1
|
Hammer T, Yang K, Spirig T, Meier-Schiesser B, Rottmar M, Maniura-Weber K, Rossi RM, Wei K. Mechanically robust non-swelling cold water fish gelatin hydrogels for 3D bioprinting. Mater Today Bio 2025; 32:101701. [PMID: 40225131 PMCID: PMC11986614 DOI: 10.1016/j.mtbio.2025.101701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 03/08/2025] [Accepted: 03/22/2025] [Indexed: 04/15/2025] Open
Abstract
Three-dimensional (3D) bioprinting of hydrogels allows embedded cells to be patterned and hosted in an extracellular matrix (ECM)-mimicking environment. This method shows great promise for the engineering of complex tissues on account of the facile spatial control over materials and cells within the printed constructs. Hydrogels, which represent extensively explored and employed biomaterials for 3D bioprinting, are characterized by both their high water content and swelling behavior. Post-printing swelling inevitably alters the geometrical and mechanical properties of printed features, thus causing a deviation from the original design and affecting both cellular function and tissue structure. Despite substantial effort being dedicated to the development of non-swelling hydrogels, their application in 3D encapsulation and bioprinting of living cells is yet to be realized, owing to limitations imposed by their often tedious material syntheses and complex network structures. Herein, we describe a new type of non-swelling hydrogel based fully on cold water fish gelatin (cfGel-Hydrogel) consisting of only a single network formed via thiol-ene "click" chemistry. We show that such cfGel-Hydrogels enable 3D patterning of living cells in a shape-retaining and mechanically robust matrix. These cfGel-Hydrogels show negligible swelling (<2 %) under physiologically relevant conditions (simulated by 37 °C PBS buffer), while also being able to withstand large cyclic deformations (80 % compressive strain) by dissipating around 40 % of the imposed loading energy. Human dermal fibroblast (HDF)-laden cfGel-Hydrogels could be fabricated via extrusion-based 3D printing, allowing for the in vitro culturing of cells in shape-retaining constructs, thus offering new opportunities for hydrogel-based applications in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Tobias Hammer
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Ke Yang
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biointerfaces, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Tobias Spirig
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biointerfaces, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | | | - Markus Rottmar
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biointerfaces, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Katharina Maniura-Weber
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biointerfaces, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - René M. Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Kongchang Wei
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biointerfaces, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| |
Collapse
|
2
|
Jo S, Hwangbo H, Francis N, Lee J, Pei M, Kim G. Fish-derived biomaterials for tissue engineering: advances in scaffold fabrication and applications in regenerative medicine and cancer therapy. Theranostics 2025; 15:5666-5692. [PMID: 40365274 PMCID: PMC12068294 DOI: 10.7150/thno.109186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/10/2025] [Indexed: 05/15/2025] Open
Abstract
Fish-derived biomaterials, such as collagen, polyunsaturated fatty acids, and antimicrobial peptides, have emerged as promising candidates for scaffold development in stem cell therapies and tissue engineering due to their excellent biocompatibility and low immunogenicity. Although good bioactivity is a prerequisite for biomedical substitutes, scaffold design is necessary for the successful development of bioconstructs used in tissue regeneration. However, the limited processability of fish biomaterials poses a substantial challenge to the development of diverse scaffold structures. In this review, unlike previous reviews that primarily focused on the bioactivities of fish-derived components, we placed greater emphasis on scaffold fabrication and its applications in tissue regeneration. Specifically, we examined various cross-linking strategies to enhance the structural integrity of fish biomaterials and address challenges, such as poor processability, low mechanical strength, and rapid degradation. Furthermore, we demonstrated the potential of fish scaffolds in stem cell therapies, particularly their capacity to support stem cell growth and modulate the cellular microenvironment. Finally, this review provides future directions for the application of these scaffolds in cancer therapy.
Collapse
Affiliation(s)
- Seoyul Jo
- Department of Precision Medicine, Sungkyunkwan University School of Medicine (SKKU-SOM), Suwon 16419, Republic of Korea
| | - Hanjun Hwangbo
- Department of Precision Medicine, Sungkyunkwan University School of Medicine (SKKU-SOM), Suwon 16419, Republic of Korea
| | - Nacionales Francis
- Department of Precision Medicine, Sungkyunkwan University School of Medicine (SKKU-SOM), Suwon 16419, Republic of Korea
| | - JaeYoon Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine (SKKU-SOM), Suwon 16419, Republic of Korea
| | - Mohan Pei
- Department of Precision Medicine, Sungkyunkwan University School of Medicine (SKKU-SOM), Suwon 16419, Republic of Korea
| | - GeunHyung Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine (SKKU-SOM), Suwon 16419, Republic of Korea
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
3
|
Tian Z, Gu R, Xie W, Su X, Yuan Z, Wan Z, Wang H, Liu Y, Feng Y, Liu X, Huang J. Hydrogen bonding-mediated phase-transition gelatin-based bioadhesives to regulate immune microenvironment for diabetic wound healing. Bioact Mater 2025; 46:434-447. [PMID: 39850021 PMCID: PMC11755075 DOI: 10.1016/j.bioactmat.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Gelatin-based biomaterials have emerged as promising candidates for bioadhesives due to their biodegradability and biocompatibility. However, they often face limitations due to the uncontrollable phase transition of gelatin, which is dominated by hydrogen bonds between peptide chains. Here, we developed controllable phase transition gelatin-based (CPTG) bioadhesives by regulating the dynamic balance of hydrogen bonds between the peptide chains using 2-hydroxyethylurea (HU) and punicalagin (PA). These CPTG bioadhesives exhibited significant enhancements in adhesion energy and injectability even at 4 °C compared to traditional gelatin bioadhesives. The developed bioadhesives could achieve self-reinforcing interfacial adhesion upon contact with moist wound tissues. This effect was attributed to HU diffusion, which disrupted the dynamic balance of hydrogen bonds and therefore induced a localized structural densification. This process was further facilitated by the presence of pyrogallol from PA. Furthermore, the CPTG bioadhesive could modulate the immune microenvironment, offering antibacterial, antioxidant, and immune-adjustable properties, thereby accelerating diabetic wound healing, as confirmed in a diabetic wound rat model. This proposed design strategy is not only crucial for developing controllable phase-transition bioadhesives for diverse applications, but also paves the way for broadening the potential applications of gelatin-based biomaterials.
Collapse
Affiliation(s)
- Zhuoling Tian
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China
- Nanchang Innovation Institute, Peking University, Nanchang, 330096, China
| | - Ruoheng Gu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China
| | - Wenyue Xie
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China
| | - Xing Su
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China
| | - Zuoying Yuan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China
| | - Zhuo Wan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China
| | - Hao Wang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China
| | - Yaqian Liu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China
- College of Science, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Yuting Feng
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China
| | - Xiaozhi Liu
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Fifth Central Hospital of Tianjin, Tianjin, 300450, China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China
- Nanchang Innovation Institute, Peking University, Nanchang, 330096, China
| |
Collapse
|
4
|
Gao L, Li Y, Liu G, Lin X, Tan Y, Liu J, Li R, Zhang C. Mechanical properties and biocompatibility characterization of 3D printed collagen type II/silk fibroin/hyaluronic acid scaffold. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:564-586. [PMID: 39388283 DOI: 10.1080/09205063.2024.2411797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
Damage to articular cartilage is irreversible and its ability to heal is minimal. The development of articular cartilage in tissue engineering requires suitable biomaterials as scaffolds that provide a 3D natural microenvironment for the development and growth of articular cartilage. This study aims to investigate the applicability of a 3D printed CSH (collagen type II/silk fibroin/hyaluronic acid) scaffold for constructing cartilage tissue engineering. The results showed that the composite scaffold had a three-dimensional porous network structure with uniform pore sizes and good connectivity. The hydrophilicity of the composite scaffold was 1071.7 ± 131.6%, the porosity was 85.12 ± 1.6%, and the compressive elastic modulus was 36.54 ± 2.28 kPa. The creep and stress relaxation constitutive models were also established, which could well describe the visco-elastic mechanical behavior of the scaffold. The biocompatibility experiments showed that the CSH scaffold was very suitable for the adhesion and proliferation of chondrocytes. Under dynamic compressive loading conditions, it was able to promote cell adhesion and proliferation on the scaffold surface. The 3D printed CSH scaffold is expected to be ideal for promoting articular cartilage regeneration.
Collapse
Affiliation(s)
- Lilan Gao
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
- Tianjin Key Laboratory of Bone Implant Interface Functionalization and Personality Research, Just Medical Equipment (Tianjin) Co., Ltd, Tianjin, China
| | - Yali Li
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Gang Liu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Xianglong Lin
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Yansong Tan
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Jie Liu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Ruixin Li
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, China
| | - Chunqiu Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
- Tianjin Key Laboratory of Bone Implant Interface Functionalization and Personality Research, Just Medical Equipment (Tianjin) Co., Ltd, Tianjin, China
| |
Collapse
|
5
|
Chen S, Yoo JJ, Wang M. The application of tissue engineering strategies for uterine regeneration. Mater Today Bio 2025; 31:101594. [PMID: 40070871 PMCID: PMC11894340 DOI: 10.1016/j.mtbio.2025.101594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Uterine injuries, particularly damages to endometrium, are usually associated with abnormal menstruation, recurrent miscarriage, pregnancy complications, and infertility. Tissue engineering using cell-based, biomolecule-based, or biomaterial and scaffold-based strategies has emerged as a novel and promising approach for uterine regeneration. Stem cells, biomolecules, and porous scaffolds used alone or, very often, used in combination as a more effective treatment means have shown great potential in promoting uterine regeneration. The reported preclinical studies have indicated that appropriate tissue engineering strategies could safely and effectively reconstruct not only endometrium but also partial or even the whole uterine structure. However, the progress in the uterine regeneration area is slow in comparison to that of regenerating many other body tissues and hence it still remains a great challenge to apply uterine tissue engineering for clinical applications. In this review, conventional treatments for uterine-related diseases are briefly reviewed and discussed first. Subsequently, tissue engineering strategies (cell-based, biomolecule-based, biomaterial and scaffold-based, or their combinations) for uterine repair in preclinical studies and clinical trials are presented and analyzed. Finally, the challenges and perspectives in uterine regeneration are pointed and discussed. Despite various limitations and obstacles, the tissue engineering approach is viable and holds high promise for uterine regeneration.
Collapse
Affiliation(s)
- Shangsi Chen
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - James J. Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Min Wang
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| |
Collapse
|
6
|
Wang J, Huang D, Ren H, Zhao Y. Bioinspired Spatially Ordered Multicellular Lobules for Liver Regeneration. RESEARCH (WASHINGTON, D.C.) 2025; 8:0634. [PMID: 40099268 PMCID: PMC11912749 DOI: 10.34133/research.0634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/14/2025] [Accepted: 02/16/2025] [Indexed: 03/19/2025]
Abstract
Cell therapy is a promising strategy for acute liver failure (ALF), while its therapeutic efficacy is often limited by cell loss and poor arrangement. Here, inspired by liver microunits, we propose a novel spatially ordered multicellular lobules for the ALF treatment by using a microfluidic continuous spinning technology. The microfluidics with multiple microchannels was constructed by assembling parallel capillaries. Sodium alginate (Alg) solution encapsulating human umbilical vein endothelial cells (HUVECs), hepatocytes, and mesenchymal stem cells (MSCs) are introduced into the middle channel and the 6 parallel outer channels of the microfluidics, respectively. Simultaneously, Ca2+-loaded solutions are pumped through the innermost and outermost channels, forming a hollow microfiber with hepatocytes and MSCs alternately surrounding the HUVECs. These microfibers could highly resemble the cord-like structure of liver lobules, bringing about outstanding liver-like functions. We have demonstrated that in ALF rats, our biomimetic lobules can effectively suppress excessive inflammatory responses, decrease cell necrosis, and promote regenerative pathways, leading to satisfied therapeutic efficacy. These findings underscore the potential of spatially ordered multicellular microfibers in treating related diseases and improving traditional clinical methods.
Collapse
Affiliation(s)
- Jinglin Wang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210008, China
| | - Danqing Huang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210008, China
| | - Haozhen Ren
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210008, China
| | - Yuanjin Zhao
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210008, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering,
Southeast University, Nanjing 210096, China
- Institute of Organoids on Chips Translational Research,
Henan Academy of Sciences, Zhengzhou 450009, China
| |
Collapse
|
7
|
Chen J, Li C, Chen X, Zhou K, Li H, Peng K, Yang Y, Dai Y, Huang B. In situswelling of low-friction, high load-bearing self-bending bilayer hydrogels inspired by articular cartilage. Biomed Mater 2025; 20:025018. [PMID: 39778334 DOI: 10.1088/1748-605x/ada7b4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/08/2025] [Indexed: 01/11/2025]
Abstract
The articular cartilage is characterized by its gradient hierarchical structure, which exhibits excellent lubrication and robust load-bearing properties. However, its inherent difficulty in self-repair after damage presents numerous formidable challenges for cartilage repair. Inspired by the unique structure of articular cartilage, a biomimetic bilayer hydrogel composed of PAM (polyacrylamide) and PAM/SA (sodium alginate) is prepared using a two-stepin-situswelling method. The bilayer hydrogel demonstrates exceptional structural stability due to the interlayerin-situchemical cross-linking. Compared to monolayer hydrogels, the PAM-PAM/SA bilayer hydrogel demonstrates superior mechanical attributes, exhibiting a compressive strength of 1 MPa and a compressive modulus of 0.22 MPa. Furthermore, exploration of the tribological performance of the PAM-PAM/SA bilayer hydrogel have revealed its low-friction performance under high loads, with a coefficient of friction as low as 0.032. Finally, leveraging the differential swelling properties between the distinct layers of the PAM-PAM/SA bilayer hydrogel, a self-bending biomimetic cartilage capable of conforming to complex joint surfaces is fabricated. This highly lubricating, mechanically robust, and conformal biomimetic cartilage provides an effective means for addressing cartilage defects and joint diseases.
Collapse
Affiliation(s)
- Jianfeng Chen
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, People's Republic of China
| | - Chuan Li
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, People's Republic of China
| | - Xiaoxiao Chen
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, People's Republic of China
| | - Kui Zhou
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, People's Republic of China
| | - Hanjing Li
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, People's Republic of China
| | - Kai Peng
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, People's Republic of China
| | - Yinong Yang
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, People's Republic of China
| | - Yichuan Dai
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, People's Republic of China
| | - Ben Huang
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, People's Republic of China
- International Institute for Materials Innovation, Nanchang University, Nanchang 330031, People's Republic of China
| |
Collapse
|
8
|
Bunin A, Harari-Steinberg O, Kam D, Kuperman T, Friedman-Gohas M, Shalmon B, Larush L, Duvdevani SI, Magdassi S. Digital light processing printing of non-modified protein-only compositions. Mater Today Bio 2025; 30:101384. [PMID: 39790486 PMCID: PMC11714671 DOI: 10.1016/j.mtbio.2024.101384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/18/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
This study explores the utilization of digital light processing (DLP) printing to fabricate complex structures using native gelatin as the sole structural component for applications in biological implants. Unlike approaches relying on synthetic materials or chemically modified biopolymers, this research harnesses the inherent properties of gelatin to create biocompatible structures. The printing process is based on a crosslinking mechanism using a di-tyrosine formation initiated by visible light irradiation. Formulations containing gelatin were found to be printable at the maximum documented concentration of 30 wt%, thus allowing the fabrication of overhanging objects and open embedded. Cell adhesion and growth onto and within the gelatin-based 3D constructs were evaluated by examining two implant fabrication techniques: (1) cell seeding onto the printed scaffold and (2) printing compositions that contain cells (cell-laden). The preliminary biological experiments indicate that both the cell-seeding and cell-laden strategies enable making 3D cultures of chondrocytes within the gelatin constructs. The mechanical properties of the gelatin scaffolds have a compressive modulus akin to soft tissues, thus enabling the growth and proliferation of cells, and later degrade as the cells differentiate and form a grown cartilage. This study underscores the potential of utilizing non-modified protein-only bioinks in DLP printing to produce intricate 3D objects with high fidelity, paving the way for advancements in regenerative tissue engineering.
Collapse
Affiliation(s)
- Ayelet Bunin
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Orit Harari-Steinberg
- Tissue Engineering Research Laboratory, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel
| | - Doron Kam
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Tatyana Kuperman
- Tissue Engineering Research Laboratory, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel
| | - Moran Friedman-Gohas
- Tissue Engineering Research Laboratory, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel
| | - Bruria Shalmon
- Tissue Engineering Research Laboratory, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel
- Department of pathology, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Liraz Larush
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Shay I. Duvdevani
- Tissue Engineering Research Laboratory, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel
- Department of Otorhinolaryngology, Head and Neck Surgery, Sheba Medical Center, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Shlomo Magdassi
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| |
Collapse
|
9
|
An JH, Kim HY. Scaffolds Bioink for Three-Dimensional (3D) Bioprinting. Food Sci Anim Resour 2025; 45:126-144. [PMID: 39840242 PMCID: PMC11743847 DOI: 10.5851/kosfa.2024.e120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 01/23/2025] Open
Abstract
Rapid population growth and a corresponding increase in the demand for animal-derived proteins have led to food supply challenges and the need for alternative and sustainable meat production methods. Therefore, this study explored the importance of cell engineering technology-based three-dimensional bioprinting and bioinks, which play key roles in cultured meat production. In cultured meat production, bioinks have a significant effect on cell growth, differentiation, and mechanical stability. Hence, in this study, the characteristics of animal-, plant-, and marine-based bioinks were compared and analyzed, and the impact of each bioink on cultured meat production was evaluated. In particular, animal-based bioinks have the potential to produce cultured meat that is similar to conventional meat and are considered the most suitable bioinks for commercialization. Although plant- and marine-based bioinks are ecofriendly and have fewer religious restrictions, they are limited in terms of mechanical stability and consumer acceptance. Therefore, further research is required to develop and apply optimal animal-based bioinks for commercialization of cultured meat, particularly to improve its mechanical compatibility.
Collapse
Affiliation(s)
- Jin-Hee An
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
| | - Hack-Youn Kim
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
- Resources Science Research Institute, Yesan 32439, Korea
| |
Collapse
|
10
|
Chen M, Liu Y, Liu Q, Deng S, Liu Y, Chen J, Zhou Y, Cui X, Liang J, Zhang X, Fan Y, Wang Q, Shen B. Nanoengineered cargo with targeted in vivo Foxo3 gene editing modulated mitophagy of chondrocytes to alleviate osteoarthritis. Acta Pharm Sin B 2025; 15:571-591. [PMID: 40041910 PMCID: PMC11873664 DOI: 10.1016/j.apsb.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/28/2024] [Accepted: 10/10/2024] [Indexed: 03/17/2025] Open
Abstract
Mitochondrial dysfunction in chondrocytes is a key pathogenic factor in osteoarthritis (OA), but directly modulating mitochondria in vivo remains a significant challenge. This study is the first to verify a correlation between mitochondrial dysfunction and the downregulation of the FOXO3 gene in the cartilage of OA patients, highlighting the potential for regulating mitophagy via FOXO3 gene modulation to alleviate OA. Consequently, we developed a chondrocyte-targeting CRISPR/Cas9-based FOXO3 gene-editing tool (FoxO3) and integrated it within a nanoengineered 'truck' (NETT, FoxO3-NETT). This was further encapsulated in injectable hydrogel microspheres (FoxO3-NETT@SMs) to harness the antioxidant properties of sodium alginate and the enhanced lubrication of hybrid exosomes. Collectively, these FoxO3-NETT@SMs successfully activate mitophagy and rebalance mitochondrial function in OA chondrocytes through the Foxo3 gene-modulated PINK1/Parkin pathway. As a result, FoxO3-NETT@SMs stimulate chondrocytes proliferation, migration, and ECM production in vitro, and effectively alleviate OA progression in vivo, demonstrating significant potential for clinical applications.
Collapse
Affiliation(s)
- Manyu Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuan Liu
- Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Quanying Liu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Siyan Deng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuhan Liu
- The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Jiehao Chen
- Animal Laboratory Center of West China Hospital, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yaojia Zhou
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, School of Medicine, the Chinese University of Hong Kong, Shenzhen 518172, China
| | - Xiaolin Cui
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, School of Medicine, the Chinese University of Hong Kong, Shenzhen 518172, China
- Department of Orthopedic Surgery & Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch 8140, New Zealand
| | - Jie Liang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
- Sichuan Testing Center for Biomaterials and Medical Devices, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Bin Shen
- Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Wang Y, Zhang L, Cao G, Li Z, Du M. Effect of Heat Treatment on Gelatin Properties and the Construction of High Internal Phase Emulsions for 3D Printing. Foods 2024; 13:4009. [PMID: 39766952 PMCID: PMC11728344 DOI: 10.3390/foods13244009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/15/2025] Open
Abstract
The effect of tilapia skin gelatin properties on the characteristics of high internal phase emulsions (HIPEs) and the quality of 3D printing remains unidentified. In this work, HIPEs were constructed by gelatin with various properties that were obtained by heat treatment. The results indicated that the gelatin undergoes degradation gradually with an increase in heating intensity. The highest values of intrinsic fluorescence intensity, surface hydrophobicity, and emulsification were obtained when the heating time was 5 h. The gel strength and hardness of gelatin hydrogels were negatively correlated with heat treatment temperature. HIPEs constructed by gelatin extracted at 70 °C demonstrated a suitable material for 3D printing. The storage modulus (G') and viscosity of HIPEs exhibited a similar tendency as the gel strength of gelatin. The microstructure of HIPEs revealed that gelatin established a gel network around oil droplets, and the higher G' of HIPEs corresponded to a more compact network structure. This study elucidated the correlation between the structure and properties of gelatin, offering essential insights for the formulation of HIPEs by natural gelatin, which is suitable for applications across several domains.
Collapse
Affiliation(s)
| | - Ling Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Y.W.); (G.C.); (Z.L.)
| | | | | | - Ming Du
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Y.W.); (G.C.); (Z.L.)
| |
Collapse
|
12
|
Wang H, Luo Y, Wang L, Liu Z, Kang Z, Che X. A separable double-layer self-pumping dressing containing astragaloside for promoting wound healing. Int J Biol Macromol 2024; 281:136342. [PMID: 39374715 DOI: 10.1016/j.ijbiomac.2024.136342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Some skin wounds often have many exudate. Ordinary single layer electrospunning nanofiber wound dressings often don't have enough capacity to absorb them. Therefore, a separable double layer electrospunning nanofiber dressing was developed in this work. The dressing had a separable feature that allowed the upper layer to be separated and removed after it had absorbed a significant amount of wound exudate. This dressing consisted of an upper layer of super hydrophilic sodium polyacrylate nanofibers and a bottom layer of 3D-structure coaxial nanofibers with encapsulated Astragaloside (AS). The results showed that nanofibers had better morphology. The water absorption rate, water vapor transmission rate and free radical scavenging rate of the double-layer dressings were 1461.71 ± 39.72 %, 1193.63 ± 134 g·m-2·day-1, and 63.35 ± 3.65 %, respectively. The double-layer nanofiber dressing achieved 65.69 ± 2.62 % and 75.10 ± 6.26 % inhibition against Staphylococcus aureus and Escherichia coli, respectively. The double-layer dressing had proliferative, migratory, and adhesive effects on L929 fibroblasts. And the double-layer dressing resulted in a 96.78 ± 1.0 % wound healing rate in rats after giving a 14 days treatment. Therefore, the 3D-structure separable double-layer wound dressing designed and prepared in this study was effective in promoting wound healing.
Collapse
Affiliation(s)
- Hongwei Wang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Yongming Luo
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Lihong Wang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Zemei Liu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Zhichao Kang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Xin Che
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China.
| |
Collapse
|
13
|
Qu Z, Yue J, Song N, Li S. Innovations in three-dimensional-printed individualized bone prosthesis materials: revolutionizing orthopedic surgery: a review. Int J Surg 2024; 110:6748-6762. [PMID: 38905508 PMCID: PMC11486933 DOI: 10.1097/js9.0000000000001842] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
The advent of personalized bone prosthesis materials and their integration into orthopedic surgery has made a profound impact, primarily as a result of the incorporation of three-dimensional (3D) printing technology. By leveraging digital models and additive manufacturing techniques, 3D printing enables the creation of customized, high-precision bone implants tailored to address complex anatomical variabilities and challenging bone defects. In this review, we highlight the significant progress in utilizing 3D-printed prostheses across a wide range of orthopedic procedures, including pelvis, hip, knee, foot, ankle, spine surgeries, and bone tumor resections. The integration of 3D printing in preoperative planning, surgical navigation, and postoperative rehabilitation not only enhances treatment outcomes but also reduces surgical risks, accelerates recovery, and optimizes cost-effectiveness. Emphasizing the potential for personalized care and improved patient outcomes, this review underscores the pivotal role of 3D-printed bone prosthesis materials in advancing orthopedic practice towards precision, efficiency, and patient-centric solutions. The evolving landscape of 3D printing in orthopedic surgery holds promise for revolutionizing treatment approaches, enhancing surgical outcomes, and ultimately improving the quality of care for orthopedic patients.
Collapse
Affiliation(s)
- Zhigang Qu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun
| | - Jiaji Yue
- Department of Orthopedics, Shenzhen Second People’s Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong
| | - Ning Song
- Operating Theatre, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine With Engineering, Shenyang, Liaoning
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning Province, China
| |
Collapse
|
14
|
Mazzoldi EL, Gaudenzi G, Ginestra PS, Ceretti E, Giliani SC. Evaluating cells metabolic activity of bioinks for bioprinting: the role of cell-laden hydrogels and 3D printing on cell survival. Front Bioeng Biotechnol 2024; 12:1450838. [PMID: 39391599 PMCID: PMC11464773 DOI: 10.3389/fbioe.2024.1450838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Tissue engineering has advanced significantly in recent years, owing primarily to additive manufacturing technology and the combination of biomaterials and cells known as 3D cell printing or Bioprinting. Nonetheless, various obstacles remain developing adequate 3D printed structures for biomedical applications, including bioinks optimization to meet biocompatibility and printability standards. Hydrogels are among the most intriguing bioinks because they mimic the natural extracellular matrix found in connective tissues and can create a highly hydrated environment that promotes cell attachment and proliferation; however, their mechanical properties are weak and difficult to control, making it difficult to print a proper 3D structure. Methods In this research, hydrogels based on Alginate and Gelatin are tested to evaluate the metabolic activity, going beyond the qualitative evaluation of cell viability. The easy-to-make hydrogel has been chosen due to the osmotic requirements of the cells for their metabolism, and the possibility to combine temperature and chemical crosslinking. Different compositions (%w/v) are tested (8% gel-7% alg, 4% gel-4% alg, 4% gel-2% alg), in order to obtain a 3D structure up to 10.3 ± 1.4 mm. Results The goal of this paper is to validate the obtained cell-laden 3D structures in terms of cell metabolic activity up to 7 days, further highlighting the difference between printed and not printed cell-laden hydrogels. To this end, MS5 cells viability is determined by implementing the live/dead staining with the analysis of the cellular metabolic activity through ATP assay, enhancing the evaluation of the actual cells activity over cells number. Discussion The results of the two tests are not always comparable, indicating that they are not interchangeable but provide complementary pieces of information.
Collapse
Affiliation(s)
- Elena Laura Mazzoldi
- Angelo Nocivelli Institute of Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giulia Gaudenzi
- Department of Mechanical and Industrial Engineering, University of Brescia, Brescia, Italy
| | - Paola Serena Ginestra
- Department of Mechanical and Industrial Engineering, University of Brescia, Brescia, Italy
| | - Elisabetta Ceretti
- Department of Mechanical and Industrial Engineering, University of Brescia, Brescia, Italy
| | - Silvia Clara Giliani
- Angelo Nocivelli Institute of Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
15
|
Xu Y, Bei Z, Li M, Ye L, Chu B, Zhao Y, Qian Z. Biomedical application of materials for external auditory canal: History, challenges, and clinical prospects. Bioact Mater 2024; 39:317-335. [PMID: 38827173 PMCID: PMC11139775 DOI: 10.1016/j.bioactmat.2024.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 06/04/2024] Open
Abstract
Biomaterials play an integral role in treatment of external auditory canal (EAC) diseases. Regarding the special anatomic structure and physiological characteristics of EAC, careful selection of applicable biomaterials was essential step towards effective management of EAC conditions. The bioactive materials can provide reasonable biocompatibility, reduce risk of host pro-inflammatory response and immune rejection, and promote the healing process. In therapeutic procedure, biomaterials were employed for covering or packing the wound, protection of the damaged tissue, and maintaining of normal structures and functions of the EAC. Therefore, understanding and application of biomaterials was key to obtaining great rehabilitation in therapy of EAC diseases. In clinical practice, biomaterials were recognized as an important part in the treatment of different EAC diseases. The choice of biomaterials was distinct according to the requirements of various diseases. As a result, awareness of property regarding different biomaterials was fundamental for appropriate selection of therapeutic substances in different EAC diseases. In this review, we firstly introduced the characteristics of EAC structures and physiology, and EAC pathologies were summarized secondarily. From the viewpoint of biomaterials, the different materials applied to individual diseases were outlined in categories. Besides, the underlying future of therapeutic EAC biomaterials was discussed.
Collapse
Affiliation(s)
- Yang Xu
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhongwu Bei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mei Li
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bingyang Chu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Zhao
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Yang L, Li W, Zhao Y, Wang Y, Shang L. Stem cell recruitment polypeptide hydrogel microcarriers with exosome delivery for osteoarthritis treatment. J Nanobiotechnology 2024; 22:512. [PMID: 39192268 PMCID: PMC11348651 DOI: 10.1186/s12951-024-02765-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
With the accelerated aging tendency, osteoarthritis (OA) has become an intractable global public health challenge. Stem cells and their derivative exosome (Exo) have shown great potential in OA treatment. Research in this area tends to develop functional microcarriers for stem cell and Exo delivery to improve the therapeutic effect. Herein, we develop a novel system of Exo-encapsulated stem cell-recruitment hydrogel microcarriers from liquid nitrogen-assisted microfluidic electrospray for OA treatment. Benefited from the advanced droplet generation capability of microfluidics and mild cryogelation procedure, the resultant particles show uniform size dispersion and excellent biocompatibility. Moreover, acryloylated stem cell recruitment peptides SKPPGTSS are directly crosslinked within the particles by ultraviolet irradiation, thus simplifying the peptide coupling process and preventing its premature release. The SKPPGTSS-modified particles can recruit endogenous stem cells to promote cartilage repair and the released Exo from the particles further enhances the cartilage repair performance through synergistic effects. These features suggest that the proposed hydrogel microcarrier delivery system is a promising candidate for OA treatment.
Collapse
Affiliation(s)
- Lei Yang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Wenzhao Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China.
| | - Yongxiang Wang
- Department of Orthopedics, Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou, 225001, China.
| | - Luoran Shang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and The Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
17
|
Xue H, Chen S, Hu Y, Huang J, Shen Y. Advances in 3D printing for the repair of tympanic membrane perforation: a comprehensive review. Front Bioeng Biotechnol 2024; 12:1439499. [PMID: 39188376 PMCID: PMC11345550 DOI: 10.3389/fbioe.2024.1439499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/19/2024] [Indexed: 08/28/2024] Open
Abstract
Tympanic membrane perforation (TMP) is one of the most common conditions in otolaryngology worldwide, and hearing damage caused by inadequate or prolonged healing can be distressing for patients. This article examines the rationale for utilizing three-dimensional (3D) printing to produce scaffolds for repairing TMP, compares the advantages and disadvantages of 3D printed and bioprinted grafts with traditional autologous materials and other tissue engineering materials in TMP repair, and highlights the practical and clinical significance of 3D printing in TMP repair while discussing the current progress and promising future of 3D printing and bioprinting. There is a limited number of reviews specifically dedicated to 3D printing for TMP repair. The majority of reviews offer a general overview of the applications of 3D printing in the broader realm of tissue regeneration, with some mention of TMP repair. Alternatively, they explore the biopolymers, cells, and drug molecules utilized for TMP repair. However, more in-depth analysis is needed on the strategies for selecting bio-inks that integrate biopolymers, cells, and drug molecules for tympanic membrane repair.
Collapse
Affiliation(s)
- Hao Xue
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Shengjia Chen
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yi Hu
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Juntao Huang
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yi Shen
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- Centre for Medical Research, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
18
|
Li H, Lin X, Rao S, Zhou G, Meng L, Yu Y, Wang J, Chen X, Sun W. Decellularized Tumor Tissues Integrated with Polydopamine for Wound Healing. RESEARCH (WASHINGTON, D.C.) 2024; 7:0445. [PMID: 39109247 PMCID: PMC11301524 DOI: 10.34133/research.0445] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/16/2024] [Indexed: 05/04/2025]
Abstract
Natural biomaterials have been showing extensive potential in wound healing; attempts therefore focus on productions achieving both antimicrobial and tissue regenerative abilities. Here, we construct a decellularized human colon tumor (DHCT)-derived scaffold for wound remolding via microfluidic bioprinting. The DHCT retains a series of growth factors, fibrin, and the collagen configuration, that favor tissue repair and reconstruction. Specifically, the scaffold shows superior abilities in cell migration and angiogenesis. The biocompatible scaffold is also imparted with tissue adhesion ability and photothermal effect due to the coating of biologically derived polydopamine on the surface. The strong photothermal effect under near-infrared irradiation also present the scaffold with an antibacterial rate exceeding 90%. Furthermore, in vivo experiments convinced that the polydopamine-integrated DHCT scaffold can markedly expedite the healing process of acute extensive wounds. These findings indicate that composite materials derived from natural tumors have substantial potential in pertinent clinical applications.
Collapse
Affiliation(s)
- Hongzheng Li
- Department of Gastrointestinal Surgery,
The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiang Lin
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School,
Nanjing University, Nanjing, 210008, China
- Pharmaceutical Sciences Laboratory,
Åbo Akademi University, Turku, 20520, Finland
| | - Shangrui Rao
- Department of Gastrointestinal Surgery,
The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Gongting Zhou
- Department of Gastrointestinal Surgery,
The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Letian Meng
- Department of Gastrointestinal Surgery,
The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yunru Yu
- Pharmaceutical Sciences Laboratory,
Åbo Akademi University, Turku, 20520, Finland
| | - Jinglin Wang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School,
Nanjing University, Nanjing, 210008, China
| | - Xiaolei Chen
- Department of Gastrointestinal Surgery,
The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Weijian Sun
- Department of Gastrointestinal Surgery,
The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
19
|
Luong AH, Istiqomah D, Lin WC. Study of mechanical property and biocompatibility of graphene oxide/MEO 2MA hydrogel scaffold for wound healing application. Biomed Eng Lett 2024; 14:537-548. [PMID: 38645584 PMCID: PMC11026359 DOI: 10.1007/s13534-024-00349-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/18/2023] [Accepted: 12/30/2023] [Indexed: 04/23/2024] Open
Abstract
Wound healing is a complex biological process crucial for restoring tissue integrity and preventing infections. The development of advanced materials that facilitate and expedite the wound-healing process has been a focal point in biomedical research. In this study, we aimed to enhance the wound-healing potential of hydrogel scaffolds by incorporating graphene oxide and poly (ethylene glycol) methyl ether methacrylate (MEO2MA). Various masses of graphene oxide were added to MEO2MA hydrogels via free radical polymerisation. Comprehensive characterizations, encompassing mechanical properties, and biocompatibility assays, were conducted to evaluate the hydrogels' suitability for wound healing. In vitro experiments demonstrated that the graphene oxide-based hydrogels exhibited a proper swelling degree and tensile strength, responding effectively to moisture conditions and adhesiveness for wound healing. Notably, the tensile strength significantly increased to 626 kPa in the graphene oxide hydrogels. Biocompatibility assessments revealed that the graphene oxide/MEO2MA hydrogels were non-toxic to human dermal fibroblast cell growth, with no significant difference in cell viability observed in the graphene oxide/MEO2MA hydrogel (H-HG) group. In a rat skin experiment, the wound-healing rate of the hydrogel incorporating graphene oxide surpassed that of the pristine hydrogel after a 15-day treatment, achieving over 95% wound closure in the H-HG group. The histopathological analysis further supported the efficacy of the H-HG hydrogel dressing in promoting more effective tissue regeneration. These results collectively highlight the potential of the graphene oxide/MEO2MA hydrogel scaffold as a promising dressing for medical applications.
Collapse
Affiliation(s)
- Anh Hue Luong
- Department of Mechanical and Electro-mechanical Engineering, National Sun Yat-sen University, Kaohsiung, 80424 Taiwan
| | - Dwita Istiqomah
- Department of Mechanical and Electro-mechanical Engineering, National Sun Yat-sen University, Kaohsiung, 80424 Taiwan
| | - Wei-Chih Lin
- Department of Mechanical and Electro-mechanical Engineering, National Sun Yat-sen University, Kaohsiung, 80424 Taiwan
| |
Collapse
|
20
|
Ding J, Wei C, Xu Y, Dai W, Chen R. 3D printing of Ceffe-infused scaffolds for tailored nipple-like cartilage development. BMC Biotechnol 2024; 24:25. [PMID: 38689309 PMCID: PMC11059701 DOI: 10.1186/s12896-024-00848-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
The reconstruction of a stable, nipple-shaped cartilage graft that precisely matches the natural nipple in shape and size on the contralateral side is a clinical challenge. While 3D printing technology can efficiently and accurately manufacture customized complex structures, it faces limitations due to inadequate blood supply, which hampers the stability of nipple-shaped cartilage grafts produced using this technology. To address this issue, we employed a biodegradable biomaterial, Poly(lactic-co-glycolic acid) (PLGA), loaded with Cell-Free Fat Extract (Ceffe). Ceffe has demonstrated the ability to promote angiogenesis and cell proliferation, making it an ideal bio-ink for bioprinting precise nipple-shaped cartilage grafts. We utilized the Ceffe/PLGA scaffold to create a porous structure with a precise nipple shape. This scaffold exhibited favorable porosity and pore size, ensuring stable shape maintenance and satisfactory biomechanical properties. Importantly, it could release Ceffe in a sustained manner. Our in vitro results confirmed the scaffold's good biocompatibility and its ability to promote angiogenesis, as evidenced by supporting chondrocyte proliferation and endothelial cell migration and tube formation. Furthermore, after 8 weeks of in vivo culture, the Ceffe/PLGA scaffold seeded with chondrocytes regenerated into a cartilage support structure with a precise nipple shape. Compared to the pure PLGA group, the Ceffe/PLGA scaffold showed remarkable vascular formation, highlighting the beneficial effects of Ceffe. These findings suggest that our designed Ceffe/PLGA scaffold with a nipple shape represents a promising strategy for precise nipple-shaped cartilage regeneration, laying a foundation for subsequent nipple reconstruction.
Collapse
Affiliation(s)
- Jinghao Ding
- Department of Breast Surgery, Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital), Haikou, China
| | - Chuanzhi Wei
- Department of Breast Surgery, Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital), Haikou, China
| | - Yong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wufei Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ru Chen
- Department of Breast Surgery, Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital), Haikou, China.
| |
Collapse
|
21
|
An H, Zhang M, Gu Z, Jiao X, Ma Y, Huang Z, Wen Y, Dong Y, Zhang P. Advances in Polysaccharides for Cartilage Tissue Engineering Repair: A Review. Biomacromolecules 2024; 25:2243-2260. [PMID: 38523444 DOI: 10.1021/acs.biomac.3c01424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Cartilage repair has been a significant challenge in orthopedics that has not yet been fully resolved. Due to the absence of blood vessels and the almost cell-free nature of mature cartilage tissue, the limited ability to repair cartilage has resulted in significant socioeconomic pressures. Polysaccharide materials have recently been widely used for cartilage tissue repair due to their excellent cell loading, biocompatibility, and chemical modifiability. They also provide a suitable microenvironment for cartilage repair and regeneration. In this Review, we summarize the techniques used clinically for cartilage repair, focusing on polysaccharides, polysaccharides for cartilage repair, and the differences between these and other materials. In addition, we summarize the techniques of tissue engineering strategies for cartilage repair and provide an outlook on developing next-generation cartilage repair and regeneration materials from polysaccharides. This Review will provide theoretical guidance for developing polysaccharide-based cartilage repair and regeneration materials with clinical applications for cartilage tissue repair and regeneration.
Collapse
Affiliation(s)
- Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Meng Zhang
- Department of Orthopaedics and Trauma Peking University People's Hospital, Beijing 100044, China
| | - Zhen Gu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiangyu Jiao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yinglei Ma
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhe Huang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | | | - Peixun Zhang
- Department of Orthopaedics and Trauma Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
22
|
Asim S, Hayhurst E, Callaghan R, Rizwan M. Ultra-low content physio-chemically crosslinked gelatin hydrogel improves encapsulated 3D cell culture. Int J Biol Macromol 2024; 264:130657. [PMID: 38458282 PMCID: PMC11003839 DOI: 10.1016/j.ijbiomac.2024.130657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Gelatin-based hydrogels are extensively used for 3D cell culture, bioprinting, and tissue engineering due to their cell-adhesive nature and tunable physio-chemical properties. Gelatin hydrogels for 3D cell culture are often developed using high-gelatin content (frequently 10-15 % w/v) to ensure fast gelation and improved stability. While highly stable, such matrices restrict the growth of encapsulated cells due to creating a dense, restrictive environment around the encapsulated cells. Hydrogels with lower polymer content are known to improve 3D cell growth, yet fabrication of ultra-low concentration gelatin hydrogels is challenging while ensuring fast gelation and stability. Here, we demonstrate that physical gelation and photo-crosslinking in gelatin results in a fast-gelling hydrogel at a remarkably low gelatin concentration of 1 % w/v (GelPhy/Photo). The GelPhy/Photo hydrogel was highly stable, allowed uniform 3D distribution of cells, and significantly improved the spreading of encapsulated 3T3 fibroblast cells. Moreover, human cholangiocarcinoma (HuCCT-1) cells encapsulated in 1 % GelPhy/Photo matrix grew and self-assembled into epithelial cysts with lumen, which could not be achieved in a traditional high-concentration gelatin hydrogel. These findings pave the way to significantly improve existing gelatin hydrogels for 3D cell culture applications.
Collapse
Affiliation(s)
- Saad Asim
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Emma Hayhurst
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Rachel Callaghan
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Muhammad Rizwan
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA; Health Research Institute (HRI), Michigan Technological University, USA.
| |
Collapse
|
23
|
Jia X, Fan X, Chen C, Lu Q, Zhou H, Zhao Y, Wang X, Han S, Ouyang L, Yan H, Dai H, Geng H. Chemical and Structural Engineering of Gelatin-Based Delivery Systems for Therapeutic Applications: A Review. Biomacromolecules 2024; 25:564-589. [PMID: 38174643 DOI: 10.1021/acs.biomac.3c01021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
As a biodegradable and biocompatible protein derived from collagen, gelatin has been extensively exploited as a fundamental component of biological scaffolds and drug delivery systems for precise medicine. The easily engineered gelatin holds great promise in formulating various delivery systems to protect and enhance the efficacy of drugs for improving the safety and effectiveness of numerous pharmaceuticals. The remarkable biocompatibility and adjustable mechanical properties of gelatin permit the construction of active 3D scaffolds to accelerate the regeneration of injured tissues and organs. In this Review, we delve into diverse strategies for fabricating and functionalizing gelatin-based structures, which are applicable to gene and drug delivery as well as tissue engineering. We emphasized the advantages of various gelatin derivatives, including methacryloyl gelatin, polyethylene glycol-modified gelatin, thiolated gelatin, and alendronate-modified gelatin. These derivatives exhibit excellent physicochemical and biological properties, allowing the fabrication of tailor-made structures for biomedical applications. Additionally, we explored the latest developments in the modulation of their physicochemical properties by combining additive materials and manufacturing platforms, outlining the design of multifunctional gelatin-based micro-, nano-, and macrostructures. While discussing the current limitations, we also addressed the challenges that need to be overcome for clinical translation, including high manufacturing costs, limited application scenarios, and potential immunogenicity. This Review provides insight into how the structural and chemical engineering of gelatin can be leveraged to pave the way for significant advancements in biomedical applications and the improvement of patient outcomes.
Collapse
Affiliation(s)
- Xiaoyu Jia
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Xin Fan
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| | - Cheng Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Qianyun Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Hongfeng Zhou
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| | - Yanming Zhao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| | - Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Sanyang Han
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| | - Liliang Ouyang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Hongji Yan
- Department of Medical Cell Biology (MCB), Uppsala University (UU), 751 05 Uppsala, Sweden
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Hongya Geng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| |
Collapse
|
24
|
Dong D, Lv X, Jiang Q, Zhang J, Gu Z, Yu W, Han Z, Wang N, Hou W, Cheng Z. Multifunctional electrospun polycaprolactone/chitosan/hEGF/lidocaine nanofibers for the treatment of 2 stage pressure ulcers. Int J Biol Macromol 2024; 256:128533. [PMID: 38042313 DOI: 10.1016/j.ijbiomac.2023.128533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
In this study, a multifunctional nanofiber dressing that can promote antibacterial, analgesic and healing was prepared by electrospinning technology. Hydrophobic polycaprolactone (PCL)/chitosan (CS)/lidocaine hydrochloride (LID) and epidermal growth factor (EGF) were used as scaffold materials and dissolved in trifluoroacetic acid to prepare spinning solution. The morphology of PCEL dressing was observed by scanning electron microscopy. The fiber structure was dense and the average diameter was 297.0 nm. The water absorption capacity test and water contact angle measurement showed that the fiber had good water absorption and hydrophilicity (1302 %, 139.258°). Drug release was 84 % within 60 h. In the results of antibacterial experiment, the dressing showed certain antibacterial properties. The results of cell experiments show that the dressing can promote cell proliferation. In addition, coagulation experiments showed that the dressing could quickly coagulate the blood within 4 min. In addition, PCEL dressing promoted collagen deposition and vascularization through animal models of pressure sores. Therefore, multifunctional dressing can be used as an ideal auxiliary means for the treatment of pressure sores, and it is a promising alternative to chronic wound healing.
Collapse
Affiliation(s)
- Dongxing Dong
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, People's Republic of China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, People's Republic of China
| | - Xiaoli Lv
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, People's Republic of China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, People's Republic of China.
| | - Qiushi Jiang
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, People's Republic of China
| | - Jingjing Zhang
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, People's Republic of China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, People's Republic of China
| | - Zhengyi Gu
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, People's Republic of China
| | - Weimin Yu
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, People's Republic of China
| | - Zhaolian Han
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, People's Republic of China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, People's Republic of China
| | - Ning Wang
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, People's Republic of China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, People's Republic of China
| | - Wenli Hou
- Department of Cadre Ward, the First Hospital of Jilin University, 71 Xinmin Street, Chaoyang, Changchun 130021, People's Republic of China.
| | - Zhiqiang Cheng
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, People's Republic of China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, People's Republic of China
| |
Collapse
|
25
|
Wu M, Zheng K, Li W, He W, Qian C, Lin Z, Xiao H, Yang H, Xu Y, Wei M, Bai J, Geng D. Nature‐Inspired Strategies for the Treatment of Osteoarthritis. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202305603] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Indexed: 01/06/2025]
Abstract
AbstractArticular cartilage is devoid of nerves and blood vessels, and its nutrients must be obtained from the joint fluid; therefore, its ability to repair itself is limited. Manufactured materials such as artificial cartilage or synthetic materials are typically used in traditional approaches for knee cartilage repair. However, durability, postimplant rejection, and tissue incompatibility are the problems associated with these materials. In recent decades, tissue engineering and regenerative medicine have focused on the development of functional substitutes, particularly those based on naturally inspired biopolymers. This review focuses on sustainably produced biopolymers based on materials derived from natural sources. Furthermore, these materials have many advantages, including low antigenicity, biocompatibility, and degradability. Of course, there are also many challenges associated with natural materials, such as the lack of clinical studies and long‐term follow‐up data, unstable mechanical properties of the materials, and high demands placed on preparation and molding techniques. In this review, an overview of natural and nature‐inspired polymers that are the subject of research to date, as well as their structural designs and product performances is provided. This review provides scientific guidance for enhancing the development of naturally inspired materials for treating cartilage injuries.
Collapse
Affiliation(s)
- Mingzhou Wu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
- Department of Orthopedics Taicang TCM Hospital Affiliated to Nanjing University of Chinese Medicine No. 140 Renmin South Road Suzhou Jiangsu 215400 China
| | - Kai Zheng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
| | - Wenhao Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
- Department of Orthopedics The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui 230031 China
- National Center for Translational Medicine (Shanghai) SHU Branch Shanghai University Shanghai 215031 China
| | - Weiming He
- Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing Jiangsu 210004 China
| | - Chen Qian
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
| | - Zhixiang Lin
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
| | - Haixiang Xiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
| | - Minggang Wei
- Department of Traditional Chinese Medicine The First Affiliated Hospital of Soochow University Suzhou Jiangsu 215006 China
| | - Jiaxiang Bai
- Department of Orthopedics The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui 230031 China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
| |
Collapse
|
26
|
Yang S, Song Z, He Z, Ye X, Li J, Wang W, Zhang D, Li Y. A review of chitosan-based shape memory materials: Stimuli-responsiveness, multifunctionalities and applications. Carbohydr Polym 2024; 323:121411. [PMID: 37940246 DOI: 10.1016/j.carbpol.2023.121411] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/03/2023] [Accepted: 09/15/2023] [Indexed: 11/10/2023]
Abstract
Shape memory polymers (SMPs), as a type of smart materials, possess the unique shape memory and deformation recovery abilities. Hence, SMPs have been attracted extensive attentions and widely used in fields of electric devices, aerospace structures and biomedical engineering. Chitosan (CS), as a renewable natural biomass material, exhibits the excellent biocompatibility, biodegradability and antibacterial activities. Using biomass CS as SMPs matrix materials could greatly enhance the environmental friendliness and adaptability, promoting the applications in fields of biomedical engineering and smart devices. This paper provides a detailed overview of current research progress about CS-based SMPs, including diverse stimuli responsiveness, multifunctionalities and various applications. Though, the research on CS-based SMPs is still in the early stage, which exhibits extensive prospect and potential, and could be of significance in advancing smart biomedical technologies.
Collapse
Affiliation(s)
- Shuai Yang
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China.
| | - Zijian Song
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China.
| | - Zhichao He
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China.
| | - Xinming Ye
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China.
| | - Jie Li
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China.
| | - Wensheng Wang
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China.
| | - Dawei Zhang
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| | - Yingchun Li
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China.
| |
Collapse
|
27
|
Wang Y, Chen L, Wang Y, Wang X, Qian D, Yan J, Sun Z, Cui P, Yu L, Wu J, He Z. Marine biomaterials in biomedical nano/micro-systems. J Nanobiotechnology 2023; 21:408. [PMID: 37926815 PMCID: PMC10626837 DOI: 10.1186/s12951-023-02112-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/15/2023] [Indexed: 11/07/2023] Open
Abstract
Marine resources in unique marine environments provide abundant, cost-effective natural biomaterials with distinct structures, compositions, and biological activities compared to terrestrial species. These marine-derived raw materials, including polysaccharides, natural protein components, fatty acids, and marine minerals, etc., have shown great potential in preparing, stabilizing, or modifying multifunctional nano-/micro-systems and are widely applied in drug delivery, theragnostic, tissue engineering, etc. This review provides a comprehensive summary of the most current marine biomaterial-based nano-/micro-systems developed over the past three years, primarily focusing on therapeutic delivery studies and highlighting their potential to cure a variety of diseases. Specifically, we first provided a detailed introduction to the physicochemical characteristics and biological activities of natural marine biocomponents in their raw state. Furthermore, the assembly processes, potential functionalities of each building block, and a thorough evaluation of the pharmacokinetics and pharmacodynamics of advanced marine biomaterial-based systems and their effects on molecular pathophysiological processes were fully elucidated. Finally, a list of unresolved issues and pivotal challenges of marine-derived biomaterials applications, such as standardized distinction of raw materials, long-term biosafety in vivo, the feasibility of scale-up, etc., was presented. This review is expected to serve as a roadmap for fundamental research and facilitate the rational design of marine biomaterials for diverse emerging applications.
Collapse
Affiliation(s)
- Yanan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Long Chen
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 55000, Guizhou, China
| | - Yuanzheng Wang
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 55000, Guizhou, China.
| | - Xinyuan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Deyao Qian
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Jiahui Yan
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Zeyu Sun
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 55000, Guizhou, China
| | - Pengfei Cui
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266100, China.
| | - Liangmin Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Jun Wu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China.
| | - Zhiyu He
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China.
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China.
| |
Collapse
|
28
|
Shang Y, Liu R, Gan J, Yang Y, Sun L. Construction of cardiac fibrosis for biomedical research. SMART MEDICINE 2023; 2:e20230020. [PMID: 39188350 PMCID: PMC11235890 DOI: 10.1002/smmd.20230020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/22/2023] [Indexed: 08/28/2024]
Abstract
Cardiac remodeling is critical for effective tissue recuperation, nevertheless, excessive formation and deposition of extracellular matrix components can result in the onset of cardiac fibrosis. Despite the emergence of novel therapies, there are still no lifelong therapeutic solutions for this issue. Understanding the detrimental cardiac remodeling may aid in the development of innovative treatment strategies to prevent or reverse fibrotic alterations in the heart. Further combining the latest understanding of disease pathogenesis with cardiac tissue engineering has provided the conversion of basic laboratory studies into the therapy of cardiac fibrosis patients as an increasingly viable prospect. This review presents the current main mechanisms and the potential tissue engineering of cardiac fibrosis. Approaches using biomedical materials-based cardiac constructions are reviewed to consider key issues for simulating in vitro cardiac fibrosis, outlining a future perspective for preclinical applications.
Collapse
Affiliation(s)
- Yixuan Shang
- Department of Medical Supplies SupportNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Rui Liu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Jingjing Gan
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Yuzhi Yang
- Department of Medical Supplies SupportNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Lingyun Sun
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| |
Collapse
|
29
|
Tong Q, Meng Y, Tong Y, Wang D, Dong X. The Effect of Nozzle Temperature on the Low-Temperature Printing Performance of Low-Viscosity Food Ink. Foods 2023; 12:2666. [PMID: 37509758 PMCID: PMC10378533 DOI: 10.3390/foods12142666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/26/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Low-temperature food printing technology is used in many fields, such as personalized nutrition, cooking art, food design and medical nutrition. By precisely controlling the deposition temperature of the ink, a food with a finer and more controllable structure can be produced. This paper investigates the influence of nozzle temperature on printing performance via a numerical simulation and experimental research. The results indicate that the ink gradually changed from a granular state to a fLow-characteristic deposition structure when the nozzle temperature increased from 19 °C to 27 °C. When the nozzle temperature exceeded 21 °C, the ink demonstrated excellent extrusion behavior and tended to flow. The widths of the rectangular frame deposition showed no obvious changes and were 4.07 mm, 4.05 mm and 4.20 mm, respectively. The extrusion behavior of the ink showed a structural mutation in the temperature range of 19-21 °C. Its line width changed from 3.15 mm to 3.73 mm, and its deposition structure changed from a grainy shape to a normal shape. Under the influence of different environmental control capabilities, bulk structure deposition demonstrates an ideal printing performance at 21, 23 and 25 °C, and the latter temperature is more suitable in the case of large external interference. The ink flowed violently when the nozzle temperature reached 27 °C, at which point the deposit structure flowed and deformed seriously. On the other hand, evaporation losses had a strong effect on Low-viscosity ink. To reach the full potential of this promising technology, it is necessary to determine the effect of nozzle temperature on printing performance. This article provides a method for developing and applying Low-viscosity, Low-temperature food printing.
Collapse
Affiliation(s)
- Qiang Tong
- College of Mechanical Engineering and Automation, Dalian Polytechnic University, Dalian 116034, China
| | - Yuxiang Meng
- College of Mechanical Engineering and Automation, Dalian Polytechnic University, Dalian 116034, China
| | - Yao Tong
- College of Mechanical Engineering and Automation, Dalian Polytechnic University, Dalian 116034, China
| | - Dequan Wang
- College of Mechanical Engineering and Automation, Dalian Polytechnic University, Dalian 116034, China
| | - Xiuping Dong
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|