1
|
Ramirez-Calderon G, Saleh A, Hidalgo Castillo TC, Druet V, Almarhoon B, Almulla L, Adamo A, Inal S. Enhancing the Maturation of Human Pluripotent Stem Cell-Derived Cardiomyocytes with an n-Type Organic Semiconductor Coating. ACS APPLIED MATERIALS & INTERFACES 2024; 16:66900-66910. [PMID: 38620064 PMCID: PMC11647761 DOI: 10.1021/acsami.3c18919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/17/2024]
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are a promising cell source for cardiac regenerative medicine and in vitro modeling. However, hPSC-CMs exhibit immature structural and functional properties compared with adult cardiomyocytes. Various electrical, mechanical, and biochemical cues have been applied to enhance hPSC-CM maturation but with limited success. In this work, we investigated the potential application of the semiconducting polymer poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (P(NDI2OD-T2)) as a light-sensitive material to stimulate hPSC-CMs optically. Our results indicated that P(NDI2OD-T2)-mediated photostimulation caused cell damage at irradiances applied long-term above 36 μW/mm2 and did not regulate cardiac monolayer beating (after maturation) at higher intensities applied in a transient fashion. However, we discovered that the cells grown on P(NDI2OD-T2)-coated substrates showed significantly enhanced expression of cardiomyocyte maturation markers in the absence of a light exposure stimulus. A combination of techniques, such as atomic force microscopy, scanning electron microscopy, and quartz crystal microbalance with dissipation monitoring, which we applied to investigate the interface of the cell with the n-type coating, revealed that P(NDI2OD-T2) impacted the nanostructure, adsorption, and viscoelasticity of the Matrigel coating used as a cell adhesion promoter matrix. This modified cellular microenvironment promoted the expression of cardiomyocyte maturation markers related to contraction, calcium handling, metabolism, and conduction. Overall, our findings demonstrate that conjugated polymers such as P(NDI2OD-T2) can be used as passive coatings to direct stem cell fate through interfacial engineering of cell growth substrates.
Collapse
Affiliation(s)
- Gustavo Ramirez-Calderon
- Laboratory
of Stem Cells and Diseases, Biological and Environmental Science and
Engineering Division, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Abdulelah Saleh
- Organic
Bioelectronics Laboratory, Biological and Environmental Science and
Engineering Division, KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Tania Cecilia Hidalgo Castillo
- Organic
Bioelectronics Laboratory, Biological and Environmental Science and
Engineering Division, KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Victor Druet
- Organic
Bioelectronics Laboratory, Biological and Environmental Science and
Engineering Division, KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Bayan Almarhoon
- Organic
Bioelectronics Laboratory, Biological and Environmental Science and
Engineering Division, KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Latifah Almulla
- Organic
Bioelectronics Laboratory, Biological and Environmental Science and
Engineering Division, KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Antonio Adamo
- Laboratory
of Stem Cells and Diseases, Biological and Environmental Science and
Engineering Division, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Sahika Inal
- Organic
Bioelectronics Laboratory, Biological and Environmental Science and
Engineering Division, KAUST, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
2
|
Li L, Shanmugasundaram A, Kim J, Oyunbaatar NE, Kanade PP, Cha SE, Lim D, Lee CH, Kim YB, Lee BK, Kim ES, Lee DW. Graphene SU-8 Platform for Enhanced Cardiomyocyte Maturation and Intercellular Communication in Cardiac Drug Screening. ACS NANO 2024; 18:33293-33309. [PMID: 39591586 DOI: 10.1021/acsnano.4c05365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Cell culture substrates designed for myocardial applications are pivotal in promoting the maturation and functional integration of cardiomyocytes. However, traditional in vitro models often inadequately mimic the diverse biochemical signals and electrophysiological properties of mature cardiomyocytes. Herein, we propose the application of monolayer graphene, transferred onto SU-8 cantilevers integrated with a microelectrode array, to evaluate its influence on the structural, functional, and electro-mechano-physiological properties of cardiomyocytes. The monolayer graphene, prepared using chemical vapor deposition, is adeptly transferred to the target substrates via thermal release tape. The electrical conductivity of these graphene-enhanced SU-8 substrates is about 1600 S/cm, markedly surpassing that of previously reported cell culture substrates. Immunofluorescence staining and Western blot analyses reveal that the electrically conductive graphene significantly enhances cardiomyocyte maturation and cardiac marker expression compared to bare SU-8 substrates. Cardiomyocytes cultured on graphene-transferred substrates exhibit conduction velocity approximately 3.4 times greater than that of the control group. Such improvements in cardiac marker expression, mechano-electrophysiological performance lead to better responsiveness to cardiovascular drugs, such as Verapamil and Isoproterenol. While the graphene monolayer does not fully replicate the complex environment found in native cardiac tissue, its use on SU-8 substrates offers a feasible approach for accelerating cardiomyocyte maturation and facilitating drug screening applications.
Collapse
Affiliation(s)
- Longlong Li
- Department of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Arunkumar Shanmugasundaram
- Department of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jongyun Kim
- Department of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
- Center for Next-Generation Sensor Research and Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Nomin-Erdene Oyunbaatar
- Department of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Pooja P Kanade
- Centre for Quantum Materials and Technology, School of Mathematics and Physics, Queen's University Belfast, Northern Ireland, Belfast BT7 1NN, U.K
| | - Seong-Eung Cha
- Department of Biological Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Daeyun Lim
- Green Energy & Nano Technology R&D Group, Korea Institute of Industrial Technology, Gwangju 61012, Republic of Korea
| | - Chil-Hyoung Lee
- Green Energy & Nano Technology R&D Group, Korea Institute of Industrial Technology, Gwangju 61012, Republic of Korea
| | - Young-Baek Kim
- Green Energy & Nano Technology R&D Group, Korea Institute of Industrial Technology, Gwangju 61012, Republic of Korea
| | - Bong-Kee Lee
- Department of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Eung-Sam Kim
- Department of Biological Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dong-Weon Lee
- Department of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
- Center for Next-Generation Sensor Research and Development, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
3
|
DePalma SJ, Jilberto J, Stis AE, Huang DD, Lo J, Davidson CD, Chowdhury A, Kent RN, Jewett ME, Kobeissi H, Chen CS, Lejeune E, Helms AS, Nordsletten DA, Baker BM. Matrix Architecture and Mechanics Regulate Myofibril Organization, Costamere Assembly, and Contractility in Engineered Myocardial Microtissues. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309740. [PMID: 39558513 DOI: 10.1002/advs.202309740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/09/2024] [Indexed: 11/20/2024]
Abstract
The mechanical function of the myocardium is defined by cardiomyocyte contractility and the biomechanics of the extracellular matrix (ECM). Understanding this relationship remains an important unmet challenge due to limitations in existing approaches for engineering myocardial tissue. Here, they established arrays of cardiac microtissues with tunable mechanics and architecture by integrating ECM-mimetic synthetic, fiber matrices, and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), enabling real-time contractility readouts, in-depth structural assessment, and tissue-specific computational modeling. They found that the stiffness and alignment of matrix fibers distinctly affect the structural development and contractile function of pure iPSC-CM tissues. Further examination into the impact of fibrous matrix stiffness enabled by computational models and quantitative immunofluorescence implicates cell-ECM interactions in myofibril assembly, myofibril maturation, and notably costamere assembly, which correlates with improved contractile function of tissues. These results highlight how iPSC-CM tissue models with controllable architecture and mechanics can elucidate mechanisms of tissue maturation and disease.
Collapse
Affiliation(s)
- Samuel J DePalma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Javiera Jilberto
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Austin E Stis
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Darcy D Huang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jason Lo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Aamilah Chowdhury
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Robert N Kent
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maggie E Jewett
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hiba Kobeissi
- Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA
| | - Christopher S Chen
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Emma Lejeune
- Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA
| | - Adam S Helms
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David A Nordsletten
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, School of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, London, SE1 7EH, UK
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
4
|
Oguntade E, Wigham C, Owuor L, Aryal U, O'Grady K, Acierto A, Zha RH, Henderson JH. Dry and wet wrinkling of a silk fibroin biopolymer by a shape-memory material with insight into mechanical effects on secondary structures in the silk network. J Mater Chem B 2024; 12:6351-6370. [PMID: 38864220 DOI: 10.1039/d4tb00112e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Surface wrinkling provides an approach to modify the surfaces of biomedical devices to better mimic features of the extracellular matrix and guide cell attachment, proliferation, and differentiation. Biopolymer wrinkling on active materials holds promise but is poorly explored. Here we report a mechanically actuated assembly process to generate uniaxial micro-and nanosized silk fibroin (SF) wrinkles on a thermo-responsive shape-memory polymer (SMP) substrate, with wrinkling demonstrated under both dry and hydrated (cell compatible) conditions. By systematically investigating the influence of SMP programmed strain magnitude, film thickness, and aqueous media on wrinkle stability and morphology, we reveal how to control the wrinkle sizes on the micron and sub-micron length scale. Furthermore, as a parameter fundamental to SMPs, we demonstrate that the temperature during the recovery process can also affect the wrinkle characteristics and the secondary structures in the silk network. We find that with increasing SMP programmed strain magnitude, silk wrinkled topographies with increasing wavelengths and amplitudes are achieved. Furthermore, silk wrinkling is found to increase β-sheet content, with spectroscopic analysis suggesting that the effect may be due primarily to tensile (e.g., Poisson effect and high-curvature wrinkle) loading modes in the SF, despite the compressive bulk deformation (uniaxial contraction) used to produce wrinkles. Silk wrinkles fabricated from sufficiently thick films (roughly 250 nm) persist after 24 h in cell culture medium. Using a fibroblast cell line, analysis of cellular response to the wrinkled topographies reveals high viability and attachment. These findings demonstrate use of wrinkled SF films under physiologically relevant conditions and suggest the potential for biopolymer wrinkles on biomaterials surfaces to find application in cell mechanobiology, wound healing, and tissue engineering.
Collapse
Affiliation(s)
- Elizabeth Oguntade
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - Caleb Wigham
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Luiza Owuor
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - Ujjwal Aryal
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - Kerrin O'Grady
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - Anthony Acierto
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - R Helen Zha
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - James H Henderson
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
5
|
Yuan L, Xiao L, Zhang J, Xiao Y, Yu L, Yang KK, Wang YZ. Engineering Biodegradable Polyurethanes with Precisely Controlled Hierarchical Structures to Access Shape Memory Effect and Enhanced Bioactivities. Biomacromolecules 2024; 25:3795-3806. [PMID: 38781116 DOI: 10.1021/acs.biomac.4c00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Biodegradable polymers with shape memory effects (SMEs) offer promising solutions for short-term medical interventions, facilitating minimally invasive procedures and subsequent degradation without requiring secondary surgeries. However, achieving a good balance among desirable SMEs, mechanical performance, degradation rate, and bioactivities remains a significant challenge. To address this issue, we established a strategy to develop a versatile biodegradable polyurethane (PPDO-PLC) with tunable hierarchical structures via precise chain segment control. Initial copolymerization of l-lactide and ε-caprolactone sets a tunable Tg close to body temperature, followed by block copolymerization with poly(p-dioxanone) to form a hard domain. This yields a uniform microphase-separation morphology, ensuring robust SME and facilitating the development of roughly porous surface structures in alkaline environments. Cell experiments indicate that these rough surfaces significantly enhance cellular activities, such as adhesion, proliferation, and osteogenic differentiation. Our approach provides a methodology for balancing biodegradability, SMEs, three-dimensional (3D) printability, and bioactivity in materials through hierarchical structure regulation.
Collapse
Affiliation(s)
- Ling Yuan
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
| | - Li Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Jie Zhang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
| | - Yi Xiao
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
| | - Leixiao Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Ke-Ke Yang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
6
|
Casarella S, Ferla F, Di Francesco D, Canciani E, Rizzi M, Boccafoschi F. Focal Adhesion's Role in Cardiomyocytes Function: From Cardiomyogenesis to Mechanotransduction. Cells 2024; 13:664. [PMID: 38667279 PMCID: PMC11049660 DOI: 10.3390/cells13080664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Mechanotransduction refers to the ability of cells to sense mechanical stimuli and convert them into biochemical signals. In this context, the key players are focal adhesions (FAs): multiprotein complexes that link intracellular actin bundles and the extracellular matrix (ECM). FAs are involved in cellular adhesion, growth, differentiation, gene expression, migration, communication, force transmission, and contractility. Focal adhesion signaling molecules, including Focal Adhesion Kinase (FAK), integrins, vinculin, and paxillin, also play pivotal roles in cardiomyogenesis, impacting cell proliferation and heart tube looping. In fact, cardiomyocytes sense ECM stiffness through integrins, modulating signaling pathways like PI3K/AKT and Wnt/β-catenin. Moreover, FAK/Src complex activation mediates cardiac hypertrophic growth and survival signaling in response to mechanical loads. This review provides an overview of the molecular and mechanical mechanisms underlying the crosstalk between FAs and cardiac differentiation, as well as the role of FA-mediated mechanotransduction in guiding cardiac muscle responses to mechanical stimuli.
Collapse
Affiliation(s)
- Simona Casarella
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| | - Federica Ferla
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| | - Dalila Di Francesco
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Elena Canciani
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| | - Manuela Rizzi
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| |
Collapse
|
7
|
Li YY, Ji SF, Fu XB, Jiang YF, Sun XY. Biomaterial-based mechanical regulation facilitates scarless wound healing with functional skin appendage regeneration. Mil Med Res 2024; 11:13. [PMID: 38369464 PMCID: PMC10874556 DOI: 10.1186/s40779-024-00519-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/30/2024] [Indexed: 02/20/2024] Open
Abstract
Scar formation resulting from burns or severe trauma can significantly compromise the structural integrity of skin and lead to permanent loss of skin appendages, ultimately impairing its normal physiological function. Accumulating evidence underscores the potential of targeted modulation of mechanical cues to enhance skin regeneration, promoting scarless repair by influencing the extracellular microenvironment and driving the phenotypic transitions. The field of skin repair and skin appendage regeneration has witnessed remarkable advancements in the utilization of biomaterials with distinct physical properties. However, a comprehensive understanding of the underlying mechanisms remains somewhat elusive, limiting the broader application of these innovations. In this review, we present two promising biomaterial-based mechanical approaches aimed at bolstering the regenerative capacity of compromised skin. The first approach involves leveraging biomaterials with specific biophysical properties to create an optimal scarless environment that supports cellular activities essential for regeneration. The second approach centers on harnessing mechanical forces exerted by biomaterials to enhance cellular plasticity, facilitating efficient cellular reprogramming and, consequently, promoting the regeneration of skin appendages. In summary, the manipulation of mechanical cues using biomaterial-based strategies holds significant promise as a supplementary approach for achieving scarless wound healing, coupled with the restoration of multiple skin appendage functions.
Collapse
Affiliation(s)
- Ying-Ying Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Shuai-Fei Ji
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Xiao-Bing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.
| | - Yu-Feng Jiang
- Department of Tissue Regeneration and Wound Repair, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Xiao-Yan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.
| |
Collapse
|
8
|
Wang C, Ramahdita G, Genin G, Huebsch N, Ma Z. Dynamic mechanobiology of cardiac cells and tissues: Current status and future perspective. BIOPHYSICS REVIEWS 2023; 4:011314. [PMID: 37008887 PMCID: PMC10062054 DOI: 10.1063/5.0141269] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/08/2023] [Indexed: 03/31/2023]
Abstract
Mechanical forces impact cardiac cells and tissues over their entire lifespan, from development to growth and eventually to pathophysiology. However, the mechanobiological pathways that drive cell and tissue responses to mechanical forces are only now beginning to be understood, due in part to the challenges in replicating the evolving dynamic microenvironments of cardiac cells and tissues in a laboratory setting. Although many in vitro cardiac models have been established to provide specific stiffness, topography, or viscoelasticity to cardiac cells and tissues via biomaterial scaffolds or external stimuli, technologies for presenting time-evolving mechanical microenvironments have only recently been developed. In this review, we summarize the range of in vitro platforms that have been used for cardiac mechanobiological studies. We provide a comprehensive review on phenotypic and molecular changes of cardiomyocytes in response to these environments, with a focus on how dynamic mechanical cues are transduced and deciphered. We conclude with our vision of how these findings will help to define the baseline of heart pathology and of how these in vitro systems will potentially serve to improve the development of therapies for heart diseases.
Collapse
Affiliation(s)
| | - Ghiska Ramahdita
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | | | | | - Zhen Ma
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
9
|
Huang X, Chen D, Liang C, Shi K, Zhou X, Zhang Y, Li Y, Chen J, Xia K, Shu J, Yang B, Wang J, Xu H, Yu C, Cheng F, Wang S, Zhang Y, Wang C, Ying L, Li H, Han M, Li F, Tao Y, Zhao Q, Chen Q. Swelling-Mediated Mechanical Stimulation Regulates Differentiation of Adipose-Derived Mesenchymal Stem Cells for Intervertebral Disc Repair Using Injectable UCST Microgels. Adv Healthc Mater 2023; 12:e2201925. [PMID: 36250343 DOI: 10.1002/adhm.202201925] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/21/2022] [Indexed: 01/26/2023]
Abstract
Mechanical stimulation is an effective approach for controlling stem cell differentiation in tissue engineering. However, its realization in in vivo tissue repair remains challenging since this type of stimulation can hardly be applied to injectable seeding systems. Here, it is presented that swelling of injectable microgels can be transformed to in situ mechanical stimulation via stretching the cells adhered on their surface. Poly(acrylamide-co-acrylic acid) microgels with the upper critical solution temperature property are fabricated using inverse emulsion polymerization and further coated with polydopamine to increase cell adhesion. Adipose-derived mesenchymal stem cells (ADSCs) adhered on the microgels can be omnidirectionally stretched along with the responsive swelling of the microgels, which upregulate TRPV4 and Piezo1 channel proteins and enhance nucleus pulposus (NP)-like differentiation of ADSCs. In vivo experiments reveal that the disc height and extracellular matrix content of NP are promoted after the implantation with the microgels. The findings indicate that swelling-induced mechanical stimulation has great potential for regulating stem cell differentiation during intervertebral disc repair.
Collapse
Affiliation(s)
- Xianpeng Huang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Di Chen
- Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang, 315100, China
| | - Chengzhen Liang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Kesi Shi
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Xiaopeng Zhou
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Yuang Zhang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Yi Li
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Jiangjie Chen
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Kaishun Xia
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Jiawei Shu
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Biao Yang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Jingkai Wang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Haibin Xu
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Chao Yu
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Feng Cheng
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Shaoke Wang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Yongxiang Zhang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Chenggui Wang
- Department of Orthopedics Surgery, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Liwei Ying
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Hao Li
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Meiling Han
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Fangcai Li
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Yiqing Tao
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Qixin Chen
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| |
Collapse
|
10
|
Shi H, Wang C, Gao BZ, Henderson JH, Ma Z. Cooperation between myofibril growth and costamere maturation in human cardiomyocytes. Front Bioeng Biotechnol 2022; 10:1049523. [PMID: 36394013 PMCID: PMC9663467 DOI: 10.3389/fbioe.2022.1049523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/19/2022] [Indexed: 12/14/2022] Open
Abstract
Costameres, as striated muscle-specific cell adhesions, anchor both M-lines and Z-lines of the sarcomeres to the extracellular matrix. Previous studies have demonstrated that costameres intimately participate in the initial assembly of myofibrils. However, how costamere maturation cooperates with myofibril growth is still underexplored. In this work, we analyzed zyxin (costameres), α-actinin (Z-lines) and myomesin (M-lines) to track the behaviors of costameres and myofibrils within the cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs). We quantified the assembly and maturation of costameres associated with the process of myofibril growth within the hiPSC-CMs in a time-dependent manner. We found that asynchrony existed not only between the maturation of myofibrils and costameres, but also between the formation of Z-costameres and M-costameres that associated with different structural components of the sarcomeres. This study helps us gain more understanding of how costameres assemble and incorporate into the cardiomyocyte sarcomeres, which sheds a light on cardiomyocyte mechanobiology.
Collapse
Affiliation(s)
- Huaiyu Shi
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, United States,BioInspired Institute for Materials and Living Systems, Syracuse University, Syracuse, NY, United States
| | - Chenyan Wang
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, United States,BioInspired Institute for Materials and Living Systems, Syracuse University, Syracuse, NY, United States
| | - Bruce Z. Gao
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| | - James H. Henderson
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, United States,BioInspired Institute for Materials and Living Systems, Syracuse University, Syracuse, NY, United States
| | - Zhen Ma
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, United States,BioInspired Institute for Materials and Living Systems, Syracuse University, Syracuse, NY, United States,*Correspondence: Zhen Ma,
| |
Collapse
|
11
|
Cimmino C, Netti PA, Ventre M. A switchable light-responsive azopolymer conjugating protein micropatterns with topography for mechanobiological studies. Front Bioeng Biotechnol 2022; 10:933410. [PMID: 35935479 PMCID: PMC9355574 DOI: 10.3389/fbioe.2022.933410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Stem cell shape and mechanical properties in vitro can be directed by geometrically defined micropatterned adhesion substrates. However, conventional methods are limited by the fixed micropattern design, which cannot recapitulate the dynamic changes of the natural cell microenvironment. Current methods to fabricate dynamic platforms usually rely on complex chemical strategies or require specialized apparatuses. Also, with these methods, the integration of dynamic signals acting on different length scales is not straightforward, whereas, in some applications, it might be beneficial to act on both a microscale level, that is, cell shape, and a nanoscale level, that is, cell adhesions. Here, we exploited a confocal laser-based technique on a light-responsive azopolymer displaying micropatterns of adhesive islands. The laser light promotes a directed mass migration and the formation of submicrometric topographic relieves. Also, by changing the surface chemistry, the surfacing topography affects cell spreading and shape. This method enabled us to monitor in a non-invasive manner the dynamic changes in focal adhesions, cytoskeleton structures, and nucleus conformation that followed the changes in the adhesive characteristic of the substrate. Focal adhesions reconfigured after the surfacing of the topography, and the actin filaments reoriented to coalign with the newly formed adhesive island. Changes in cell morphology also affected nucleus shape, chromatin conformation, and cell mechanics with different timescales. The reported strategy can be used to investigate mechanotransduction-related events dynamically by controlling cell adhesion at cell shape and focal adhesion levels. The integrated technique enables achieving a submicrometric resolution in a facile and cost-effective manner.
Collapse
Affiliation(s)
- Chiara Cimmino
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Fondazione Istituto Italiano di Tecnologia, Naples, Italy
| | - Paolo A. Netti
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Fondazione Istituto Italiano di Tecnologia, Naples, Italy
- Interdisciplinary Research Centre on Biomaterials, University of Naples Federico II, Naples, Italy
| | - Maurizio Ventre
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Fondazione Istituto Italiano di Tecnologia, Naples, Italy
- Interdisciplinary Research Centre on Biomaterials, University of Naples Federico II, Naples, Italy
- *Correspondence: Maurizio Ventre,
| |
Collapse
|
12
|
Cao S, Yuan Q. An update of nanotopographical surfaces in modulating stem cell fate: a narrative review. BIOMATERIALS TRANSLATIONAL 2022; 3:55-64. [PMID: 35837345 PMCID: PMC9255793 DOI: 10.12336/biomatertransl.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 11/20/2022]
Abstract
Stem cells have been one of the ideal sources for tissue regeneration owing to their capability of self-renewal and differentiation. In vivo, the extracellular microenvironment plays a vital role in modulating stem cell fate. When developing biomaterials for regenerative medicine, incorporating biochemical and biophysical cues to mimic extracellular matrix can enhance stem cell lineage differentiation. More specifically, modulating the stem cell fate can be achieved by controlling the nanotopographic features on synthetic surfaces. Optimization of nanotopographical features leads to desirable stem cell functions, which can maximize the effectiveness of regenerative treatment. In this review, nanotopographical surfaces, including static patterned surface, dynamic patterned surface, and roughness are summarized, and their fabrication, as well as the impact on stem cell behaviour, are discussed. Later, the recent progress of applying nanotopographical featured biomaterials for altering different types of stem cells is presented, which directs the design and fabrication of functional biomaterial. Last, the perspective in fundamental research and for clinical application in this field is discussed.
Collapse
|