xu Z, Li Y, Xu D, Li L, Xu Y, Chen L, Liu Y, Sun J. Improvement of mechanical and antibacterial properties of porous nHA scaffolds by fluorinated graphene oxide. RSC Adv 2022; 12:25405-25414. [PMID: 36199313 PMCID: PMC9450491 DOI: 10.1039/d2ra03854d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/28/2022] [Indexed: 12/02/2022] Open
Abstract
Nano-hydroxyapatite (nHA) is widely used as a bio-scaffold material due to its good bioactivity and biocompatibility. In this study, fluorinated graphene oxide (FG) was added to nHA to improve its poor formability, weak mechanical properties, undesirable antimicrobial activity and other disadvantages that affect its clinical application. FG was synthesized by a simple hydrothermal method. Novel porous composite scaffolds were prepared by adding different weight ratios (0.1 wt%, 0.5 wt% and 1 wt%) of FG to nHA using the 3D printing technique. The morphology, phase composition and mechanical properties of the composite scaffolds were characterized. In addition, the degradation performance of the composite scaffolds, antibacterial activity against Staphylococcus aureus and Escherichia coli, and cytocompatibility were also investigated. The results showed that the nHA/FG composite scaffold was successfully prepared with a uniform distribution of FG on the scaffold. The mechanical properties showed that the compression strength of the nHA/FG composite scaffold was significantly higher than that of the nHA scaffold (7.22 ± 1.43 MPa). The porosity of all composite scaffolds was above 70%. The addition of FG significantly improved the mechanical properties of the nHA scaffold without affecting the porosity of the scaffold. In addition, the 0.5 wt% nHA/FG scaffold exhibited satisfactory cytocompatibility and antibacterial properties. Therefore, the constructed nHA/FG composite scaffold can be considered as a novel antimicrobial bone substitute material with good application prospects. Nano-hydroxyapatite (nHA) is widely used as a bio-scaffold material. In this study, fluorinated graphene oxide (FG) was added to nHA to improve its poor formability, weak mechanical properties and undesirable antimicrobial activity that affect its clinical application.![]()
Collapse
Affiliation(s)
- Zexian Xu
- The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
| | - Yali Li
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dian Xu
- The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
| | - Li Li
- The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
| | - Yaoxiang Xu
- The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
- Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao, Qingdao, China
| | - Liqiang Chen
- The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
| | - Yanshan Liu
- The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
- Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao, Qingdao, China
- Shandong Provincial Key Laboratory of Digital Medicine and Computer-Assisted Surgery, Qingdao, China
| | - Jian Sun
- The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
- Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao, Qingdao, China
- Shandong Provincial Key Laboratory of Digital Medicine and Computer-Assisted Surgery, Qingdao, China
| |
Collapse
|
42
|
Graphene-Oxide Porous Biopolymer Hybrids Enhance In Vitro Osteogenic Differentiation and Promote Ectopic Osteogenesis In Vivo. Int J Mol Sci 2022; 23:ijms23010491. [PMID: 35008918 PMCID: PMC8745160 DOI: 10.3390/ijms23010491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 11/17/2022] Open
Abstract
Over the years, natural-based scaffolds have presented impressive results for bone tissue engineering (BTE) application. Further, outstanding interactions have been observed during the interaction of graphene oxide (GO)-reinforced biomaterials with both specific cell cultures and injured bone during in vivo experimental conditions. This research hereby addresses the potential of fish gelatin/chitosan (GCs) hybrids reinforced with GO to support in vitro osteogenic differentiation and, further, to investigate its behavior when implanted ectopically. Standard GCs formulation was referenced against genipin (Gp) crosslinked blend and 0.5 wt.% additivated GO composite (GCsGp/GO 0.5 wt.%). Pre-osteoblasts were put in contact with these composites and induced to differentiate in vitro towards mature osteoblasts for 28 days. Specific bone makers were investigated by qPCR and immunolabeling. Next, CD1 mice models were used to assess de novo osteogenic potential by ectopic implantation in the subcutaneous dorsum pocket of the animals. After 4 weeks, alkaline phosphate (ALP) and calcium deposits together with collagen synthesis were investigated by biochemical analysis and histology, respectively. Further, ex vivo materials were studied after surgery regarding biomineralization and morphological changes by means of qualitative and quantitative methods. Furthermore, X-ray diffraction and Fourier-transform infrared spectroscopy underlined the newly fashioned material structuration by virtue of mineralized extracellular matrix. Specific bone markers determination stressed the osteogenic phenotype of the cells populating the material in vitro and successfully differentiated towards mature bone cells. In vivo results of specific histological staining assays highlighted collagen formation and calcium deposits, which were further validated by micro-CT. It was observed that the addition of 0.5 wt.% GO had an overall significant positive effect on both in vitro differentiation and in vivo bone cell recruitment in the subcutaneous region. These data support the GO bioactivity in osteogenesis mechanisms as being self-sufficient to elevate osteoblast differentiation and bone formation in ectopic sites while lacking the most common osteoinductive agents.
Collapse
|
43
|
Guo P, Liu X, Zhang P, He Z, Li Z, Alini M, Richards RG, Grad S, Stoddart MJ, Zhou G, Zou X, Chan D, Tian W, Chen D, Gao M, Zhou Z, Liu S. A single-cell transcriptome of mesenchymal stromal cells to fabricate bioactive hydroxyapatite materials for bone regeneration. Bioact Mater 2021; 9:281-298. [PMID: 34820571 PMCID: PMC8586438 DOI: 10.1016/j.bioactmat.2021.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/01/2021] [Accepted: 08/05/2021] [Indexed: 01/07/2023] Open
Abstract
The osteogenic microenvironment of bone-repairing materials plays a key role in accelerating bone regeneration but remains incompletely defined, which significantly limits the application of such bioactive materials. Here, the transcriptional landscapes of different osteogenic microenvironments, including three-dimensional (3D) hydroxyapatite (HA) scaffolds and osteogenic medium (OM), for mesenchymal stromal cells (MSCs) in vitro were mapped at single-cell resolution. Our findings suggested that an osteogenic process reminiscent of endochondral ossification occurred in HA scaffolds through sequential activation of osteogenic-related signaling pathways, along with inflammation and angiogenesis, but inhibition of adipogenesis and fibrosis. Moreover, we revealed the mechanism during OM-mediated osteogenesis involves the ZBTB16 and WNT signaling pathways. Heterogeneity of MSCs was also demonstrated. In vitro ossification of LRRC75A+ MSCs was shown to have better utilization of WNT-related ossification process, and PCDH10+ MSCs with superiority in hydroxyapatite-related osteogenic process. These findings provided further understanding of the cellular activity modulated by OM conditions and HA scaffolds, providing new insights for the improvement of osteogenic biomaterials. This atlas provides a blueprint for research on MSC heterogeneity and the osteogenic microenvironment of HA scaffolds and a database reference for the application of bioactive materials for bone regeneration.
Collapse
Affiliation(s)
- Peng Guo
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xizhe Liu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Penghui Zhang
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhongyuan He
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhen Li
- AO Research Institute Davos, Davos, Switzerland
| | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | | | | | | | - Guangqian Zhou
- Shenzhen Key Laboratory of Anti-aging and Regenerative Medicine, Department of Medical Cell Biology and Genetics, Health Sciences Center, Shenzhen University, Shenzhen, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Danny Chan
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wei Tian
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing JiShuiTan Hospital, Beijing, China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing JiShuiTan Hospital, Beijing, China
- Corresponding author.
| | - Manman Gao
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Sport Medicine, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
- Corresponding author. Department of Sport Medicine, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China.
| | - Zhiyu Zhou
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Corresponding author. Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| | - Shaoyu Liu
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
44
|
Maleki-Ghaleh H, Siadati MH, Fallah A, Koc B, Kavanlouei M, Khademi-Azandehi P, Moradpur-Tari E, Omidi Y, Barar J, Beygi-Khosrowshahi Y, Kumar AP, Adibkia K. Antibacterial and Cellular Behaviors of Novel Zinc-Doped Hydroxyapatite/Graphene Nanocomposite for Bone Tissue Engineering. Int J Mol Sci 2021; 22:9564. [PMID: 34502473 PMCID: PMC8431478 DOI: 10.3390/ijms22179564] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/29/2021] [Accepted: 08/29/2021] [Indexed: 12/15/2022] Open
Abstract
Bacteria are one of the significant causes of infection in the body after scaffold implantation. Effective use of nanotechnology to overcome this problem is an exciting and practical solution. Nanoparticles can cause bacterial degradation by the electrostatic interaction with receptors and cell walls. Simultaneously, the incorporation of antibacterial materials such as zinc and graphene in nanoparticles can further enhance bacterial degradation. In the present study, zinc-doped hydroxyapatite/graphene was synthesized and characterized as a nanocomposite material possessing both antibacterial and bioactive properties for bone tissue engineering. After synthesizing the zinc-doped hydroxyapatite nanoparticles using a mechanochemical process, they were composited with reduced graphene oxide. The nanoparticles and nanocomposite samples were extensively investigated by transmission electron microscopy, X-ray diffraction, and Raman spectroscopy. Their antibacterial behaviors against Escherichia coli and Staphylococcus aureus were studied. The antibacterial properties of hydroxyapatite nanoparticles were found to be improved more than 2.7 and 3.4 times after zinc doping and further compositing with graphene, respectively. In vitro cell assessment was investigated by a cell viability test and alkaline phosphatase activity using mesenchymal stem cells, and the results showed that hydroxyapatite nanoparticles in the culture medium, in addition to non-toxicity, led to enhanced proliferation of bone marrow stem cells. Furthermore, zinc doping in combination with graphene significantly increased alkaline phosphatase activity and proliferation of mesenchymal stem cells. The antibacterial activity along with cell biocompatibility/bioactivity of zinc-doped hydroxyapatite/graphene nanocomposite are the highly desirable and suitable biological properties for bone tissue engineering successfully achieved in this work.
Collapse
Affiliation(s)
- H. Maleki-Ghaleh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz 51664-14766, Iran; (H.M.-G.); (J.B.)
| | - M. H. Siadati
- Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran 19919-43344, Iran;
| | - A. Fallah
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; (A.F.); (B.K.)
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
| | - B. Koc
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; (A.F.); (B.K.)
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
| | - M. Kavanlouei
- Materials Engineering Department, Faculty of Engineering, Urmia University, Urmia 57561-51818, Iran;
| | - P. Khademi-Azandehi
- Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, Tabriz 51335-1996, Iran;
| | - E. Moradpur-Tari
- Materials Engineering Department, Faculty of Engineering, Tarbiat Modares University, Tehran 14115-111, Iran;
| | - Y. Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33314, USA;
| | - J. Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz 51664-14766, Iran; (H.M.-G.); (J.B.)
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 51664-14766, Iran
| | - Y. Beygi-Khosrowshahi
- Department of Chemical Engineering, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz 53751-71379, Iran;
| | - Alan P. Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - K. Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz 51664-14766, Iran; (H.M.-G.); (J.B.)
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 51664-14766, Iran
| |
Collapse
|
45
|
Bioactive Calcium Phosphate-Based Composites for Bone Regeneration. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5090227] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Calcium phosphates (CaPs) are widely accepted biomaterials able to promote the regeneration of bone tissue. However, the regeneration of critical-sized bone defects has been considered challenging, and the development of bioceramics exhibiting enhanced bioactivity, bioresorbability and mechanical performance is highly demanded. In this respect, the tuning of their chemical composition, crystal size and morphology have been the matter of intense research in the last decades, including the preparation of composites. The development of effective bioceramic composite scaffolds relies on effective manufacturing techniques able to control the final multi-scale porosity of the devices, relevant to ensure osteointegration and bio-competent mechanical performance. In this context, the present work provides an overview about the reported strategies to develop and optimize bioceramics, while also highlighting future perspectives in the development of bioactive ceramic composites for bone tissue regeneration.
Collapse
|
46
|
Nigella Sativa-Coated Hydroxyapatite Scaffolds: Synergetic Cues to Stimulate Myoblasts Differentiation and Offset Infections. Tissue Eng Regen Med 2021; 18:787-795. [PMID: 34132986 DOI: 10.1007/s13770-021-00341-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND At present osteoporosis has come into view as a major health concern. Skeletal diseases typified by weak and fragile bones have imposed threats of fissure. Hydroxyapatite (HAP) is known to induce osteoblast like differentiation and provide mechanical strength, hence, used in bone tissue engineering; whereas, Nigella sativa has also demonstrated potential to treat bone and muscle diseases. This study was aimed to develop potential orthopedic scaffold exploiting natural resources of Saudi Arabia which can be used as prospective tissue engineering implant. METHODS The bone scaffold was developed by grafting biogenic HAP with N. sativa essential oil. N. sativa was applied for boosting osteogenesis and to stimulate antimicrobial potential. Antimicrobial potential was investigated utilizing S. aureus bacteria. Spectroscopic and surface characters of N. sativa grafted HAP scaffolds were analyzed using Fourier-transform infrared spectroscopy, X-ray crystallography and Scanning electron microscopy. To ensure biocompatibility of scaffolds; we selected C2C12 cell-lines; best model to study mechanistic pathways related to osteoblasts and myoblasts differentiation. RESULTS Grafting of HAP with N. sativa did not affect typical spherical silhouette of nanoparticles. Characteristically; protein loaded polynucleated myotubes are result of in vitro myogenesis of C2C12 myoblasts in squat serum environment. CONCLUSION It is first study of unique combination of N. sativa and HAP scaffold as a possible candidate of implantation for skeletal muscles regeneration. Outcome of this finding revealed N. sativa grafted HAP enhance differentiation significantly over that of HAP. The proposed scaffold will be an economical natural material for hard and soft tissue engineering and will aid in curing skeletal muscle diseases. Our findings have implications for treatment of muscular/bone diseases.
Collapse
|
47
|
Zhang H, Jiao C, Liu Z, He Z, Mengxing Ge, Zongjun Tian, Wang C, Wei Z, Shen L, Liang H. 3D-printed composite, calcium silicate ceramic doped with CaSO4·2H2O: Degradation performance and biocompatibility. J Mech Behav Biomed Mater 2021; 121:104642. [PMID: 34174680 DOI: 10.1016/j.jmbbm.2021.104642] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/31/2021] [Accepted: 06/05/2021] [Indexed: 12/22/2022]
Abstract
Calcium silicate is a common implant material with excellent mechanical strength and good biological activity. In recent years, the addition of strengthening materials to calcium silicate has been proven to promote bone tissue regeneration, but its degradation properties require further improvements. In this paper, calcium silicate was used as the matrix, and 10 wt% hydroxyapatite and 10 wt% strontium phosphate were added to im prove the biological activity of the scaffold. The effect of adding different amounts of calcium sulfate dihydrate (CaSO4·2H2O) on the degradation of the scaffold was explored. A porous ceramic scaffold was prepared by digital light processing (DLP) technology, and its performance was evaluated. Cell experiments showed that the addition of calcium sulfate improved cell proliferation and differentiation. Simulated body fluid (SBF) immersion tests showed that small amounts of apatite deposits appeared on the fourth day, larger deposits appeared on the 14th day, and degradation occurred on the surface after 28 days of immersion. Mechanical tests showed that the addition of 5 wt% CaSO4·2H2O improved the compressibility of the composite. After soaking in SBF for 14 days, it retained its compressive strength (11.8 MPa), which meets the requirements of cancellous bone, demonstrating its potential application value for bone repair.
Collapse
Affiliation(s)
- Hanxu Zhang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Jiangsu Key Laboratory of Digital Medical Equipment Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Chen Jiao
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Jiangsu Key Laboratory of Digital Medical Equipment Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Zibo Liu
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Zhijing He
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Jiangsu Key Laboratory of Digital Medical Equipment Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Mengxing Ge
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Zongjun Tian
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Jiangsu Key Laboratory of Digital Medical Equipment Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Changjiang Wang
- Department of Engineering and Design, University of Sussex, Brighton, BN1 9RH, United Kingdom
| | - Zhen Wei
- Jiangsu Pharmaceutical Association, Zhongshan East Road, 210002, Nanjing, China
| | - Lida Shen
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Jiangsu Key Laboratory of Digital Medical Equipment Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Huixin Liang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, 210008, China; Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing, 210016, China
| |
Collapse
|
48
|
Nunes Nicomedes DN, Mota LM, Vasconcellos R, Medrado NV, de Oliveira M, Costa de Alvarenga É, Juste KRC, Righi A, Manhabosco SM, Brigolini Silva GJ, Araújo FGS, Barros de Oliveira A, Campos Batista RJ, Soares JDS, Manhabosco TM. Comparison between hydroxyapatite/soapstone and hydroxyapatite/reduced graphene oxide composite coatings: Synthesis and property improvement. J Mech Behav Biomed Mater 2021; 121:104618. [PMID: 34116433 DOI: 10.1016/j.jmbbm.2021.104618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/18/2022]
Abstract
Economic viability and eco-friendliness are important characteristics that make implants available to the population in a sustainable way. In this work, we evaluate the performance of a low-cost, widely available, and eco-friendly material (talc from soapstone) relative to reduced graphene oxide as reinforcement to brittle hydroxyapatite coatings. We employ a low-cost and straightforward technique, electrodeposition, to deposit the composite coatings on the titanium substrate. Corrosion, wear, and biocompatibility tests indicate that the reduced graphene oxide can be effectively replaced by talc without reducing the mechanical, anticorrosion, and biocompatible composite coatings properties. Our results indicate that talc from soapstone is a promising material for biomedical applications.
Collapse
Affiliation(s)
- Daniel Nilson Nunes Nicomedes
- Departamento de Física, Universidade Federal de Ouro Preto, Campus Universitário Morro Do Cruzeiro ICEB/DEFIS, 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Laureana Moreira Mota
- Departamento de Física, Universidade Federal de Ouro Preto, Campus Universitário Morro Do Cruzeiro ICEB/DEFIS, 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Rebecca Vasconcellos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Laboratório de Sinalização Celular e Nanobiotecnologia, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Nathanael Vieira Medrado
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Laboratório de Sinalização Celular e Nanobiotecnologia, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Michelle de Oliveira
- Departamento de Física, Universidade Federal de Ouro Preto, Campus Universitário Morro Do Cruzeiro ICEB/DEFIS, 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Érika Costa de Alvarenga
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Laboratório de Sinalização Celular e Nanobiotecnologia, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil; Departamento de Ciências Naturais, Universidade Federal de São João Del Rei, Praça Dom Helvécio 74, 36301-160, São João Del Rei, Minas Gerais, Brazil
| | - Karyne R C Juste
- Instituto SENAI de Inovação Em Engenharia de Superfícies. Rua Sete 2000, Bairro Horto Florestal, 31035-536, Belo Horizonte, Minas Gerais, Brazil
| | - Ariete Righi
- Departamento de Física, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Sara Matte Manhabosco
- Laboratório de Metrologia, Universidade Federal Do Rio Grande, Campus Carreiros, Av. Itália, Km 8, 96203-900, Rio Grande, Rio Grande do Sul, Brazil
| | - Guilherme Jorge Brigolini Silva
- Laboratório de Construção Civil, Universidade Federal de Ouro Preto, Campus Universitário Morro Do Cruzeiro Escola de Minas/DECIV, 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Fernando Gabriel S Araújo
- Departamento de Física, Universidade Federal de Ouro Preto, Campus Universitário Morro Do Cruzeiro ICEB/DEFIS, 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Alan Barros de Oliveira
- Departamento de Física, Universidade Federal de Ouro Preto, Campus Universitário Morro Do Cruzeiro ICEB/DEFIS, 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Ronaldo Junio Campos Batista
- Departamento de Física, Universidade Federal de Ouro Preto, Campus Universitário Morro Do Cruzeiro ICEB/DEFIS, 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Jaqueline Dos Santos Soares
- Departamento de Física, Universidade Federal de Ouro Preto, Campus Universitário Morro Do Cruzeiro ICEB/DEFIS, 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Taíse Matte Manhabosco
- Departamento de Física, Universidade Federal de Ouro Preto, Campus Universitário Morro Do Cruzeiro ICEB/DEFIS, 35400-000, Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
49
|
Electrolytic deposition of composite coatings on 316L SS and its in vitro corrosion resistive behavior in simulated body fluid solution. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01657-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Sun N, Yin S, Lu Y, Zhang W, Jiang X. Graphene oxide-coated porous titanium for pulp sealing: an antibacterial and dentino-inductive restorative material. J Mater Chem B 2021; 8:5606-5619. [PMID: 32478365 DOI: 10.1039/d0tb00697a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pulp treatment techniques such as pulp capping, pulpotomy and pulp regeneration are all based on the principle of preserving vital pulp. However, specific dental restorative materials that can simultaneously protect pulp vitality and repair occlusal morphology have not been developed thus far. Traditional pulp capping materials cannot be used as dental restorative materials due to their long-term solubility and poor mechanical behavior. Titanium (Ti) is used extensively in dentistry and is regarded as a promising material for pulp sealing because of its favorable biocompatibility, processability and mechanical properties. Originally, we proposed the concept of "odontointegration", which represents direct dentin-like mineralization contact between pulp and the surface of the pulp sealing material; herein, we report the fabrication of a novel antibacterial and dentino-inductive material via micro-arc oxidation (MAO), incorporating self-assembled graphene oxide (GO) for Ti surface modification. The hierarchical micro/nanoporous structure of the MAO coating provides a suitable microenvironment for odontogenic differentiation of human dental pulp stem cells, and GO loading contributes to antibacterial activity. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy and Raman spectroscopy were employed for structure and elemental analysis. In vitro studies, including cell adhesion, Live/Dead and CCK-8 assays, alkaline phosphatase activity and calcium deposition assay, real-time polymerase chain reaction, western blot analysis and immunofluorescence staining were used to examine cell adhesion, viability, proliferation, mineralization, and odontogenic differentiation ability. Antibacterial properties against Streptococcus mutans were analyzed by SEM, spread plate, Live/Dead and Alamar blue tests. The Ti-MAO-1.0 mg mL-1 GO group exhibited excellent cell adhesion, odontoblast differentiation, mineralization, and antibacterial ability, which are beneficial to odontointegration.
Collapse
Affiliation(s)
- Ningjia Sun
- Department of Prosthodontics, Shanghai Engineering Research Centre of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Centre for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200011, China.
| | - Shi Yin
- Department of Prosthodontics, Shanghai Engineering Research Centre of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Centre for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200011, China.
| | - Yuezhi Lu
- Department of Prosthodontics, Shanghai Engineering Research Centre of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Centre for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200011, China.
| | - Wenjie Zhang
- Department of Prosthodontics, Shanghai Engineering Research Centre of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Centre for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200011, China.
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Engineering Research Centre of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Centre for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200011, China.
| |
Collapse
|