1
|
Liu YB, Liu X, Li XF, Qiao L, Wang HL, Dong YF, Zhang F, Liu Y, Liu HY, Ji ML, Li L, Jiang Q, Lu J. Multifunctional piezoelectric hydrogels under ultrasound stimulation boost chondrogenesis by recruiting autologous stem cells and activating the Ca 2+/CaM/CaN signaling pathway. Bioact Mater 2025; 50:344-363. [PMID: 40297641 PMCID: PMC12036080 DOI: 10.1016/j.bioactmat.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/25/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
Articular cartilage, owing to the lack of undifferentiated stem cells after injury, faces significant challenges in reconstruction and repair, making it a major clinical challenge. Therefore, there is an urgent need to design a multifunctional hydrogels capable of recruiting autologous stem cells to achieve in situ cartilage regeneration. Here, our study investigated the potential of a piezoelectric hydrogel (Hyd6) for enhancing cartilage regeneration through ultrasound (US) stimulation. Hyd6 has multiple properties including injectability, self-healing capabilities, and piezoelectric characteristics. These properties synergistically promote stem cell chondrogenesis. The fabrication and characterization of Hyd6 revealed its excellent biocompatibility, biodegradability, and electromechanical conversion capabilities. In vitro and in vivo experiments revealed that Hyd6, when combined with US stimulation, significantly promotes the recruitment of autologous stem cells and enhances chondrogenesis by generating electrical signals that promote the influx of Ca2+, activating downstream CaM/CaN signaling pathways and accelerating cartilage formation. An in vivo study in a rabbit model of chondral defects revealed that Hyd6 combined with US treatment significantly improved cartilage regeneration, as evidenced by better integration of the regenerated tissue with the surrounding cartilage, greater collagen type II expression, and improved mechanical properties. The results highlight the potential of Hyd6 as a novel therapeutic approach for treating cartilage injuries, offering a self-powered, noninvasive, and effective strategy for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Yu-Bao Liu
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xu Liu
- Department of Orthopedics, The Yangzhou Clinical Medical College of Xuzhou Medical University, Yangzhou, 225009, China
- Orthopedics Department, Nanjing Drum Tower Hospital & Group's Suqian Hospital, Affiliated Hospital of Medical School, Nanjing University, Suqian, 223800, China
| | - Xiao-Fei Li
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Liang Qiao
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Hao-Liang Wang
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yue-Fu Dong
- Department of Joint Surgery, The First People's Hospital of Lianyungang City, Lianyungang, 222000, China
| | - Feng Zhang
- Orthopedics Department, Xuyi County People's Hospital, Huai'an, 211700, China
| | - Yang Liu
- Orthopedics Department, Dan Yang Third People's Hospital, Zhenjiang, 212300, China
| | - Hao-Yang Liu
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Ming-Liang Ji
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Lan Li
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Institute of Medical 3D Printing, Nanjing University, Nanjing, 210093, China
| | - Qing Jiang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Institute of Medical 3D Printing, Nanjing University, Nanjing, 210093, China
| | - Jun Lu
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| |
Collapse
|
2
|
Gao Y, Li Q, Du Z, Yao Q, Jiang G, Huang W, Gao X, Li J, Dou T, Chen F, Li X, Wang A, Peng J. HAMA-SBMA hydrogel with anti-inflammatory properties delivers cartilage organoids, boosting cartilage regeneration. J Nanobiotechnology 2025; 23:401. [PMID: 40448111 DOI: 10.1186/s12951-025-03475-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 05/17/2025] [Indexed: 06/02/2025] Open
Abstract
Cartilage tissue lacks blood supply, which limits its ability to self-repair. Cartilage organoid (CO) technology, which replicates the structure and function of cartilage, holds significant promise. However, it is essential to maintain cellular function and ensure secure fixation at the site of injury. Therefore, we loaded allogeneic bone marrow mesenchymal stem cells (BMSCs) onto decellularized extracellular matrix microparticles of porcine articular cartilage (CEP) to construct CO-CCO, which demonstrated characteristics of articular cartilage. Additionally, betaine sulfonate methacrylate (SBMA) was incorporated into hyaluronic acid methacrylate (HAMA) to synthesize a novel hydrogel, HAMA-SBMA (HS), characterized by its adhesive properties, promotion of chondrogenesis, and inhibition of inflammation. In Vivo studies revealed that the combination of HS and CCO (HS + CCO) exhibited excellent repair efficacy in both rat and sheep models of cartilage defects. Mechanistically, we found that HS + CCO promoted cartilage repair by activating the Frizzled-related protein (Frzb), which inhibited inflammatory factors and enhanced the expression of the adhesion factor integrin ɑ5β1. This strategy, which combines hydrogels and organoids, enhances cartilage repair, offering substantial potential for clinical applications in cartilage regeneration.
Collapse
Affiliation(s)
- Yuyang Gao
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Orthopedics, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Qingshan Li
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
- , 1Med Sch Chinese PLA, Beijing, 100853, China
| | - Zhangzhen Du
- Department of Orthopedics, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, China
- Chengdu Fifth People's Hospital, Chengdu, 611100, China
| | - Qianru Yao
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Gehan Jiang
- Department of Orthopedics, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Wenxing Huang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xiang Gao
- Department of Orthopedics, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Juntan Li
- Department of Orthopedics, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Tianxu Dou
- Department of Orthopedics, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Fangping Chen
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Xu Li
- Department of Orthopedics, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, China.
| | - Aiyuan Wang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Jiang Peng
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
3
|
Li W, Liu Y, Wei M, Yang Z, Tang H, Huang W. Chondrocyte-targeted α-Solanine through HIF-1α regulating glycolysis to reduce the ferroptosis of chondrocyte in osteoarthritis. Int Immunopharmacol 2025; 159:114841. [PMID: 40394792 DOI: 10.1016/j.intimp.2025.114841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 05/03/2025] [Accepted: 05/07/2025] [Indexed: 05/22/2025]
Abstract
α-Solanine, a glycoalkaloid (GA) extracted from the stems of the potato plant, exhibits bioactivity and medicinal potential that necessitate further investigation. The impact and underlying mechanisms of α-Solanine on osteoarthritis (OA) remain to be elucidated. To achieve enhanced therapeutic outcomes, we have designed and synthesized a UIO-66-NH2@α-Solanine@PEI charged particle (USP) that amplifies the therapeutic effects of α-Solanine, demonstrating superior efficacy. Our approach involved the synthesis of a novel drug delivery system, the USP, to augment the therapeutic potential of α-Solanine in the treatment of OA. An OA rat model was established, and USP treatment was administered. The therapeutic effects were verified through histochemical staining and micro-CT. In vitro, α-Solanine significantly suppressed the expression of proteins related to glycolysis and notably inhibited ferroptosis. RNA sequencing revealed hypoxia-inducible factor-1α (HIF-1α) as a potential pathway mediating the effects of α-Solanine, and it was found that the co-addition of cycloheximide (CHX) led to a shortened decay time of HIF-1α. In vivo, rats with OA demonstrated significant inhibition of glycolysis and ferroptosis following treatment with USP, along with improvements in OA characteristics. These findings suggest that α-Solanine can inhibit the intense glycolysis associated with OA via the HIF-1α pathway and alleviate ferroptosis in chondrocytes. Treatment with USP demonstrated superior efficacy in the management of OA, providing a new therapeutic strategy for the disease.
Collapse
Affiliation(s)
- Wenwei Li
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui 232000, China; Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yang Liu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Ming Wei
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Zhichao Yang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Hao Tang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Wei Huang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
4
|
Song A, Qi X, Xie S, Wu X, Wei J, Dai Y. Hydrogel Containing Bismuth Molybdate Nanosheets with Piezoelectricity and Nanoenzyme Activity for Promoting Osteoblast Responses. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23627-23641. [PMID: 40219947 DOI: 10.1021/acsami.5c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
The development of piezoelectric biomaterials with the capability to produce electrical signals and scavenge reactive oxygen species (ROS) is a novel strategy for stimulating osteoblast responses and promoting bone regeneration. Herein, tungsten (W), iridium (Ir), and ruthenium (Ru) codoped bismuth molybdate (4(W/Ru/Ir)-BMO) nanosheets with improved piezoelectricity and enzyme-like (CAT-like and SOD-like) activities were constructed by using the hydrothermal method. A composite hydrogel of oxidized sodium alginate/gelatin (OSA/GEL) and 4(W/Ru/Ir)-BMO (OSA/GEL/4-B) was also prepared. Due to the presence of 4(W/Ru/Ir)-BMO, OSA/GEL/4-B exhibited not only piezoelectricity but also enzyme-like activities. Under ultrasound (US), OSA/GEL/4-B generated electrical signals that significantly promoted the proliferation and osteogenic differentiation of bone marrow stromal cells. Furthermore, the piezoelectric effect of OSA/GEL/4-B improved the CAT-like (production of oxygen) and SOD-like (scavenger of ROS) activities. The improved piezoelectricity of 4(W/Ru/Ir)-BMO was attributed to the codoping of W, Ir, and Ru ions, which resulted in lattice distortion and enhanced crystal asymmetry, which produced electrical signals for regulating the osteogenic microenvironment. Moreover, the improvement of enzyme-like activities was attributed to the enhanced piezoelectric effect by the codoping of W, Ir, and Ru ions, which generated a piezoelectric field triggered by US that accelerated electron transfer for alleviating cellular oxidative stress and provided an antioxidant microenvironment for osteoblast responses. This piezoelectric hydrogel may provide a novel pathway for promoting osteogenic differentiation and bone regeneration.
Collapse
Affiliation(s)
- Anqi Song
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaodong Qi
- Central Laboratory, Shanghai Eighth Peoples Hospital, Shanghai 200235, China
| | - Shangyu Xie
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaolin Wu
- Central Laboratory, Shanghai Eighth Peoples Hospital, Shanghai 200235, China
| | - Jie Wei
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yong Dai
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| |
Collapse
|
5
|
Wang F, Feng J, Jin A, Shao Y, Shen M, Ma J, Lei L, Liu L. Extracellular Vesicles for Disease Treatment. Int J Nanomedicine 2025; 20:3303-3337. [PMID: 40125438 PMCID: PMC11928757 DOI: 10.2147/ijn.s506456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/20/2025] [Indexed: 03/25/2025] Open
Abstract
Traditional drug therapies suffer from problems such as easy drug degradation, side effects, and treatment resistance. Traditional disease diagnosis also suffers from high error rates and late diagnosis. Extracellular vesicles (EVs) are nanoscale spherical lipid bilayer vesicles secreted by cells that carry various biologically active components and are integral to intercellular communication. EVs can be found in different body fluids and may reflect the state of the parental cells, making them ideal noninvasive biomarkers for disease-specific diagnosis. The multifaceted characteristics of EVs render them optimal candidates for drug delivery vehicles, with evidence suggesting their efficacy in the treatment of various ailments. However, poor stability and easy degradation of natural EVs have affected their applications. To solve the problems of poor stability and easy degradation of natural EVs, they can be engineered and modified to obtain more stable and multifunctional EVs. In this study, we review the shortcomings of traditional drug delivery methods and describe how to modify EVs to form engineered EVs to improve their utilization. An innovative stimulus-responsive drug delivery system for EVs has also been proposed. We also summarize the current applications and research status of EVs in the diagnosis and treatment of different systemic diseases, and look forward to future research directions, providing research ideas for scholars.
Collapse
Affiliation(s)
- Fangyan Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Jiayin Feng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Anqi Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Yunyuan Shao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Mengen Shen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Jiaqi Ma
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, People’s Republic of China
| |
Collapse
|
6
|
Zhang W, Hu Z, Yang W, Chen Y, Geng Z, Song C, Mao L. Reduced Thermal Damage Achieved by High-Conductivity Hydrogel in RF Energy Tissue Welding. ACS Biomater Sci Eng 2025; 11:1391-1401. [PMID: 39985434 DOI: 10.1021/acsbiomaterials.4c02292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
Radiofrequency (RF) tissue welding is an innovative tissue anastomosis technique that utilizes bioimpedance to convert electrical energy into thermal energy, enabling the connection and reconstruction of tissues via the denaturation and crosslinking of proteins. However, the high temperatures generated in this process often lead to excessive thermal damage to tissues, thereby adversely impacting cellular activity and impeding tissue repair in practical applications. In this study, we developed a polyacrylamide/alginate (PAAm/Alg) hydrogel with high ionic conductivity (16.8 ± 1.2 S/m) achieved by introducing Ca2+ for the purpose of reducing thermal damage in RF tissue welding. The PAAm/Alg-Ca2+0.5M hydrogel possessed excellent mechanical properties with a stress of 315.6 ± 14.1 kPa and an elongation of 382.7 ± 89.0%. Additionally, the hydrogel exhibited a high water content (83.7 ± 0.3%) and excellent stability of swelling property in water. In addition, the hydrogel extract showed good biocompatibility with no significant adverse effects on cell activity in the cytotoxicity test. At last, we conducted ex vivo experiments to investigate the effectiveness of the hydrogel as a cooling agent during RF tissue welding. The result showed that the maximum temperature was effectively reduced from 137.9 ± 4.7 to 101.8 ± 2.5 °C, while the strength of the anastomotic stoma (12.0 ± 3.2 kPa) was not affected by the intervention of this hydrogel. Histological analysis also revealed that the anastomotic structure of the tissue with hydrogel intervention was more intact than that of the control. Thus, the PAAm/Alg-Ca2+0.5M hydrogel has been demonstrated to function effectively as a cooling agent, offering a new strategy for thermal damage control in RF tissue welding.
Collapse
Affiliation(s)
- Wenwen Zhang
- Shanghai Institute for Minimally Invasive Therapy, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhongxin Hu
- Shanghai Institute for Minimally Invasive Therapy, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wanwen Yang
- Shanghai Institute for Minimally Invasive Therapy, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yilong Chen
- Shanghai Institute for Minimally Invasive Therapy, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhaoning Geng
- Shanghai Institute for Minimally Invasive Therapy, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chengli Song
- Shanghai Institute for Minimally Invasive Therapy, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lin Mao
- Shanghai Institute for Minimally Invasive Therapy, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
7
|
Jin X, Wang W, Liu H, Zhao J, Li P, Li A, Song Z. Enhanced Bone Targeting of Poly(l-glutamic acid)s through Cationic or Aromatic Substitution. Biomacromolecules 2025; 26:1913-1922. [PMID: 39977118 DOI: 10.1021/acs.biomac.4c01714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Poly(l-glutamic acid)s (PLGs) are promising bone-targeting ligands due to their high molecular weight and facile preparation. Nevertheless, the bone-targeting efficiency of PLGs is still relatively low, validating the necessity to further enhance targeting through structural optimization. Herein, we report the use of a heteropolypeptide strategy to improve the bone targeting of PLGs through the incorporation of another side-chain functionality for enhanced affinity with bone tissues. Specifically, the introduction of cationic amino or aromatic phenolic side-chain residues resulted in a ∼2.3-fold or ∼1.6-fold increase in the in vivo bone targeting, respectively. Cationic modification not only improved the affinity with bone minerals but also exhibited prolonged retention in the bone tissues for more than 60 days. This work highlights the use of a heteropolypeptide library to screen and optimize the performance of polypeptide materials, offering promising bone-targeting polymeric materials for the design of bone-related nanomedicine.
Collapse
Affiliation(s)
- Xiaoxiong Jin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Wanying Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Hui Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Jing Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Pengfei Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Aoting Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Ziyuan Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
8
|
Lai W, Geliang H, Bin X, Wang W. Effects of hydrogel stiffness and viscoelasticity on organoid culture: a comprehensive review. Mol Med 2025; 31:83. [PMID: 40033190 PMCID: PMC11877758 DOI: 10.1186/s10020-025-01131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 02/14/2025] [Indexed: 03/05/2025] Open
Abstract
As an emerging technology, organoids are promising new tools for basic and translational research in disease. Currently, the culture of organoids relies mainly on a type of unknown composition scaffold, namely Matrigel, which may pose problems in studying the effect of mechanical properties on organoids. Hydrogels, a new material with adjustable mechanical properties, can adapt to current studies. In this review, we summarized the synthesis of recent advance in developing definite hydrogel scaffolds for organoid culture and identified the critical parameters for regulating mechanical properties. In addition, classified by different mechanical properties like stiffness and viscoelasticity, we concluded the effect of mechanical properties on the development of organoids and tumor organoids. We hope this review enhances the understanding of the development of organoids by hydrogels and provides more practical approaches to investigating them.
Collapse
Affiliation(s)
- Wei Lai
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hu Geliang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xu Bin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Wei Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
9
|
Li R, Wang J, Lin Q, Yin Z, Zhou F, Chen X, Tan H, Su J. Mechano-Responsive Biomaterials for Bone Organoid Construction. Adv Healthc Mater 2025; 14:e2404345. [PMID: 39740101 DOI: 10.1002/adhm.202404345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/08/2024] [Indexed: 01/02/2025]
Abstract
Mechanical force is essential for bone development, bone homeostasis, and bone fracture healing. In the past few decades, various biomaterials have been developed to provide mechanical signals that mimic the natural bone microenvironment, thereby promoting bone regeneration. Bone organoids, emerging as a novel research approach, are 3D micro-bone tissues that possess the ability to self-renew and self-organize, exhibiting biomimetic spatial characteristics. Incorporating mechano-responsive biomaterials in the construction of bone organoids presents a promising avenue for simulating the mechanical bone microenvironment. Therefore, this review commences by elucidating the impact of mechanical force on bone health, encompassing both cellular interactions and alterations in bone structure. Furthermore, the most recent applications of mechano-responsive biomaterials within the realm of bone tissue engineering are highlighted. Three different types of mechano-responsive biomaterials are introduced with a focus on their responsive mechanisms, construction strategies, and efficacy in facilitating bone regeneration. Based on a comprehensive overview, the prospective utilization and future challenges of mechano-responsive biomaterials in the construction of bone organoids are discussed. As bone organoid technology advances, these biomaterials are poised to become powerful tools in bone regeneration.
Collapse
Affiliation(s)
- Ruiyang Li
- Department of Orthopedics, Trauma Orthopedics Center, Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
- Institute of Translational Medicine, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Jian Wang
- Department of Orthopedics, Trauma Orthopedics Center, Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
- Institute of Translational Medicine, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Qiushui Lin
- Department of Spine Surgery, First Affiliated Hospital of Naval Medical University, Shanghai, 200433, P. R. China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200941, P. R. China
| | - Fengjin Zhou
- Department of Orthopedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, P. R. China
| | - Xiao Chen
- Department of Orthopedics, Trauma Orthopedics Center, Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Hongbo Tan
- Department of Orthopedics, The 920th Hospital of Joint Logistics Support Force, Yunnan, 650020, P. R. China
| | - Jiacan Su
- Department of Orthopedics, Trauma Orthopedics Center, Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
- Institute of Translational Medicine, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
10
|
Peng S, Liu Y, Zhao W, Liu X, Yu R, Yu Y. Construction of pH-responsive hydrogel coatings on titanium surfaces for antibacterial and osteogenic properties. Front Chem 2025; 13:1546637. [PMID: 40051679 PMCID: PMC11883361 DOI: 10.3389/fchem.2025.1546637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/05/2025] [Indexed: 03/09/2025] Open
Abstract
Infection is one of the leading causes of failure in titanium-based implant materials during clinical surgeries, often resulting in delayed or non-union of bone healing. Furthermore, the overuse of antibiotics can lead to bacterial resistance. Therefore, developing a novel titanium-based implant material with both antimicrobial and osteogenic properties is of great significance. In this study, chitosan (CS), polydopamine (PDA), and antimicrobial peptides (AMPs) HHC36 were applied to modify the surface of titanium, resulting in the successful preparation of the composite material Ti-PDA-CS/PDA@HHC36 (abbreviated as T-P-C/P@H). CS promotes osteogenesis and cell adhesion, providing an ideal microenvironment for bone repair. PDA enhances the material's biocompatibility and corrosion resistance, offering cell adhesion sites, while both components exhibit pH-responsive characteristics. The HHC36 effectively prevents infection, protecting the bone repair material from bacterial damage. Overall, the synergistic effects of these components in T-P-C/P@H not only confer excellent antimicrobial and osteogenic properties but also improve biocompatibility, offering a new strategy for applying titanium-based implants in clinical settings.
Collapse
Affiliation(s)
- Shan Peng
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Department of Pathology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yueru Liu
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Department of Pathology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Wei Zhao
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Department of Pathology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xinpeng Liu
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Department of Pathology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ronghua Yu
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Department of Pathology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yonglin Yu
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Department of Pathology, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
11
|
Yang Q, Chen X, Liu J, He Y. Gelatin-based biomaterials as a delivery strategy for osteosarcoma treatment. Front Pharmacol 2025; 16:1537695. [PMID: 39936088 PMCID: PMC11811086 DOI: 10.3389/fphar.2025.1537695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
Osteosarcoma is the most common primary malignant bone tumor. Although surgery and chemoradiotherapy have made some progress in the treatment of osteosarcoma. However, the high recurrence and metastasis rate of osteosarcoma and bone defects caused by surgery are still the main problems faced by osteosarcoma. Gelatin has excellent biocompatibility and biodegradability, and has made phased progress in tumor treatment. In the treatment of osteosarcoma, gelatin-based biomaterials can be used in delivery strategies to enhance the anti-tumor activity of osteosarcoma and can improve the appropriate compressive strength to improve the bone defects faced after surgery. At present, gelatin-based hydrogels, gelatin scaffolds, and gelatin-based nanoparticles have been reported in preclinical studies. In this article, we introduce the application of gelatin-based biomaterials in the treatment of osteosarcoma, and summarize and look forward to them.
Collapse
Affiliation(s)
- Qifan Yang
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Xingpeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jing Liu
- Department of Gynecology and Obstetrics, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yeteng He
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
12
|
吴 元, 孙 凯, 曾 羿, 沈 彬. [Research progress of bioactive scaffolds in repair and regeneration of osteoporotic bone defects]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2025; 39:100-105. [PMID: 39848724 PMCID: PMC11757963 DOI: 10.7507/1002-1892.202410018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 01/25/2025]
Abstract
Objective To summarize the research progress of bioactive scaffolds in the repair and regeneration of osteoporotic bone defects. Methods Recent literature on bioactive scaffolds for the repair of osteoporotic bone defects was reviewed to summarize various types of bioactive scaffolds and their associated repair methods. Results The application of bioactive scaffolds provides a new idea for the repair and regeneration of osteoporotic bone defects. For example, calcium phosphate ceramics scaffolds, hydrogel scaffolds, three-dimensional (3D)-printed biological scaffolds, metal scaffolds, as well as polymer material scaffolds and bone organoids, have all demonstrated good bone repair-promoting effects. However, in the pathological bone microenvironment of osteoporosis, the function of single-material scaffolds to promote bone regeneration is insufficient. Therefore, the design of bioactive scaffolds must consider multiple factors, including material biocompatibility, mechanical properties, bioactivity, bone conductivity, and osteogenic induction. Furthermore, physical and chemical surface modifications, along with advanced biotechnological approaches, can help to improve the osteogenic microenvironment and promote the differentiation of bone cells. Conclusion With advancements in technology, the synergistic application of 3D bioprinting, bone organoids technologies, and advanced biotechnologies holds promise for providing more efficient bioactive scaffolds for the repair and regeneration of osteoporotic bone defects.
Collapse
Affiliation(s)
- 元刚 吴
- 四川大学华西医院骨科/骨科研究所(成都 610041)Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| | - 凯博 孙
- 四川大学华西医院骨科/骨科研究所(成都 610041)Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| | - 羿 曾
- 四川大学华西医院骨科/骨科研究所(成都 610041)Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| | - 彬 沈
- 四川大学华西医院骨科/骨科研究所(成都 610041)Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| |
Collapse
|
13
|
Zhou X, Chen S, Pich A, He C. Advanced Bioresponsive Drug Delivery Systems for Promoting Diabetic Vascularized Bone Regeneration. ACS Biomater Sci Eng 2025; 11:182-207. [PMID: 39666445 DOI: 10.1021/acsbiomaterials.4c02037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The treatment of bone defects in diabetes mellitus (DM) patients remains a major challenge since the diabetic microenvironments significantly impede bone regeneration. Many abnormal factors including hyperglycemia, elevated oxidative stress, increased inflammation, imbalanced osteoimmune, and impaired vascular system in the diabetic microenvironment will result in a high rate of impaired, delayed, or even nonhealing events of bone tissue. Stimuli-responsive biomaterials that can respond to endogenous biochemical signals have emerged as effective therapeutic systems to treat diabetic bone defects via the combination of microenvironmental regulation and enhanced osteogenic capacity. Following the natural bone healing processes, coupling of angiogenesis and osteogenesis by advanced bioresponsive drug delivery systems has proved to be of significant approach for promoting bone repair in DM. In this Review, we have systematically summarized the mechanisms and therapeutic strategies of DM-induced impaired bone healing, outlined the bioresponsive design for drug delivery systems, and highlighted the vascularization strategies for promoting bone regeneration. Accordingly, we then overview the recent advances in developing bioresponsive drug delivery systems to facilitate diabetic vascularized bone regeneration by remodeling the microenvironment and modulating multiple regenerative cues. Furthermore, we discuss the development of adaptable drug delivery systems with unique features for guiding DM-associated bone regeneration in the future.
Collapse
Affiliation(s)
- Xiaojun Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
- Institute for Technical and Macromolecular Chemistry, Functional and Interactive Polymers, RWTH Aachen University, Aachen 52074, Germany
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University, Aachen 52074, Germany
| | - Shuo Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Andrij Pich
- Institute for Technical and Macromolecular Chemistry, Functional and Interactive Polymers, RWTH Aachen University, Aachen 52074, Germany
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University, Aachen 52074, Germany
| | - Chuanglong He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
14
|
Hashemi-Afzal F, Fallahi H, Bagheri F, Collins MN, Eslaminejad MB, Seitz H. Advancements in hydrogel design for articular cartilage regeneration: A comprehensive review. Bioact Mater 2025; 43:1-31. [PMID: 39318636 PMCID: PMC11418067 DOI: 10.1016/j.bioactmat.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
This review paper explores the cutting-edge advancements in hydrogel design for articular cartilage regeneration (CR). Articular cartilage (AC) defects are a common occurrence worldwide that can lead to joint breakdown at a later stage of the disease, necessitating immediate intervention to prevent progressive degeneration of cartilage. Decades of research into the biomedical applications of hydrogels have revealed their tremendous potential, particularly in soft tissue engineering, including CR. Hydrogels are highly tunable and can be designed to meet the key criteria needed for a template in CR. This paper aims to identify those criteria, including the hydrogel components, mechanical properties, biodegradability, structural design, and integration capability with the adjacent native tissue and delves into the benefits that CR can obtain through appropriate design. Stratified-structural hydrogels that emulate the native cartilage structure, as well as the impact of environmental stimuli on the regeneration outcome, have also been discussed. By examining recent advances and emerging techniques, this paper offers valuable insights into developing effective hydrogel-based therapies for AC repair.
Collapse
Affiliation(s)
- Fariba Hashemi-Afzal
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, 14115-111, Iran
| | - Hooman Fallahi
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, 14115-111, Iran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104 USA
| | - Fatemeh Bagheri
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, 14115-111, Iran
| | - Maurice N. Collins
- School of Engineering, Bernal Institute and Health Research Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 16635-148, Iran
| | - Hermann Seitz
- Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
- Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| |
Collapse
|
15
|
Xv D, Cao Y, Hou Y, Hu Y, Li M, Xie C, Lu X. Polyphenols and Functionalized Hydrogels for Osteoporotic Bone Regeneration. Macromol Rapid Commun 2025; 46:e2400653. [PMID: 39588839 DOI: 10.1002/marc.202400653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/02/2024] [Indexed: 11/27/2024]
Abstract
Osteoporosis induces severe oxidative stress and disrupts bone metabolism, complicating the treatment of bone defects. Current therapies often have side effects and require lengthy bone regeneration periods. Hydrogels, known for their flexible mechanical properties and degradability, are promising carriers for drugs and bioactive factors in bone tissue engineering. However, they lack the ability to regulate the local pathological environment of osteoporosis and expedite bone repair. Polyphenols, with antioxidative, anti-inflammatory, and bone metabolism-regulating properties, have emerged as a solution. Combining hydrogels and polyphenols, polyphenol-based hydrogels can regulate local bone metabolism and oxidative stress while providing mechanical support and tissue adhesion, promoting osteoporotic bone regeneration. This review first provides a brief overview of the types of polyphenols and the mechanisms of polyphenols in facilitating adhesion, antioxidant, anti-inflammatory, and bone metabolism modulation in modulating the pathological environment of osteoporosis. Next, this review examines recent advances in hydrogels for the treatment of osteoporotic bone defects, including their use in angiogenesis, oxidative stress modulation, drug delivery, and stem cell therapy. Finally, it highlights the latest research on polyphenol hydrogels in osteoporotic bone defect regeneration. Overall, this review aims to facilitate the clinical application of polyphenol hydrogels for the treatment of osteoporotic bone defects.
Collapse
Affiliation(s)
- Dejia Xv
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yuming Cao
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yue Hou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yuelin Hu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Minqi Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250000, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, 250000, China
| | - Chaoming Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xiong Lu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| |
Collapse
|
16
|
Wang J, Chen X, Li R, Wang S, Geng Z, Shi Z, Jing Y, Xu K, Wei Y, Wang G, He C, Dong S, Liu G, Hou Z, Xia Z, Wang X, Ye Z, Zhou F, Bai L, Tan H, Su J. Standardization and consensus in the development and application of bone organoids. Theranostics 2025; 15:682-706. [PMID: 39744680 PMCID: PMC11671374 DOI: 10.7150/thno.105840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/15/2024] [Indexed: 01/11/2025] Open
Abstract
Organoids, self-organized structures derived from stem cells cultured in a specific three-dimensional (3D) in vitro microenvironment, have emerged as innovative platforms that closely mimic in vivo cellular behavior, tissue architecture, and organ function. Bone organoids, a frontier in organoid research, can replicate the complex structures and functional characteristics of bone tissue. Recent advancements have led to the successful development of bone organoids, including models of callus, woven bone, cartilage, trabecular bone, and bone marrow. These organoids are widely utilized in establishing bone-related disease models, bone injury repair, and drug screening. However, significant discrepancies remain between current bone organoids and human skeletal tissues in terms of morphology and functionality, limiting their ability to accurately model human bone physiology and pathology. To address these challenges and promote standardization in the construction, evaluation, and application of bone organoids, we have convened experts and research teams with substantial expertise in the field. By integrating existing research findings, this consortium aims to establish a consensus to guide future research and application of bone organoids.
Collapse
Affiliation(s)
- Jian Wang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Xiao Chen
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Ruiyang Li
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Sicheng Wang
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200941, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Zhongmin Shi
- Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Ke Xu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Yan Wei
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Guangchao Wang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Chongru He
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, College of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, China
| | - Guohui Liu
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhiyong Hou
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Zhidao Xia
- Institute of Life Science, College of Medicine, Swansea University, Swansea, SA2 8PP, UK
| | - Xinglong Wang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, 85721, USA
| | - Zhou Ye
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, 999077, China
| | - Fengjin Zhou
- Department of Orthopedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Hongbo Tan
- Department of Orthopedics, 920th Hospital of Joint Logistics Support Force of Chinese PLA, Kunming, 650032, China
| | - Jiacan Su
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
17
|
Li L, Rong G, Gao X, Cheng Y, Sun Z, Cai X, Xiao J. Bone-Targeted Fluoropeptide Nanoparticle Inhibits NF-κB Signaling to Treat Osteosarcoma and Tumor-Induced Bone Destruction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412014. [PMID: 39501934 PMCID: PMC11714165 DOI: 10.1002/advs.202412014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/23/2024] [Indexed: 01/11/2025]
Abstract
Osteosarcoma is a malignant bone cancer usually characterized by symptoms of bone loss due to pathologically enhanced osteoclast activity. Activated osteoclasts enhance bone resorption and promote osteosarcoma cell progression by secreting various cytokines. Intercepting the detrimental interplay between osteoclasts and osteosarcoma cells is considered as an option for osteosarcoma treatment. Here, a bone-targeted fluoropeptide nanoparticle that can inhibit the nuclear factor kappa B (NF-κB) signaling in both osteoclasts and osteosarcoma to address the above issue is developed. The NF-κB essential modulator binding domain (NBD) peptide is conjugated with a fluorous tag to improve its proteolytic stability and intracellular penetration. The NBD peptide is efficiently delivered into cells after fluorination to induce apoptosis of osteocarcoma cells, and inhibits osteoclasts differentiation. The fluorous-tagged NBD peptide is further co-assembled with an oligo (aspartic acid) terminated fluoropeptide to form bone-targeted peptide nanoparticles for osteosarcoma treatment. The targeted nanoparticles efficiently inhibited tumor progression and osteosarcoma-induced bone destruction in vivo. This co-assembled fluoropeptide nanoplatform proposed in this study offers a promising approach for targeted and intracellular delivery of peptide therapeutics in the treatment of various diseases.
Collapse
Affiliation(s)
- Lin Li
- Department of Orthopedics OncologyChangzheng HospitalNavy Medical UniversityShanghai200003China
| | - Guangyu Rong
- Department of Ophthalmology and Vision ScienceShanghai Eye, Ear, Nose and Throat HospitalFudan UniversityShanghai200030China
| | - Xin Gao
- Department of Orthopedics OncologyChangzheng HospitalNavy Medical UniversityShanghai200003China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory BiologySchool of Life SciencesEast China Normal UniversityShanghai200241China
| | - Zhengwang Sun
- Department of Musculoskeletal OncologyFudan University Shanghai Cancer CenterShanghai200032China
| | - Xiaopan Cai
- Department of Orthopedics OncologyChangzheng HospitalNavy Medical UniversityShanghai200003China
| | - Jianru Xiao
- Department of Orthopedics OncologyChangzheng HospitalNavy Medical UniversityShanghai200003China
| |
Collapse
|
18
|
Murugaiyan K, Murali VP, Tamura H, Furuike T, Rangasamy J. Overview of chitin dissolution, hydrogel formation and its biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-32. [PMID: 39704399 DOI: 10.1080/09205063.2024.2442181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Chitin hydrogel and hydrogel-based products are some of the frequently reported biomaterials for biomedical applications. Yet there is a void in understanding chitin's dissolution mechanism and its most suitable solvent system(s). Chitin is a natural polysaccharide polymer which can be dissolved in solvents such as calcium chloride- methanol, sodium hydroxide/urea (NaOH/urea), lithium chloride diacetamide (LiCl/DMAc), ionic liquids and deep eutectic solvents. Among the alkali/urea dissolution systems such as NaOH/urea, KOH/urea, LiOH/urea for dissolution of chitin we will be focussing on NaOH-based system here for ease of comparison with the other systems. Chitin has been used for decades in the biomedical field; however, new solvent systems are still being explored even to this day to identify the most suitable chemical(s) for dissolving it. Chitin, due to its biocompatibility, allows us to use it for multifaceted purposes. Hence, it is important to consolidate the available studies for better understanding about the most sought-after biomaterial. This overview deeply delves into the mechanism of action of the existing solvent systems and highlights its merits and demerits. It discusses the rheological properties of the chitin gel from different solvent systems and puts forth the current biomedical applications of chitin gel in areas such as tissue engineering, drug delivery, biosensing, hemostasis and wound healing. It also outlines recent advances and highlights the potential gaps which need to be addressed in future studies.
Collapse
Affiliation(s)
- Kavipriya Murugaiyan
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | | | - Hiroshi Tamura
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, Japan
- Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, Suita, Osaka, Japan
| | - Tetsuya Furuike
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, Japan
- Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, Suita, Osaka, Japan
| | - Jayakumar Rangasamy
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
19
|
Murugaiyan K, Chandramouli A, Rangasamy J. Synthesis, Characterization and Osteogenic Properties of Chitin-Polydioxanone Composite Gel. Chem Asian J 2024; 19:e202401024. [PMID: 39313868 DOI: 10.1002/asia.202401024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
In this study, we have developed a Chitin(Ch)-Poly(dioxanone)(PDO) gel system, which can be potentially used for tissue engineering. Hydrogel has been widely used in biomedical applications for its tuneable properties and biocompatibility. Chitin (Ch) is a natural biopolymer used for its ability to mimic the natural extracellular matrix due to its N-acetyl glucosamine structural units. Poly (dioxanone) (PDO) is a FDA-approved synthetic biopolymer known for its mechanical properties, good biocompatibility, and poor inflammatory response. Based on this, we have developed Ch-PDO composite gel using simple regeneration chemistry and characterized it using FT-IR and SEM. The developed composite gel showed improved gel strength, good swelling ability, and controlled degradation behaviour. It also showed good inject ability with shear thinning properties and hemocompatibility. Further, the biocompatibility and cell adhesion studies of the prepared gels were studied using dental follicle stem cells (DFSCs). The prepared Ch-PDO gel was biocompatible and showed DFSCs cell attachment. Osteogenic mineralization, RUNX2 and OPN expression of the prepared Ch and Ch-PDO gel was studied and Ch-PDO gel showed an enhanced mineralization and RUNX2 and OPN expression showed enhanced osteogenic activity in Ch-PDO. Therefore, the developed chitin-PDO gel could be potentially used for bone tissue engineering.
Collapse
Affiliation(s)
- Kavipriya Murugaiyan
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Arthi Chandramouli
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Jayakumar Rangasamy
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| |
Collapse
|
20
|
Wang Y, Sun C, Liu Z, Zhang S, Gao K, Yi F, Zhou W, Liu H. Nanoengineered Endocytic Biomaterials for Stem Cell Therapy. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202410714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Indexed: 01/05/2025]
Abstract
AbstractStem cells, ideal for the tissue repair and regeneration, possess extraordinary capabilities of multidirectional differentiation and self‐renewal. However, the limited spontaneous differentiation potential makes it challenging to harness them for tissue repair without external intervention. Although conventional approaches using biomolecules, small organic molecules, and ions have shown specific and effective functions, they face challenges such as in vivo diffusion and degradation, poor internalization, and side effects on adjacent cells. Nanoengineered biomaterials offer a solution by solidifying and nanosizing these soluble regulating molecules and ions, facilitating their uptake by stem cells. Once inside lysosomes, these nanoparticles release their contents in a controlled “molecule or ion storm,” efficiently altering the intracellular biological and chemical microenvironment to tune the differentiation of stem cells. This newly emerged approach for regulating stem cell fate has attracted much attention in recent years. This method has shown promising results and is poised to enhance clinical stem cell therapy. This review provides an overview of the design principles for nanoengineered biomaterials, discusses the categories and characteristics of nanoparticles, summarizes the application of nanoparticles in tissue repair and regeneration, and discusses the direction of nanoparticle‐enhanced stem cell therapy and prospects for its clinical application in regenerative medicine.
Collapse
Affiliation(s)
- Yingxue Wang
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Chunhui Sun
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Zhaoying Liu
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Shengmin Zhang
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Ke Gao
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Fan Yi
- School of Basic Medical Sciences Shandong University Jinan 250012 P. R. China
| | - Wenjuan Zhou
- School of Basic Medical Sciences Shandong University Jinan 250012 P. R. China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
- State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| |
Collapse
|
21
|
Wang M, Wang J, Xu X, Li E, Xu P. Engineering gene-activated bioprinted scaffolds for enhancing articular cartilage repair. Mater Today Bio 2024; 29:101351. [PMID: 39649247 PMCID: PMC11621797 DOI: 10.1016/j.mtbio.2024.101351] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/10/2024] Open
Abstract
Untreated articular cartilage injuries often result in severe chronic pain and dyskinesia. Current repair strategies have limitations in effectively promoting articular cartilage repair, underscoring the need for innovative therapeutic approaches. A gene-activated matrix (GAM) is a promising and comprehensive therapeutic strategy that integrates tissue-engineered scaffold-guided gene therapy to promote long-term articular cartilage repair by enhancing gene retention, reducing gene loss, and regulating gene release. However, for effective articular cartilage repair, the GAM scaffold must mimic the complex gradient structure of natural articular cartilage. Three-dimensional (3D) bioprinting technology has emerged as a compelling solution, offering the ability to precisely create complex microstructures that mimic the natural articular cartilage. In this review, we summarize the recent research progress on GAM and 3D bioprinted scaffolds in articular cartilage tissue engineering (CTE), while also exploring future challenges and development directions. This review aims to provide new ideas and concepts for the development of gene-activated bioprinted scaffolds with specific properties tailored to meet the stringent requirements of articular cartilage repair.
Collapse
Affiliation(s)
- Min Wang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, 710000, China
| | - Jiachen Wang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, 710000, China
| | - Xin Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, 710000, China
| | - Erliang Li
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, 710000, China
| | - Peng Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, 710000, China
| |
Collapse
|
22
|
Fang L, Lin X, Xu R, Liu L, Zhang Y, Tian F, Li JJ, Xue J. Advances in the Development of Gradient Scaffolds Made of Nano-Micromaterials for Musculoskeletal Tissue Regeneration. NANO-MICRO LETTERS 2024; 17:75. [PMID: 39601962 PMCID: PMC11602939 DOI: 10.1007/s40820-024-01581-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
The intricate hierarchical structure of musculoskeletal tissues, including bone and interface tissues, necessitates the use of complex scaffold designs and material structures to serve as tissue-engineered substitutes. This has led to growing interest in the development of gradient bone scaffolds with hierarchical structures mimicking the extracellular matrix of native tissues to achieve improved therapeutic outcomes. Building on the anatomical characteristics of bone and interfacial tissues, this review provides a summary of current strategies used to design and fabricate biomimetic gradient scaffolds for repairing musculoskeletal tissues, specifically focusing on methods used to construct compositional and structural gradients within the scaffolds. The latest applications of gradient scaffolds for the regeneration of bone, osteochondral, and tendon-to-bone interfaces are presented. Furthermore, the current progress of testing gradient scaffolds in physiologically relevant animal models of skeletal repair is discussed, as well as the challenges and prospects of moving these scaffolds into clinical application for treating musculoskeletal injuries.
Collapse
Affiliation(s)
- Lei Fang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xiaoqi Lin
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Ruian Xu
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Lu Liu
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yu Zhang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Feng Tian
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Jiajia Xue
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
23
|
Zhou G, Li R, Sheng S, Huang J, Zhou F, Wei Y, Liu H, Su J. Organoids and organoid extracellular vesicles-based disease treatment strategies. J Nanobiotechnology 2024; 22:679. [PMID: 39506799 PMCID: PMC11542470 DOI: 10.1186/s12951-024-02917-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Organoids are "mini-organs" that self-organize and differentiate from stem cells under in vitro 3D culture conditions, mimicking the spatial structure and function of tissues in vivo. Extracellular vesicles (EVs) are nanoscale phospholipid bilayer vesicles secreted by living cells, rich in bioactive molecules, with excellent biocompatibility and low immunogenicity. Compared to EVs, organoid-derived EVs (OEVs) exhibit higher yield and enhanced biological functions. Organoids possess stem cell characteristics, and OEVs are capable of delivering active substances, making both highly promising for medical applications. In this review, we provide an overview of the fundamental biological principles of organoids and OEVs, and discuss their current applications in disease treatment. We then focus on the differences between OEVs and traditional EVs. Subsequently, we present methods for the engineering modification of OEVs. Finally, we critically summarize the advantages and challenges of organoids and OEVs. In conclusion, we believe that a deeper understanding of organoids and OEVs will provide innovative solutions to complex diseases.
Collapse
Affiliation(s)
- Guangyin Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Ruiyang Li
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Shihao Sheng
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jingtao Huang
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200444, China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China.
| | - Yan Wei
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China.
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China.
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China.
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
24
|
Jia M, Wang J, Lin C, Zhang Q, Xue Y, Huang X, Ren Y, Chen C, Liu Y, Xu Y. Hydrogel Strategies for Female Reproduction Dysfunction. ACS NANO 2024; 18:30132-30152. [PMID: 39437800 DOI: 10.1021/acsnano.4c05634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Infertility is an important issue for human reproductive health, with over half of all cases of infertility associated with female factors. Dysfunction of the complex female reproductive system may cause infertility. In clinical practice, female infertility is often treated with oral medications and/or surgical procedures, and ultimately with assisted reproductive technologies. Owing to their excellent biocompatibility, low immunogenicity, and adjustable mechanical properties, hydrogels are emerging as valuable tools in the reconstruction of organ function, supplemented by tissue engineering techniques to increase their structure and functionality. Hydrogel-based female reproductive reconstruction strategies targeting the pathological mechanisms of female infertility may provide alternatives for the treatment of ovarian, endometrium/uterine, and fallopian tube dysfunction. In this review, we provide a general introduction to the basic physiology and pathology of the female reproductive system, the limitations of current infertility treatments, and the lack of translation from animal models to human reproductive physiology. We further provide an overview of the current and future potential applications of hydrogels in the treatment of female reproductive system dysfunction, highlighting the great prospects of hydrogel-based strategies in the field of translational medicine, along with the significant challenges to be overcome.
Collapse
Affiliation(s)
- Minxuan Jia
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou, Guangdong 510535, China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Jiamin Wang
- Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- The Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong 510080, China
| | - Chubing Lin
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou, Guangdong 510535, China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Qingyan Zhang
- Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- The Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong 510080, China
| | - Yueguang Xue
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou, Guangdong 510535, China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Xin Huang
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou, Guangdong 510535, China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yan Ren
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Chunying Chen
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Ying Liu
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Yanwen Xu
- Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- The Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong 510080, China
| |
Collapse
|
25
|
Chen N, Li S, Miao C, Zhao Q, Dong J, Li L, Li C. Polysaccharide-based hydrogels for cartilage regeneration. Front Cell Dev Biol 2024; 12:1444358. [PMID: 39463764 PMCID: PMC11503028 DOI: 10.3389/fcell.2024.1444358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/14/2024] [Indexed: 10/29/2024] Open
Abstract
Cartilage defect is one of the common tissue defect clinical diseases and may finally lead to osteoarthritis (OA) which threat patients' physical and psychological health. Polysaccharide is the main component of extracellular matrix (ECM) in cartilage tissue. In the past decades, polysaccharide-based hydrogels have shown great potential for cartilage regeneration considering unique qualities such as biocompatibility, enhanced cell proliferation, drug delivery, low toxicity, and many others. Structures such as chain length and chain branching make polysaccharides have different physical and chemical properties. In this review, cartilage diseases and current treatment options of polysaccharide-based hydrogels for cartilage defection repair were illustrated. We focus on how components and structures of recently developed materials affect the performance. The challenges and perspectives for polysaccharide-based hydrogels in cartilage repair and regeneration were also discussed in depth.
Collapse
Affiliation(s)
- Ning Chen
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Sidi Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong Province, China
| | - Congrui Miao
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qin Zhao
- Department of Rehabilitation Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jinlei Dong
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Lianxin Li
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ci Li
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
26
|
Cheng Y, Huo Y, Yu Y, Duan P, Dong X, Yu Z, Cheng Q, Dai H, Pan Z. A photothermal responsive system accelerating nitric oxide release to enhance bone repair by promoting osteogenesis and angiogenesis. Mater Today Bio 2024; 28:101180. [PMID: 39221216 PMCID: PMC11364911 DOI: 10.1016/j.mtbio.2024.101180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/27/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024] Open
Abstract
Managing bone defects remains a formidable clinical hurdle, primarily attributed to the inadequate orchestration of vascular reconstruction and osteogenic differentiation in both spatial and temporal dimensions. This challenge persists due to the constrained availability of autogenous grafts and the limited regenerative capacity of allogeneic or synthetic bone substitutes, thus necessitating continual exploration and innovation in the realm of functional and bioactive bone graft materials. While synthetic scaffolds have emerged as promising carriers for bone grafts, their efficacy is curtailed by deficiencies in vascularization and osteoinductive potential. Nitric oxide (NO) plays a key role in revascularization and bone tissue regeneration, yet studies related to the use of NO for the treatment of bone defects remain scarce. Herein, we present a pioneering approach leveraging a photothermal-responsive system to augment NO release. This system comprises macromolecular mPEG-P nanoparticles encapsulating indocyanine green (ICG) (NO-NPs@ICG) and a mPEG-PA-PP injectable thermosensitive hydrogel carrier. By harnessing the synergistic photothermal effects of near-infrared radiation and ICG, the system achieves sustained NO release, thereby activating the soluble guanylate cyclase (SGC)-cyclic guanosine monophosphate (cGMP) signaling pathway both in vitro and in vivo. This orchestrated cascade culminates in the facilitation of angiogenesis and osteogenesis, thus expediting the reparative processes in bone defects. In a nutshell, the NO release-responsive system elucidated in this study presents a pioneering avenue for refining the bone tissue microenvironment and fostering enhanced bone regeneration.
Collapse
Affiliation(s)
- Yannan Cheng
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yuanfang Huo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan, 430070, China
| | - Yongle Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ping Duan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xianzhen Dong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan, 430070, China
| | - Zirui Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qiang Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan, 430070, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan, 430070, China
- Shenzhen Research Institute of Wuhan University of Technology, Shenzhen, 518000, China
| | - Zhenyu Pan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| |
Collapse
|
27
|
Zhang Z, Hu X, Jin M, Mu Y, Zhou H, Ma C, Ma L, Liu B, Yao H, Huang Y, Wang DA. Collagen Type II-Based Injectable Materials for In situ Repair and Regeneration of Articular Cartilage Defect. Biomater Res 2024; 28:0072. [PMID: 39220112 PMCID: PMC11362811 DOI: 10.34133/bmr.0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
Repairing and regenerating articular cartilage defects (ACDs) have long been challenging for physicians and scientists. The rise of injectable materials provides a novel strategy for minimally invasive surgery to repair ACDs. In this study, we successfully developed injectable materials based on collagen type II, achieving hyaline cartilage repair and regeneration of ACDs. Analysis was conducted on the regenerated cartilage after materials injection. The histology staining demonstrated complete healing of the ACDs with the attainment of a hyaline cartilage phenotype. The biochemical and biomechanical properties are similar to the adjacent native cartilage without noticeable adverse effects on the subchondral bone. Further transcriptome analysis found that compared with the Native cartilage adjacent to the defect area, the Regenerated cartilage in the defect area repaired with type II collagen-based injection materials showed changes in cartilage-related pathways, as well as down-regulation of T cell receptor signaling pathways and interleukin-17 signaling pathways, which changed the immune microenvironment of the ACD area. Overall, these findings offer a promising injectable approach to treating ACDs, providing a potential solution to the challenges associated with achieving hyaline cartilage in situ repair and regeneration while minimizing damage to the surrounding cartilage.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Biomedical Engineering,
City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Xu Hu
- Department of Biomedical Engineering,
City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Min Jin
- Department of Biomedical Engineering,
City University of Hong Kong, Kowloon, Hong Kong SAR
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine,
HKSTP, Sha Tin, Hong Kong SAR
| | - Yulei Mu
- Department of Biomedical Engineering,
City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Huiqun Zhou
- Department of Biomedical Engineering,
City University of Hong Kong, Kowloon, Hong Kong SAR
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine,
HKSTP, Sha Tin, Hong Kong SAR
| | - Cheng Ma
- Department of Biomedical Engineering,
City University of Hong Kong, Kowloon, Hong Kong SAR
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine,
HKSTP, Sha Tin, Hong Kong SAR
| | - Liang Ma
- Department of Biomedical Engineering,
City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Bangheng Liu
- Department of Biomedical Engineering,
City University of Hong Kong, Kowloon, Hong Kong SAR
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine,
HKSTP, Sha Tin, Hong Kong SAR
| | - Hang Yao
- School of Chemistry and Chemical Engineering,
Yangzhou University, Yangzhou, China
| | - Ye Huang
- Knee Preservation Clinical and Research Center,
Beijing Jishuitan Hospital, Beijing, China
| | - Dong-An Wang
- Department of Biomedical Engineering,
City University of Hong Kong, Kowloon, Hong Kong SAR
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine,
HKSTP, Sha Tin, Hong Kong SAR
- Center for Neuromusculoskeletal Restorative Medicine,
HKSTP, Shatin, Hong Kong SAR
| |
Collapse
|
28
|
Fan MH, Pi JK, Zou CY, Jiang YL, Li QJ, Zhang XZ, Xing F, Nie R, Han C, Xie HQ. Hydrogel-exosome system in tissue engineering: A promising therapeutic strategy. Bioact Mater 2024; 38:1-30. [PMID: 38699243 PMCID: PMC11061651 DOI: 10.1016/j.bioactmat.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Characterized by their pivotal roles in cell-to-cell communication, cell proliferation, and immune regulation during tissue repair, exosomes have emerged as a promising avenue for "cell-free therapy" in clinical applications. Hydrogels, possessing commendable biocompatibility, degradability, adjustability, and physical properties akin to biological tissues, have also found extensive utility in tissue engineering and regenerative repair. The synergistic combination of exosomes and hydrogels holds the potential not only to enhance the efficiency of exosomes but also to collaboratively advance the tissue repair process. This review has summarized the advancements made over the past decade in the research of hydrogel-exosome systems for regenerating various tissues including skin, bone, cartilage, nerves and tendons, with a focus on the methods for encapsulating and releasing exosomes within the hydrogels. It has also critically examined the gaps and limitations in current research, whilst proposed future directions and potential applications of this innovative approach.
Collapse
Affiliation(s)
- Ming-Hui Fan
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Jin-Kui Pi
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Chen-Yu Zou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yan-Lin Jiang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Qian-Jin Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Xiu-Zhen Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Fei Xing
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Rong Nie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Chen Han
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, 610212, PR China
| |
Collapse
|
29
|
Han Y, Dong Y, Jia B, Shi X, Zhao H, Li S, Wang H, Sun B, Yin L, Dai K. High-precision bioactive scaffold with dECM and extracellular vesicles targeting 4E-BP inhibition for cartilage injury repair. Mater Today Bio 2024; 27:101114. [PMID: 39211509 PMCID: PMC11360177 DOI: 10.1016/j.mtbio.2024.101114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/13/2024] [Accepted: 06/06/2024] [Indexed: 09/04/2024] Open
Abstract
The restoration of cartilage injuries remains a formidable challenge in orthopedics, chiefly attributed to the absence of vascularization and innervation in cartilage. Decellularized extracellular matrix (dECM) derived from cartilage, following antigenic removal through decellularization processes, has exhibited remarkable biocompatibility and bioactivity, rendering it a viable candidate for cartilage repair. Additionally, extracellular vesicles (EVs) generated from cartilage have demonstrated a synergistic effect when combined with dECM, potentially mitigating the inhibitory impact on protein synthesis by phosphorylating 4ebp, thereby promoting the synthesis of cartilage-related proteins such as collagen. In pursuit of this objective, we have innovated a novel bioink and repair scaffold characterized by exceptional biocompatibility, bioactivity, and biodegradability, establishing a tissue-specific microenvironment conducive to chondrogenesis. Within rat osteochondral defects, the biologically active scaffold successfully prompted the formation of transparent cartilage, featuring adequate mechanical strength, favorable elasticity, and dECM deposition indicative of cartilage. In summary, this study has effectively engineered a hydrogel bioink tailored for cartilage repair and devised a bioactive cartilage repair scaffold proficient in instigating cell differentiation and fostering cartilage repair.
Collapse
Affiliation(s)
- Yu Han
- Department of Orthopaedics, Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Department of Orthopedic Surgery, Shanghai Key Laboratory of Orthopedic Implants,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yixin Dong
- Department of Orthopaedics, Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Bo Jia
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xiangyu Shi
- Department of Orthopaedics, Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hongbo Zhao
- Department of Orthopaedics, Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shushan Li
- Department of Orthopaedics, Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Haitao Wang
- Department of Orthopaedics, Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Binbin Sun
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Li Yin
- Department of Orthopaedics, Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Kerong Dai
- Department of Orthopedic Surgery, Shanghai Key Laboratory of Orthopedic Implants,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
30
|
Yin X, Xia W, Fan H, Yang X, Xiang K, Ren Y, Zhu Z. Nanoclay Reinforced Integrated Scaffold for Dual-Lineage Regeneration of Cartilage and Subchondral Bone. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37683-37697. [PMID: 38980692 DOI: 10.1021/acsami.4c07092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Tissue engineering is theoretically considered a promising approach for repairing osteochondral defects. Nevertheless, the insufficient osseous support and integration of the cartilage layer and the subchondral bone frequently lead to the failure of osteochondral repair. Drawing from this, it was proposed that incorporating glycine-modified attapulgite (GATP) into poly(1,8-octanediol-co-citrate) (POC) scaffolds via the one-step chemical cross-linking is proposed to enhance cartilage and subchondral bone defect repair simultaneously. The effects of the GATP incorporation ratio on the physicochemical properties, chondrocyte and MC3T3-E1 behavior, and osteochondral defect repair of the POC scaffold were also evaluated. In vitro studies indicated that the POC/10% GATP scaffold improved cell proliferation and adhesion, maintained cell phenotype, and upregulated chondrogenesis and osteogenesis gene expression. Animal studies suggested that the POC/10% GATP scaffold has significant repair effects on both cartilage and subchondral bone defects. Therefore, the GATP-incorporated scaffold system with dual-lineage bioactivity showed potential application in osteochondral regeneration.
Collapse
Affiliation(s)
- Xueling Yin
- Institute of Nano-science and Nano-technology, College of Physical Science and Technology, Central China Normal University, Wuhan, Hubei 430079, China
| | - Wanting Xia
- Institute of Nano-science and Nano-technology, College of Physical Science and Technology, Central China Normal University, Wuhan, Hubei 430079, China
| | - Huimin Fan
- Institute of Nano-science and Nano-technology, College of Physical Science and Technology, Central China Normal University, Wuhan, Hubei 430079, China
| | - Xiaoyu Yang
- Institute of Nano-science and Nano-technology, College of Physical Science and Technology, Central China Normal University, Wuhan, Hubei 430079, China
| | - Kaiwen Xiang
- Hospital of Central China Normal University, Wuhan, Hubei 430079, China
| | - Ye Ren
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhihong Zhu
- Institute of Nano-science and Nano-technology, College of Physical Science and Technology, Central China Normal University, Wuhan, Hubei 430079, China
| |
Collapse
|
31
|
Li Z, Liu J, Song J, Yin Z, Zhou F, Shen H, Wang G, Su J. Multifunctional hydrogel-based engineered extracellular vesicles delivery for complicated wound healing. Theranostics 2024; 14:4198-4217. [PMID: 39113809 PMCID: PMC11303081 DOI: 10.7150/thno.97317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/26/2024] [Indexed: 08/10/2024] Open
Abstract
The utilization of extracellular vesicles (EVs) in wound healing has been well-documented. However, the direct administration of free EVs via subcutaneous injection at wound sites may result in the rapid dissipation of bioactive components and diminished therapeutic efficacy. Functionalized hydrogels provide effective protection, as well as ensure the sustained release and bioactivity of EVs during the wound healing process, making them an ideal candidate material for delivering EVs. In this review, we introduce the mechanisms by which EVs accelerate wound healing, and then elaborate on the construction strategies for engineered EVs. Subsequently, we discuss the synthesis strategies and application of hydrogels as delivery systems for the sustained release of EVs to enhance complicated wound healing. Furthermore, in the face of complicated wounds, functionalized hydrogels with specific wound microenvironment regulation capabilities, such as antimicrobial, anti-inflammatory, and immune regulation, used for loading engineered EVs, provide potential approaches to addressing these healing challenges. Ultimately, we deliberate on potential future trajectories and outlooks, offering a fresh viewpoint on the advancement of artificial intelligence (AI)-energized materials and 3D bio-printed multifunctional hydrogel-based engineered EVs delivery dressings for biomedical applications.
Collapse
Affiliation(s)
- Zuhao Li
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Jinlong Liu
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Jian Song
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Zhifeng Yin
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
- Department of Orthopaedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Fengjin Zhou
- Xi'an Honghui Hospital, Xi'an Orthopedic Research Institute, Shaanxi, China
| | - Hao Shen
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangchao Wang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Jiacan Su
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| |
Collapse
|
32
|
Wang J, Wu Y, Li G, Zhou F, Wu X, Wang M, Liu X, Tang H, Bai L, Geng Z, Song P, Shi Z, Ren X, Su J. Engineering Large-Scale Self-Mineralizing Bone Organoids with Bone Matrix-Inspired Hydroxyapatite Hybrid Bioinks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309875. [PMID: 38642033 DOI: 10.1002/adma.202309875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/02/2024] [Indexed: 04/22/2024]
Abstract
Addressing large bone defects remains a significant challenge owing to the inherent limitations in self-healing capabilities, resulting in prolonged recovery and suboptimal regeneration. Although current clinical solutions are available, they have notable shortcomings, necessitating more efficacious approaches to bone regeneration. Organoids derived from stem cells show great potential in this field; however, the development of bone organoids has been hindered by specific demands, including the need for robust mechanical support provided by scaffolds and hybrid extracellular matrices (ECM). In this context, bioprinting technologies have emerged as powerful means of replicating the complex architecture of bone tissue. The research focused on the fabrication of a highly intricate bone ECM analog using a novel bioink composed of gelatin methacrylate/alginate methacrylate/hydroxyapatite (GelMA/AlgMA/HAP). Bioprinted scaffolds facilitate the long-term cultivation and progressive maturation of extensive bioprinted bone organoids, foster multicellular differentiation, and offer valuable insights into the initial stages of bone formation. The intrinsic self-mineralizing quality of the bioink closely emulates the properties of natural bone, empowering organoids with enhanced bone repair for both in vitro and in vivo applications. This trailblazing investigation propels the field of bone tissue engineering and holds significant promise for its translation into practical applications.
Collapse
Affiliation(s)
- Jian Wang
- Institute of Translational Medicine, Musculoskeletal Organoid Research Center, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
- Department of Orthopedic, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Yan Wu
- Institute of Translational Medicine, Musculoskeletal Organoid Research Center, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Guangfeng Li
- Institute of Translational Medicine, Musculoskeletal Organoid Research Center, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
- Department of Trauma Orthopedics, Zhongye Hospital, Shanghai, 200941, P. R. China
| | - Fengjin Zhou
- Department of Orthopedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, P. R. China
| | - Xiang Wu
- Institute of Translational Medicine, Musculoskeletal Organoid Research Center, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Miaomiao Wang
- Institute of Translational Medicine, Musculoskeletal Organoid Research Center, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Xinru Liu
- Institute of Translational Medicine, Musculoskeletal Organoid Research Center, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Hua Tang
- Institute of Translational Medicine, Musculoskeletal Organoid Research Center, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Long Bai
- Institute of Translational Medicine, Musculoskeletal Organoid Research Center, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Zhen Geng
- Institute of Translational Medicine, Musculoskeletal Organoid Research Center, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Peiran Song
- Institute of Translational Medicine, Musculoskeletal Organoid Research Center, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Zhongmin Shi
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai, 200233, P. R. China
| | - Xiaoxiang Ren
- Institute of Translational Medicine, Musculoskeletal Organoid Research Center, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Jiacan Su
- Institute of Translational Medicine, Musculoskeletal Organoid Research Center, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
- Department of Orthopedic, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| |
Collapse
|
33
|
Lu P, Ruan D, Huang M, Tian M, Zhu K, Gan Z, Xiao Z. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct Target Ther 2024; 9:166. [PMID: 38945949 PMCID: PMC11214942 DOI: 10.1038/s41392-024-01852-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/02/2024] [Accepted: 04/28/2024] [Indexed: 07/02/2024] Open
Abstract
The applications of hydrogels have expanded significantly due to their versatile, highly tunable properties and breakthroughs in biomaterial technologies. In this review, we cover the major achievements and the potential of hydrogels in therapeutic applications, focusing primarily on two areas: emerging cell-based therapies and promising non-cell therapeutic modalities. Within the context of cell therapy, we discuss the capacity of hydrogels to overcome the existing translational challenges faced by mainstream cell therapy paradigms, provide a detailed discussion on the advantages and principal design considerations of hydrogels for boosting the efficacy of cell therapy, as well as list specific examples of their applications in different disease scenarios. We then explore the potential of hydrogels in drug delivery, physical intervention therapies, and other non-cell therapeutic areas (e.g., bioadhesives, artificial tissues, and biosensors), emphasizing their utility beyond mere delivery vehicles. Additionally, we complement our discussion on the latest progress and challenges in the clinical application of hydrogels and outline future research directions, particularly in terms of integration with advanced biomanufacturing technologies. This review aims to present a comprehensive view and critical insights into the design and selection of hydrogels for both cell therapy and non-cell therapies, tailored to meet the therapeutic requirements of diverse diseases and situations.
Collapse
Affiliation(s)
- Peilin Lu
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Dongxue Ruan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Meiqi Huang
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Mi Tian
- Department of Stomatology, Chengdu Second People's Hospital, Chengdu, 610021, PR China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Ziqi Gan
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China.
| | - Zecong Xiao
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China.
| |
Collapse
|
34
|
Kuang S, Sheng W, Meng J, Liu W, Xiao Y, Tang H, Fu X, Kuang M, He Q, Gao S. Pyroptosis-related crosstalk in osteoarthritis: Macrophages, fibroblast-like synoviocytes and chondrocytes. J Orthop Translat 2024; 47:223-234. [PMID: 39040491 PMCID: PMC11262125 DOI: 10.1016/j.jot.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/28/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
The pathogenesis of osteoarthritis (OA) involves a multifaceted interplay of inflammatory processes. The initiation of pyroptosis involves the secretion of pro-inflammatory cytokines and has been identified as a critical factor in regulating the development of OA. Upon initiation of pyroptosis, a multitude of inflammatory mediators are released and can be disseminated throughout the synovial fluid within the joint cavity, thereby facilitating intercellular communication across the entire joint. The main cellular components of joints include chondrocytes (CC), fibroblast-like synoviocytes (FLS) and macrophages (MC). Investigating their interplay can enhance our understanding of OA pathogenesis. Therefore, we comprehensively examine the mechanisms underlying pyroptosis and specifically investigate the intercellular interactions associated with pyroptosis among these three cell types, thereby elucidating their collective contribution to the progression of OA. We propose the concept of ' CC-FLS-MC pyroptosis-related crosstalk', describe the various pathways of pyroptotic interactions among these three cell types, and focus on recent advances in intervening pyroptosis in these three cell types for treating OA. We hope this will provide a possible direction for diversification of treatment for OA. The Translational potential of this article. The present study introduces the concept of 'MC-FLS-CC pyroptosis-related crosstalk' and provides an overview of the mechanisms underlying pyroptosis, as well as the pathways through which it affects MC, FLS, and CC. In addition, the role of regulation of these three types of cellular pyroptosis in OA has also been concerned. This review offers novel insights into the interplay between these cell types, with the aim of providing a promising avenue for diversified management of OA.
Collapse
Affiliation(s)
- Shida Kuang
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, China
- Hunan University of Medicine, Huaihua, Hunan, China
| | - Wen Sheng
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, China
- Hunan University of Medicine, Huaihua, Hunan, China
| | - Jiahao Meng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, Hunan, China
- Hunan Engineering Research Center of Osteoarthritis, Changsha, Hunan, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weijie Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, Hunan, China
- Hunan Engineering Research Center of Osteoarthritis, Changsha, Hunan, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yifan Xiao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, Hunan, China
- Hunan Engineering Research Center of Osteoarthritis, Changsha, Hunan, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hang Tang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, Hunan, China
- Hunan Engineering Research Center of Osteoarthritis, Changsha, Hunan, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinying Fu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, China
- Hunan University of Medicine, Huaihua, Hunan, China
| | - Min Kuang
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, China
- Hunan University of Medicine, Huaihua, Hunan, China
| | - Qinghu He
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, China
- Hunan University of Medicine, Huaihua, Hunan, China
| | - Shuguang Gao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, Hunan, China
- Hunan Engineering Research Center of Osteoarthritis, Changsha, Hunan, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
35
|
Zhou H, He Z, Cao Y, Chu L, Liang B, Yu K, Deng Z. An injectable magnesium-loaded hydrogel releases hydrogen to promote osteoporotic bone repair via ROS scavenging and immunomodulation. Theranostics 2024; 14:3739-3759. [PMID: 38948054 PMCID: PMC11209720 DOI: 10.7150/thno.97412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
Background: The repair of osteoporotic bone defects remains challenging due to excessive reactive oxygen species (ROS), persistent inflammation, and an imbalance between osteogenesis and osteoclastogenesis. Methods: Here, an injectable H2-releasing hydrogel (magnesium@polyethylene glycol-poly(lactic-co-glycolic acid), Mg@PEG-PLGA) was developed to remodel the challenging bone environment and accelerate the repair of osteoporotic bone defects. Results: This Mg@PEG-PLGA gel shows excellent injectability, shape adaptability, and phase-transition ability, can fill irregular bone defect areas via minimally invasive injection, and can transform into a porous scaffold in situ to provide mechanical support. With the appropriate release of H2 and magnesium ions, the 2Mg@PEG-PLGA gel (loaded with 2 mg of Mg) displayed significant immunomodulatory effects through reducing intracellular ROS, guiding macrophage polarization toward the M2 phenotype, and inhibiting the IκB/NF-κB signaling pathway. Moreover, in vitro experiments showed that the 2Mg@PEG-PLGA gel inhibited osteoclastogenesis while promoting osteogenesis. Most notably, in animal experiments, the 2Mg@PEG-PLGA gel significantly promoted the repair of osteoporotic bone defects in vivo by scavenging ROS and inhibiting inflammation and osteoclastogenesis. Conclusions: Overall, our study provides critical insight into the design and development of H2-releasing magnesium-based hydrogels as potential implants for repairing osteoporotic bone defects.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Orthopaedics, the Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, P. R. China
- Department of Ultrasound & Chongqing Key Laboratory of Ultrasound Molecular Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Zhongyuan He
- Department of Orthopaedics, the Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, P. R. China
| | - Youde Cao
- Department of Pathology from College of Basic Medicine, and Molecular Medicine Diagnostic & Testing Center, and Department of Clinical Pathology Laboratory of Pathology Diagnostic Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing 400016, P. R. China
| | - Lei Chu
- Department of Orthopaedics, the Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, P. R. China
| | - Bing Liang
- Department of Pathology from College of Basic Medicine, and Molecular Medicine Diagnostic & Testing Center, and Department of Clinical Pathology Laboratory of Pathology Diagnostic Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing 400016, P. R. China
| | - Kexiao Yu
- Department of Orthopedics, Chongqing Traditional Chinese Medicine Hospital, The First Affiliated Hospital of Chongqing College of Traditional Chinese Medicine, No. 6 Panxi Seventh Branch Road, Jiangbei District, Chongqing 400021, P. R. China
| | - Zhongliang Deng
- Department of Orthopaedics, the Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, P. R. China
| |
Collapse
|
36
|
Li X, Cui Y, He X, Mao L. Hydrogel-Based Systems in Neuro-Vascularized Bone Regeneration: A Promising Therapeutic Strategy. Macromol Biosci 2024; 24:e2300484. [PMID: 38241425 DOI: 10.1002/mabi.202300484] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/16/2023] [Indexed: 01/21/2024]
Abstract
Blood vessels and nerve fibers are distributed throughout the skeletal tissue, which enhance the development and function of each other and have an irreplaceable role in bone formation and remodeling. Despite significant progress in bone tissue engineering, the inadequacy of nerve-vascular network reconstruction remains a major limitation. This is partly due to the difficulty of integrating and regulating multiple tissue types with artificial materials. Thus, understanding the anatomy and underlying coupling mechanisms of blood vessels and nerve fibers within bone to further develop neuro-vascularized bone implant biomaterials is an extremely critical aspect in the field of bone regeneration. Hydrogels have good biocompatibility, controllable mechanical characteristics, and osteoconductive and osteoinductive properties, making them important candidates for research related to neuro-vascularized bone regeneration. This review reports the classification and physicochemical properties of hydrogels, with a focus on the application advantages and status of hydrogels for bone regeneration. The authors also highlight the effect of neurovascular coupling on bone repair and regeneration and the necessity of achieving neuro-vascularized bone regeneration. Finally, the recent progress and design strategies of hydrogel-based biomaterials for neuro-vascularized bone regeneration are discussed.
Collapse
Affiliation(s)
- Xiaojing Li
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200000, China
| | - Ya Cui
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200000, China
| | - Xiaoya He
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200000, China
| | - Lixia Mao
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200000, China
| |
Collapse
|
37
|
Zhang Q, Li J, Wang C, Li Z, Luo P, Gao F, Sun W. N6-Methyladenosine in Cell-Fate Determination of BMSCs: From Mechanism to Applications. RESEARCH (WASHINGTON, D.C.) 2024; 7:0340. [PMID: 38665846 PMCID: PMC11045264 DOI: 10.34133/research.0340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/21/2024] [Indexed: 04/28/2024]
Abstract
The methylation of adenosine base at the nitrogen-6 position is referred to as "N6-methyladenosine (m6A)" and is one of the most prevalent epigenetic modifications in eukaryotic mRNA and noncoding RNA (ncRNA). Various m6A complex components known as "writers," "erasers," and "readers" are involved in the function of m6A. Numerous studies have demonstrated that m6A plays a crucial role in facilitating communication between different cell types, hence influencing the progression of diverse physiological and pathological phenomena. In recent years, a multitude of functions and molecular pathways linked to m6A have been identified in the osteogenic, adipogenic, and chondrogenic differentiation of bone mesenchymal stem cells (BMSCs). Nevertheless, a comprehensive summary of these findings has yet to be provided. In this review, we primarily examined the m6A alteration of transcripts associated with transcription factors (TFs), as well as other crucial genes and pathways that are involved in the differentiation of BMSCs. Meanwhile, the mutual interactive network between m6A modification, miRNAs, and lncRNAs was intensively elucidated. In the last section, given the beneficial effect of m6A modification in osteogenesis and chondrogenesis of BMSCs, we expounded upon the potential utility of m6A-related therapeutic interventions in the identification and management of human musculoskeletal disorders manifesting bone and cartilage destruction, such as osteoporosis, osteomyelitis, osteoarthritis, and bone defect.
Collapse
Affiliation(s)
- Qingyu Zhang
- Department of Orthopedics,
Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan 250021, China
| | - Junyou Li
- School of Mechanical Engineering,
Sungkyunkwan University, Suwon 16419, South Korea
| | - Cheng Wang
- Department of Orthopaedic Surgery,
Peking UniversityThird Hospital, Peking University, Beijing 100191, China
| | - Zhizhuo Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital,
the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Pan Luo
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Fuqiang Gao
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing 100029, China
| | - Wei Sun
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing 100029, China
- Department of Orthopaedic Surgery of the Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
38
|
Liu B, Liu J, Wang C, Wang Z, Min S, Wang C, Zheng Y, Wen P, Tian Y. High temperature oxidation treated 3D printed anatomical WE43 alloy scaffolds for repairing periarticular bone defects: In vitro and in vivo studies. Bioact Mater 2024; 32:177-189. [PMID: 37859690 PMCID: PMC10582357 DOI: 10.1016/j.bioactmat.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/06/2023] [Accepted: 09/23/2023] [Indexed: 10/21/2023] Open
Abstract
Reconstruction of subarticular bone defects is an intractable challenge in orthopedics. The simultaneous repair of cancellous defects, fractures, and cartilage damage is an ideal surgical outcome. 3D printed porous anatomical WE43 (magnesium with 4 wt% yttrium and 3 wt% rare earths) scaffolds have many advantages for repairing such bone defects, including good biocompatibility, appropriate mechanical strength, customizable shape and structure, and biodegradability. In a previous investigation, we successfully enhanced the corrosion resistance of WE43 samples via high temperature oxidation (HTO). In the present study, we explored the feasibility and effectiveness of HTO-treated 3D printed porous anatomical WE43 scaffolds for repairing the cancellous bone defects accompanied by split fractures via in vitro and in vivo experiments. After HTO treatment, a dense oxidation layer mainly composed of Y2O3 and Nd2O3 formed on the surface of scaffolds. In addition, the majority of the grains were equiaxed, with an average grain size of 7.4 μm. Cell and rabbit experiments confirmed the non-cytotoxicity and biocompatibility of the HTO-treated WE43 scaffolds. After the implantation of scaffolds inside bone defects, their porous structures could be maintained for more than 12 weeks without penetration and for more than 6 weeks with penetration. During the postoperative follow-up period for up to 48 weeks, radiographic examinations and histological analysis revealed that abundant bone gradually regenerated along with scaffold degradation, and stable osseointegration formed between new bone and scaffold residues. MRI images further demonstrated no evidence of any obvious damage to the cartilage, ligaments, or menisci, confirming the absence of traumatic osteoarthritis. Moreover, finite element analysis and biomechanical tests further verified that the scaffolds was conducive to a uniform mechanical distribution. In conclusion, applying the HTO-treated 3D printed porous anatomical WE43 scaffolds exhibited favorable repairing effects for subarticular cancellous bone defects, possessing great potential for clinical application.
Collapse
Affiliation(s)
- Bingchuan Liu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| | - Jinge Liu
- The State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Chaoxin Wang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| | - Zhengguang Wang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| | - Shuyuan Min
- Department of Orthopaedics, Peking University Third Hospital, Beijing, 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| | - Caimei Wang
- Beijing AKEC Medical Co., Ltd., Beijing, 102200, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Peng Wen
- The State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yun Tian
- Department of Orthopaedics, Peking University Third Hospital, Beijing, 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| |
Collapse
|
39
|
Aghajanzadeh MS, Imani R, Nazarpak MH, McInnes SJP. Augmented physical, mechanical, and cellular responsiveness of gelatin-aldehyde modified xanthan hydrogel through incorporation of silicon nanoparticles for bone tissue engineering. Int J Biol Macromol 2024; 259:129231. [PMID: 38185310 DOI: 10.1016/j.ijbiomac.2024.129231] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Bioactive scaffolds fabricated from a combination of organic and inorganic biomaterials are a promising approach for addressing defects in bone tissue engineering. In the present study, a self-crosslinked nanocomposite hydrogel, composed of gelatin/aldehyde-modified xanthan (Gel-AXG) is successfully developed by varying concentrations of porous silicon nanoparticles (PSiNPs). The effect of PSiNPs incorporation on physical, mechanical, and biological performance of the nanocomposite hydrogel is evaluated. Morphological analysis reveals formation of highly porous 3D microstructures with interconnected pores in all nanocomposite hydrogels. Increased content of PSiNPs results in a lower swelling ratio, reduced porosity and pore size, which in turn impeded media penetration and slowed down the degradation process. In addition, remarkable enhancements in dynamic mechanical properties are observed in Gel-AXG-8%Si (compressive strength: 0.6223 MPa at 90 % strain and compressive modulus: 0.054 MPa), along with improved biomineralization ability via hydroxyapatite formation after immersion in simulated body fluid (SBF). This optimized nanocomposite hydrogel provides a sustained release of Si ions at safe dose levels. Furthermore, in-vitro cytocompatibility studies using MG-63 cells exhibited remarkable performance in terms of cell attachment, proliferation, and ALP activity for Gel-AXG-8%Si. These findings suggest that the prepared nanocomposite hydrogel holds promising potential as a scaffold for bone tissue engineering.
Collapse
Affiliation(s)
| | - Rana Imani
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Masoumeh Haghbin Nazarpak
- New Technologies Research Center, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Steven J P McInnes
- UniSA STEM, Mawson Lakes Campus, University of South Australia, Mawson Lakes, South Australia, Australia
| |
Collapse
|
40
|
Zhang Y, Li G, Wang J, Zhou F, Ren X, Su J. Small Joint Organoids 3D Bioprinting: Construction Strategy and Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302506. [PMID: 37814373 DOI: 10.1002/smll.202302506] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Osteoarthritis (OA) is a chronic disease that causes pain and disability in adults, affecting ≈300 million people worldwide. It is caused by damage to cartilage, including cellular inflammation and destruction of the extracellular matrix (ECM), leading to limited self-repairing ability due to the lack of blood vessels and nerves in the cartilage tissue. Organoid technology has emerged as a promising approach for cartilage repair, but constructing joint organoids with their complex structures and special mechanisms is still challenging. To overcome these boundaries, 3D bioprinting technology allows for the precise design of physiologically relevant joint organoids, including shape, structure, mechanical properties, cellular arrangement, and biological cues to mimic natural joint tissue. In this review, the authors will introduce the biological structure of joint tissues, summarize key procedures in 3D bioprinting for cartilage repair, and propose strategies for constructing joint organoids using 3D bioprinting. The authors also discuss the challenges of using joint organoids' approaches and perspectives on their future applications, opening opportunities to model joint tissues and response to joint disease treatment.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Guangfeng Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
- Department of Trauma Orthopedics, Zhongye Hospital, Shanghai, 200941, China
| | - Jian Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Fengjin Zhou
- Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Xiaoxiang Ren
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
41
|
Mittal RK, Mishra R, Uddin R, Sharma V. Hydrogel Breakthroughs in Biomedicine: Recent Advances and Implications. Curr Pharm Biotechnol 2024; 25:1436-1451. [PMID: 38288792 DOI: 10.2174/0113892010281021231229100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 07/23/2024]
Abstract
OBJECTIVE The objective of this review is to present a succinct summary of the latest advancements in the utilization of hydrogels for diverse biomedical applications, with a particular focus on their revolutionary impact in augmenting the delivery of drugs, tissue engineering, along with diagnostic methodologies. METHODS Using a meticulous examination of current literary works, this review systematically scrutinizes the nascent patterns in applying hydrogels for biomedical progress, condensing crucial discoveries to offer a comprehensive outlook on their ever-changing importance. RESULTS The analysis presents compelling evidence regarding the growing importance of hydrogels in biomedicine. It highlights their potential to significantly enhance drug delivery accuracy, redefine tissue engineering strategies, and advance diagnostic techniques. This substantiates their position as a fundamental element in the progress of modern medicine. CONCLUSION In summary, the constantly evolving advancement of hydrogel applications in biomedicine calls for ongoing investigation and resources, given their diverse contributions that can revolutionize therapeutic approaches and diagnostic methods, thereby paving the way for improved patient well-being.
Collapse
Affiliation(s)
- Ravi K Mittal
- Galgotias College of Pharmacy, Greater Noida, 201310, Uttar Pradesh, India
| | - Raghav Mishra
- Lloyd School of Pharmacy, Knowledge Park II, Greater Noida-201306, Uttar Pradesh, India
- GLA University, Mathura-281406, Uttar Pradesh, India
| | - Rehan Uddin
- Sir Madanlal Institute of Pharmacy, Etawah-206001 Uttar Pradesh, India
| | - Vikram Sharma
- Galgotias College of Pharmacy, Greater Noida, 201310, Uttar Pradesh, India
| |
Collapse
|
42
|
Aazmi A, Zhang D, Mazzaglia C, Yu M, Wang Z, Yang H, Huang YYS, Ma L. Biofabrication methods for reconstructing extracellular matrix mimetics. Bioact Mater 2024; 31:475-496. [PMID: 37719085 PMCID: PMC10500422 DOI: 10.1016/j.bioactmat.2023.08.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/19/2023] Open
Abstract
In the human body, almost all cells interact with extracellular matrices (ECMs), which have tissue and organ-specific compositions and architectures. These ECMs not only function as cellular scaffolds, providing structural support, but also play a crucial role in dynamically regulating various cellular functions. This comprehensive review delves into the examination of biofabrication strategies used to develop bioactive materials that accurately mimic one or more biophysical and biochemical properties of ECMs. We discuss the potential integration of these ECM-mimics into a range of physiological and pathological in vitro models, enhancing our understanding of cellular behavior and tissue organization. Lastly, we propose future research directions for ECM-mimics in the context of tissue engineering and organ-on-a-chip applications, offering potential advancements in therapeutic approaches and improved patient outcomes.
Collapse
Affiliation(s)
- Abdellah Aazmi
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Duo Zhang
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Corrado Mazzaglia
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Mengfei Yu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Zhen Wang
- Center for Laboratory Medicine, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yan Yan Shery Huang
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Liang Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
43
|
Wang XH, Liu N, Zhang H, Yin ZS, Zha ZG. From cells to organs: progress and potential in cartilaginous organoids research. J Transl Med 2023; 21:926. [PMID: 38129833 PMCID: PMC10740223 DOI: 10.1186/s12967-023-04591-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/04/2023] [Indexed: 12/23/2023] Open
Abstract
While cartilage tissue engineering has significantly improved the speed and quality of cartilage regeneration, the underlying metabolic mechanisms are complex, making research in this area lengthy and challenging. In the past decade, organoids have evolved rapidly as valuable research tools. Methods to create these advanced human cell models range from simple tissue culture techniques to complex bioengineering approaches. Cartilaginous organoids in part mimic the microphysiology of human cartilage and fill a gap in high-fidelity cartilage disease models to a certain extent. They hold great promise to elucidate the pathogenic mechanism of a diversity of cartilage diseases and prove crucial in the development of new drugs. This review will focus on the research progress of cartilaginous organoids and propose strategies for cartilaginous organoid construction, study directions, and future perspectives.
Collapse
Affiliation(s)
- Xiao-He Wang
- Department of Bone and Joint Surgery, the First Affliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Ning Liu
- Department of Bone and Joint Surgery, the First Affliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Hui Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Zong-Sheng Yin
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Zhen-Gang Zha
- Department of Bone and Joint Surgery, the First Affliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
44
|
Chen H, Li Z, Li X, Lu J, Chen B, Wang Q, Wu G. Biomaterial-Based Gene Delivery: Advanced Tools for Enhanced Cartilage Regeneration. Drug Des Devel Ther 2023; 17:3605-3624. [PMID: 38076630 PMCID: PMC10706074 DOI: 10.2147/dddt.s432056] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Gene therapy has emerged as a promising and innovative approach in cartilage regeneration. Integrating biomaterials into gene therapy offers a unique opportunity to enhance gene delivery efficiency, optimize gene expression dynamics, modulate immune responses, and promote tissue regeneration. Despite the rapid progress in biomaterial-based gene delivery, there remains a deficiency of comprehensive discussions on recent advances and their specific application in cartilage regeneration. Therefore, this review aims to provide a thorough overview of various categories of biomaterials employed in gene delivery, including both viral and non-viral vectors, with discussing their distinct advantages and limitations. Furthermore, the diverse strategies employed in gene therapy are discussed and summarized, such as the utilization of growth factors, anti-inflammatory cytokines, and chondrogenic genes. Additionally, we highlights the significant challenges that hinder biomaterial-based gene delivery in cartilage regeneration, including immune response modulation, gene delivery efficiency, and the sustainability of long-term gene expression. By elucidating the functional properties of biomaterials-based gene therapy and their pivotal roles in cartilage regeneration, this review aims to enhance further advances in the design of sophisticated gene delivery systems for improved cartilage regeneration outcomes.
Collapse
Affiliation(s)
- Hongfeng Chen
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Zhen Li
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Xiaoqi Li
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Jiongjiong Lu
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Beibei Chen
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Qiongchao Wang
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Guangliang Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| |
Collapse
|
45
|
Hu W, Yao X, Li Y, Li J, Zhang J, Zou Z, Kang F, Dong S. Injectable hydrogel with selenium nanoparticles delivery for sustained glutathione peroxidase activation and enhanced osteoarthritis therapeutics. Mater Today Bio 2023; 23:100864. [PMID: 38024839 PMCID: PMC10679772 DOI: 10.1016/j.mtbio.2023.100864] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/24/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
Reactive oxygen burst in articular chondrocytes is a major contributor to osteoarthritis progression. Although selenium is indispensable role in the antioxidant process, the narrow therapeutic window, delicate toxicity margins, and lack of an efficient delivery system have hindered its translation to clinical applications. Herein, transcriptomic and biochemical analyses revealed that osteoarthritis was associated with selenium metabolic abnormality. A novel injectable hydrogel to deliver selenium nanoparticles (SeNPs) was proposed to intervene selenoprotein expression for osteoarthritis treatment. The hydrogels based on oxidized hyaluronic acid (OHA) cross-linked with hyaluronic acid-adipic acid dihydrazide (HA-ADH) was formulated to load SeNPs through a Schiff base reaction. The hydrogels were further incorporated with SeNPs, which exhibited minimal toxicity, mechanical properties, self-healing capability, and sustained drug release. Encapsulated with SeNPs, the hydrogels facilitated cartilage repair through synergetic effects of scavenging reactive oxygen species (ROS) and depressing apoptosis. Mechanistically, the hydrogel restored redox homeostasis by targeting glutathione peroxidase-1 (GPX1). Therapeutic outcomes of the SeNPs-laden hydrogel were demonstrated in an osteoarthritis rat model created by destabilization of the medial meniscus, including cartilage protection, subchondral bone sclerosis improvement, inflammation attenuation, and pain relief were demonstrated. These results highlight therapeutic potential of OHA/HA-ADH@SeNPs hydrogels, providing fundamental insights into remedying selenium imbalance for osteoarthritis biomaterial development.
Collapse
Affiliation(s)
- Wenhui Hu
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Xuan Yao
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing, PR China
- Department of Clinical Hematology Faculty of Laboratory Medicine, Army Medical, University (Third Military Medical University), Chongqing, PR China
| | - Yuheng Li
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Jianmei Li
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Jing Zhang
- College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Zhi Zou
- College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Fei Kang
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Shiwu Dong
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing, PR China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, PR China
| |
Collapse
|
46
|
Li J, Zhang W, Liu X, Li G, Gu Y, Zhang K, Shen F, Wu X, Jiang Y, Zhang Q, Zhou F, Xu K, Su J. Endothelial Stat3 activation promotes osteoarthritis development. Cell Prolif 2023; 56:e13518. [PMID: 37309689 PMCID: PMC10693181 DOI: 10.1111/cpr.13518] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/05/2023] [Accepted: 05/26/2023] [Indexed: 06/14/2023] Open
Abstract
The mechanism of the balance between subchondral angiogenesis and articular damage within osteoarthritis (OA) progression remains a mystery. However, the lack of specific drugs leads to limited clinical treatment options for OA, frequently failing to prevent eventual joint destruction in patients. Increasing evidence suggests that subchondral bone angiogenesis precedes cartilage injury, while proliferating endothelial cells (ECs) induce abnormal bone formation. Signal transducer and activator of transcription 3 (Stat3) is triggered by multiple cytokines in the OA microenvironment. Here, we observed elevated Stat3 activation in subchondral bone H-type vessels. Endothelial Stat3 activation will lead to stronger cell proliferation, migration and angiogenesis by simulating ECs in OA. In contrast, either Stat3 activation inhibition or knockdown of Stat3 expression could relieve such alterations. More interestingly, blocking Stat3 in ECs alleviated angiogenesis-mediated osteogenic differentiation and chondrocyte lesions. Stat3 inhibitor reversed surgically induced subchondral bone H-type vessel hyperplasia in vivo, significantly downregulating vessel volume and vessel number. Due to the reduced angiogenesis, subchondral bone deterioration and cartilage loss were alleviated. Overall, our data suggest that endothelial Stat3 activation is an essential trigger for OA development. Therefore, targeted Stat3 blockade is a novel promising therapeutic regimen for OA.
Collapse
Affiliation(s)
- Jiadong Li
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
- School of MedicineShanghai UniversityShanghaiChina
- School of Life SciencesShanghai UniversityShanghaiChina
| | - Wencai Zhang
- Department of Orthopedics, First Affiliated HospitalJinan UniversityGuangzhouChina
| | - Xinru Liu
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
| | - Guangfeng Li
- Department of OrthopedicsShanghai Zhongye HospitalShanghaiChina
| | - Yuyuan Gu
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
- School of MedicineShanghai UniversityShanghaiChina
| | - Kun Zhang
- Department of Orthopedics, Honghui HospitalXi'an Jiao Tong UniversityXi'anChina
| | - Fuming Shen
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
- School of MedicineShanghai UniversityShanghaiChina
| | - Xiang Wu
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
- School of MedicineShanghai UniversityShanghaiChina
| | - Yingying Jiang
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
| | - Qin Zhang
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
| | - Fengjin Zhou
- Department of Orthopedics, Honghui HospitalXi'an Jiao Tong UniversityXi'anChina
| | - Ke Xu
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
- Wenzhou Institute of Shanghai UniversityWenzhouChina
| | - Jiacan Su
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
- Department of OrthopaedicsXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
47
|
Ruan H, Bek M, Pandit S, Aulova A, Zhang J, Bjellheim P, Lovmar M, Mijakovic I, Kádár R. Biomimetic Antibacterial Gelatin Hydrogels with Multifunctional Properties for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54249-54265. [PMID: 37975260 PMCID: PMC10694820 DOI: 10.1021/acsami.3c10477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/19/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
A facile novel approach of introducing dopamine and [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide via dopamine-triggered in situ synthesis into gelatin hydrogels in the presence of ZnSO4 is presented in this study. Remarkably, the resulting hydrogels showed 99.99 and 100% antibacterial efficiency against Gram-positive and Gram-negative bacteria, respectively, making them the highest performing surfaces in their class. Furthermore, the hydrogels showed adhesive properties, self-healing ability, antifreeze properties, electrical conductivity, fatigue resistance, and mechanical stability from -100 to 80 °C. The added multifunctional performance overcomes several disadvantages of gelatin-based hydrogels such as poor mechanical properties and limited thermostability. Overall, the newly developed hydrogels show significant potential for numerous biomedical applications, such as wearable monitoring sensors and antibacterial coatings.
Collapse
Affiliation(s)
- Hengzhi Ruan
- Department
of Industrial and Materials Science, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| | - Marko Bek
- Department
of Industrial and Materials Science, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| | - Santosh Pandit
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| | - Alexandra Aulova
- Department
of Industrial and Materials Science, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| | - Jian Zhang
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| | | | - Martin Lovmar
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, 412 96 Göteborg, Sweden
- Welspect
AB, 431 21 Mölndal, Sweden
| | - Ivan Mijakovic
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, 412 96 Göteborg, Sweden
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Roland Kádár
- Department
of Industrial and Materials Science, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| |
Collapse
|
48
|
Su G, Zhang D, Li T, Pei T, Yang J, Tu S, Liu S, Ren J, Zhang Y, Duan M, Yang X, Shen Y, Zhou C, Xie J, Liu X. Annexin A5 derived from matrix vesicles protects against osteoporotic bone loss via mineralization. Bone Res 2023; 11:60. [PMID: 37940665 PMCID: PMC10632518 DOI: 10.1038/s41413-023-00290-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/23/2023] [Accepted: 08/31/2023] [Indexed: 11/10/2023] Open
Abstract
Matrix vesicles (MVs) have shown strong effects in diseases such as vascular ectopic calcification and pathological calcified osteoarthritis and in wound repair of the skeletal system due to their membranous vesicle characteristics and abundant calcium and phosphorus content. However, the role of MVs in the progression of osteoporosis is poorly understood. Here, we report that annexin A5, an important component of the matrix vesicle membrane, plays a vital role in bone matrix homeostasis in the deterioration of osteoporosis. We first identified annexin A5 from adherent MVs but not dissociative MVs of osteoblasts and found that it could be sharply decreased in the bone matrix during the occurrence of osteoporosis based on ovariectomized mice. We then confirmed its potential in mediating the mineralization of the precursor osteoblast lineage via its initial binding with collagen type I to achieve MV adhesion and the subsequent activation of cellular autophagy. Finally, we proved its protective role in resisting bone loss by applying it to osteoporotic mice. Taken together, these data revealed the importance of annexin A5, originating from adherent MVs of osteoblasts, in bone matrix remodeling of osteoporosis and provided a new strategy for the treatment and intervention of bone loss.
Collapse
Affiliation(s)
- Guanyue Su
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Demao Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Tiantian Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Tong Pei
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jie Yang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Shasha Tu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Sijun Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jie Ren
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yaojia Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xinrui Yang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yang Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
49
|
Luo Y, Liu H, Zhang Y, Liu Y, Liu S, Liu X, Luo E. Metal ions: the unfading stars of bone regeneration-from bone metabolism regulation to biomaterial applications. Biomater Sci 2023; 11:7268-7295. [PMID: 37800407 DOI: 10.1039/d3bm01146a] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
In recent years, bone regeneration has emerged as a remarkable field that offers promising guidance for treating bone-related diseases, such as bone defects, bone infections, and osteosarcoma. Among various bone regeneration approaches, the metal ion-based strategy has surfaced as a prospective candidate approach owing to the extensive regulatory role of metal ions in bone metabolism and the diversity of corresponding delivery strategies. Various metal ions can promote bone regeneration through three primary strategies: balancing the effects of osteoblasts and osteoclasts, regulating the immune microenvironment, and promoting bone angiogenesis. In the meantime, the complex molecular mechanisms behind these strategies are being consistently explored. Moreover, the accelerated development of biomaterials broadens the prospect of metal ions applied to bone regeneration. This review highlights the potential of metal ions for bone regeneration and their underlying mechanisms. We propose that future investigations focus on refining the clinical utilization of metal ions using both mechanistic inquiry and materials engineering to bolster the clinical effectiveness of metal ion-based approaches for bone regeneration.
Collapse
Affiliation(s)
- Yankun Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Emergency, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xian Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| |
Collapse
|
50
|
Yang J, Chen X, A L, Gao H, Zhao M, Ge L, Li M, Yang C, Gong Y, Gu Z, Xu H. Alleviation of Photoreceptor Degeneration Based on Fullerenols in rd1 Mice by Reversing Mitochondrial Dysfunction via Modulation of Mitochondrial DNA Transcription and Leakage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205998. [PMID: 37407519 DOI: 10.1002/smll.202205998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 06/18/2023] [Indexed: 07/07/2023]
Abstract
Poor therapeutic outcomes of antioxidants in ophthalmologic clinical applications, including glutathione during photoreceptor degeneration in retinitis pigmentosa (RP), are caused by limited anti-oxidative capacity. In this study, fullerenols are synthesized and proven to be highly efficient in vitro radical scavengers. Fullerenol-based intravitreal injections significantly improve the flash electroretinogram and light/dark transition tests performed for 28 days on rd1 mice, reduce the thinning of retinal outer nuclear layers, and preserve the Rhodopsin, Gnat-1, and Arrestin expressions of photoreceptors. RNA-sequencing, RT-qPCR, and Western blotting validate that mitochondrial DNA (mt-DNA)-encoded genes of the electron transport chain (ETC), such as mt-Nd4l, mt-Co1, mt-Cytb, and mt-Atp6, are drastically downregulated in the retinas of rd1 mice, whereas nuclear DNA (n-DNA)-encoded genes, such as Ndufa1 and Atp5g3, are abnormally upregulated. Fullerenols thoroughly reverse the abnormal mt-DNA and n-DNA expression patterns of the ETC and restore mitochondrial function in degenerating photoreceptors. Additionally, fullerenols simultaneously repress Flap endonuclease 1 (FEN1)-mediated mt-DNA cleavage and mt-DNA leakage via voltage-dependent anion channel (VDAC) pores by downregulating the transcription of Fen1 and Vdac1, thereby inactivating the downstream pro-inflammatory cGAS-STING pathway. These findings demonstrate that fullerenols can effectively alleviate photoreceptor degeneration in rd1 mice and serve as a viable treatment for RP.
Collapse
Affiliation(s)
- Junling Yang
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Xia Chen
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Luodan A
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Hui Gao
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Maoru Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingling Ge
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Minghui Li
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Cao Yang
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Yu Gong
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 400038, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiwei Xu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| |
Collapse
|