1
|
Pan J, Wang J, Wang W, Liu Z, Huo S, Yan L, Jiang W, Shao F, Gu Y. Renal-clearable and mitochondria-targeted metal-engineered carbon dot nanozymes for regulating mitochondrial oxidative stress in acute kidney injury. Mater Today Bio 2025; 32:101717. [PMID: 40242480 PMCID: PMC12002839 DOI: 10.1016/j.mtbio.2025.101717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/10/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Mitochondrial dysfunction-induced oxidative stress is a key pathogenic factor in acute kidney injury (AKI). Despite this, current mitochondrial-targeted antioxidant therapies have shown limited efficacy in clinical settings. In this study, we introduce a novel renal-clearable and mitochondria-targeted antioxidant nanozyme (TPP@RuCDzyme) designed to precisely modulate mitochondrial oxidative stress and mitigate AKI progression. TPP@RuCDzyme was synthesized by integrating ruthenium-doped carbon dots (CDs) with triphenylphosphine (TPP), a mitochondria-targeting moiety. This nanozyme system exhibits cascade enzyme-like activities, mimicking superoxide dismutase (SOD) and catalase (CAT), to efficiently convert cytotoxic superoxide (O2•-) and hydrogen peroxide (H2O2) into non-toxic water (H2O) and oxygen (O2). This dual-enzyme mimicry effectively alleviates mitochondrial oxidative damage, restores mitochondrial function, and inhibits apoptosis. Compared to RuCDzyme alone, TPP@RuCDzyme demonstrated significantly enhanced efficacy in alleviating glycerol-induced AKI by inhibiting oxidative stress. By leveraging the catalytic activity derived from the integration of CDs and a metallic element, this study presents a promising therapeutic strategy for AKI and other renal diseases associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jiangpeng Pan
- Department of Nephrology, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 450003, China
- Department of Nephrology, Henan Clinical Medical Research Center for Nephropathy, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People’s Hospital; Zhengzhou University People’s Hospital; Henan University People’s Hospital, Zhengzhou, Henan, 450003, China
| | - Juntao Wang
- Department of Nephrology, The First People's Hospital of Shangqiu, Shangqiu, Henan, China
| | - Wei Wang
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 451163, China
| | - Ziyang Liu
- Department of Nephrology, Henan Clinical Medical Research Center for Nephropathy, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People’s Hospital; Zhengzhou University People’s Hospital; Henan University People’s Hospital, Zhengzhou, Henan, 450003, China
| | - Shuai Huo
- Department of Nephrology, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 450003, China
| | - Lei Yan
- Department of Nephrology, Henan Clinical Medical Research Center for Nephropathy, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People’s Hospital; Zhengzhou University People’s Hospital; Henan University People’s Hospital, Zhengzhou, Henan, 450003, China
| | - Wei Jiang
- Department of Nephrology, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 450003, China
| | - Fengmin Shao
- Department of Nephrology, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 450003, China
- Department of Nephrology, Henan Clinical Medical Research Center for Nephropathy, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People’s Hospital; Zhengzhou University People’s Hospital; Henan University People’s Hospital, Zhengzhou, Henan, 450003, China
| | - Yue Gu
- Department of Nephrology, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 450003, China
- Department of Nephrology, Henan Clinical Medical Research Center for Nephropathy, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People’s Hospital; Zhengzhou University People’s Hospital; Henan University People’s Hospital, Zhengzhou, Henan, 450003, China
| |
Collapse
|
2
|
Xu E, Wang J, Ding N, Wang H, Liu C, Wang X, Liu C. Nanoarchitectonics with Zinc-Doped Carbon Dots for Mitochondria-Targeted Repair and Regeneration Signaling Amplification in CLI Therapy. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40377343 DOI: 10.1021/acsami.5c03525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Critical limb ischemia (CLI) faces high rates of amputation and mortality. Despite advancements in surgical and endovascular interventions, their invasiveness and restricted applicability leave many CLI patients classified as "no-option" cases. Therapeutic angiogenesis strategies offer prospects for revascularization, but their efficacy remains suboptimal. Herein, we developed a nanomedicine, mitochondria-targeted zinc-doped ascorbic acid-derived carbon dots (TPP-Zn@ACDs), which simultaneously restores mitochondrial function and amplifies regenerative signaling to synergistically boost angiogenesis in ischemic limbs. TPP-Zn@ACDs integrate potent antioxidative properties of carbon dots and the pro-regenerative effects of Zn2+, with triphenylphosphine (TPP) and polyethylene glycol (PEG) functionalization endowing precise mitochondrial targeting and enhanced biocompatibility, thereby localizing therapeutic effects to the core of oxidative stress mitigation and regenerative signaling transduction. In vitro, TPP-Zn@ACDs improved mitochondrial function by reducing reactive oxygen species, restoring mitochondrial membrane potential and enhancing ATP production, through activation of the SIRT1/PGC-1α signaling pathway. Further, the proliferation, migration, and tube formation activities of endothelial cells were increased, while hypoxia-induced apoptosis and necrosis was inhibited effectively. Notably, leveraging mitochondrial restoration in endothelial cells, TPP-Zn@ACDs subsequently reprogrammed macrophages from an M1 pro-inflammatory phenotype to an M2 anti-inflammatory phenotype. In vivo, TPP-Zn@ACDs demonstrated remarkable therapeutic efficacy in a mouse CLI model, achieving robust blood flow recovery, increased microvascular density, and improved immune microenvironment. Together, this study proposes TPP-Zn@ACDs as a versatile engineering nanomedicine for mitochondria-targeted therapy, providing a scalable approach to breakthrough angiogenic efficacy in ischemic diseases.
Collapse
Affiliation(s)
- Erwei Xu
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jianyuan Wang
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Ning Ding
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Haoran Wang
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Chunlei Liu
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xiaoyu Wang
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Chunzhao Liu
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
3
|
Li SS, Liang Y, Kong JW, Zhang Q, Qian JR, Yu LX, Liu QF. Therapeutic potential of voltage-dependent potassium channel subtype 1.3 blockade in alleviating macrophage-related renal inflammation and fibrogenesis. Cell Death Discov 2025; 11:218. [PMID: 40324999 PMCID: PMC12053669 DOI: 10.1038/s41420-025-02508-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 04/19/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025] Open
Abstract
Macrophage polarization and infiltration are notable characteristics of kidney injury and fibrosis. Although voltage-dependent potassium channel subtype (Kv) 1.3 is involved in macrophage-induced inflammation, its precise mechanism has not been elucidated. Therefore, this study aimed to explore the role of Kv1.3 in renal injury and macrophage polarization. Herein, mouse models of kidney injury were established through unilateral ureteral obstruction (UUO) and ischemia-reperfusion injury (IRI). For intervention, a selective Kv1.3 blocker, margatoxin (MgTx), was administered intraperitoneally. Blood and kidney samples were collected on days 3 and 7 following UUO surgery to evaluate renal Kv1.3 expression, kidney injury, macrophage polarization changes, cytokine levels, phosphorylation of extracellular signal-regulated kinase (ERK) and nuclear factor kappa-light-chain-enhancer of activated B (NF-κB). Kidney samples were also collected 24 h after IRI to assess kidney injury and evaluate renal Kv1.3 expression, as well as the phosphorylation levels of ERK and NF-κB. Histological analysis of MgTx-treated UUO and IRI mice revealed that Kv1.3 inhibition markedly alleviated renal damage induced by UUO and IRI, substantially reducing the levels of myofibroblast markers, specifically α-smooth muscle actin and transforming growth factor-β1. In UUO mice, Kv1.3 expression and proportions of monocyte-derived cells in peripheral blood and M1 macrophages notably increased but reversed after MgTx treatment, indicating diminished macrophage infiltration. Additionally, MgTx treatment downregulated various M1-related proinflammatory markers, including tumor necrosis factor-α, inducible nitric oxide synthase, and interleukin (IL)-1β, and upregulated M2-associated markers such as IL-10, arginase-1, and CD206. Moreover, Kv1.3 overexpression in THP-1 cells upregulated M1 macrophage markers and proinflammatory cytokines, enhanced their migratory ability. This indicates an increased polarization towards the M1 phenotype, which correlates with impaired renal tubular epithelial cells. Notably, Kv1.3 upregulation both in vivo and in vitro led to increased phosphorylation of ERK and NF-κB, possibly promoting M1 macrophage polarization. This study establishes Kv1.3 as a pivotal regulator of renal fibrosis and macrophage polarization, showing that its inhibition leads to reduced infiltration and migration of M1 macrophages, mitigation of renal injury via suppression of ERK/NF-κB signaling. Altogether, these findings suggest the potential of Kv1.3 as a promising therapeutic target for renal fibrosis.
Collapse
Affiliation(s)
- Sha-Sha Li
- Clinical Research & Lab Centre, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Yan Liang
- Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Kunshan, Jiangsu, China
| | - Jia-Wei Kong
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Qi Zhang
- Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Kunshan, Jiangsu, China
| | - Jing-Rong Qian
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Li-Xia Yu
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China.
| | - Qi-Feng Liu
- Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Kunshan, Jiangsu, China.
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China.
| |
Collapse
|
4
|
Zhang C, Xiang Z, Yang P, Zhang L, Deng J, Liao X. Advances in Nano-Immunomodulatory Systems for the Treatment of Acute Kidney Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409190. [PMID: 40145715 PMCID: PMC12061249 DOI: 10.1002/advs.202409190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/26/2025] [Indexed: 03/28/2025]
Abstract
Acute kidney injury (AKI) occurs when there is an imbalance in the immune microenvironment, leading to ongoing and excessive inflammation. Numerous immunomodulatory therapies have been suggested for the treatment of AKI, the current immunomodulatory treatment delivery systems are suboptimal and lack efficiency. Given the lack of effective treatment, AKI can result in multi-organ dysfunction and even death, imposing a significant healthcare burden on both the family and society. This underscores the necessity for innovative treatment delivery systems, such as nanomaterials, to better control pathological inflammation, and ultimately enhance AKI treatment outcomes. Despite the modification of numerous immunomodulatory nanomaterials to target the AKI immune microenvironment with promising therapeutic results, the literature concerning their intersection is scarce. In this article, the pathophysiological processes of AKI are outlined, focusing on the immune microenvironment, discuss significant advances in the comprehension of AKI recovery, and describe the multifunctionality and suitability of nanomaterial-based immunomodulatory treatments in managing AKI. The main obstacles and potential opportunities in the swiftly advancing research field are also clarified.
Collapse
Affiliation(s)
- Chenli Zhang
- Department of NephrologyThe Second Affiliated HospitalChongqing Medical UniversityChongqing400016China
- Department of nephrologySecond People's Hospital of YibinYibin644000China
| | - Zeli Xiang
- Department of nephrologySecond People's Hospital of YibinYibin644000China
| | - Pengfei Yang
- Department of NephrologyThe Second Affiliated HospitalChongqing Medical UniversityChongqing400016China
| | - Ling Zhang
- Department of NephrologyThe Second Affiliated HospitalChongqing Medical UniversityChongqing400016China
| | - Jun Deng
- Department of NephrologyThe Second Affiliated HospitalChongqing Medical UniversityChongqing400016China
- Institute of Burn Research, Southwest HospitalState Key Lab of Trauma and Chemical PoisoningArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Xiaohui Liao
- Department of NephrologyThe Second Affiliated HospitalChongqing Medical UniversityChongqing400016China
| |
Collapse
|
5
|
Thompson AD, Hurtado KA, Janda J, Scholpa NE, Rohrer B, Schnellmann RG. MC16 promotes mitochondrial biogenesis and ameliorates acute and diabetic nephropathy. Br J Pharmacol 2025; 182:1912-1929. [PMID: 39887970 DOI: 10.1111/bph.17440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND AND PURPOSE Kidney disease (KD) is a leading cause of mortality worldwide, affecting 〉10% of the global population. Two of the most common causes of KD are diabetes and acute kidney injury (AKI), both of which induce mitochondrial dysfunction resulting in renal proximal tubular damage/necrosis. Thus, pharmacological induction of mitochondrial biogenesis (MB) may provide a therapeutic strategy to block the onset/progression of KD. Here, we evaluated the pharmacological and potential therapeutic effects of a novel MB-inducing oxindole agent, MC16. EXPERIMENTAL APPROACH Primary cultures of rabbit renal proximal tubule cells (RPTCs) were used to evaluate the cellular signalling and MB-inducing effects of MC16. Mice were used to determine the MB-inducing effects of MC16 in vivo, and the metabolic effects of MC16 on the renal cortical metabolome. Mouse models of AKI and diabetic kidney disease (DKD) were used to demonstrate the therapeutic potential of MC16 to ameliorate acute and diabetic nephropathy. KEY RESULTS MC16 activated the PI3K-AKT-eNOS-FOXO1 axis and induced MB in RPTCs. MC16 induced MB and altered the renal cortical metabolome of mice. MC16 accelerated renal recovery, reduced vascular permeability, and diminished mitochondrial dysfunction following AKI. MC16 decreased diabetes-induced renal swelling, improved renal and mitochondrial function, and diminished interstitial fibrosis in DKD mouse models. CONCLUSION AND IMPLICATIONS MC16 is a novel compound that induces MB and ameliorates acute and diabetic nephropathy in mice. This study underscores that targeting MB following the onset of renal/metabolic insults may provide a therapeutic strategy to mitigate the onset and/or progression of KD.
Collapse
Affiliation(s)
- Austin D Thompson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
- U.S. Department of Veterans Affairs, Southern Arizona VA Health Care System, Tucson, Arizona, USA
- Southwest Environmental Health Science Center, University of Arizona, Tucson, Arizona, USA
| | - Kevin A Hurtado
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
- Southwest Environmental Health Science Center, University of Arizona, Tucson, Arizona, USA
| | - Jaroslav Janda
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Natalie E Scholpa
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
- U.S. Department of Veterans Affairs, Southern Arizona VA Health Care System, Tucson, Arizona, USA
| | - Baerbel Rohrer
- MitoChem Therapeutics, Inc., Charleston, South Carolina, USA
- Department of Ophthalmology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
- U.S. Department of Veterans Affairs, Ralph H Johnson VA Health Care System, Charleston, South Carolina, USA
| | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
- U.S. Department of Veterans Affairs, Southern Arizona VA Health Care System, Tucson, Arizona, USA
- Southwest Environmental Health Science Center, University of Arizona, Tucson, Arizona, USA
- MitoChem Therapeutics, Inc., Charleston, South Carolina, USA
| |
Collapse
|
6
|
Xu S, Yu Y, Zhang B, Zhu K, Cheng Y, Zhang T. Boron carbide nanoparticles for boron neutron capture therapy. RSC Adv 2025; 15:10717-10730. [PMID: 40196817 PMCID: PMC11973571 DOI: 10.1039/d5ra00734h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/14/2025] [Indexed: 04/09/2025] Open
Abstract
Boron agent is widely accepted as one of the most important factors in boron neutron capture therapy (BNCT). In this study, boron carbide (B4C) nanoparticles were subjected to chemical modification, with the folic acid moiety linked to the surface of the particles by varying the segments of the covalent linker polyethylene glycol (PEG) through γ-aminopropyltriethoxysilane (APTES) functionalization. The resultant products were three boron agents, termed as B4C-APTES-FA, B4C-APTES-PEG2K-FA, and B4C-APTES-PEG5K-FA. A comparison was made between these products and the pristine B4C nanoparticles by investigating their physicochemical properties and biological performances, including hemolysis, cytotoxicity, and cellular uptake. Subsequently, the modified B4C-APTES-PEG2K-FA nanoparticles were subjected to in vivo safety assays and biodistribution investigations in mice at various dosages. Upon characterization using ICP-OES, it was found that the boron contents were the highest in the lungs, followed by the liver, spleen, kidneys, hearts, and tumors, and the lowest in the brain and muscles. The boron content in the tumor reached as high as 50 μg per g of dried tissue weight after 24 h of intravenous injection (I.V.), while the tumor-to-muscle and tumor-to-brain ratios of boron contents were found to exceed 3 following 24 hours of intravenous injection. These findings suggest that B4C nanoparticles are promising for BNCT owing to their high boron content, satisfactory biocompatibility, and abundant chemical modification sites.
Collapse
Affiliation(s)
- Shiwei Xu
- College of Engineering and Applied Sciences, Nanjing University Nanjing 210023 China
| | - Ying Yu
- College of Engineering and Applied Sciences, Nanjing University Nanjing 210023 China
| | - Boyu Zhang
- College of Engineering and Applied Sciences, Nanjing University Nanjing 210023 China
| | - Kejia Zhu
- Wuxi Xishan NJU Institute of Applied Biotechnology Wuxi 214104 China
| | - Yuan Cheng
- Wuxi Xishan NJU Institute of Applied Biotechnology Wuxi 214104 China
| | - Tao Zhang
- College of Engineering and Applied Sciences, Nanjing University Nanjing 210023 China
- MOE Key Laboratory of High-Performance Polymer Materials and Technology, Nanjing University Nanjing 210023 China
- Wuxi Xishan NJU Institute of Applied Biotechnology Wuxi 214104 China
- School of Engineering, Qinghai Institute of Technology Xining 810016 China
| |
Collapse
|
7
|
Thompson AD, McAlister KW, Scholpa NE, Janda J, Hortareas J, Schnellmann RG. Lasmiditan induces mitochondrial biogenesis in primary mouse renal peritubular endothelial cells and augments wound healing and tubular network formation. Am J Physiol Cell Physiol 2025; 328:C1318-C1332. [PMID: 40080391 PMCID: PMC12096908 DOI: 10.1152/ajpcell.00116.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 02/24/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Kidney disease (KD) is a progressive and life-threatening illness that has manifested into a global health crisis, impacting >10% of the general population. Hallmarks of KD include tubular interstitial fibrosis, renal tubular cell atrophy/necrosis, glomerulosclerosis, persistent inflammation, microvascular endothelial cell (MV-EC) dysfunction/rarefaction, and mitochondrial dysfunction. Following acute kidney injury (AKI), and/or during KD onset/progression, MV-ECs of the renal peritubular endothelial capillaries (RPECs) are highly susceptible to injury, dysfunction, and rarefaction. Pharmacological induction of mitochondrial biogenesis (MB) via 5-hydroxytryptamine receptor 1F (HTR1F) agonism has been shown to enhance mitochondrial function and renal vascular recovery post-AKI in mice; however, little is known about MB in relation to renal MV-ECs and RPEC repair mechanisms. To address this gap in knowledge, the in vitro effects of the potent and selective FDA-approved HTR1F agonist lasmiditan were tested on primary mouse renal peritubular endothelial cells (MRPECs). Lasmiditan increased mitochondrial maximal respiration rates, mRNA and protein expression of MB-related genes, and mitochondrial number in MRPECs. MRPECs were then exposed to pro-inflammatory agents associated with renal MV-EC dysfunction, AKI, and KD (i.e., lipopolysaccharides, transforming growth factor-β1, and tumor necrosis factor-α), in the presence/absence of lasmiditan. Lasmiditan treatment augmented MRPEC wound healing, endothelial tubular network formation (ETNF), enhanced barrier integrity, and blunted inflammatory-induced MV-EC dysfunctions. Together, these data suggest that lasmiditan induces MB and improves wound healing and ETNF of primary MRPECs in the presence/absence of pro-inflammatory agents, highlighting a potential therapeutic role for lasmiditan treatment in renal MV-EC dysfunction, AKI, and/or KD.NEW & NOTEWORTHY Lasmiditan, an FDA-approved HTR1F agonist, induces mitochondrial biogenesis (MB) and enhances recovery following acute kidney injury in mice. Renal microvascular endothelial cells (MV-ECs) are highly susceptible to dysfunction/rarefaction postinjury. The effect of MB on MV-EC repair/recovery is unknown. We show that lasmiditan induces MB in primary mouse renal peritubular endothelial cells and improves wound healing, endothelial tubular network formation, and barrier integrity after inflammatory-induced dysfunction, indicative of its potential for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Austin D. Thompson
- Department of Pharmacology & Toxicology, University of Arizona, Tucson, Arizona, USA
- Southern Arizona VA Health Care System, Tucson, Arizona, USA
- Southwest Environmental Health Science Center, University of Arizona, Tucson, Arizona, USA
| | - Kai W. McAlister
- Department of Pharmacology & Toxicology, University of Arizona, Tucson, Arizona, USA
| | - Natalie E. Scholpa
- Department of Pharmacology & Toxicology, University of Arizona, Tucson, Arizona, USA
- Southern Arizona VA Health Care System, Tucson, Arizona, USA
| | - Jaroslav Janda
- Department of Pharmacology & Toxicology, University of Arizona, Tucson, Arizona, USA
| | - John Hortareas
- College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Rick G. Schnellmann
- Department of Pharmacology & Toxicology, University of Arizona, Tucson, Arizona, USA
- Southern Arizona VA Health Care System, Tucson, Arizona, USA
- Southwest Environmental Health Science Center, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
8
|
Wang D, Wang S, Liu J, Shi X, Xiong T, Li R, Wei W, Ji L, Huang Q, Gong X, Ai K. Nanomedicine Penetrating Blood-Pancreas Barrier for Effective Treatment of Acute Pancreatitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413925. [PMID: 39950925 PMCID: PMC11967758 DOI: 10.1002/advs.202413925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/01/2025] [Indexed: 04/05/2025]
Abstract
Acute pancreatitis (AP) is a primary contributor to hospitalization and in-hospital mortality worldwide. Targeted elimination of mitochondrial reactive oxygen species (mtROS) within pancreatic acinar cells (PACs) represents an ideal strategy for treating AP. However, existing drugs fail to overcome the physiological barriers of the pancreas to effectively reach PACs mitochondria due to the trade-off between conventional positively charged mitochondrial-targeting groups and their inability to penetrate the blood-pancreas barrier (BPB). Here, a tungsten-based heteropolyacid nano-antioxidant (mTWNDs) is introduced, co-modified with tannic acid (TA) and melanin, enabling site-specific clearance of mtROS in PACs, offering a highly effective treatment for AP. TA exhibits a strong affinity for proline-rich type III collagen and the mitochondrial outer membrane protein TOM20. This unique property allows mTWNDs to traverse the damaged BPB-exposing type III collagen to reach PACs and subsequently penetrate mitochondria for targeted mtROS elimination. In cerulein-induced AP mice, mTWNDs reversed AP at 1/50th the dose of N-acetylcysteine, suppressing PACs apoptosis and inflammation by blocking the stimulator of the interferon genes pathway activation in macrophage. This study establishes a mitochondrial-targeting antioxidant nanomedicine strategy for AP treatment.
Collapse
Affiliation(s)
- Dan Wang
- Department of General SurgeryXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Shuya Wang
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
| | - Jinjin Liu
- Department of General SurgeryXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Xiaojing Shi
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
| | - Tingli Xiong
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
| | - Ruishi Li
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
| | - Wei Wei
- Department of General SurgeryXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Liandong Ji
- Department of General SurgeryXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Qiong Huang
- Department of PharmacyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Xuejun Gong
- Department of General SurgeryXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Kelong Ai
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and TreatmentMinistry of EducationXiangya HospitalCentral South UniversityChangsha410008China
| |
Collapse
|
9
|
Wang Z, Zhang C. Nanomaterials for targeted therapy of kidney diseases: Strategies and advances. Mater Today Bio 2025; 31:101534. [PMID: 39990736 PMCID: PMC11846943 DOI: 10.1016/j.mtbio.2025.101534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/25/2025] Open
Abstract
The treatment and management of kidney diseases pose a significant global burden. Due to the presence of blood circulation barriers and glomerular filtration barriers, drug therapy for kidney diseases faces challenges such as poor renal targeting, short half-life, and severe systemic side effects, severely hindering therapeutic progress. Therefore, the research and development of kidney-targeted therapeutic agents is of great clinical significance. In recent years, the application of nanotechnology in the field of nephrology has shown potential for revolutionizing the diagnosis and treatment of kidney diseases. Carefully designed nanomaterials can exhibit optimal biological characteristics, influencing various aspects such as circulation, retention, targeting, and excretion. Rationally designing and modifying nanomaterials based on the anatomical structure and pathophysiological environment of the kidney to achieve highly specific kidney-targeted nanomaterials or nanodrug delivery systems is both feasible and promising. Based on the targeted therapy of kidney diseases, this review discusses the advantages and limitations of current nanomedicine in the targeted therapy of kidney diseases, and summarizes the application and challenges of current renal active/passive targeting strategies, in order to further promote the development of kidney-targeted nanomedicine through a preliminary summary of previous studies and future prospects.
Collapse
Affiliation(s)
- Zhiwen Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
10
|
Xiao L, Huang C, Xiao S, Xie L, Zhang X, Xiao F, Cai H, Yang S, Wu S, Qu S, Liu J. Therapeutic effect of umbilical cord mesenchymal stem cells on renal ischemia-reperfusion injury. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2025; 75:103-118. [PMID: 40208785 DOI: 10.2478/acph-2025-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/03/2025] [Indexed: 04/12/2025]
Abstract
Acute kidney injury (AKI) is a growing global health issue with no effective treatments. This study evaluates the therapeutic effects of umbilical cord mesenchymal stem cells (UC-MSCs) on AKI caused by ischemia-reperfusion injury (IRI) in mice. Thirty mice were divided into a sham group, an IRI group, and an MSC-treated group. Renal function was assessed, and histological analysis, immunofluorescence, and real-time PCR were used to evaluate renal damage, inflammatory cell presence, and cytokine expression (TNF-α, IL-6, IL-10). Results showed that MSC treatment reduced renal damage, decreased pro-inflammatory cytokines (TNF-α, IL-6), increased anti-inflammatory IL-10, and promoted kidney repair by homing to injury sites. Thus, umbilical cord MSCs may mitigate AKI by reducing inflammation and enhancing renal repair.
Collapse
Affiliation(s)
- Liang Xiao
- 1Department of Surgery and Oncology, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Chengyu Huang
- 2Shenzhen Zhongjia Biomedical Technology Co., Ltd. Shenzhen, Guangdong 518107, China
| | - Shanghua Xiao
- 2Shenzhen Zhongjia Biomedical Technology Co., Ltd. Shenzhen, Guangdong 518107, China
| | - Lingfeng Xie
- 2Shenzhen Zhongjia Biomedical Technology Co., Ltd. Shenzhen, Guangdong 518107, China
| | - Xueyan Zhang
- 2Shenzhen Zhongjia Biomedical Technology Co., Ltd. Shenzhen, Guangdong 518107, China
| | - Fucheng Xiao
- 3The Center of Campus, Shenzhen Senior High School Group, Shenzhen, Guangdong 518040, China
| | - Huajia Cai
- 4Psychiatric Medicine Sophomore, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shuibo Yang
- 5School of Agriculture and Biotechnology Shenzhen Campus of Sun Yat-sen University Shenzhen, Guangdong 518107, China
| | - Shengqing Wu
- 2Shenzhen Zhongjia Biomedical Technology Co., Ltd. Shenzhen, Guangdong 518107, China
| | - Shoukang Qu
- 2Shenzhen Zhongjia Biomedical Technology Co., Ltd. Shenzhen, Guangdong 518107, China
| | - Jia Liu
- 2Shenzhen Zhongjia Biomedical Technology Co., Ltd. Shenzhen, Guangdong 518107, China
- 5School of Agriculture and Biotechnology Shenzhen Campus of Sun Yat-sen University Shenzhen, Guangdong 518107, China
| |
Collapse
|
11
|
Chen Q, Yang Y, Ying X, Huang C, Chen J, Wang J, Wu Z, Zeng W, Miao C, Shi X, Nan Y, Huang Q, Ai K. Hierarchical Targeting Nanodrug with Holistic DNA Protection for Effective Treatment of Acute Kidney Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411254. [PMID: 39703158 PMCID: PMC11809360 DOI: 10.1002/advs.202411254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/08/2024] [Indexed: 12/21/2024]
Abstract
Acute kidney injury (AKI) manifests a hallmark pathological feature of extensive and severe DNA damage in renal tubules, primarily induced by the excessive of toxic reactive oxygen species (ROS) from the mitochondrial electron transport chain. The kidney's complex intricate physiological architecture and the heterogeneous intracellular environment pose significant challenges for effective sequential and high-resolution drug delivery-an urgent issue that remains unresolved. To address this, a hierarchical-targeting antioxidant nanodrug has been developed with a folic acid moiety (HAND) designed for high-resolution drug delivery in AKI treatment. For the first time, HAND enables sequential targeting from the kidney to the most severely damaged proximal tubular epithelial cells (PTECs), ultimately concentrating in the DNA-rich mitochondria and nucleus. As a result, HAND effectively scavenges ROS in situ, protecting both mitochondria and nuclei along with their vital genetic material. This action restores mitochondrial function, mitigates DNA oxidation and fragmentation, reduces apoptosis, and inhibits cGAS/STING-mediated sterile inflammation. Consequently, HAND demonstrates remarkable efficacy in safeguarding injured kidneys during AKI. Overall, this work pioneers a hierarchical, high-resolution antioxidant strategy, providing innovative guidance for the development of AKI therapies.
Collapse
Affiliation(s)
- Qiaohui Chen
- Department of PharmacyXiangya HospitalCentral South UniversityChangsha410008China
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
| | - Yongqi Yang
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
| | - Xiaohong Ying
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
| | - Changkun Huang
- Department of UrologyThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
| | - Jianlin Chen
- Department of Pancreatic SurgeryXiangya HospitalCentral South UniversityChangsha410008China
- Department of General SurgeryXiangya HospitalCentral South UniversityChangsha410008China
| | - Jue Wang
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
| | - Ziyu Wu
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
| | - Wan Zeng
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
| | - Chenxi Miao
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
| | - Xiaojing Shi
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
| | - Yayun Nan
- Geriatric Medical CenterPeople's Hospital of Ningxia Hui Autonomous RegionYinchuanNingxia750002China
| | - Qiong Huang
- Department of PharmacyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Kelong Ai
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and TreatmentMinistry of EducationXiangya HospitalCentral South UniversityChangsha410008China
| |
Collapse
|
12
|
Zhang J, Han S, Zhao Z, Zhou C, Chen H, Hou J, Wu J. Ultrasmall Black Phosphorus Quantum Dots with Robust Antioxidative Properties for Acute Kidney and Liver Injury Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407543. [PMID: 39513198 DOI: 10.1002/smll.202407543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/21/2024] [Indexed: 11/15/2024]
Abstract
Acute organ injuries, such as acute kidney injury (AKI) and acute liver injury (ALI), usually present high morbidity and mortality in patients. However, the current clinical treatments remain limited, especially the lack of effective drug-based treatment. Since these acute injuries are often associated with reactive oxygen species (ROS) overproduction, it is a promising strategy to develop therapeutic agents with potent ROS scavenging ability and excellent biocompatibility for efficient antioxidation therapy. Black phosphorus quantum dots (BPQDs), low-dimensional nanomaterials prepared through a straightforward one-step method and capable of complete controllable biodegradation, offer significant potential. This study comprehensively explores the extensive free-radical scavenging capabilities of BPQDs, underscoring their immense potential in treating ROS-related organ injuries. BPQDs could simultaneously achieve radical scavenging of DPPH, ABTS·, OH·, and O2 -· and exhibit excellent cytoprotective effects against ROS-mediated damage even at extremely low dosages. Besides, the ultrasmall size of BPQDs (≈3-5 nm) allows them to effectively penetrate the glomerular filtration barrier (≈6 nm), significantly improving the symptoms of AKI and ALI in vivo. The therapeutic efficacy and great biocompatibility of BPQDs facilitate the clinical management of ROS-related diseases, which will broaden the applications of QDs in the field of biomedicine.
Collapse
Affiliation(s)
- Jingyang Zhang
- Department of Nephrology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
- Smart Manufacturing Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, 511400, China
| | - Shuyan Han
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Zixuan Zhao
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, Guangdong, 511400, China
| | - Chufan Zhou
- School of Life Sciences and Bio-Pharmaceutics, Guangdong Pharmaceutics University, Guangzhou, 510006, China
| | - Haolin Chen
- Department of Anesthesiology, General Hospital of Southern Theater Command of People's Liberation Army, Guangzhou, 510010, China
| | - Jingtao Hou
- Department of Nephrology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Jun Wu
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, Guangdong, 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China
| |
Collapse
|
13
|
Sun M, Li M, Hu M, Fan Y, Liu Y, Sun J, Zhang J. Fully Bioactive Nanodrugs: Stem Cell-Derived Exosomes Engineered with Biomacromolecules to Treat CCl 4- and Extreme Hepatectomy-Induced Acute Liver Failure. ACS NANO 2024; 18:33907-33921. [PMID: 39626080 DOI: 10.1021/acsnano.4c07408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Acute liver failure (ALF) is a serious global disease characterized by rapid onset and high mortality. Currently, the clinical treatment of ALF faces considerable hurdles due to limited medication options and the scarcity of liver transplants. Despite biomacromolecules such as hepatocyte growth factor (HGF) and glutathione (GSH) having been applied for ALF symptom relief in the clinic, they still face substantial challenges including poor stability, difficulty in acting on intracellular targets, and inadequate therapeutic outcome. In this work, by taking advantage of the innate targeting and regenerative capabilities of mesenchymal stem cells (MSCs), we harnessed MSC-derived exosomes as natural bioactive carriers for the simultaneous delivery of HGF and GSH, forming a fully bioactive nanodrug termed HG@Exo. Impressively, the HG@Exo demonstrated potent therapeutic effects against both carbon tetrachloride (CCl4)- and extreme hepatectomy-induced ALF through multiple mechanisms, including regulation of oxidative stress, reduction of inflammation, and promotion of hepatocyte regeneration, which were facilitated by its inflammation-targeting to damaged liver tissues. Furthermore, an FDA-approved near-infrared fluorescent dye, indocyanine green (ICG), has been incorporated into the exosomes (HGI@Exo) to endow them with real-time in vivo tracking capability, which showed favorable liver accumulation of the HGI@Exo in both CCl4- and surgery-induced ALF animal models, providing crucial insights into their biodistribution and therapeutic efficacy. Overall, the presented fully bioactive nanodrugs with targeting and theranostic abilities hold significant promise for potentiating the therapeutic efficacy of biomacromolecules for the improved treatment of ALF and other inflammatory diseases.
Collapse
Affiliation(s)
- Meng Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, P. R. China
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Min Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Min Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, P. R. China
| | - Yueyun Fan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yanhong Liu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jian Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, P. R. China
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
14
|
Zhou L, Du Y, Shang Y, Xiang D, Xia X. A Novel Triptolide Nano-Liposome with Mitochondrial Targeting for Treatment of Hepatocellular Carcinoma. Int J Nanomedicine 2024; 19:12975-12998. [PMID: 39654802 PMCID: PMC11626209 DOI: 10.2147/ijn.s498099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024] Open
Abstract
Background Modern pharmacological studies have demonstrated that although triptolide (TP) is effective against hepatocellular carcinoma, it has poor water solubility and more toxic side effects. In this study, we used triptolide (TP), a bioactive constituent in Tripterygium wilfordii Hook F, as a model drug to develop a novel nano-liposome drug delivery system for the treatment of liver tumours. Methods We constructed a functionally-modified triptolide liposome (FA+TPP-TP-Lips) using the film-dispersion method and investigated its physicochemical properties, mitochondrial targeting of hepatic tumour cells, in vitro and in vivo anti-hepatic tumour activity and its mechanism. Results The prepared FA+TPP-TP-Lips had a particle size of 99.28 ± 5.7 nm, a PDI of 0.20 ± 0.02, a zeta potential of 1.2 ± 0.08 mV, and an encapsulation rate of 74.37% ± 1.07%.FA+TPP-TP-Lips facilitates the cellular uptake of drug delivery systems and improves their targeted delivery to mitochondria. The results of cell efficacy showed that FA+TPP-TP-Lips significantly inhibited the growth of liver cancer cells, decreased mitochondrial membrane potential, and increased intracellular ROS, thus enhancing the highest apoptosis rate of liver cancer cells. The targeted liposomes (FA-TP-Lips, TPP-TP-Lips, and FA+TPP-TP-Lips) had some degree of inhibitory migration effect on Huh-7 cells relative to the unmodified TP-Lips. Studies on tumor-bearing mice demonstrated that FA+ TPP-TP-Lips effectively accumulated in tumor tissues and significantly inhibited the growth of subcutaneous tumors, achieving a tumor inhibition rate of 79.37%. FA+ TPP-TP-Lips demonstrated an enhanced anti-liver tumor effect and significantly mitigated the hepatotoxicity and systemic toxicity associated with TP. Conclusion In summary, the results of this study can provide a feasible solution for improving the mitochondrial targeting of nano-liposomes, and lay a foundation for further developing a novel nano targeting preparation of triptolide for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Lili Zhou
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Yang Du
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Yating Shang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Debiao Xiang
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, 410208, People’s Republic of China
| | - Xinhua Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| |
Collapse
|
15
|
Liu WT, Li CQ, Fu AN, Yang HT, Xie YX, Yao H, Yi GH. Therapeutic implication of targeting mitochondrial drugs designed for efferocytosis dysfunction. J Drug Target 2024; 32:1169-1185. [PMID: 39099434 DOI: 10.1080/1061186x.2024.2386620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
Efferocytosis refers to the process by which phagocytes remove apoptotic cells and related apoptotic products. It is essential for the growth and development of the body, the repair of damaged or inflamed tissues, and the balance of the immune system. Damaged efferocytosis will cause a variety of chronic inflammation and immune system diseases. Many studies show that efferocytosis is a process mediated by mitochondria. Mitochondrial metabolism, mitochondrial dynamics, and communication between mitochondria and other organelles can all affect phagocytes' clearance of apoptotic cells. Therefore, targeting mitochondria to modulate phagocyte efferocytosis is an anticipated strategy to prevent and treat chronic inflammatory diseases and autoimmune diseases. In this review, we introduced the mechanism of efferocytosis and the pivoted role of mitochondria in efferocytosis. In addition, we focused on the therapeutic implication of drugs targeting mitochondria in diseases related to efferocytosis dysfunction.
Collapse
Affiliation(s)
- Wan-Ting Liu
- Institute of Pharmacy and Pharmacology, Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Chao-Quan Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Ao-Ni Fu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Hao-Tian Yang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Yu-Xin Xie
- Institute of Pharmacy and Pharmacology, Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Hui Yao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Guang-Hui Yi
- Institute of Pharmacy and Pharmacology, Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| |
Collapse
|
16
|
Wang S, Shi X, Xiong T, Chen Q, Yang Y, Chen W, Zhang K, Nan Y, Huang Q, Ai K. Inhibiting Mitochondrial Damage for Efficient Treatment of Cerebral Ischemia-Reperfusion Injury Through Sequential Targeting Nanomedicine of Neuronal Mitochondria in Affected Brain Tissue. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409529. [PMID: 39501980 DOI: 10.1002/adma.202409529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/25/2024] [Indexed: 12/13/2024]
Abstract
Oxidative stress, predominantly from neuronal mitochondrial damage and the resultant cytokine storm, is central to cerebral ischemia-reperfusion injury (CIRI). However, delivering drugs to neuronal mitochondria remains challenging due to the blood-brain barrier (BBB), which impedes drug entry into affected brain tissues. This study introduces an innovative tannic acid (TA) and melanin-modified heteropolyacid nanomedicine (MHT), which highly specifically eliminates the neuronal mitochondrial reactive oxygen radicals burst to efficiently reduce neuronal mitochondrial damage through a strategically designed sequential targeting strategy from affected brain tissue to neuronal mitochondria. TA endows MHT with sequential targeting ability by binding to matrix proteins exposed to the damaged BBB and mitochondrial outer membrane proteins of neurons, while melanin significantly enhances the antioxidant capacity of MHT. Consequently, MHT effectively inhibits neuronal apoptosis by protecting mitochondria and reversing the inflammatory immune environment through the deactivation of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway. MHT demonstrated a strong therapeutic effect on CIRI, with an ultralow dose (2 mg kg-1) proving effective in reversing the condition. This work not only introduces a new avenue to significantly reduce CIRI through sequential targeting therapy but also offers a new paradigm for treating other ischemia-reperfusion injury diseases.
Collapse
Affiliation(s)
- Shuya Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
| | - Xiaojing Shi
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
| | - Tingli Xiong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
| | - Yongqi Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
| | - Wensheng Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
| | - Kexin Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
| | - Yayun Nan
- Geriatric Medical Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, 750002, P. R. China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
| |
Collapse
|
17
|
He W, Ding C, Lin T, Wang B, Wang W, Deng Z, Jin T, Shang Y, Zheng D, Bai T, Zhang M, Li R, Jin J, He Q. An enzyme-mimicking reactive oxygen species scavenger targeting oxidative stress-inflammation cycle ameliorates IR-AKI by inhibiting pyruvate dehydrogenase kinase 4. Theranostics 2024; 14:7534-7553. [PMID: 39659578 PMCID: PMC11626943 DOI: 10.7150/thno.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/19/2024] [Indexed: 12/12/2024] Open
Abstract
Rationale: Ischemia-reperfusion-induced acute kidney injury (IR-AKI), characterized by the abrupt decline in renal function, is distinguished by the intricate interplay between oxidative stress and inflammation. In this study, a reactive oxygen species (ROS) scavenger-CF@PDA was developed to effectively target antioxidant and anti-inflammatory pathways to disrupt the oxidative stress-inflammation cycle in IR-AKI. Methods: UV-vis absorption spectra, FTIR spectra, and TEM were employed to determine the successful construction of CF@P. ABTS, TMB, and NBT analyses were performed to detect the antioxidant ability and enzyme-mimicking ability of CF@P. In vitro and in vitro, the antioxidant/anti-inflammatory effect of CF@P was detected by MTT, qPCR, fluorescence, and flow cytometry. Multi-omics revealed the mechanism of CF@P in IR-AKI therapy, and molecular docking was further used to determine the mechanism. MRI and photoacoustic imaging were employed to explore the dual-mode imaging capacity of CF@P in IR-AKI management. Results: CF@P could disrupt the oxidative stress-inflammatory cascade by scavenging ROS, reducing pro-inflammatory cytokines, and modulation of macrophage polarization. Subsequent multi-omics indicated that the renal protective effects may be attributed to the inhibition of pyruvate dehydrogenase kinase 4 (PDK4). Metabolomics demonstrated that CF@P could improve the production of antioxidant compounds and reduce nephrotoxicity. Additionally, CF@P exhibited promising capabilities in T1-MRI and photoacoustic imaging for AKI management. Conclusions: Collectively, CF@P, possessing antioxidant/anti-inflammatory properties by inhibiting PDK4, as well as imaging capabilities and superior biocompatibility, holds promise as a therapeutic strategy for IR-AKI.
Collapse
Affiliation(s)
- Wenfang He
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310003, China
| | - Chenguang Ding
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ting Lin
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310003, China
| | - Binqi Wang
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310003, China
| | - Wenjing Wang
- Department of Gastroenterology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325024, China
| | - Zhichao Deng
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Taian Jin
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310003, China
| | - Yiwei Shang
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310003, China
| | - Danna Zheng
- Urology & Nephrology Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310003, China
| | - Ting Bai
- Department of Cardiovascular Medicine, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710077, China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Runqing Li
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Juan Jin
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310003, China
| | - Qiang He
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310003, China
| |
Collapse
|
18
|
Zhang X, Liang L, Wang F, Jose PA, Chen K, Zeng C. Irisin-Encapsulated Mitochondria-Targeted Biomimetic Nanotherapeutics for Alleviating Acute Kidney Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402805. [PMID: 39119832 PMCID: PMC11481180 DOI: 10.1002/advs.202402805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Acute kidney injury (AKI) is the sudden decrease in renal function that can be attributed to dysregulated reactive oxygen species (ROS) production and impaired mitochondrial function. Irisin, a type I membrane protein secreted by skeletal muscles in response to physical activity, has been reported to alleviate kidney damage through regulation of mitochondrial biogenesis and oxidative metabolism. In this study, a macrophage membrane-coated metal-organic framework (MCM@MOF) is developed as a nanocarrier for encapsulating irisin to overcome the inherent characteristics of irisin, including a short circulation time, limited kidney-targeting ability, and low membrane permeability. The engineered irisin-mediated biomimetic nanotherapeutics have extended circulation time and enhanced targeting capability toward injured kidneys due to the preservation of macrophage membrane proteins. The irisin-encapsulated biomimetic nanotherapeutics effectively mitigate acute ischemia-reperfusion injury by protecting mitochondrial function and modulating SOD2 levels in renal tubular epithelial cells. The present study provides novel insights to advance the development of irisin as a potential therapeutic approach for AKI.
Collapse
Affiliation(s)
- Xia Zhang
- Department of CardiologyDaping HospitalThird Military Medical University (Army Medical University)Chongqing400042P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease ResearchMinistry of Education of ChinaChongqing400042P. R. China
- Chongqing Key Laboratory for Hypertension ResearchCardiovascular Clinical Research CenterChongqing Institute of CardiologyChongqing400042P. R. China
| | - Lijia Liang
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease ResearchMinistry of Education of ChinaChongqing400042P. R. China
- Chongqing Institute of Green and Intelligent TechnologyChinese Academy of SciencesChongqing400714P. R. China
- Chongqing General HospitalChongqing401147P. R. China
| | - Fengxian Wang
- Department of CardiologyDaping HospitalThird Military Medical University (Army Medical University)Chongqing400042P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease ResearchMinistry of Education of ChinaChongqing400042P. R. China
- Chongqing Institute of Green and Intelligent TechnologyChinese Academy of SciencesChongqing400714P. R. China
| | - Pedro A. Jose
- Division of Renal Diseases & HypertensionDepartment of Medicine and Pharmacology‐PhysiologyThe George Washington University School of Medicine & Health SciencesWashington DC20037USA
| | - Ken Chen
- Department of CardiologyDaping HospitalThird Military Medical University (Army Medical University)Chongqing400042P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease ResearchMinistry of Education of ChinaChongqing400042P. R. China
- Chongqing Key Laboratory for Hypertension ResearchCardiovascular Clinical Research CenterChongqing Institute of CardiologyChongqing400042P. R. China
| | - Chunyu Zeng
- Department of CardiologyDaping HospitalThird Military Medical University (Army Medical University)Chongqing400042P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease ResearchMinistry of Education of ChinaChongqing400042P. R. China
- Chongqing Key Laboratory for Hypertension ResearchCardiovascular Clinical Research CenterChongqing Institute of CardiologyChongqing400042P. R. China
- Chongqing Institute of Green and Intelligent TechnologyChinese Academy of SciencesChongqing400714P. R. China
| |
Collapse
|
19
|
Fulke AB, Ratanpal S, Sonker S. Understanding heavy metal toxicity: Implications on human health, marine ecosystems and bioremediation strategies. MARINE POLLUTION BULLETIN 2024; 206:116707. [PMID: 39018825 DOI: 10.1016/j.marpolbul.2024.116707] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
Heavy metals are constituents of the natural environment and are of great importance to both natural and artificial processes. But in recent times the indiscriminate use of heavy metals especially for human purposes has caused an imbalance in natural geochemical cycles. This imbalance has caused contamination of heavy metals into natural resources and such as soil and a marine ecosystem. Long exposure and higher accumulation of given heavy metals are known to impose detrimental and even lethal effects on humans. Conventional remediation techniques of heavy metals provide good results but have negative side effects on surrounding environment. The role played by microbes in bioremediation of heavy metals is well reported in the literature and understanding the role of molecules in the process of metal accumulation its reduction and transformation into less hazardous state, has myriads of biotechnological implications for bioremediation of metal-contaminated sites. The current review presents the implications of heavy metals on human health and marine ecosystems, conventional methods of heavy metal removal and their side effects on the environment. Bioremediation approaches have been discussed as well in this review, proving to be a more sustainable and eco-friendly approach towards remediation of heavy metals.
Collapse
Affiliation(s)
- Abhay B Fulke
- Microbiology Division, CSIR-National Institute of Oceanography (CSIR-NIO), Regional Centre, Lokhandwala Road, Four Bungalows, Andheri (West), Mumbai 400053, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Siddant Ratanpal
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai 410206, India
| | - Swati Sonker
- Microbiology Division, CSIR-National Institute of Oceanography (CSIR-NIO), Regional Centre, Lokhandwala Road, Four Bungalows, Andheri (West), Mumbai 400053, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
20
|
Yao H, Zhu Z, Liu M, Sun F, Du M, Sun Y, Du B. Multifunctional Nanosystem Based on Ultrasmall Carbon Dots for the Treatment of Acute Kidney Injury. ACS Biomater Sci Eng 2024; 10:4970-4984. [PMID: 39022808 DOI: 10.1021/acsbiomaterials.4c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Acute kidney injury (AKI) is a critical medical condition characterized by high morbidity and mortality rates. The pathogenesis of AKI potentially involves bursts of reactive oxygen species (ROS) bursts and elevated levels of inflammatory mediators. Developing nanoparticles (NPs) that downregulate ROS and inflammatory mediators is a promising approach to treat AKI. However, such NPs would be affected by the glomerular filtration barrier (GFB). Typically, NPs are too large to penetrate the glomerular system and reach the renal tubules─the primary site of AKI injury. Herein, we report the development of ultrasmall carbon dots-gallic acid (CDs-GA) NPs (∼5 nm). These NPs exhibited outstanding biocompatibility and were shown not only to efficiently eliminate ROS and alleviate oxidative stress but also to suppress the activation of the NF-κB signaling pathway, leading to a reduction in the release of inflammatory factors. Importantly, CDs-GA NPs were shown to be able to rapidly accumulate rapidly in the renal tissues without the need for intricate targeting strategies. In vivo studies demonstrated that CDs-GA NPs significantly reduced the incidence of cisplatin (CDDP)-induced AKI in mice, surpassing the efficacy of the small molecular drug, N-acetylcysteine. This research provides an innovative strategy for the treatment of AKI.
Collapse
Affiliation(s)
- Hanchun Yao
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
| | - Zhihui Zhu
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Mengyu Liu
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Fangfang Sun
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Mengyu Du
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Yilin Sun
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Du
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
| |
Collapse
|
21
|
Li Z, Qin J, Feng Y, Ding C, Guo Y, Zhao Z, Sun S, Zheng J, Zhang M, Zhang J, Zhang Y, Wei J, Xue W. Mesoporous zinc-polyphenol nanozyme for attenuating renal ischemia-reperfusion injury. Nanomedicine (Lond) 2024; 19:2011-2026. [PMID: 39115910 PMCID: PMC11485710 DOI: 10.1080/17435889.2024.2382667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/17/2024] [Indexed: 10/09/2024] Open
Abstract
Aim: To target the reactive oxygen species (ROS) accumulation and renal tubular epithelial cell (rTEC) death in renal ischemia-reperfusion injury (IRI), we constructed a nanoparticle that offers ROS scavenging and rTEC-death inhibition: mesoporous zinc-tannic acid nanozyme (ZnTA).Materials & methods: After successfully constructing ZnTA, we proceeded to examine its effect on ROS accumulation, cellular ferroptosis and apoptosis, as well as injury severity.Results: Malondialdehyde, Fe2+ amounts and 4-HNE staining demonstrated that ZnTA effectively attenuated rTEC ferroptosis. TUNEL staining confirmed that Zn2+ carried by ZnTA could effectively inhibit caspase 3 and caspase 9, mitigating apoptosis. Finally, it reduced renal IRI through the synergistic effect of ROS scavenging and cell-death inhibition.Conclusion: This study is expected to provide a paradigm for a combined therapeutic strategy for renal IRI.
Collapse
Affiliation(s)
- Zepeng Li
- Department of Kidney Transplantation, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jingyue Qin
- Department of Kidney Transplantation, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Youyou Feng
- Institute of Analytical Chemistry & Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science & Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Chenguang Ding
- Department of Kidney Transplantation, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yingcong Guo
- Department of Kidney Transplantation, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zhenting Zhao
- Department of Kidney Transplantation, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Shirui Sun
- Department of Kidney Transplantation, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jin Zheng
- Department of Kidney Transplantation, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jing Zhang
- Department of Kidney Transplantation, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yilei Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jing Wei
- Institute of Analytical Chemistry & Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science & Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Wujun Xue
- Department of Kidney Transplantation, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
22
|
Chen Y, Hou S. Targeted treatment of rat AKI induced by rhabdomyolysis using BMSC derived magnetic exosomes and its mechanism. NANOSCALE ADVANCES 2024; 6:4180-4195. [PMID: 39114150 PMCID: PMC11304081 DOI: 10.1039/d4na00334a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/11/2024] [Indexed: 08/10/2024]
Abstract
Introduction: rhabdomyolysis (RM) is a serious syndrome. A large area of muscle injury and dissolution induces acute kidney injury (AKI), which results in a high incidence and mortality rate. Exosomes released by mesenchymal stem cells (MSCs) have been used to treat AKI induced by rhabdomyolysis and have shown regenerative effects. However, the most serious drawbacks of these methods are poor targeting and a low enrichment rate after systemic administration. Methods: in this study, we demonstrated that magnetic exosomes derived from bone marrow mesenchymal stem cells (BMSCs) can directly target damaged muscles rather than kidneys using an external magnetic field. Results: magnetic navigation exosomes reduced the dissolution of damaged muscles, greatly reduced the release of cellular contents, slowed the development of AKI. Discussion: in summary, our proposed method can overcome the shortcomings of poor targeting in traditional exosome therapy. Moreover, in the rhabdomyolysis-induced AKI model, we propose for the first time an exosome therapy mode that directly targets damaged muscles through magnetic navigation.
Collapse
Affiliation(s)
- Yuling Chen
- Institute of Disaster and Emergency Medicine, Tianjin University Tianjin China
- Tianjin Key Laboratory of Disaster Medicine Technology Tianjin China
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University Tianjin China
- Tianjin Key Laboratory of Disaster Medicine Technology Tianjin China
| |
Collapse
|
23
|
Prylutskyy Y, Nozdrenko D, Omelchuk O, Prylutska S, Motuziuk O, Soroсa V, Vareniuk I, Stetska V, Bogutska K, Ritter U, Piosik J. Effect of C 60 Fullerene on Muscle Injury-Induced Rhabdomyolysis and Associated Acute Renal Failure. Int J Nanomedicine 2024; 19:8043-8058. [PMID: 39130686 PMCID: PMC11316485 DOI: 10.2147/ijn.s468013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/19/2024] [Indexed: 08/13/2024] Open
Abstract
Introduction Rhabdomyolysis, as an acute stage of myopathy, causes kidney damage. It is known that this pathology is caused by the accumulation of muscle breakdown products and is associated with oxidative stress. Therefore, the present study evaluated the effect of intraperitoneal administration (dose 1 mg/kg) of water-soluble C60 fullerenes, as powerful antioxidants, on the development of rat kidney damage due to rhabdomyolysis caused by mechanical trauma of the muscle soleus of different severity (crush syndrome lasting 1 min under a pressure of 2.5, 3.5, and 4.5 kg/cm2, respectively). Methods Using tensometry, biochemical and histopathological analyses, the biomechanical parameters of muscle soleus contraction (contraction force and integrated muscle power), biochemical indicators of rat blood (concentrations of creatinine, creatine phosphokinase, urea and hydrogen peroxide, catalase and superoxide dismutase activity), glomerular filtration rate and fractional sodium excretion value, as well as pathohistological and morphometric features of muscle and kidney damages in rats on days 1, 3, 6 and 9 after the initiation of the injury were studied. Results Positive changes in biomechanical and biochemical parameters were found during the experiment by about 27-30 ± 2%, as well as a decrease in pathohistological and morphometric features of muscle and kidney damages in rats treated with water-soluble C60 fullerenes. Conclusion These findings indicate the potential application of water-soluble C60 fullerenes in the treatment of pathological conditions of the muscular system caused by rhabdomyolysis and the associated oxidative stress.
Collapse
Affiliation(s)
- Yuriy Prylutskyy
- ESC ”institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Dmytro Nozdrenko
- ESC ”institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Olexandr Omelchuk
- Faculty of Biology and Forestry, Lesya Ukrainka Volyn National University, Lutsk, Ukraine
| | - Svitlana Prylutska
- Faculty of Plant Protection, Biotechnology and Ecology, National University of Life and Environmental Science of Ukraine, Kyiv, Ukraine
| | - Olexandr Motuziuk
- ESC ”institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Faculty of Biology and Forestry, Lesya Ukrainka Volyn National University, Lutsk, Ukraine
| | - Vasil Soroсa
- ESC ”institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Igor Vareniuk
- ESC ”institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Viktoria Stetska
- ESC ”institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Kateryna Bogutska
- ESC ”institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Uwe Ritter
- Institute of Chemistry and Biotechnology, Technical University of Ilmenau, Ilmenau, Germany
| | - Jacek Piosik
- Intercollegiate Faculty of Biotechnology, University of Gdansk, Gdańsk, Poland
| |
Collapse
|
24
|
Liu Y, Wang S, Zhang J, Sun Q, Xiao Y, Chen J, Yao M, Zhang G, Huang Q, Zhao T, Huang Q, Shi X, Feng C, Ai K, Bai Y. Reprogramming the myocardial infarction microenvironment with melanin-based composite nanomedicines in mice. Nat Commun 2024; 15:6651. [PMID: 39103330 PMCID: PMC11300711 DOI: 10.1038/s41467-024-50854-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/24/2024] [Indexed: 08/07/2024] Open
Abstract
Myocardial infarction (MI) has a 5-year mortality rate of more than 50% due to the lack of effective treatments. Interactions between cardiomyocytes and the MI microenvironment (MIM) can determine the progression and fate of infarcted myocardial tissue. Here, a specially designed Melanin-based composite nanomedicines (MCN) is developed to effectively treat MI by reprogramming the MIM. MCN is a nanocomposite composed of polydopamine (P), Prussian blue (PB) and cerium oxide (CexOy) with a Mayuan-like structure, which reprogramming the MIM by the efficient conversion of detrimental substances (H+, reactive oxygen species, and hypoxia) into beneficial status (O2 and H2O). In coronary artery ligation and ischemia reperfusion models of male mice, intravenously injecting MCN specifically targets the damaged area, resulting in restoration of cardiac function. With its promising therapeutic effects, MCN constitutes a new agent for MI treatment and demonstrates potential for clinical application.
Collapse
Affiliation(s)
- Yamei Liu
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Shuya Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, P.R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, P.R. China
| | - Jiaxiong Zhang
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Quan Sun
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Yi Xiao
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Jing Chen
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Meilian Yao
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Guogang Zhang
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Qun Huang
- Department of Child Health Care, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, P.R. China
| | - Tianjiao Zhao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, P.R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, P.R. China
| | - Qiong Huang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xiaojing Shi
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Can Feng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, P.R. China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, P.R. China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, P.R. China.
| | - Yongping Bai
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.
| |
Collapse
|
25
|
Ba X, Ye T, Shang H, Tong Y, Huang Q, He Y, Wu J, Deng W, Zhong Z, Yang X, Wang K, Xie Y, Zhang Y, Guo X, Tang K. Recent Advances in Nanomaterials for the Treatment of Acute Kidney Injury. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12117-12148. [PMID: 38421602 DOI: 10.1021/acsami.3c19308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Acute kidney injury (AKI) is a serious clinical syndrome with high morbidity, elevated mortality, and poor prognosis, commonly considered a "sword of Damocles" for hospitalized patients, especially those in intensive care units. Oxidative stress, inflammation, and apoptosis, caused by the excessive production of reactive oxygen species (ROS), play a key role in AKI progression. Hence, the investigation of effective and safe antioxidants and inflammatory regulators to scavenge overexpressed ROS and regulate excessive inflammation has become a promising therapeutic option. However, the unique physiological structure and complex pathological alterations in the kidneys render traditional therapies ineffective, impeding the residence and efficacy of most antioxidant and anti-inflammatory small molecule drugs within the renal milieu. Recently, nanotherapeutic interventions have emerged as a promising and prospective strategy for AKI, overcoming traditional treatment dilemmas through alterations in size, shape, charge, and surface modifications. This Review succinctly summarizes the latest advancements in nanotherapeutic approaches for AKI, encompassing nanozymes, ROS scavenger nanomaterials, MSC-EVs, and nanomaterials loaded with antioxidants and inflammatory regulator. Following this, strategies aimed at enhancing biocompatibility and kidney targeting are introduced. Furthermore, a brief discussion on the current challenges and future prospects in this research field is presented, providing a comprehensive overview of the evolving landscape of nanotherapeutic interventions for AKI.
Collapse
Affiliation(s)
- Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Ye
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Haojie Shang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yonghua Tong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiu Huang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wen Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zichen Zhong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoqi Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kangyang Wang
- Department of Urology, Wenchang People's Hospital, Wenchang 571300, Hainan Province, China
| | - Yabin Xie
- Department of Urology, Wenchang People's Hospital, Wenchang 571300, Hainan Province, China
| | - Yanlong Zhang
- GuiZhou University Medical College, Guiyang 550025, Guizhou Province, China
| | - Xiaolin Guo
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
26
|
Long Q, Liao F, Yi H, Wang M, Zhuang J, Zheng Y, Guo W, Zhang DY. Biodegradable Osmium Nanoantidotes for Photothermal-/Chemo- Combined Treatment and to Prevent Chemotherapy-Induced Acute Kidney Injury. Adv Healthc Mater 2024; 13:e2302729. [PMID: 38097368 DOI: 10.1002/adhm.202302729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/23/2023] [Indexed: 12/26/2023]
Abstract
Acute kidney injury (AKI) is a common adverse event in chemotherapy patients. AKI is accompanied by the generation of reactive oxygen species (ROS) and inflammation. Therefore, the management of ROS and inflammation is a potential strategy for AKI mitigation. Herein, polyethylene glycol-coated osmium nanozyme-based antidotes (Os) are developed for imaging-guided photothermal therapy (PTT) in combination with cisplatin (Pt); while, avoiding AKI induced by high-dose Pt. Os nanoantidotes can enhance the efficiency of tumor treatment during combined PTT and chemotherapy and inhibit tumor metastasis by improving the hypoxic and inflammatory tumor microenvironment. Os nanoantidotes preferentially accumulate in the kidney because of their 2-nm size distribution; and then, regulate inflammation by scavenging ROS and generating oxygen to alleviate Pt-induced AKI. Os nanoantidotes can be cleared from the kidneys by urine excretion but can be degraded under hydrogen peroxide stimulation, reducing the bio-retention of these compounds. By integrating PTT with inflammatory regulation, Os nanoantidotes have the potential to reduce the side effects of chemotherapy, offering an alternative route for the clinical management of cancer patients with chemotherapy-induced AKI.
Collapse
Affiliation(s)
- Qi Long
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Fangling Liao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Huixi Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Mingcheng Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiani Zhuang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yue Zheng
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Weisheng Guo
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Dong-Yang Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
27
|
Jiang K, Cao X, Wu H, Xu Y, Liu L, Qian H, Miao Z, Wang H, Ma Y. 2D Nanozymes Modulate Gut Microbiota and T-Cell Differentiation for Inflammatory Bowel Disease Management. Adv Healthc Mater 2024; 13:e2302576. [PMID: 37897434 DOI: 10.1002/adhm.202302576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/26/2023] [Indexed: 10/30/2023]
Abstract
Intestinal commensal microbiota dysbiosis and immune dysfunction are significant exacerbating factors in inflammatory bowel disease (IBD). To address these problems, Pluronic F-127-coated tungsten diselenide (WSe2 @F127) nanozymes are developed by simple liquid-phase exfoliation. The abundant valence transitions of elemental selenium (Se2- /Se4+ ) and tungsten (W4+ /W6+ ) enable the obtained WSe2 @F127 nanozymes to eliminate reactive oxygen/nitrogen species. In addition, the released tungsten ions are capable of inhibiting the proliferation of Escherichia coli. In a model of dextran sodium sulfate-induced colitis, WSe2 @F127 nanozymes modulate the gut microbiota by increasing the abundance of bacteria S24-7 and significantly reducing the abundance of Enterobacteriaceae. Moreover, WSe2 @F127 nanozymes inhibit T-cell differentiation and improve intestinal immune barrier function in a model of Crohn's disease. The WSe2 @F127 nanozymes effectively alleviate IBD by reducing oxidative stress damage, modulating intestinal microbial populations, and remodeling the immune barrier.
Collapse
Affiliation(s)
- Kai Jiang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiangjing Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Haitao Wu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yifeng Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Lulu Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230022, China
| | - Zhaohua Miao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yan Ma
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230022, China
| |
Collapse
|
28
|
Fang H, Xu S, Wang Y, Yang H, Su D. Endogenous stimuli-responsive drug delivery nanoplatforms for kidney disease therapy. Colloids Surf B Biointerfaces 2023; 232:113598. [PMID: 37866237 DOI: 10.1016/j.colsurfb.2023.113598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Kidney disease is one of the most life-threatening health problems, affecting millions of people in the world. Commonly used steroids and immunosuppressants often fall exceptionally short of outcomes with inescapable systemic toxicity. With the booming research in nanobiotechnology, stimuli-responsive nanoplatform has come an appealing therapeutic strategy for kidney disease. Endogenous stimuli-responsive materials have shown profuse promise owing to their enhanced spatiotemporal control and precise to the location of the lesion. This review focuses on recent advances stimuli-responsive drug delivery nano-architectonics for kidney disease. First, a brief introduction of pathogenesis of kidney disease and pathological microenvironment were provided. Then, various endogenous stimulus involved in drug delivery nanoplatforms including pH, ROS, enzymes, and glucose were categorized based on the pathological mechanisms of kidney disease. Next, we separately summarized literature examples of endogenous stimuli-responsive nanomaterials, and outlined the design strategies and response mechanisms. Finally, the paper was concluded by discussing remaining challenges and future perspectives of endogenous stimuli-responsive drug delivery nanoplatform for expediting the speed of development and clinical applications.
Collapse
Affiliation(s)
- Hufeng Fang
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China.
| | - Shan Xu
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China
| | - Yu Wang
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China
| | - Hao Yang
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China
| | - Dan Su
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China.
| |
Collapse
|
29
|
Jia F, Yu B, Li J, Cai F, Fu G, Jin Q, Ji J. Supramolecular Nano-Assembly of Caffeate-Strengthened Phenylboronic Ester with Multistep ROS Scavenging Ability for Targeted Therapy of Acute Kidney Injury. Adv Healthc Mater 2023; 12:e2301615. [PMID: 37657775 DOI: 10.1002/adhm.202301615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/13/2023] [Indexed: 09/03/2023]
Abstract
Acute kidney injury (AKI) is a life-threatening complication with a considerable occurrence among patients. AKI is typically accompanied by an elevation in reactive oxidative species (ROS) in renal tissues, which is the main contributor to kidney damage. Herein, a supramolecular nano-assembly (Ser-HPEC) containing an ethyl caffeate-strengthened phenylboronic ester with ROS-triggered antioxidative ability is proposed for AKI-targeted therapy. Nano-assemblies can rapidly accumulate in the ischemia-reperfusion-injured kidney via kidney injury molecule-1 (Kim-1)-mediated homing ability of l-serine. By consuming pathological levels of ROS, two different antioxidants, ethyl caffeate and 4-hydroxybenzyl alcohol, are spontaneously released from a single module to relieve oxidative stress and diminish acute inflammation in injured renal tissue. The multistep ROS scavenging strategy combined with a precise targeting capability endows the aforementioned nano-assembly with effectiveness in preserving the integrity and functions of the injured kidney, providing new inspiration for the treatment of inflammatory diseases, including AKI.
Collapse
Affiliation(s)
- Fan Jia
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang Province, 310027, P. R. China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, P. R. China
| | - Bo Yu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang Province, 310027, P. R. China
| | - Jian Li
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang Province, 310027, P. R. China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, P. R. China
| | - Fanghao Cai
- Key Laboratory of Kidney Disease Prevention and Control Technology of Zhejiang Province, Institute of Nephrology, Zhejiang University, Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, P. R. China
| | - Guosheng Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, P. R. China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang Province, 310027, P. R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang Province, 310027, P. R. China
| |
Collapse
|
30
|
Sahu A, Min K, Jeon SH, Kwon K, Tae G. Self-assembled hemin-conjugated heparin with dual-enzymatic cascade reaction activities for acute kidney injury. Carbohydr Polym 2023; 316:121088. [PMID: 37321716 DOI: 10.1016/j.carbpol.2023.121088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/16/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Nanozymes have prominent catalytic activities with high stability as a substitute for unstable and expensive natural enzymes. However, most nanozymes are metal/inorganic nanomaterials, facing difficulty in clinical translation due to their unproven biosafety and limited biodegradability issues. Hemin, an organometallic porphyrin, was newly found to possess superoxide dismutase (SOD) mimetic activity along with previously known catalase (CAT) mimetic activity. However, hemin has poor bioavailability due to its low water solubility. Therefore, a highly biocompatible and biodegradable organic-based nanozyme system with SOD/CAT mimetic cascade reaction activity was developed by conjugating hemin to heparin (HepH) or chitosan (CS-H). Between them, Hep-H formed a smaller (<50 nm) and more stable self-assembled nanostructure and even possessed much higher and more stable SOD and CAT activities as well as the cascade reaction activity compared to CS-H and free hemin. Hep-H also showed a better cell protection effect against reactive oxygen species (ROS) compared to CS-H and hemin in vitro. Furthermore, Hep-H was selectively delivered to the injured kidney upon intravenous administration at the analysis time point (24 h) and exhibited excellent therapeutic effects on an acute kidney injury model by efficiently removing ROS, reducing inflammation, and minimizing structural and functional damage to the kidney.
Collapse
Affiliation(s)
- Abhishek Sahu
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Kiyoon Min
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Sae Hyun Jeon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Kiyoon Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
31
|
Li Z, Fan X, Fan J, Zhang W, Liu J, Liu B, Zhang H. Delivering drugs to tubular cells and organelles: the application of nanodrugs in acute kidney injury. Nanomedicine (Lond) 2023; 18:1477-1493. [PMID: 37721160 DOI: 10.2217/nnm-2023-0200] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Acute kidney injury (AKI) is a common clinical syndrome with limited treatment options and high mortality rates. Proximal tubular epithelial cells (PTECs) play a key role in AKI progression. Subcellular dysfunctions, including mitochondrial, nuclear, endoplasmic reticulum and lysosomal dysfunctions, are extensively studied in PTECs. These studies have led to the development of potential therapeutic drugs. However, clinical development of those drugs faces challenges such as low solubility, short circulation time and severe systemic side effects. Nanotechnology provides a promising solution by improving drug properties through nanocrystallization and enabling targeted delivery to specific sites. This review summarizes advancements and limitations of nanoparticle-based drug-delivery systems in targeting PTECs and subcellular organelles, particularly mitochondria, for AKI treatment.
Collapse
Affiliation(s)
- Zhi Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, 410013, China
| | - Xiao Fan
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, 410013, China
| | - Jialong Fan
- College of Biology, Hunan University, Changsha, 410082, China
| | - Wei Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, 410013, China
| | - Jun Liu
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, 410013, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, 410082, China
- Department of Physiology & Pathophysiology, NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, 410013, China
| |
Collapse
|
32
|
Liu H, Wang S, Chen Q, Ge X, Ning H, Guo Y, Wang D, Ai K, Hu C. Natural Targeting Potent ROS-Eliminating Tungsten-Based Polyoxometalate Nanodots for Efficient Treatment of Pulmonary Hypertension. Adv Healthc Mater 2023; 12:e2300252. [PMID: 37196347 DOI: 10.1002/adhm.202300252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/27/2023] [Indexed: 05/19/2023]
Abstract
Pulmonary hypertension (PH) is a disease of pulmonary artery stenosis and blockage caused by abnormal pulmonary artery smooth muscle cells (PASMCs), with high morbidity and mortality. High levels of reactive oxygen species (ROS) in pulmonary arteries play a crucial role in inducing phenotypic switch and abnormal proliferation of PASMCs. However, antioxidants are rarely approved for the treatment of PH because of a lack of targeting and low bioavailability. In this study, the presence of an enhanced permeability and retention effect (EPR)-like effect in the pulmonary arteries of PH is revealed by tissue transmission electron microscopy (TEM). Subsequently, for the first time, tungsten-based polyoxometalate nanodots (WNDs) are developed with potent elimination of multiple ROS for efficient treatment of PH thanks to the high proportion of reduced W5+ . WNDs are effectively enriched in the pulmonary artery by intravenous injection because of the EPR-like effect of PH, and significantly prevent the abnormal proliferation of PASMCs, greatly improve the remodeling of pulmonary arteries, and ultimately improve right heart function. In conclusion, this work provides a novel and effective solution to the dilemma of targeting ROS for the treatment of PH.
Collapse
Affiliation(s)
- Hong Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Shuya Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Xiaoyue Ge
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Huang Ning
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yanzi Guo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Di Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Changsha, 410078, China
| | - Changping Hu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Changsha, 410078, China
- Department of Pharmacy, Changzhi Medical College, Changzhi, 046000, China
| |
Collapse
|
33
|
Yang Y, Nan Y, Chen Q, Xiao Z, Zhang Y, Zhang H, Huang Q, Ai K. Antioxidative 0-dimensional nanodrugs overcome obstacles in AKI antioxidant therapy. J Mater Chem B 2023; 11:8081-8095. [PMID: 37540219 DOI: 10.1039/d3tb00970j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Acute kidney injury (AKI) is a commonly encountered syndrome associated with various aetiologies and pathophysiological processes leading to enormous health risks and economic losses. In the absence of specific drugs to treat AKI, hemodialysis remains the primary clinical treatment for AKI patients. The revelation of the pathology opens new horizons for antioxidant therapy in the treatment of AKI. However, small molecule antioxidant drugs and common nanozymes have failed to challenge AKI due to their unsatisfactory drug properties and renal physiological barriers. 0-Dimensional (0D) antioxidant nanodrugs stand out at this time thanks to their small size and high performance. Recently, a number of research studies have been carried out around 0D nanodrugs for alleviating AKI, and their multi-antioxidant enzyme mimetic activities, smooth glomerular filtration barrier permeability and excellent biocompatibility have been investigated. Here, we comprehensively summarize recent advances in 0D nanodrugs for AKI antioxidant therapy. We classify these representative studies into three categories according to the characteristics of 0D nanomaterials, namely ultra-small metal nanodots, inorganic non-metallic quantum dots and polymer nanodots. We focus on the antioxidant mechanisms and their distribution in vivo in each inspiring work, and the purpose and ingenuity of each design are rigorously captured and described. Finally, we provide our reflections and prospects for 0D antioxidant nanodrugs in AKI treatment. This mini review provides unique insights and valuable clues in the design of 0D nanodrugs and other kidney absorbable drugs.
Collapse
Affiliation(s)
- Yuqi Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yayun Nan
- Geriatric Medical Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yuntao Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Huanan Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| |
Collapse
|
34
|
Li J, Wang H. Selective organ targeting nanoparticles: from design to clinical translation. NANOSCALE HORIZONS 2023; 8:1155-1173. [PMID: 37427677 DOI: 10.1039/d3nh00145h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Targeting nanoparticle is a very promising therapeutic approach that can precisely target specific sites to treat diseases. Research on nanoscale drug delivery systems has made great progress in the past few years, making targeting nanoparticles a promising prospect. However, selective targeting nanoparticles designed for specific organs still face several challenges, one of which is the unknown fate of nanoparticles in vivo. This review starts with the in vivo journey of nanoparticles and describes the biological barriers and some targeting strategies for nanoparticles to target specific organs. Then, through the collection of literature in recent years, the design of selective targeting nanoparticles for various organs is illustrated, which provides a reference strategy for people to study the design of selective organ targeting nanoparticles. Ultimately, the prospect and challenge of selective organ targeting nanoparticles are discussed by collecting the data of clinical trials and marketed drugs.
Collapse
Affiliation(s)
- Jian Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
35
|
Wu J, Shang H, Zhang A, He Y, Tong Y, Huang Q, Liu X, Chen Z, Tang K. Antioxidant nanozymes in kidney injury: mechanism and application. NANOSCALE 2023; 15:13148-13171. [PMID: 37547960 DOI: 10.1039/d3nr01954c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Excessive production of reactive oxygen species (ROS) in the kidneys is involved in the pathogenesis of kidney diseases, such as acute kidney injury (AKI) and diabetic kidney disease (DKD), and is the main reason for the progression of kidney injury. ROS can easily lead to lipid peroxidation and damage the tubular epithelial cell membrane, proteins and DNA, and other molecules, which can trigger cellular oxidative stress. Effective scavenging of ROS can delay or halt the progression of kidney injury by reducing inflammation and oxidative stress. With the development of nanotechnology and an improved understanding of nanomaterials, more researchers are applying nanomaterials with antioxidant activity to treat kidney injury. This article reviews the detailed mechanism between ROS and kidney injury, as well as the applications of nanozymes with antioxidant effects based on different materials for various kidney injuries. To better guide the applications of antioxidant nanozymes in kidney injury and other inflammatory diseases, at the end of this review we also summarize the aspects of nanozymes that need to be improved. An in-depth understanding of the role played by ROS in the occurrence and progression of kidney injury and the mechanism by which antioxidant nanozymes reduce oxidative stress is conducive to improving the therapeutic effect in kidney injury and inflammation-related diseases.
Collapse
Affiliation(s)
- Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan, 430030, China.
| | - Haojie Shang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan, 430030, China.
| | - An Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan, 430030, China.
| | - Yonghua Tong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan, 430030, China.
| | - Qiu Huang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan, 430030, China.
| | - Xiao Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan, 430030, China.
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan, 430030, China.
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan, 430030, China.
| |
Collapse
|
36
|
Feng C, Xiong Z, Sun X, Zhou H, Wang T, Wang Y, Bai HX, Lei P, Liao W. Beyond antioxidation: Harnessing the CeO 2 nanoparticles as a renoprotective contrast agent for in vivo spectral CT angiography. Biomaterials 2023; 299:122164. [PMID: 37229807 DOI: 10.1016/j.biomaterials.2023.122164] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/29/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
It is a challenging task to develop a contrast agent that not only provides excellent image contrast but also protects impaired kidneys from oxidative-related stress during angiography. Clinically approved iodinated CT contrast media are associated with potential renal toxicity, making it necessary to develop a renoprotective contrast agent. Here, we develop a CeO2 nanoparticles (NPs)-mediated three-in-one renoprotective imaging strategy, namely, i) renal clearable CeO2 NPs serve as a one-stone-two-birds antioxidative contrast agent, ii) low contrast media dose, and iii) spectral CT, for in vivo CT angiography (CTA). Benefiting from the merits of advanced sensitivity of spectral CT and K-edge energy of Cerium (Ce, 40.4 keV), an improved image quality of in vivo CTA is successfully achieved with a 10 times reduction of contrast agent dosage. In parallel, the sizes of CeO2 NPs and broad catalytic activities are suitable to be filtered via glomerulus thus directly alleviating the oxidative stress and the accompanying inflammatory injury of the kidney tubules. In addition, the low dosage of CeO2 NPs reduces the hypoperfusion stress of renal tubules induced by concentrated contrast agents used in angiography. This three-in-one renoprotective imaging strategy helps prevent kidney injury from being worsened during the CTA examination.
Collapse
Affiliation(s)
- Cai Feng
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zongling Xiong
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xianting Sun
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Hao Zhou
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China; Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Tianming Wang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ying Wang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Harrison X Bai
- Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Peng Lei
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China; Molecular Imaging Research Center of Central South University, Changsha, 410008, China.
| |
Collapse
|
37
|
Huang Q, Liu Z, Yang Y, Yang Y, Huang T, Hong Y, Zhang J, Chen Q, Zhao T, Xiao Z, Gong X, Jiang Y, Peng J, Nan Y, Ai K. Selenium Nanodots (SENDs) as Antioxidants and Antioxidant-Prodrugs to Rescue Islet β Cells in Type 2 Diabetes Mellitus by Restoring Mitophagy and Alleviating Endoplasmic Reticulum Stress. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300880. [PMID: 37408520 DOI: 10.1002/advs.202300880] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/26/2023] [Indexed: 07/07/2023]
Abstract
Preventing islet β-cells death is crucial for treating type 2 diabetes mellitus (T2DM). Currently, clinical drugs are being developed to improve the quality of T2DM care and self-care, but drugs focused on reducing islets β-cell death are lacking. Given that β-cell death in T2DM is dominated ultimately by excessive reactive oxygen species (ROS), eliminating excessive ROS in β-cells is a highly promising therapeutic strategy. Nevertheless, no antioxidants have been approved for T2DM therapy because most of them cannot meet the long-term and stable elimination of ROS in β-cells without eliciting toxic side-effects. Here, it is proposed to restore the endogenous antioxidant capacity of β-cells to efficiently prevent β-cell death using selenium nanodots (SENDs), a prodrug of the antioxidant enzyme glutathione peroxidase 1 (GPX1). SENDs not only scavenge ROS effectively, but also "send" selenium precisely to β-cells with ROS response to greatly enhance the antioxidant capacity of β-cells by increasing GPX1 expression. Therefore, SENDs greatly rescue β-cells by restoring mitophagy and alleviating endoplasmic reticulum stress (ERS), and demonstrate much stronger efficacy than the first-line drug metformin for T2DM treatment. Overall, this strategy highlights the great clinical application prospects of SENDs, offering a paradigm for an antioxidant enzyme prodrug for T2DM treatment.
Collapse
Affiliation(s)
- Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zerun Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yunrong Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuqi Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ting Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ying Hong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jinping Zhang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Tianjiao Zhao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Xuejun Gong
- Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yitian Jiang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Jiang Peng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yayun Nan
- Geriatric Medical Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| |
Collapse
|
38
|
Hu R, Wang X, Han L, Lu X. The Developments of Surface-Functionalized Selenium Nanoparticles and Their Applications in Brain Diseases Therapy. Biomimetics (Basel) 2023; 8:259. [PMID: 37366854 DOI: 10.3390/biomimetics8020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
Selenium (Se) and its organic and inorganic compounds in dietary supplements have been found to possess excellent pharmacodynamics and biological responses. However, Se in bulk form generally exhibits low bioavailability and high toxicity. To address these concerns, nanoscale selenium (SeNPs) with different forms, such as nanowires, nanorods, and nanotubes, have been synthesized, which have become increasingly popular in biomedical applications owing to their high bioavailability and bioactivity, and are widely used in oxidative stress-induced cancers, diabetes, and other diseases. However, pure SeNPs still encounter problems when applied in disease therapy because of their poor stability. The surface functionalization strategy has become increasingly popular as it sheds light to overcome these limitations in biomedical applications and further improve the biological activity of SeNPs. This review summarizes synthesis methods and surface functionalization strategies employed for the preparation of SeNPs and highlights their applications in treating brain diseases.
Collapse
Affiliation(s)
- Rong Hu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiao Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lu Han
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266003, China
| | - Xiong Lu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
39
|
Huang Q, Yang Y, Zhu Y, Chen Q, Zhao T, Xiao Z, Wang M, Song X, Jiang Y, Yang Y, Zhang J, Xiao Y, Nan Y, Wu W, Ai K. Oral Metal-Free Melanin Nanozymes for Natural and Durable Targeted Treatment of Inflammatory Bowel Disease (IBD). SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207350. [PMID: 36760016 DOI: 10.1002/smll.202207350] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/10/2023] [Indexed: 05/11/2023]
Abstract
Oral antioxidant nanozymes bring great promise for inflammatory bowel disease (IBD) treatment. To efficiently eliminate reactive oxygen species (ROS), various metal-based nanozymes have been developed for the treatment of IBD but their practical applications are seriously impaired by unstable ROS-eliminating properties and potential metal ion leakage in the digestive tract. Here, the authors for the first time propose metal-free melanin nanozymes (MeNPs) with excellent gastrointestinal stability and biocompatibility as a favorable therapy strategy for IBD. Moreover, MeNPs have extremely excellent natural and long-lasting characteristics of targeting IBD lesions. In view of the dominant role of ROS in IBD, the authors further reveal that oral administration of MeNPs can greatly alleviate the six major pathological features of IBD: oxidative stress, endoplasmic reticulum stress, apoptosis, inflammation, gut barrier disruption, and gut dysbiosis. Overall, this strategy highlights the great clinical application prospects of metal-free MeNPs via harnessing ROS scavenging at IBD lesions, offering a paradigm for antioxidant nanozyme in IBD or other inflammatory diseases.
Collapse
Affiliation(s)
- Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuqi Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yan Zhu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Tianjiao Zhao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Mingyuan Wang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xiangping Song
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yitian Jiang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yunrong Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jinping Zhang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yang Xiao
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, The Second Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Yayun Nan
- Geriatric Medical Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, China
| | - Wei Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| |
Collapse
|
40
|
Zeng C, Tan Y, Sun L, Long Y, Zeng F, Wu S. Renal-Clearable Probe with Water Solubility and Photostability for Biomarker-Activatable Detection of Acute Kidney Injuries via NIR-II Fluorescence and Optoacoustic Imaging. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17664-17674. [PMID: 37011134 DOI: 10.1021/acsami.3c00956] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Acute kidney injuries (AKI) have serious short-term or long-term complications with high morbidity and mortality rate, thus posing great health threats. Developing high-performance NIR-II probes for noninvasive in situ detection of AKI via NIR-II fluorescent and optoacoustic dual-mode imaging is of great significance. Yet NIR-II chromophores often feature long conjugation and hydrophobicity, which prevent them from being renal clearable, thus limiting their applications in the detection and imaging of kidney diseases. To fully exploit the advantageous features of heptamethine cyanine dye, while overcoming its relatively poor photostability, and to strive to design a NIR-II probe for the detection and imaging of AKI with dual-mode imaging, herein, we have developed the probe PEG3-HC-PB, which is renal clearable, water soluble, and biomarker activatable and has good photostability. As for the probe, its fluorescence (900-1200 nm) is quenched due to the existence of the electron-pulling phenylboronic group (responsive element), and it exhibits weak absorption with a peak at 830 nm. Meanwhile, in the presence of the overexpressed H2O2 in the renal region in the case of AKI, the phenylboronic group is converted to the phenylhydroxy group, which enhances NIR-II fluorescent emission (900-1200 nm) and absorption (600-900 nm) and eventually produces conspicuous optoacoustic signals and NIR-II fluorescent emission for imaging. This probe enables detection of contrast-agent-induced and ischemia/reperfusion-induced AKI in mice using real-time 3D-MSOT and NIR-II fluorescent dual-mode imaging via response to the biomarker H2O2. Hence, this probe can be used as a practicable tool for detecting AKI; additionally, its design strategy could provide insight into the design of other large-conjugation NIR-II probes with multifarious biological applications.
Collapse
Affiliation(s)
- Cheng Zeng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, China
| | - Yunyan Tan
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, China
| | - Lihe Sun
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, China
| | - Yi Long
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, China
| | - Fang Zeng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, China
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, China
| |
Collapse
|
41
|
Tahir I, Alkheraije KA. A review of important heavy metals toxicity with special emphasis on nephrotoxicity and its management in cattle. Front Vet Sci 2023; 10:1149720. [PMID: 37065256 PMCID: PMC10090567 DOI: 10.3389/fvets.2023.1149720] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 02/21/2023] [Indexed: 03/30/2023] Open
Abstract
Toxicity with heavy metals has proven to be a significant hazard with several health problems linked to it. Heavy metals bioaccumulate in living organisms, pollute the food chain, and possibly threaten the health of animals. Many industries, fertilizers, traffic, automobile, paint, groundwater, and animal feed are sources of contamination of heavy metals. Few metals, such as aluminum (Al), may be eliminated by the elimination processes, but other metals like lead (Pb), arsenic (As), and cadmium (Ca) accumulate in the body and food chain, leading to chronic toxicity in animals. Even if these metals have no biological purpose, their toxic effects are still present in some form that is damaging to the animal body and its appropriate functioning. Cadmium (Cd) and Pb have negative impacts on a number of physiological and biochemical processes when exposed to sub-lethal doses. The nephrotoxic effects of Pb, As, and Cd are well known, and high amounts of naturally occurring environmental metals as well as occupational populations with high exposures have an adverse relationship between kidney damage and toxic metal exposure. Metal toxicity is determined by the absorbed dosage, the route of exposure, and the duration of exposure, whether acute or chronic. This can lead to numerous disorders and can also result in excessive damage due to oxidative stress generated by free radical production. Heavy metals concentration can be decreased through various procedures including bioremediation, pyrolysis, phytoremediation, rhizofiltration, biochar, and thermal process. This review discusses few heavy metals, their toxicity mechanisms, and their health impacts on cattle with special emphasis on the kidneys.
Collapse
Affiliation(s)
- Ifrah Tahir
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Khalid Ali Alkheraije
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
42
|
Chen Q, Wang X, Yuan C, Nan Y, Huang Q, Ai K. 2D-nanomaterials for AKI treatment. Front Bioeng Biotechnol 2023; 11:1159989. [PMID: 36970615 PMCID: PMC10033996 DOI: 10.3389/fbioe.2023.1159989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
Acute kidney injury has always been considered a sword of Damocles over hospitalized patients and has received increasing attention due to its high morbidity, elevated mortality, and poor prognosis. Hence, AKI has a serious detrimental impact not only on the patients, but also on the whole society and the associated health insurance systems. Redox imbalance caused by bursts of reactive oxygen species at the renal tubules is the key cause of the structural and functional impairment of the kidney during AKI. Unfortunately, the failure of conventional antioxidant drugs complicates the clinical management of AKI, which is limited to mild supportive therapies. Nanotechnology-mediated antioxidant therapies represent a promising strategy for AKI management. In recent years, two-dimensional (2D) nanomaterials, a new subtype of nanomaterials with ultrathin layer structure, have shown significant advantages in AKI therapy owing to their ultrathin structure, large specific surface area, and unique kidney targeting. Herein, we review recent progress in the development of various 2D nanomaterials for AKI therapy, including DNA origami, germanene, and MXene; moreover, we discuss current opportunities and future challenges in the field, aiming to provide new insights and theoretical support for the development of novel 2D nanomaterials for AKI treatment.
Collapse
Affiliation(s)
- Qiaohui Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Xiaoyuan Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Chao Yuan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yayun Nan
- Geriatric Medical Center, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
43
|
Kaempferol Reverses Acute Kidney Injury in Septic Model by Inhibiting NF-κB/AKT Signaling Pathway. J Food Biochem 2023. [DOI: 10.1155/2023/1353449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Sepsis is the main cause of acute kidney injury (AKI), mainly due to systemic immune dysregulation. Kaempferol (KAE) is a natural flavonoid compound with multiple biological activities including anti-inflammatory, antioxidant, and antiapoptotic properties. In this study, we constructed a sepsis-induced AKI mouse model and an LPS-induced glomerular mesangial cell (HK-2) in vitro sepsis AKI model. We found that KAE ameliorated sepsis-induced renal pathological damage, reversed renal function damage, and inhibited p-p65 and p-AKT protein expression. In addition, KAE reversed LPS-induced proliferation and inhibited apoptosis in HK-2 cells. These studies suggest that KAE reverses sepsis by inhibiting activation of the NF-κB/AKT pathway to reverse acute kidney injury.
Collapse
|
44
|
Wang X, Wu T, Yang Y, Zhou L, Wang S, Liu J, Zhao Y, Zhang M, Zhao Y, Qu H, Kong H, Zhang Y. Ultrasmall and highly biocompatible carbon dots derived from natural plant with amelioration against acute kidney injury. J Nanobiotechnology 2023; 21:63. [PMID: 36814298 PMCID: PMC9946873 DOI: 10.1186/s12951-023-01795-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/24/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Acute kidney injury (AKI) refers to a tricky clinical disease, known by its high morbidity and mortality, with no real specific medicine for AKI. The carbonization product from Pollen Typhae (i.e., Pu-huang in China) has been extensively employed in clinic, and it is capable of relieving the renal damage and other diseases in China since acient times. RESULTS Inspired by the carbonization process of Traditional Chinese Medicine (TCM), a novel species of carbon dots derived from Pollen Typhae (PT-CDs) was separated and then collected using a one-pot pyrolysis method. The as-prepared PT-CDs (4.85 ± 2.06 nm) with negative charge and abundant oxygenated groups exhibited high solubility, and they were stable in water. Moreover, the rhabdomyolysis (RM)-induced AKI rat model was used, and it was first demonstrated that PT-CDs had significant activity in improving the level of BUN and CRE, urine volume and kidney index, and histopathological morphology in RM-induced AKI rats. It is noteworthy that interventions of PT-CDs significantly reduced degree of inflammatory reaction and oxidative stress, which may be correlated with the basial potential mechanism of anti-AKI activities. Furthermore, cytotoxicity assay and biosafety evaluation exhibited high biocompatibility of PT-CDs. CONCLUSION This study offers a novel relieving strategy for AKI based on PT-CDs and suggests its potential to be a related candidate for clinical applications.
Collapse
Affiliation(s)
- Xiaoke Wang
- grid.477982.70000 0004 7641 2271Encephalopathy Hospital, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000 China
| | - Tong Wu
- grid.24695.3c0000 0001 1431 9176School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Yingxin Yang
- grid.24695.3c0000 0001 1431 9176School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Long Zhou
- grid.24695.3c0000 0001 1431 9176School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Shuxian Wang
- grid.24695.3c0000 0001 1431 9176School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Jiaxing Liu
- grid.24695.3c0000 0001 1431 9176Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Yafang Zhao
- grid.24695.3c0000 0001 1431 9176School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Meiling Zhang
- grid.412073.3Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100020 China
| | - Yan Zhao
- grid.24695.3c0000 0001 1431 9176School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Huihua Qu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China. .,Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yue Zhang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
45
|
Cui F, Liu J, Zhang T, Pang S, Yu H, Xu N. Low-dimensional nanomaterials as an emerging platform for cancer diagnosis and therapy. Front Bioeng Biotechnol 2023; 11:1101673. [PMID: 36741768 PMCID: PMC9892763 DOI: 10.3389/fbioe.2023.1101673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
The burden of cancer is increasing, being widely recognized as one of the main reasons for deaths among humans. Despite the tremendous efforts that have been made worldwide to stem the progression and metastasis of cancer, morbidity and mortality in malignant tumors have been clearly rising and threatening human health. In recent years, nanomedicine has come to occupy an increasingly important position in precision oncotherapy, which improves the diagnosis, treatment, and long-term prognosis of cancer. In particular, LDNs with distinctive physicochemical capabilities have provided great potential for advanced biomedical applications, attributed to their large surface area, abundant surface binding sites, and good cellular permeation properties. In addition, LDNs can integrate CT/MR/US/PAI and PTT/PDT/CDT/NDDS into a multimodal theranostic nanoplatform, enabling targeted therapy and efficacy assessments for cancer. This review attempts to concisely summarize the classification and major properties of LDNs. Simultaneously, we particularly emphasize their applications in the imaging, diagnosis, and treatment of cancerous diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Nannan Xu
- *Correspondence: Jianhua Liu, ; Nannan Xu,
| |
Collapse
|
46
|
Yang Y, Huang J, Liu M, Qiu Y, Chen Q, Zhao T, Xiao Z, Yang Y, Jiang Y, Huang Q, Ai K. Emerging Sonodynamic Therapy-Based Nanomedicines for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204365. [PMID: 36437106 PMCID: PMC9839863 DOI: 10.1002/advs.202204365] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/25/2022] [Indexed: 05/08/2023]
Abstract
Cancer immunotherapy effect can be greatly enhanced by other methods to induce immunogenic cell death (ICD), which has profoundly affected immunotherapy as a highly efficient paradigm. However, these treatments have significant limitations, either by causing damage of the immune system or limited to superficial tumors. Sonodynamic therapy (SDT) can induce ICD to promote immunotherapy without affecting the immune system because of its excellent spatiotemporal selectivity and low side effects. Nevertheless, SDT is still limited by low reactive oxygen species yield and the complex tumor microenvironment. Recently, some emerging SDT-based nanomedicines have made numerous attractive and encouraging achievements in the field of cancer immunotherapy due to high immunotherapeutic efficiency. However, this cross-cutting field of research is still far from being widely explored due to huge professional barriers. Herein, the characteristics of the tumor immune microenvironment and the mechanisms of ICD are firstly systematically summarized. Subsequently, the therapeutic mechanism of SDT is fully summarized, and the advantages and limitations of SDT are discussed. The representative advances of SDT-based nanomedicines for cancer immunotherapy are further highlighted. Finally, the application prospects and challenges of SDT-based immunotherapy in future clinical translation are discussed.
Collapse
Affiliation(s)
- Yunrong Yang
- Department of PharmacyXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
| | - Jia Huang
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Min Liu
- Department of PharmacyXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
| | - Yige Qiu
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Tianjiao Zhao
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Yuqi Yang
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Yitian Jiang
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Qiong Huang
- Department of PharmacyXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
| | - Kelong Ai
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| |
Collapse
|
47
|
Zhong S, Yao S, Zhao Q, Wang Z, Liu Z, Li L, Wang ZL. Electricity‐Assisted Cancer Therapy: From Traditional Clinic Applications to Emerging Methods Integrated with Nanotechnologies. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Songjing Zhong
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 101400 P.R. China
| | - Shuncheng Yao
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 101400 P.R. China
| | - Qinyu Zhao
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- Center on Nanoenergy Research Guangxi University Nanning 530004 P.R. China
| | - Zhuo Wang
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
| | - Zhirong Liu
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 101400 P.R. China
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 101400 P.R. China
- Center on Nanoenergy Research Guangxi University Nanning 530004 P.R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- Center on Nanoenergy Research Guangxi University Nanning 530004 P.R. China
| |
Collapse
|
48
|
Zhao H, Huang J, Huang L, Yang Y, Xiao Z, Chen Q, Huang Q, Ai K. Surface control approach for growth of cerium oxide on flower-like molybdenum disulfide nanosheets enables superior removal of uremic toxins. J Colloid Interface Sci 2022; 630:855-865. [DOI: 10.1016/j.jcis.2022.10.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/17/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
49
|
Chen L, Zhao T, Liu M, Chen Q, Yang Y, Zhang J, Wang S, Zhu X, Zhang H, Huang Q, Ai K. Ultra-small molybdenum-based nanodots as an antioxidant platform for effective treatment of periodontal disease. Front Bioeng Biotechnol 2022; 10:1042010. [PMID: 36338110 PMCID: PMC9632960 DOI: 10.3389/fbioe.2022.1042010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/15/2022] Open
Abstract
Periodontal disease (PD) is a local inflammatory disease with high morbidity, manifesting tissue destruction results from inflammation of the host immune response to bacterial antigens and irritants. The supportive function of connective tissue and skeletal tissue can be jeopardized without prompt and effective intervention, representing the major cause of tooth loss. However, traditional treatments exhibited great limitations, such as low efficacies, causing serious side effects and recurrent inflammatory episodes. As a major defense mechanism, reactive oxygen species (ROS) play important roles in the pathological progression of PD. Antioxidant therapy is widely believed to be an effective strategy for ROS-triggered diseases, including oxidative stress-induced PD. Most antioxidants can only scavenge one or a few limited kinds of ROS and cannot handle all kinds. In addition, current antioxidant nanomaterials present limitations associated with toxicity, low stability, and poor biocompatibility. To this end, we develop ultra-small molybdenum-based nanodots (MoNDs) with strong ROS in oxidative stress-induced PD. To the best of our knowledge, this is the first time that MoNDs have been used for PD. In the present study, MoNDs have shown extremely good therapeutic effects as ROS scavengers. Spectroscopic and in vitro experiments provided strong evidence for the roles of MoNDs in eliminating multiple ROS and inhibiting ROS-induced inflammatory responses. In addition, the mouse model of PD was established and demonstrated the feasibility of MoNDs as powerful antioxidants. It can alleviate periodontal inflammation by scavenging multiple ROS without obvious side effects and exhibit good biocompatibility. Thus, this newly developed nanomedicine is effective in scavenging ROS and inhibiting M1 phenotypic polarization, which provides promising candidates for the treatment of PD.
Collapse
Affiliation(s)
- Li Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Tianjiao Zhao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Min Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Qiaohui Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yunrong Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jinping Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuya Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xiaoyu Zhu
- Xiangya School of Stomatology, Central South University, Changsha, China
| | - Huanan Zhang
- Xiangya School of Stomatology, Central South University, Changsha, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Qiong Huang,
| | - Kelong Ai
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|