1
|
Lin F, Yan L, Yuan X, Yang X, Yang X, Yang Y, Ma L, Wei L, Li D. Implications of Raftlin in different diseases: from molecular biology to diagnostic value. Biomark Med 2025; 19:91-99. [PMID: 39840913 PMCID: PMC11792867 DOI: 10.1080/17520363.2025.2453411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/10/2025] [Indexed: 01/23/2025] Open
Abstract
Raftlin (raft-linking) protein is an essential component of the lipid raft structure and plays a crucial role in B and T cell signaling pathways. It facilitates B cell receptor (BCR) signaling by promoting calcium mobilization and tyrosine phosphorylation in the cells while colocalizing with BCR on the cell membrane. Interestingly, Raftlin is internalized in lipopolysaccharide-stimulated T cells by colocalization with Toll-like receptor 4 (TLR4), wherein it exerts a similar role as in B cells. The protein also effectuates poly(I:C) internalization into TLR3-positive endosomes in dendritic and epithelial cells through clathrin binding, thereby affecting interferon-β production. In addition, Raftlin controls the vascular endothelial cells and participates in cell growth and proliferation. Recent studies have indicated Raftlin to be a novel biomarker for the diagnosis due to its upregulated expression in malignant diseases. In this integrated study, we present the biological functions of Raftlin and its expression to provide a theoretical basis for the prevention, diagnosis, and treatment of various diseases.
Collapse
Affiliation(s)
- Fugui Lin
- Department of Clinical Laboratory, Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Li Yan
- Department of Clinical Laboratory, Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Xiumei Yuan
- Department of Clinical Laboratory, Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Xingwen Yang
- Department of Clinical Laboratory, Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Xiaoyan Yang
- Department of Clinical Laboratory, Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Yang Yang
- Department of Clinical Laboratory, Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Li Ma
- Department of Clinical Laboratory, Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Lianhua Wei
- Department of Clinical Laboratory, Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Dehong Li
- Department of Clinical Laboratory, Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
2
|
Rostamzadeh Mahdabi E, Esmailizadeh A, Han J, Wang M. Comparative Analysis of Runs of Homozygosity Islands in Indigenous and Commercial Chickens Revealed Candidate Loci for Disease Resistance and Production Traits. Vet Med Sci 2025; 11:e70074. [PMID: 39655377 PMCID: PMC11629026 DOI: 10.1002/vms3.70074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 08/08/2024] [Accepted: 09/20/2024] [Indexed: 12/13/2024] Open
Abstract
Runs of homozygosity (ROH) are contiguous stretches of identical genomic regions inherited from both parents. Assessment of ROH in livestock species contributes significantly to our understanding of genetic health, population genetic structure, selective pressure and conservation efforts. In this study, whole genome re-sequencing data from 140 birds of 10 Iranian indigenous chicken ecotypes, 3 commercial chicken breeds and 1 red junglefowl (RJF) population were used to investigate their population genetic structure, ROH characteristics (length and frequency) and genomic inbreeding coefficients (FROH). Additionally, we examined ROH islands for selection footprints in the indigenous chicken populations. Our results revealed distinct genetic backgrounds, among which the White Leghorn breed exhibited the greatest genetic distance from other populations, while the gamecock populations formed a separate cluster. We observed significant differences in ROH characteristics, in which the commercial breeds showed a higher number of ROH compared to indigenous chickens and red junglefowls. Short ROH ranging from 0.1 to 1 Mb were dominant among the populations. The Arian line had the highest mean length of ROH, while the White Leghorn breed showed the highest number of ROH. Among indigenous chickens, the Lari-Afghani ecotype exhibited the highest FROH, but the Sari inherited the richest genetic diversity. Interestingly, GGA16 carried no ROH in the red junglefowls, whereas GGA22 had the highest FROH across all populations, except in the Isfahan ecotype. We also identified ROH islands associated with genetic adaptations in indigenous ecotypes. These islands harboured immune-related genes contributing to disease resistance (TLR2, TICAM1, IL22RA1, NOS2, CCL20 and IFNLR1), heat tolerance and oxidative stress response (NFKB1, HSF4, OSGIN1 and BDNF), and muscle development, lipid metabolism and reproduction (MEOX2, CEBPB, CDS2 and GnRH-I). Overall, this study highlights the genetic potential of indigenous chickens to survive and adapt to their respective environments.
Collapse
Affiliation(s)
| | - Ali Esmailizadeh
- Department of Animal ScienceFaculty of AgricultureShahid Bahonar University of KermanKermanIran
- Key Laboratory of Genetic Evolution & Animal ModelsState Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Jianlin Han
- CAAS‐ILRI Joint Laboratory on Livestock and Forage Genetic ResourcesInstitute of Animal ScienceChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Ming‐Shan Wang
- Key Laboratory of Genetic Evolution & Animal ModelsState Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| |
Collapse
|
3
|
Rughetti A, Bharti S, Savai R, Barmpoutsi S, Weigert A, Atre R, Siddiqi F, Sharma R, Khabiya R, Hirani N, Baig MS. Imperative role of adaptor proteins in macrophage toll-like receptor signaling pathways. Future Sci OA 2024; 10:2387961. [PMID: 39248050 PMCID: PMC11385170 DOI: 10.1080/20565623.2024.2387961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/30/2024] [Indexed: 09/10/2024] Open
Abstract
Macrophages are integral part of the body's defense against pathogens and serve as vital regulators of inflammation. Adaptor molecules, featuring diverse domains, intricately orchestrate the recruitment and transmission of inflammatory responses through signaling cascades. Key domains involved in macrophage polarization include Toll-like receptors (TLRs), Src Homology2 (SH2) and other small domains, alongside receptor tyrosine kinases, crucial for pathway activation. This review aims to elucidate the enigmatic role of macrophage adaptor molecules in modulating macrophage activation, emphasizing their diverse roles and potential therapeutic and investigative avenues for further exploration.
Collapse
Affiliation(s)
- Aurelia Rughetti
- Laboratory of Tumor Immunology & Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, University of Rome "Sapienza", Rome, Italy
| | - Shreya Bharti
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rajkumar Savai
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, D-35390, Germany
- Max Planck Institute for Heart & Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, D-61231, Germany
- Institute of Biochemistry, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, D-60590, Germany
| | - Spyridoula Barmpoutsi
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, D-35390, Germany
- Max Planck Institute for Heart & Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, D-61231, Germany
| | - Andreas Weigert
- Institute of Biochemistry, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, D-60590, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, D-60323, Germany
| | - Rajat Atre
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Faaiza Siddiqi
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rahul Sharma
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rakhi Khabiya
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Nik Hirani
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH164TJ, UK
| | - Mirza S Baig
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| |
Collapse
|
4
|
Bryant CE. Rethinking Toll-like receptor signalling. Curr Opin Immunol 2024; 91:102460. [PMID: 39288726 DOI: 10.1016/j.coi.2024.102460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024]
Abstract
Since the discovery of Toll and Toll-like receptors (TLRs) in the 90s, an extensive body of research has been performed to determine how Pattern Recognition Receptors (PRRs) recognise 'ligands' and signal. The families of PRRs now include membrane and cytosolic proteins, which broadly signal by forming large protein platforms or supramolecular organising centres (SMOCs). The concept of SMOC-driven signalling has led to the development of a set of assumptions, particularly for TLRs, based on experimental data, to explain the physiological consequences of PRR activation. Recent research suggests that at least some of these assumptions should be reconsidered, especially as many of these receptors are important therapeutic targets for drug development, so understanding the mechanisms by which they signal is critical.
Collapse
Affiliation(s)
- Clare E Bryant
- Department of Medicine, University of Cambridge, Cambridge CB2 0PY, UK; Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.
| |
Collapse
|
5
|
Qi X, Liu P, Zhou Y, Lei L, Xue G, Wang R, Wang J, Guo H. Transcriptomics analysis of differential gene expression and immune and inflammatory response mechanisms in patients with typical and non-criteria obstetric antiphospholipid syndrome (OAPS and NC-OAPS). J Reprod Immunol 2024; 166:104389. [PMID: 39522423 DOI: 10.1016/j.jri.2024.104389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/14/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
In this study, we investigated the molecular differences between patients with typical obstetric antiphospholipid syndrome (OAPS) and patients with non-criteria obstetric antiphospholipid syndrome (NC-OAPS) patients through transcriptome sequencing of peripheral blood samples from ten OAPS patients and ten NC-OAPS patients. Differentially expressed genes (DEGs) were identified, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, protein-protein interaction (PPI) analysis, and competitive endogenous RNA (ceRNA) network construction to identify hub genes. Verification was performed via Quantitative Real-time PCR (qPCR) in OAPS (n=9) and NC-OAPS (n=12) samples. We identified 240 DEGs in two groups. GO and KEGG analyses reviewed upregulated in pathways related to the inflammatory response; immune response; antigen processing and presentation; Th1, Th2, and Th17 cell differentiation; and NK cell-mediated cytotoxicity in OAPS patients. PPI and ceRNA network analyses identified key genes, with significant upregulation of CXCR2, JAK2, and MPO found in the OAPS group, which correlated with severe inflammation, JAK-STAT pathway activation, and increased NET activity in neutrophils. Other genes such as CD4, IL2RB, and NKG7, are involved in T-cell and NK cell regulation. Our results indicate enhanced inflammatory and immune responses in OAPS patients, suggesting more severe immune activity than in NC-OAPS patients, providing a basis for precise diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Xuan Qi
- Department of Rheumatism and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | - Peng Liu
- Department of Laboratory, Hebei Provincial Reproductive Health Hospital, Shijiazhuang, Hebei 050000, PR China
| | - Yingjie Zhou
- Department of Obstetrics and Gynecology, Hebei Provincial Reproductive Health Hospital, Shijiazhuang, Hebei 050000, PR China
| | - Lingyan Lei
- Department of Rheumatism and Immunology, Hebei Provincial Reproductive Health Hospital, Shijiazhuang, Hebei 050000, PR China
| | - Guoyu Xue
- Department of Rheumatism and Immunology, Hebei Provincial Reproductive Health Hospital, Shijiazhuang, Hebei 050000, PR China
| | - Ronghua Wang
- Department of Rheumatism and Immunology, Xingtai Peoples' Hospital, Xingtai, Hebei 054001, PR China
| | - Junping Wang
- Department of Rheumatism and Immunology, Gucheng County Hospital of Hebei Province, Hengshui, Hebei 253800, PR China
| | - Huifang Guo
- Department of Rheumatism and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China.
| |
Collapse
|
6
|
Zheng C, Liu L, Liu C, Chu F, Lang Y, Liu S, Mi Y, Zhu J, Jin T. Alleviation of experimental autoimmune encephalomyelitis by transferring low RelB expression tolerogenic dendritic cells. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166934. [PMID: 37931715 DOI: 10.1016/j.bbadis.2023.166934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
AIMS Experimental autoimmune encephalomyelitis (EAE) is a widely used mouse model of multiple sclerosis. Rather than inducing immune response, tolerogenic dendritic cells (tDCs) have the ability to induce immune tolerance. In previous studies, we induced tDCs by 1,25-(OH)2D3 and 1,25-(OH)2D3 DCs significantly alleviated EAE symptoms. As downstream targets of 1,25-(OH)2D3, inhibition of RelB and MyD88 expression in DCs might induce tDCs and has therapeutic effect of MS. METHODS Knockdown the expression of RelB and MyD88 with shRNA lentivirus to induce tDCs, adoptive transfer these tDCs to EAE mice, and investigate their therapeutic effects. RESULTS Reduction of RelB expression induced tDCs. After transferring into EAE mice, tDCs with low RelB expression significantly alleviate their symptoms as well as reduce the immune cell infiltration and demyelination in spinal cord. CONCLUSION RelB plays a key role in the antigen presenting function of DCs, and tDCs with low RelB expression is a potential treatment for EAE and MS.
Collapse
Affiliation(s)
- Chao Zheng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Lingling Liu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Caiyun Liu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Fengna Chu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yue Lang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Shan Liu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yan Mi
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China; Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Tao Jin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
7
|
Epidemiological, Clinical, and Genomic Profile in Head and Neck Cancer Patients and Their Families. Biomedicines 2022; 10:biomedicines10123278. [PMID: 36552033 PMCID: PMC9775590 DOI: 10.3390/biomedicines10123278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Inherited cancer predisposition genes are described as risk factors in head and neck cancer (HNC) families. To explore the clinical and epidemiological data and their association with a family history of cancer, we recruited 74 patients and 164 relatives affected by cancer. The germline copy number alterations were evaluated in 18 patients using array comparative genomic hybridization. Two or more first-degree relatives with HNC, tobacco-associated tumor sites (lung, esophagus, and pancreas), or other related tumors (breast, colon, kidney, bladder, cervix, stomach carcinomas, and melanoma) were reported in 74 families. Ten index patients had no exposure to any known risk factors. Family members presented tumors of 19 topographies (30 head and neck, 26 breast, 21 colon). In first-degree relatives, siblings were frequently affected by cancer (n = 58, 13 had HNC). Breast cancer (n = 21), HNC (n = 19), and uterine carcinoma (n = 15) were commonly found in first-degree relatives and HNC in second-degree relatives (n = 11). Nineteen germline genomic imbalances were detected in 13 patients; three presented gains of WRD genes. The number of HNC patients, the degree of kinship, and the tumor types detected in each relative support the role of heredity in these families. Germline alterations may potentially contribute to cancer development.
Collapse
|
8
|
Lu Z, Sun F. Downregulated TICAM1 is a prognostic biomarker and associated with immune tolerance of Wilms tumor patients. BMC Med Genomics 2022; 15:174. [PMID: 35933370 PMCID: PMC9356447 DOI: 10.1186/s12920-022-01326-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/29/2022] [Indexed: 11/20/2022] Open
Abstract
Background TIR domain containing adaptor molecule 1 (TICAM1) is a coding gene participating in immune and inflammation responses to malignant cells. However, the role of TICAM1 in Wilms tumor (WT) is rarely known. Materials and methods The expression level of TICAM1 was calculated in the WT TARGET cohort and validated using the GSE66405 cohort. The Kaplan–Meier method was employed to investigate the potential clinical value of TICAM1 and the association between its expression level and clinical features. The influence of TICAM1 on immune infiltration was examined by ESTIMATE, CIBERSORT and MCPcounter algorithms. IC50 of chemotherapeutic drugs was calculated by “pRRophetic” R package. Results TICAM1 was downregulated in WT patients with worse prognosis and a more advanced clinical stage. Moreover, a low expression level of TICAM1 contributed to less immune cell infiltration, few protective immune cells and more antitumor immune cells. Conclusions TICAM1 exerts a significant impact on the prognosis, progression and immune infiltration condition of WT. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01326-5.
Collapse
Affiliation(s)
- Zhiyi Lu
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan 250000, Shandong, China
| | - Fengyin Sun
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan 250000, Shandong, China.
| |
Collapse
|
9
|
Ahmed Z, Renart EG, Zeeshan S. Investigating underlying human immunity genes, implicated diseases and their relationship to COVID-19. Per Med 2022; 19:229-250. [PMID: 35261286 PMCID: PMC8919975 DOI: 10.2217/pme-2021-0132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Aim: A human immunogenetics variation study was conducted in samples collected from diverse COVID-19 populations. Materials & methods: Whole-genome and whole-exome sequencing (WGS/WES), data processing, analysis and visualization pipeline were applied to identify variants associated with genes of interest. Results: A total of 2886 mutations were found across the entire set of 13 genomes. Functional annotation of the gene variants revealed mutation type and protein change. Many variants were found to be biologically implicated in COVID-19. The involvement of these genes was also found in multiple other diseases. Conclusion: The analysis determined that ACE2, TMPRSS4, TMPRSS2, SLC6A20 and FYCOI had functional implications and TMPRSS4 was the gene most altered in virally infected patients. The quest to establish an understanding of the genetics underlying COVID-19 is a central focus of life sciences today. COVID-19 is triggered by SARS-CoV-2, a single-stranded RNA respiratory virus. Several clinical-genomics studies have emerged positing different human gene mutations occurring due to COVID-19. A global analysis of these genes was conducted targeting major components of the immune system to identify possible variations likely to be involved in COVID-19 predisposition. Gene-variant analysis was performed on whole-genome sequencing samples collected from diverse populations. ACE2, TMPRSS4, TMPRSS2, SLC6A20 and FYCOI were found to have functional implications and TMPRSS4 may have a role in the severity of clinical manifestations of COVID-19.
Collapse
Affiliation(s)
- Zeeshan Ahmed
- Rutgers Institute for Health, Health Care Policy & Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ 08901, USA.,Department of Medicine, Robert Wood Johnson Medical School, Rutgers Biomedical & Health Sciences, 125 Paterson Street, New Brunswick, NJ 08901, USA
| | - Eduard Gibert Renart
- Rutgers Institute for Health, Health Care Policy & Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ 08901, USA
| | - Saman Zeeshan
- Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany St, New Brunswick, NJ 08901, USA
| |
Collapse
|
10
|
Talma N, Gerrits E, Wang B, Eggen BJ, Demaria M. Identification of distinct and age-dependent p16 High microglia subtypes. Aging Cell 2021; 20:e13450. [PMID: 34598318 PMCID: PMC8520715 DOI: 10.1111/acel.13450] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/18/2021] [Accepted: 07/17/2021] [Indexed: 01/10/2023] Open
Abstract
Cells expressing high levels of the cyclin‐dependent kinase (CDK)4/6 inhibitor p16 (p16High) accumulate in aging tissues and promote multiple age‐related pathologies, including neurodegeneration. Here, we show that the number of p16High cells is significantly increased in the central nervous system (CNS) of 2‐year‐old mice. Bulk RNAseq indicated that genes expressed by p16High cells were associated with inflammation and phagocytosis. Single‐cell RNAseq of brain cells indicated p16High cells were primarily microglia, and their accumulation was confirmed in brains of aged humans. Interestingly, we identified two distinct subpopulations of p16High microglia in the mouse brain, with one being age‐associated and one present in young animals. Both p16High clusters significantly differed from previously described disease‐associated microglia and expressed only a partial senescence signature. Taken together, our study provides evidence for the existence of two p16‐expressing microglia populations, one accumulating with age and another already present in youth that could positively and negatively contribute to brain homeostasis, function, and disease.
Collapse
Affiliation(s)
- Nynke Talma
- Department of Biomedical Sciences of Cells & Systems Section Molecular Neurobiology University of Groningen University Medical Center Groningen Groningen The Netherlands
- European Research Institute for the Biology of Ageing University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Emma Gerrits
- Department of Biomedical Sciences of Cells & Systems Section Molecular Neurobiology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Boshi Wang
- European Research Institute for the Biology of Ageing University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Bart J.L. Eggen
- Department of Biomedical Sciences of Cells & Systems Section Molecular Neurobiology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Marco Demaria
- European Research Institute for the Biology of Ageing University of Groningen University Medical Center Groningen Groningen The Netherlands
| |
Collapse
|
11
|
Liu R, Liu X, Song M, Qi Y, Li H, Yang G, Shan S. Cyprinus carpio TRIF Participates in the Innate Immune Response by Inducing NF-κB and IFN Activation and Promoting Apoptosis. Front Immunol 2021; 12:725150. [PMID: 34504499 PMCID: PMC8421551 DOI: 10.3389/fimmu.2021.725150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/02/2021] [Indexed: 01/08/2023] Open
Abstract
TRIF, an important adaptor downstream of Toll-like receptor signaling, plays a critical role in the innate immune response. In this study, the full-length coding sequence of TRIF from common carp (Cyprinus carpio L.) was cloned and characterized. Bioinformatics analysis showed that common carp TRIF exhibited a conserved TIR domain and had the closest relationship with grass carp TRIF. Expression analysis revealed that TRIF was constitutively expressed in the examined tissues of common carp, with the highest expression in the spleen and the lowest expression in the head kidney, and could be upregulated under Aeromonas hydrophila and poly(I:C) stimulation in vivo and under poly(I:C), LPS, PGN, flagellin, and Pam3CSK4 stimulation in vitro. Laser confocal microscopy showed that common carp TRIF colocalized with the Golgi apparatus. A luciferase reporter assay showed that carp TRIF elicited the activity of ifn-1 and nf-κb through the C-terminal domain. Additionally, crystal violet staining and qPCR assays revealed that carp TRIF inhibited the replication of SVCV in epithelioma papulosum cyprini (EPC) cells. Then, the signaling downstream of carp TRIF was investigated. Coimmunoprecipitation and Western blotting analysis demonstrated that carp TRIF interacted with TBK1 and augmented the expression of TRAF6 and phosphorylation of TBK1. Overexpression of carp TRIF significantly enhanced the expression of interferon-stimulated genes and inflammatory cytokines. Furthermore, flow cytometric (FCM) analysis suggested that carp TRIF induced apoptosis through the activation of caspase-8. In summary, our study indicated that TRIF plays an essential role in the innate immune responses of common carp against bacterial and viral infection.
Collapse
Affiliation(s)
- Rongrong Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xiaoye Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Meijiao Song
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yue Qi
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Shijuan Shan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
12
|
Geng M, Hua Y, Liu Y, Quan J, Hu X, Su P, Li Y, Liu X, Li Q, Zhu T. Evolutionary history and functional characterization of Lj-TICAM-a and Lj-TICAM-b formed via lineage-specific tandem duplication in lamprey (Lampetra japonica). Genomics 2021; 113:2756-2768. [PMID: 34147633 DOI: 10.1016/j.ygeno.2021.06.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 05/06/2021] [Accepted: 06/06/2021] [Indexed: 02/06/2023]
Abstract
Toll/interleukin-1 receptor domain-containing adaptor molecule (TICAM) genes respond to infections. We identified TICAM-a and TICAM-b in Lampetra japonica and investigated their evolutionary history and potential function via comparative genomics and molecular evolution analyses. They are arranged in tandem and evolved from a multi-exon to a single-exon structure. Lj-TICAM-a and Lj-TICAM-b might be the ancestral gene of the vertebrate TICAM genes. Lj-TICAM-b arose via a lamprey-specific tandem duplication event. Both genes are expressed in many tissues during an immune response, and exhibit different responses to peptidoglycan, indicating their functional divergence. Simultaneous overexpression of both proteins activated nuclear factor κB expression and co-immunoprecipitation assays indicated that they might form a complex for signal transduction. However, unlike in mammals, the TICAM-dependent signaling pathway in lamprey might rely on TRAF3 rather than on TRAF6. These results suggest that both Lj-TICAM-a and Lj-TICAM-b play a role in host defenses.
Collapse
Affiliation(s)
- Ming Geng
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116081, China
| | - Yishan Hua
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116081, China
| | - Yu Liu
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116081, China
| | - Jian Quan
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116081, China
| | - Xueting Hu
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China
| | - Peng Su
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116081, China
| | - Yingying Li
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116081, China
| | - Xin Liu
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116081, China
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116081, China.
| | - Ting Zhu
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116081, China.
| |
Collapse
|
13
|
Freitas PHF, Wang Y, Yan P, Oliveira HR, Schenkel FS, Zhang Y, Xu Q, Brito LF. Genetic Diversity and Signatures of Selection for Thermal Stress in Cattle and Other Two Bos Species Adapted to Divergent Climatic Conditions. Front Genet 2021; 12:604823. [PMID: 33613634 PMCID: PMC7887320 DOI: 10.3389/fgene.2021.604823] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/15/2021] [Indexed: 12/21/2022] Open
Abstract
Understanding the biological mechanisms of climatic adaptation is of paramount importance for the optimization of breeding programs and conservation of genetic resources. The aim of this study was to investigate genetic diversity and unravel genomic regions potentially under selection for heat and/or cold tolerance in thirty-two worldwide cattle breeds, with a focus on Chinese local cattle breeds adapted to divergent climatic conditions, Datong yak (Bos grunniens; YAK), and Bali (Bos javanicus) based on dense SNP data. In general, moderate genetic diversity levels were observed in most cattle populations. The proportion of polymorphic SNP ranged from 0.197 (YAK) to 0.992 (Mongolian cattle). Observed and expected heterozygosity ranged from 0.023 (YAK) to 0.366 (Sanhe cattle; SH), and from 0.021 (YAK) to 0.358 (SH), respectively. The overall average inbreeding (±SD) was: 0.118 ± 0.028, 0.228 ± 0.059, 0.194 ± 0.041, and 0.021 ± 0.004 based on the observed versus expected number of homozygous genotypes, excess of homozygosity, correlation between uniting gametes, and runs of homozygosity (ROH), respectively. Signatures of selection based on multiple scenarios and methods (F ST, HapFLK, and ROH) revealed important genomic regions and candidate genes. The candidate genes identified are related to various biological processes and pathways such as heat-shock proteins, oxygen transport, anatomical traits, mitochondrial DNA maintenance, metabolic activity, feed intake, carcass conformation, fertility, and reproduction. This highlights the large number of biological processes involved in thermal tolerance and thus, the polygenic nature of climatic resilience. A comprehensive description of genetic diversity measures in Chinese cattle and YAK was carried out and compared to 24 worldwide cattle breeds to avoid potential biases. Numerous genomic regions under positive selection were detected using three signature of selection methods and candidate genes potentially under positive selection were identified. Enriched function analyses pinpointed important biological pathways, molecular function and cellular components, which contribute to a better understanding of the biological mechanisms underlying thermal tolerance in cattle. Based on the large number of genomic regions identified, thermal tolerance has a complex polygenic inheritance nature, which was expected considering the various mechanisms involved in thermal stress response.
Collapse
Affiliation(s)
- Pedro H. F. Freitas
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA – National Engineering Laboratory for Animal Breeding – College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ping Yan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hinayah R. Oliveira
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Flavio S. Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Yi Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA – National Engineering Laboratory for Animal Breeding – College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qing Xu
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, China
| | - Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
14
|
A monoclonal antibody to Siglec-8 suppresses non-allergic airway inflammation and inhibits IgE-independent mast cell activation. Mucosal Immunol 2021; 14:366-376. [PMID: 32814824 PMCID: PMC7946634 DOI: 10.1038/s41385-020-00336-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/30/2020] [Accepted: 07/27/2020] [Indexed: 02/04/2023]
Abstract
In addition to their well characterized role in mediating IgE-dependent allergic diseases, aberrant accumulation and activation of mast cells (MCs) is associated with many non-allergic inflammatory diseases, whereby their activation is likely triggered by non-IgE stimuli (e.g., IL-33). Siglec-8 is an inhibitory receptor expressed on MCs and eosinophils that has been shown to inhibit IgE-mediated MC responses and reduce allergic inflammation upon ligation with a monoclonal antibody (mAb). Herein, we evaluated the effects of an anti-Siglec-8 mAb (anti-S8) in non-allergic disease models of experimental cigarette-smoke-induced chronic obstructive pulmonary disease and bleomycin-induced lung injury in Siglec-8 transgenic mice. Therapeutic treatment with anti-S8 inhibited MC activation and reduced recruitment of immune cells, airway inflammation, and lung fibrosis. Similarly, using a model of MC-dependent, IL-33-induced inflammation, anti-S8 treatment suppressed neutrophil influx, and cytokine production through MC inhibition. Transcriptomic profiling of MCs further demonstrated anti-S8-mediated downregulation of MC signaling pathways induced by IL-33, including TNF signaling via NF-κB. Collectively, these findings demonstrate that ligating Siglec-8 with an antibody reduces non-allergic inflammation and inhibits IgE-independent MC activation, supporting the evaluation of an anti-Siglec-8 mAb as a therapeutic approach in both allergic and non-allergic inflammatory diseases in which MCs play a role.
Collapse
|
15
|
Abstract
Genetic alleles that contribute to enhanced susceptibility or resistance to viral infections and virally induced diseases have often been first identified in mice before humans due to the significant advantages of the murine system for genetic studies. Herein we review multiple discoveries that have revealed significant insights into virus-host interactions, all made using genetic mapping tools in mice. Factors that have been identified include innate and adaptive immunity genes that contribute to host defense against pathogenic viruses such as herpes viruses, flaviviruses, retroviruses, and coronaviruses. Understanding the genetic mechanisms that affect infectious disease outcomes will aid the development of personalized treatment and preventive strategies for pathogenic infections.
Collapse
Affiliation(s)
- Melissa Kane
- Center for Microbial Pathogenesis, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224, USA
| | - Tatyana V Golovkina
- Department of Microbiology, University of Chicago, Chicago, Illinois 60637, USA;
| |
Collapse
|
16
|
Humayun F, Domingo-Fernández D, Paul George AA, Hopp MT, Syllwasschy BF, Detzel MS, Hoyt CT, Hofmann-Apitius M, Imhof D. A Computational Approach for Mapping Heme Biology in the Context of Hemolytic Disorders. Front Bioeng Biotechnol 2020; 8:74. [PMID: 32211383 PMCID: PMC7069124 DOI: 10.3389/fbioe.2020.00074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/28/2020] [Indexed: 01/07/2023] Open
Abstract
Heme is an iron ion-containing molecule found within hemoproteins such as hemoglobin and cytochromes that participates in diverse biological processes. Although excessive heme has been implicated in several diseases including malaria, sepsis, ischemia-reperfusion, and disseminated intravascular coagulation, little is known about its regulatory and signaling functions. Furthermore, the limited understanding of heme's role in regulatory and signaling functions is in part due to the lack of curated pathway resources for heme cell biology. Here, we present two resources aimed to exploit this unexplored information to model heme biology. The first resource is a terminology covering heme-specific terms not yet included in standard controlled vocabularies. Using this terminology, we curated and modeled the second resource, a mechanistic knowledge graph representing the heme's interactome based on a corpus of 46 scientific articles. Finally, we demonstrated the utility of these resources by investigating the role of heme in the Toll-like receptor signaling pathway. Our analysis proposed a series of crosstalk events that could explain the role of heme in activating the TLR4 signaling pathway. In summary, the presented work opens the door to the scientific community for exploring the published knowledge on heme biology.
Collapse
Affiliation(s)
- Farah Humayun
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn, Germany
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
| | - Daniel Domingo-Fernández
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
| | - Ajay Abisheck Paul George
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Marie-Thérèse Hopp
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Benjamin F. Syllwasschy
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Milena S. Detzel
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Charles Tapley Hoyt
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
| | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
17
|
Zhu S, Xiang X, Xu X, Gao S, Mai K, Ai Q. TIR Domain-Containing Adaptor-Inducing Interferon-β (TRIF) Participates in Antiviral Immune Responses and Hepatic Lipogenesis of Large Yellow Croaker ( Larimichthys Crocea). Front Immunol 2019; 10:2506. [PMID: 31736951 PMCID: PMC6831525 DOI: 10.3389/fimmu.2019.02506] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/07/2019] [Indexed: 01/07/2023] Open
Abstract
TIR domain-containing adaptor-inducing interferon-β (TRIF), a cytosolic adaptor protein, plays a key role in the mammalian toll-like receptor-mediated signaling pathway. However, the role of TRIF in large yellow croaker (LcTRIF) remains poorly understood. The main objective of this study was to explore the role of LcTRIF in triggering antiviral immune responses and the potential function of LcTRIF in regulating lipid metabolism. In the present study, the full-length coding sequence of TRIF from large yellow croaker was cloned and characterized. In vivo, upon poly (I:C) stimulation, the transcriptional levels of LcTRIF were rapidly elevated in immune-related tissues at the early stage of injection. In vitro, the MRNA expression of LcTRIF was significantly but not dramatically upregulated in macrophages treated with poly (I:C). Activation of LcTRIF by poly (I:C) significantly increased the transcription of genes involved in inflammatory responses, and this induction was blocked by knockdown of LcTRIF. Moreover, the ability of LcTRIF to induce inflammatory responses may partially be attributed to the promotion of mRNA expression of IFNh and NF-κB pathway genes. In addition, activation of the LcTRIF-mediated pathway inhibited the increase in hepatic stearoyl-coenzyme A (CoA) desaturase 1 induced by palmitic acid and subsequently alleviated lipid accumulation in hepatocytes. These results revealed the crucial role of LcTRIF in triggering antiviral immune responses and the unconventional metabolic function of LcTRIF in regulating hepatic lipogenesis in large yellow croaker.
Collapse
Affiliation(s)
- Si Zhu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, Qingdao, China
| | - Xiaojun Xiang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, Qingdao, China
| | - Xiang Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, Qingdao, China
| | - Shengnan Gao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, Qingdao, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
18
|
TICAM-1 is dispensable in STING-mediated innate immune responses in myeloid immune cells. Biochem Biophys Res Commun 2018; 499:985-991. [PMID: 29627569 DOI: 10.1016/j.bbrc.2018.04.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/04/2018] [Indexed: 12/19/2022]
Abstract
Stimulator of interferon genes (STING) is an essential molecule for the production of type I interferon (IFN), and other inflammatory cytokines, in response to cytosolic DNA. STING contributes to host defense against infection and anti-tumor responses. Previous reports have demonstrated that STING signaling is required by the adaptor Toll-IL-1 receptor-containing adaptor molecule-1 (TICAM-1), which has been identified as a TLR3-adaptor molecule using mouse embryonic fibroblasts. Here, we demonstrate that TICAM-1 does not affect STING-mediated innate immune responses, as increases in the mRNA expression levels of IFN-β, IL-6, and CCL5 were observed in bone marrow-derived or splenic myeloid cells. Moreover, STING ligand-enhanced co-stimulatory molecule expression, including CD80, CD86, and CD40, was detected on splenic CD11c + DCs, even in Ticam-1-deficient mice. Our results suggest that STING-mediated innate immune responses and dendritic cell maturation do not require TICAM-1 in myeloid lineage immune cells. TICAM-1 is ubiquitously expressed, even in cell types which do not express TLR3. Therefore, TICAM-1 may possess different functions depending on cell type and signaling purposes.
Collapse
|
19
|
Mekonnen E, Bekele E, Stein CM. Novel polymorphisms in TICAM2 and NOD1 associated with tuberculosis progression phenotypes in Ethiopian populations. Glob Health Epidemiol Genom 2018; 3:e1. [PMID: 29868226 PMCID: PMC5870410 DOI: 10.1017/gheg.2017.17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 12/04/2017] [Accepted: 12/08/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Infection by Mycobacterium tuberculosis (Mtb) is a necessary but not sufficient cause for tuberculosis (TB). Although numerous studies suggest human genetic variation may influence TB pathogenesis, there is a conspicuous lack of replication, likely due to imprecise phenotype definition. We aimed to replicate novel findings from a Ugandan cohort in Ethiopian populations. METHOD We ascertained TB cases and household controls (n = 292) from three different ethnic groups. Latent Mtb infection was determined using Quantiferon to develop reliable TB progression phenotypes. We sequenced exonic regions of TICAM2 and NOD1. RESULT Significant novel associations were observed between two variants in NOD1 and TB: rs751770147 [unadjusted p = 7.28 × 10-5] and chr7:30477156(T), a novel variant, [unadjusted p = 1.04 × 10-4]. Two SNPs in TICAM2 were nominally associated with TB, including rs2288384 [unadjusted p = 0.003]. Haplotype-based association tests supported the SNP-based results. CONCLUSION We replicated the association of TICAM2 and NOD1 with TB and identified novel genetic associations with TB in Ethiopian populations.
Collapse
Affiliation(s)
- E. Mekonnen
- Microbial, Cellular, Molecular Biology Department, Addis Ababa University, P.O.Box:17087, Addis Ababa, Ethiopia
- Health Biotechnology Department, Institute of Biotechnology, Addis Ababa University, P.O.Box:17087, Addis Ababa, Ethiopia
| | - E. Bekele
- Microbial, Cellular, Molecular Biology Department, Addis Ababa University, Ethiopia
| | - C. M. Stein
- Department of Population & Quantitative Health Sciences, Center for Proteomics & Bioinformatics, and Tuberculosis Research Unit, Case Western Reserve University, USA
| |
Collapse
|
20
|
Wei J, Zhang X, Zang S, Qin Q. Expression and functional characterization of TRIF in orange-spotted grouper (Epinephelus coioides). FISH & SHELLFISH IMMUNOLOGY 2017; 71:295-304. [PMID: 28964858 DOI: 10.1016/j.fsi.2017.09.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/15/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
Antiviral immune responses are triggered by the innate immune recognition of viral infection. Toll/interleukin-1 receptor (TIR) domain containing adapter inducing interferon-β (TRIF) is an adapter in responding to activation of Toll-like receptors, which provides early clearance of viral pathogens. Our study focuses on the functional characterization of grouper TRIF (EcTRIF) based on the comparison of its sequence and functional evolution from grouper fish to mammals. The results show that the open reading frame of EcTRIF encoded a protein of 580 amino acids. Real-time PCR analysis indicates that EcTRIF was constitutively expressed in all the analyzed tissues in healthy grouper. EcTRIF was significantly induced in spleen post-LPS and poly (I:C) stimulation. Fluorescence microscopy shows that EcTRIF is colocalized with a Golgi apparatus marker, implying its unique subcellular localization in the Golgi apparatus. Luciferase reporter assays confirmed that EcTRIF was able to activate the IFN and NF-κB promoter. Overexpression of EcTRIF in grouper brain cells inhibited the replication of red-spotted grouper nervous necrosis virus (RGNNV). These results indicate that EcTRIF plays an important role in modulating antiviral innate immune responses. Our results have applications in functional studies on TRIF in teleost fish and immune evolution.
Collapse
Affiliation(s)
- Jingguang Wei
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xin Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Shaoqing Zang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, PR China.
| |
Collapse
|
21
|
Li H, Li Q, Guo T, He W, Dong C, Wang Y. LncRNA CRNDE triggers inflammation through the TLR3-NF-κB-Cytokine signaling pathway. Tumour Biol 2017; 39:1010428317703821. [PMID: 28621230 DOI: 10.1177/1010428317703821] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Colorectal neoplasia differentially expressed (CRNDE), an oncogene, is highly expressed in many tumor cells and affects cellular proliferation, migration, invasion, and apoptosis. Its function and mechanism of action is a research hotspot. In this study, microarray analysis was performed to discover the differentially expressed genes in CRNDE over-expression cells. RT² Profiler PCR Array was used to study the expression of genes related to the toll-like receptor (TLR) pathway. We found that over-expression of CRNDE in astrocytes increased the expression of key factors in the toll-like receptor signaling pathway, especially toll-like receptor-3-mediated MyD88-independent pathway. Furthermore, it up-regulated expression levels of downstream transcription factor such as nuclear factor kappa B and numerous cytokines. In contrast, CRNDE knockdown in glioma U87MG cell line showed an opposite trend in the expression of the above-mentioned genes. We speculated that CRNDE might trigger inflammation to regulate tumorigenesis and tumor development through the toll-like receptor pathway.
Collapse
Affiliation(s)
- Haowen Li
- 1 Laboratory of Clinical Medical Research, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qi Li
- 1 Laboratory of Clinical Medical Research, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Guo
- 2 CapitalBio Technology Co. Ltd., Beijing, China
| | - Wenyan He
- 1 Laboratory of Clinical Medical Research, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chengya Dong
- 1 Laboratory of Clinical Medical Research, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yajie Wang
- 1 Laboratory of Clinical Medical Research, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Hossen MJ, Yang WS, Kim D, Aravinthan A, Kim JH, Cho JY. Thymoquinone: An IRAK1 inhibitor with in vivo and in vitro anti-inflammatory activities. Sci Rep 2017; 7:42995. [PMID: 28216638 PMCID: PMC5316937 DOI: 10.1038/srep42995] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 01/18/2017] [Indexed: 12/14/2022] Open
Abstract
Thymoquinone (TQ) is a bioactive component of black seed (Nigella sativa) volatile oil and has been shown to have anti-oxidative, anti-inflammatory, and anti-cancer properties. In the present study, we explored the molecular mechanisms that underlie the anti-inflammatory effect of TQ and its target proteins using lipopolysaccharide (LPS)-stimulated murine macrophage-like RAW264.7 and human monocyte-like U937 cells, together with LPS/D-galactosamine (GalN)-induced acute hepatitis and HCl/EtOH-induced gastritis mouse models. TQ strongly inhibited the production of nitric oxide (NO) and repressed NO synthase (iNOS), tumor necrosis factor (TNF)-α, cyclooxygenase (COX)−2, interleukin (IL)−6, and IL-1β expression in LPS-activated RAW264.7 cells. Treatment of LPS/D-GalN–induced hepatitis and EtOH/HCl–induced gastritis mouse models with TQ significantly ameliorated disease symptoms. Using luciferase reporter gene assays, we also showed that the nuclear levels of transcription factors and phosphorylation patterns of signaling proteins, activator protein (AP)−1, and nuclear factor (NF)-κB pathways were all affected by TQ treatment. Finally, we used additional kinase and luciferase validation assays with interleukin-1 receptor-associated kinase 1 (IRAK1) to show that IRAK1 is directly suppressed by TQ treatment. Together, these findings strongly suggest that the anti-inflammatory actions of TQ are caused by suppression of IRAK-linked AP-1/NF-κB pathways.
Collapse
Affiliation(s)
- Muhammad Jahangir Hossen
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.,Department of Animal Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Woo Seok Yang
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Daewon Kim
- Laboratory of Bio-informatics, Department of Multimedia Engineering, Dankook University, Cheonan 31116, Republic of Korea
| | - Adithan Aravinthan
- Department of Physiology, College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Jong-Hoon Kim
- Department of Physiology, College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
23
|
Seya T, Funami K, Taniguchi M, Matsumoto M. Antibodies against human Toll-like receptors (TLRs): TLR distribution and localization in human dendritic cells. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519050110061301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have produced monoclonal antibodies (mAbs) against human Toll-like receptors (TLRs). These mAbs recognize the natural conformation of the extracellular domain leucine-rich repeats and, thereby, are suitable for immunoprecipitation, flow cytometric analysis and immunostaining. Using these mAbs, we determined the distribution of TLRs in a variety of human cell populations. Human TLRs that recognize bacterial components, particularly TLR-1, TLR-2, TLR-4 and TLR-6, reside on the cell surface and are expressed in myeloid and monocyte-derived dendritic cells (DCs) but not in plasmacytoid DCs (pDCs). Human TLR-3 resides in putative endosomes in myeloid DCs. Thus, the human myeloid DC subset harbors a unique and distinctive TLR repertoire. These mAbs will be useful to test the localization and distribution of human TLRs in a variety of cells and organs. Functional studies of human TLRs will also be feasible since certain of them are function-blocking mAbs.
Collapse
Affiliation(s)
- Tsukasa Seya
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan, , Department of Immunology, Osaka Medical Center for Cancer, Osaka, Japan
| | - Kenji Funami
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Mitsue Taniguchi
- Department of Immunology, Osaka Medical Center for Cancer, Osaka, Japan
| | - Misako Matsumoto
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan, Department of Immunology, Osaka Medical Center for Cancer, Osaka, Japan
| |
Collapse
|
24
|
Wenzel UA, Fernandez-Santoscoy M, Tam MA, Tegtmeyer P, Wick MJ. Synergy between CD40 and MyD88 Does Not Influence Host Survival to Salmonella Infection. Front Immunol 2015; 6:460. [PMID: 26441965 PMCID: PMC4568434 DOI: 10.3389/fimmu.2015.00460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/24/2015] [Indexed: 01/24/2023] Open
Abstract
Previous studies using purified toll-like receptor (TLR) ligands plus agonistic anti-CD40 antibodies showed that TLRs and CD40 can act synergistically on dendritic cells (DCs) to optimize T cell activation and Th1 differentiation. However, a synergistic effect of TLRs and CD40 during bacterial infection is not known. Here, we show that mice lacking the TLR adaptor MyD88 alone, or lacking both MyD88 and CD40 [double knockout (DKO) mice], are compromised in survival to Salmonella infection but have intact recruitment of neutrophils and inflammatory monocytes as well as unaltered abundance of DC subsets and DC activation in infected tissues. In contrast to infected wildtype and CD40(-/-) mice, both MyD88(-/-) mice and DKO mice lack detectable serum IFN-γ and have elevated IL-10. A synergistic effect of TLRs and CD40 was revealed in co-culture experiments where OT-II T cell proliferation was compromised when DKO DCs were pulsed with OVA protein and OVA323-339 peptide, but not with heat-killed Salmonella expressing OVA (HKSOVA), relative to MyD88(-/-) DCs. By contrast, MyD88(-/-) or DKO DCs pulsed with any of the antigens had a similar ability to induce IFN-γ that was lower than WT or CD40(-/-) DCs. DKO DCs pulsed with HKSOVA, but not with OVA or OVA323-339, had increased IL-10 relative to MyD88(-/-) DCs. Finally, HKSOVA-pulsed MyD88(-/-) and DKO DCs had similar and low induction of NFκB-dependent and -independent genes upon co-culture with OT-II cells. Overall, our data revealed that synergistic effects of CD40 and MyD88 do not influence host survival to Salmonella infection or serum levels of IFN-γ or IL-10. However, synergistic effects of MyD88 and CD40 may be apparent on some (IL-10 production) but not all (OT-II proliferation and IFN-γ production) DC functions and depend on the complexity of the antigen. Indeed, synergistic effects observed using purified ligands and well-defined antigens may not necessarily apply when complex antigens, such as live bacteria, challenge the immune system.
Collapse
Affiliation(s)
- Ulf Alexander Wenzel
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Center (MIVAC), Institute of Biomedicine at Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Maria Fernandez-Santoscoy
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Center (MIVAC), Institute of Biomedicine at Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | | | - Pia Tegtmeyer
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Center (MIVAC), Institute of Biomedicine at Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden ; TWINCORE Centre for Experimental and Clinical Infection Research, Institute for Experimental Infection Research , Hannover , Germany
| | - Mary Jo Wick
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Center (MIVAC), Institute of Biomedicine at Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|
25
|
Polymorphisms in TICAM2 and IL1B are associated with TB. Genes Immun 2014; 16:127-133. [PMID: 25521228 PMCID: PMC4352113 DOI: 10.1038/gene.2014.77] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/05/2014] [Accepted: 11/12/2014] [Indexed: 12/16/2022]
Abstract
Background Human genetic susceptibility for tuberculosis (TB) has been demonstrated by several studies, but few have examined multiple innate and adaptive immunity genes comprehensively, age-specific effects, and/or resistance to Mycobacterium tuberculosis (Mtb) infection (RSTR). We hypothesized that RSTR, defined by a persistently negative tuberculin skin test, may have different genetic influences than Mtb disease. Methods We examined 29 candidate genes in pathways that mediate immune responses to Mtb in subjects in a household contact study in Kampala, Uganda. We genotyped 546 haplotype-tagging single nucleotide polymorphisms (SNPs) in 835 individuals from 481 families; 28.7% had TB, 10.5% were RSTR, and the remaining 60.8% had latent Mtb infection. Results Among our most significant findings were SNPs in TICAM2 (p=3.6×10−6) and IL1B (p=4.3×10−5) associated with TB. Multiple SNPs in IL4 and TOLLIP were associated with TB (p<0.05). Age-genotype interaction analysis revealed SNPs in IL18 and TLR6 that were suggestively associated with TB in children ≤ 10 years old (p=2.9×10−3). By contrast, RSTR was associated with SNPs in NOD2, SLC6A3 and TLR4 (nominal p < 0.05); these genes were not associated with TB, suggesting distinct genetic influences. Conclusions We report the first association between TICAM2 polymorphisms and TB, and between IL18 and pediatric TB.
Collapse
|
26
|
Kumeta H, Sakakibara H, Enokizono Y, Ogura K, Horiuchi M, Matsumoto M, Seya T, Inagaki F. The N-terminal domain of TIR domain-containing adaptor molecule-1, TICAM-1. JOURNAL OF BIOMOLECULAR NMR 2014; 58:227-230. [PMID: 24500696 DOI: 10.1007/s10858-014-9819-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 01/31/2014] [Indexed: 06/03/2023]
Affiliation(s)
- Hiroyuki Kumeta
- Department of Structural Biology, Faculty of Advanced Life Science, Hokkaido University, N-21, W-11, Kita-ku, Sapporo, 001-0021, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Structures and interface mapping of the TIR domain-containing adaptor molecules involved in interferon signaling. Proc Natl Acad Sci U S A 2013; 110:19908-13. [PMID: 24255114 DOI: 10.1073/pnas.1222811110] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Homotypic and heterotypic interactions between Toll/interleukin-1 receptor (TIR) domains in Toll-like receptors (TLRs) and downstream adaptors are essential to evoke innate immune responses. However, such oligomerization properties present intrinsic difficulties in structural studies of TIR domains. Here, using BB-loop mutations that disrupt homotypic interactions, we determined the structures of the monomeric TIR domain-containing adaptor molecule (TICAM)-1 and TICAM-2 TIR domains. Docking of the monomeric structures, together with yeast two hybrid-based mutagenesis assays, reveals that the homotypic interaction between TICAM-2 TIR is indispensable to present a scaffold for recruiting the monomeric moiety of the TICAM-1 TIR dimer. This result proposes a unique idea that oligomerization of upstream TIR domains is crucial for binding of downstream TIR domains. Furthermore, the bivalent nature of each TIR domain dimer can generate a large signaling complex under the activated TLRs, which would recruit downstream signaling molecules efficiently. This model is consistent with previous reports that BB-loop mutants completely abrogate downstream signaling.
Collapse
|
28
|
Muralidharan S, Mandrekar P. Cellular stress response and innate immune signaling: integrating pathways in host defense and inflammation. J Leukoc Biol 2013; 94:1167-84. [PMID: 23990626 DOI: 10.1189/jlb.0313153] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Extensive research in the past decade has identified innate immune recognition receptors and intracellular signaling pathways that culminate in inflammatory responses. Besides its role in cytoprotection, the importance of cell stress in inflammation and host defense against pathogens is emerging. Recent studies have shown that proteins in cellular stress responses, including the heat shock response, ER stress response, and DNA damage response, interact with and regulate signaling intermediates involved in the activation of innate and adaptive immune responses. The effect of such regulation by cell stress proteins may dictate the inflammatory profile of the immune response during infection and disease. In this review, we describe the regulation of innate immune cell activation by cell stress pathways, present detailed descriptions of the types of stress response proteins and their crosstalk with immune signaling intermediates that are essential in host defense, and illustrate the relevance of these interactions in diseases characteristic of aberrant immune responses, such as chronic inflammatory diseases, autoimmune disorders, and cancer. Understanding the crosstalk between cellular stress proteins and immune signaling may have translational implications for designing more effective regimens to treat immune disorders.
Collapse
Affiliation(s)
- Sujatha Muralidharan
- 1.LRB 221, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605.
| | | |
Collapse
|
29
|
Matsumoto M, Funami K, Oshiumi H, Seya T. Toll-IL-1-receptor-containing adaptor molecule-1: a signaling adaptor linking innate immunity to adaptive immunity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:487-510. [PMID: 23663980 DOI: 10.1016/b978-0-12-386931-9.00018-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The innate immune system senses microbial infections using pattern-recognition receptors and signals to activate adaptive immunity. Type I transmembrane protein Toll-like receptors (TLRs) play important roles in antimicrobial immune responses. Upon the recognition of pathogen-associated molecular patterns, TLRs homo- or heterodimerize and recruit distinct adaptor molecules to the intracellular TIR domains. Toll-IL-1-receptor-containing adaptor molecule-1 (TICAM-1) is a signaling adaptor downstream of TLRs 3 and 4 that recognizes virus-derived double-stranded RNA and lipopolysaccharide, respectively. TLR3 is expressed on the endosomal membrane in myeloid DCs, where TLR3-mediated signaling is initiated. Once TICAM-1 is activated, transcription factors, IRF-3, NF-κB, and AP-1, are activated, leading to production of IFN-β and proinflammatory cytokines and maturation of dendritic cells, which are capable of activating NK cells and cytotoxic T cells. Hence, TICAM-1 signaling appears to link innate immunity to adaptive immunity. In this review, we summarize the current knowledge on TICAM-1 and discuss its role in virus infection and antitumor immunity.
Collapse
Affiliation(s)
- Misako Matsumoto
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | |
Collapse
|
30
|
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by the lack of insulin due to an autoimmune destruction of pancreatic beta cells. Here, we report a unique case of a family with naturally conceived quadruplets in which T1D was diagnosed in two quadruplets simultaneously. At the same time, the third quadruplet was diagnosed with the pre-diabetic stage. Remarkably, all four quadruplets were positive for anti-islet cell antibodies, GAD65 and IA-A2. Monozygotic status of the quadruplets was confirmed by testing 14 different short tandem repeat polymorphisms. Serological examination confirmed that all quadruplets and their father suffered from a recent enteroviral infection of EV68-71 serotype. To assess the nature of the molecular pathological processes contributing to the development of diabetes, immunocompetent cells isolated from all family members were characterized by gene expression arrays, immune-cell enumerations and cytokine-production assays. The microarray data provided evidence that viral infection, and IL-27 and IL-9 cytokine signalling contributed to the onset of T1D in two of the quadruplets. The propensity of stimulated immunocompetent cells from non-diabetic members of the family to secrete high level of IFN-α further corroborates this conclusion. The number of T regulatory cells as well as plasmacytoid and/or myeloid dendritic cells was found diminished in all family members. Thus, this unique family is a prime example for the support of the so-called 'fertile-field' hypothesis proposing that genetic predisposition to anti-islet autoimmunity is 'fertilized' and precipitated by a viral infection leading to a fully blown T1D.
Collapse
|
31
|
Yang M, Yuan S, Huang S, Li J, Xu L, Huang H, Tao X, Peng J, Xu A. Characterization of bbtTICAM from amphioxus suggests the emergence of a MyD88-independent pathway in basal chordates. Cell Res 2011; 21:1410-23. [PMID: 21931360 DOI: 10.1038/cr.2011.156] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The MyD88-independent pathway, one of the two crucial TLR signaling routes, is thought to be a vertebrate innovation. However, a novel Toll/interleukin-1 receptor (TIR) adaptor, designated bbtTICAM, which was identified in the basal chordate amphioxus, links this pathway to invertebrates. The protein architecture of bbtTICAM is similar to that of vertebrate TICAM1 (TIR-containing adaptor molecule-1, also known as TRIF), while phylogenetic analysis based on the TIR domain indicated that bbtTICAM is the oldest ortholog of vertebrate TICAM1 and TICAM2 (TIR-containing adaptor molecule-2, also known as TRAM). Similar to human TICAM1, bbtTICAM activates NF-κB in a MyD88-independent manner by interacting with receptor interacting protein (RIP) via its RHIM motif. Such activation requires bbtTICAM to form homodimers in endosomes, and it may be negatively regulated by amphioxus SARM (sterile α and armadillo motif-containing protein) and TRAF2. However, bbtTICAM did not induce the production of type I interferon. Thus, our study not only presents the ancestral features of vertebrate TICAM1 and TICAM2, but also reveals the evolutionary origin of the MyD88-independent pathway from basal chordates, which will aid in understanding the development of the vertebrate TLR network.
Collapse
Affiliation(s)
- Manyi Yang
- State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Department of Biochemistry, College of Life Sciences, Sun Yat-Sen University, 135 W Xingang Rd, Guangzhou 510275, China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Pant SD, Schenkel FS, Verschoor CP, You Q, Kelton DF, Moore SS, Karrow NA. A principal component regression based genome wide analysis approach reveals the presence of a novel QTL on BTA7 for MAP resistance in holstein cattle. Genomics 2010; 95:176-82. [DOI: 10.1016/j.ygeno.2010.01.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 01/01/2010] [Accepted: 01/04/2010] [Indexed: 01/05/2023]
|
33
|
Gautier M, Flori L, Riebler A, Jaffrézic F, Laloé D, Gut I, Moazami-Goudarzi K, Foulley JL. A whole genome Bayesian scan for adaptive genetic divergence in West African cattle. BMC Genomics 2009; 10:550. [PMID: 19930592 PMCID: PMC2784811 DOI: 10.1186/1471-2164-10-550] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 11/21/2009] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The recent settlement of cattle in West Africa after several waves of migration from remote centres of domestication has imposed dramatic changes in their environmental conditions, in particular through exposure to new pathogens. West African cattle populations thus represent an appealing model to unravel the genome response to adaptation to tropical conditions. The purpose of this study was to identify footprints of adaptive selection at the whole genome level in a newly collected data set comprising 36,320 SNPs genotyped in 9 West African cattle populations. RESULTS After a detailed analysis of population structure, we performed a scan for SNP differentiation via a previously proposed Bayesian procedure including extensions to improve the detection of loci under selection. Based on these results we identified 53 genomic regions and 42 strong candidate genes. Their physiological functions were mainly related to immune response (MHC region which was found under strong balancing selection, CD79A, CXCR4, DLK1, RFX3, SEMA4A, TICAM1 and TRIM21), nervous system (NEUROD6, OLFM2, MAGI1, SEMA4A and HTR4) and skin and hair properties (EDNRB, TRSP1 and KRTAP8-1). CONCLUSION The main possible underlying selective pressures may be related to climatic conditions but also to the host response to pathogens such as Trypanosoma(sp). Overall, these results might open the way towards the identification of important variants involved in adaptation to tropical conditions and in particular to resistance to tropical infectious diseases.
Collapse
Affiliation(s)
- Mathieu Gautier
- INRA, UMR de Génétique Animale et Biologie Intégrative, 78350 Jouy-en-Josas, France
| | - Laurence Flori
- INRA, UMR de Génétique Animale et Biologie Intégrative, 78350 Jouy-en-Josas, France
| | - Andrea Riebler
- University of Zurich, Institute of Social and Preventive Medicine, Zurich, Switzerland
| | - Florence Jaffrézic
- INRA, UMR de Génétique Animale et Biologie Intégrative, 78350 Jouy-en-Josas, France
| | - Denis Laloé
- INRA, UMR de Génétique Animale et Biologie Intégrative, 78350 Jouy-en-Josas, France
| | - Ivo Gut
- CEA, Centre National de Génotypage, 91057 Evry, France
| | | | - Jean-Louis Foulley
- INRA, UMR de Génétique Animale et Biologie Intégrative, 78350 Jouy-en-Josas, France
| |
Collapse
|
34
|
Kenny EF, Talbot S, Gong M, Golenbock DT, Bryant CE, O'Neill LAJ. MyD88 adaptor-like is not essential for TLR2 signaling and inhibits signaling by TLR3. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:3642-51. [PMID: 19717524 DOI: 10.4049/jimmunol.0901140] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Although a clear role for the adaptor protein myeloid differentiation factor-88 (MyD88) adaptor-like (Mal, or TIRAP) in TLR4 signaling has been demonstrated, there is limited information on its role in TLR2 signaling. Here we have systematically analyzed the role of Mal in signaling by TLR2, TLR4, and as a control TLR3 in murine macrophages and dendritic cells. Mal was not required for the induction of IL-6 or NFkappaB activation at high concentrations of the TLR1/2 ligand Pam(3)Cys-Ser-(Lys)(4) or the TLR2/6 ligand macrophage-activating lipopeptide-2 and was required for these responses only at low ligand concentrations. Similarly, induction of IL-6 by Salmonella typhimurium, which is sensed by TLR2, required Mal only at low levels of bacteria. Mal was required for IL-6 induction at all concentrations of the TLR4 ligand LPS. Mal deficiency boosted IL-6 induction by the TLR3 ligand polyinosinic-polycytidylic acid. Activation of JNK, but not p38 or IkappaB degradation, was similarly potentiated in response to polyinosinic-polycytidylic acid in Mal-deficient macrophages. MyD88 was vital for all TLR2 and TLR4 responses and, similar to Mal, was also inhibitory for TLR3-dependent IL-6 and JNK induction. MyD88 interacted with the Toll/IL-1R domains of TLR1, TLR2, TLR4, and TLR6. Mal interacted with the Toll/Il-1R domains of TLR1, TLR2, and TLR4 but not with TLR6. Our study, therefore, reveals that Mal is dispensable in TLR2 signaling at high ligand concentrations in macrophages and dendritic cells, with MyD88 probably coupling to the TLR2 receptor complex at sufficient levels to allow activation. An inhibitory role for Mal in TLR3 signaling to JNK was also demonstrated.
Collapse
Affiliation(s)
- Elaine F Kenny
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
35
|
Fan S, Chen S, Liu Y, Lin Y, Liu H, Guo L, Lin B, Huang S, Xu A. Zebrafish TRIF, a Golgi-Localized Protein, Participates in IFN Induction and NF-κB Activation. THE JOURNAL OF IMMUNOLOGY 2008; 180:5373-83. [DOI: 10.4049/jimmunol.180.8.5373] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
36
|
De Schepper S, De Ketelaere A, Bannerman DD, Paape MJ, Peelman L, Burvenich C. The toll-like receptor-4 (TLR-4) pathway and its possible role in the pathogenesis of Escherichia coli mastitis in dairy cattle. Vet Res 2007; 39:5. [PMID: 18073092 DOI: 10.1051/vetres:2007044] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 08/02/2007] [Indexed: 12/30/2022] Open
Abstract
Mastitis is one of the most costly production diseases in the dairy industry that is caused by a wide array of microorganisms. In this review, we focus on the Gram-negative Escherichia coli infections that often occur at periods when the innate immune defence mechanisms are impaired (i.e., parturition through the first 60 days of lactation). There is substantial evidence demonstrating that at these periods, the expected influx of polymorphonuclear neutrophil leukocytes (PMN) into the mammary gland is delayed during inflammation after intramammary infection with E. coli. Here, we provide some hypotheses on the potential mechanisms of action on how the disease may develop under circumstances of immunosuppression, and describe the potential involvement of the toll-like receptor-4 signal transduction pathway in the pathogenesis of E. coli mastitis. In addition, some ideas are proposed to help prevent E. coli mastitis and potentially other diseases caused by Gram-negative infections in general.
Collapse
Affiliation(s)
- Stefanie De Schepper
- Laboratory of Physiology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Recent advances in unravelling the complexities of the signalling pathways that constitute innate immunity have highlighted type I interferon as a key component in the response to infection. Here we focus on the emerging field of pattern-recognition receptor signalling, specifically Toll-like receptors and retinoic acid inducible gene-like helicases, from the perspective of this 50-year-old cytokine. The type I interferon gene family encompasses more than 20 subtypes, whose nature and properties have been extensively studied during its relatively long history. In this review we update and integrate available data on the mechanics of activation of the interferon genes and the role of this cytokine family in the innate immune response.
Collapse
Affiliation(s)
- Susie J Noppert
- Centre for Functional Genomics and Human Disease, Monash Institute of Medical Research, Monash University, Parkville, Victoria, Australia
| | | | | |
Collapse
|
38
|
Van Limbergen J, Russell RK, Nimmo ER, Ho GT, Arnott ID, Wilson DC, Satsangi J. Genetics of the innate immune response in inflammatory bowel disease. Inflamm Bowel Dis 2007; 13:338-55. [PMID: 17206667 DOI: 10.1002/ibd.20096] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The discovery of nucleotide-binding oligomerization domain 2/caspase recruitment domain-containing protein 15 (NOD2/CARD15) as the first susceptibility gene in Crohn's disease (CD) has shifted the focus of research into the pathogenesis of inflammatory bowel disease (IBD) firmly to the innate immune response and the integrity of the epithelial barrier. The subsequent implication in IBD of variant alleles of OCTN, DLG5, MDR1, and TLRs has provided further support for a new, more complex model of innate immunity function in the gastrointestinal tract. In this review, we examine the recent advances in our understanding of the influence of genetics of the innate immune response on IBD. We will focus on germline variation of genes encoding pathogen-recognition receptors, proteins involved in epithelial homeostasis and secreted antimicrobial proteins.
Collapse
Affiliation(s)
- Johan Van Limbergen
- Gastrointestinal Unit, Molecular Medicine Centre, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK.
| | | | | | | | | | | | | |
Collapse
|
39
|
Zhang J, Wei H, Wu D, Tian Z. Toll-like receptor 3 agonist induces impairment of uterine vascular remodeling and fetal losses in CBA x DBA/2 mice. J Reprod Immunol 2006; 74:61-7. [PMID: 17196665 DOI: 10.1016/j.jri.2006.10.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2006] [Revised: 10/25/2006] [Accepted: 10/26/2006] [Indexed: 02/02/2023]
Abstract
The objective of this study was to examine the expression of Toll-like receptor (TLR) 3 at the maternal-fetal interface and determine whether exposure to TLR3 agonist would induce an innate immune response and trigger pregnancy loss. To address this, abortion-prone male DBA/2J mated-CBA/J female mice were given polyinosinic-polycytidylic acid (poly I:C; 10 microg/g body weight, i.p.) or PBS at gestation day (gd) 6.5. All implantation sites appeared viable at gd 7.5 when endometrium was dissected for immunohistological examination. It was noted that poly I:C treatment increased fetal losses to 40.2+/-1.7% at midgestation stage compared with control animals (11.0+/-3.0%). It was observed also that the ratio of vessel to lumen area significantly increased at gd 10.5 and gd 12.5 after poly I:C treatment, indicating that the spiral artery (SA) modification was impaired. Meanwhile, 24h after poly I:C injection, expression of TLR3 was markedly elevated within decidua basalis (DB), and endometrial TNF-alpha increased 2.7-fold but IFN-gamma remained unchanged in homogenized endometrium. These results suggest that enhanced TNF-alpha expression in endometrial stroma may play a critical role in inflammatory factor production and impairment of uterine spiral artery remodeling in the pregnancy failure of CBA x DBA/2 mating.
Collapse
Affiliation(s)
- Jianhong Zhang
- Institute of Immunology, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, 443 Huangshan Road, Hefei, Anhui 230027, China
| | | | | | | |
Collapse
|
40
|
Baoprasertkul P, Peatman E, Somridhivej B, Liu Z. Toll-like receptor 3 and TICAM genes in catfish: species-specific expression profiles following infection with Edwardsiella ictaluri. Immunogenetics 2006; 58:817-30. [PMID: 16969679 DOI: 10.1007/s00251-006-0144-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 07/14/2006] [Indexed: 11/29/2022]
Abstract
Toll-like receptors (TLRs) are a family of transmembrane proteins that recognize specific pathogen-associated molecular patterns and use conserved signaling pathways to activate proinflammatory cytokines and type-1 interferons to fight infection. TLR3 in mammals is best known for its recognition of dsRNA as ligand and its MyD88-independent signaling. TLR3, upon recognition of dsRNA, recruits and binds its adaptor protein TIR domain-containing adapter molecule (TICAM) 1. Here we report the genomic sequences and structures of TLR3 and a TICAM adaptor from channel catfish (Ictalurus punctatus). Whereas a partial TLR3 cDNA sequence has been reported from channel catfish, and complete TLR3 genes are known from other teleost fish species, a complete TICAM sequence has not been previously reported from a nonmammalian species. Analysis of catfish TLR3 and TICAM expression after infection with Edwardsiella ictaluri, the causative agent of enteric septicemia of catfish (ESC), suggested a conserved TLR3-TICAM receptor-adaptor relation in catfish. Comparison of TLR3 and TICAM expression profiles in channel catfish with those from the closely related blue catfish species (Ictalurus furcatus), which exhibits strong resistance to ESC, revealed a striking pattern of species-specific expression. A dramatic downregulation of TLR3 and TICAM gene expression was observed in blue catfish head kidney and spleen, which we speculate may be the result of maturation and migration of different cell types to and from the lymphoid tissues following infection.
Collapse
Affiliation(s)
- Puttharat Baoprasertkul
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | | | | | | |
Collapse
|
41
|
Honda K, Takaoka A, Taniguchi T. Type I Inteferon Gene Induction by the Interferon Regulatory Factor Family of Transcription Factors. Immunity 2006; 25:349-60. [PMID: 16979567 DOI: 10.1016/j.immuni.2006.08.009] [Citation(s) in RCA: 1095] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Induction of type I interferons (IFNs) by viruses and other pathogens is crucial for innate immunity, and it is mediated by the activation of pattern-recognition receptors, such as Toll-like receptors and cytosolic receptors such as RIG-I and MDA5. The type I IFN induction is primarily controlled at the gene transcriptional level, wherein a family of transcription factors, interferon regulatory factors (IRFs), plays central roles. Here, we summarize the recent studies on IRFs, providing a paradigm of how genes are ingeniously regulated during immune responses. We also consider some evolutional aspects on the IFN-IRF system.
Collapse
Affiliation(s)
- Kenya Honda
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
42
|
Abstract
Toll-like receptors (TLRs) play an important role in innate immunity. Individual TLRs recognise microbial components that are conserved among pathogens. Such recognition initiates necessary inflammatory immune responses and induces subsequent activation of adaptive immunity. Studies in people with polymorphisms in genes encoding TLR signalling can elucidate the relationship between TLRs and human diseases, such as infectious diseases, atherosclerosis and immunodeficiency. Indeed, accumulating data in respect to TLR signalling suggest that TLRs are closely related with the pathogenesis of autoimmune diseases. This review looks at the role of TLRs in various immune disorders, and discusses the pathogenesis of diseases.
Collapse
Affiliation(s)
- Satoshi Uematsu
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita Osaka 565-0851, Japan
| | | |
Collapse
|
43
|
Lin Y, Liang Z, Chen Y, Zeng Y. TLR3-involved modulation of pregnancy tolerance in double-stranded RNA-stimulated NOD/SCID mice. THE JOURNAL OF IMMUNOLOGY 2006; 176:4147-54. [PMID: 16547251 DOI: 10.4049/jimmunol.176.7.4147] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study aims to extend understanding of the relationship between TLR3-involved cell signaling and dsRNA-induced embryo resorption. Upon stimulation of dsRNA, the resorption rate of embryos was boosted dramatically in syngeneic mating BALB/c mice, but not significantly influenced in syngeneic mating NOD/SCID mice. Accordingly, there was an enhanced cell surface expression of TLR3 on placental CD45(+) cells derived from BALB/c mice, concomitant with both increased percentages of CD45(+)CD80(+) cells and CD8alpha(+)CD80(+) cells in flow cytometric analysis. In addition, both increased IL-2 and decreased IL-10 expression could be observed in CD45(+) cell group in the intracellular detection by flow cytometry. In contrast, no such trends were observed in NOD/SCID model, and its resorption rate of embryos was kept at a low level throughout pregnancy. Neutralizing Abs against TLR3 could abrogate the embryo rejection induced by dsRNA in BALB/c mice, and simultaneously could reduce the CD80(+) percentage in the CD45(+) cell group. These results indicate that the interaction between dsRNA and TLR3 may be involved in the mobilization of CD45(+)CD80(+) and CD8alpha(+)CD80(+) cells, followed by the up-regulation of IL-2 and down-regulation of IL-10 expression at the feto-maternal interface, and finally resulting in embryo rejection. The relatively low responsiveness of NOD/SCID mice may be one of the reasons why these mice appeared to be resistant to dsRNA-induced embryo resorption.
Collapse
Affiliation(s)
- Yi Lin
- Key Laboratory of Ministry of Education for Tissue Transplantation and Immunology, College of Life Science and Technology, Jinan University, Guangzhou City, China.
| | | | | | | |
Collapse
|
44
|
Sasai M, Matsumoto M, Seya T. The Kinase Complex Responsible for IRF-3–Mediated IFN-β Production in Myeloid Dendritic Cells (mDC). ACTA ACUST UNITED AC 2006; 139:171-5. [PMID: 16452304 DOI: 10.1093/jb/mvj025] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Type I interferons (IFN) IFN-alpha and -beta play a central role in the induction of antiviral immunity, which involves up-regulation or activation of a large number of IFN-inducible genes in host immune competent cells. Initial events in the antiviral response may occur in myeloid dendritic cells (mDCs), and the proteins expressed provoke early responses to cope with concomitant infection in the host. The participation of transcription factors IRF-3/7, AP1 and NF-kappaB in IFN-beta promoter activation in mDCs is well established. An initial trigger of this event is a viral dsRNA that is recognized by proteins with an RNA-binding motif. Toll-like receptor (TLR) 3 on membranes and RIG-Iin the cytoplasm are molecules with dsRNA-recognition ability. Our main aim in the present review is to describe how IRF-3 and/or NF-kappaB are activated through the initial recognition of dsRNA by these pattern-recognition receptors. By analogy to the trimolecular complex of IKKgamma, IKKalpha and IKKbeta, thus far, IRF-3-activated kinases have been reported to be kinase complexes with trimolecular assembly. Two kinases, TBK1 and IKKepsilon, are thought to be linked to regulatory subunit TANK or NAP1 with no kinase activity like IKKgamma. The TLR3 and RIG-I pathways converge upstream of IRF-3, possibly at NAP1, the regulatory subunit of IRF-3-activating kinase. Thus, a novel function of the regulatory subunit has emerged. These proteins are involved in the TLR3 and RIG-I pathways, and act as adapters bridging on the dsRNA-recognition unit and IRF-3-activating kinases in addition to their kinase-regulatory function. Here, we summarize the properties of regulatory subunits NAP1 and TANK, and the mode of activation of NF-kappaB and IRF-3 in conjunction with the unique properties of the TLR3 function.
Collapse
Affiliation(s)
- Miwa Sasai
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Sapporo 060-8638, Japan
| | | | | |
Collapse
|
45
|
Seya T, Akazawa T, Tsujita T, Matsumoto M. Role of Toll-like receptors in adjuvant-augmented immune therapies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2006; 3:31-8; discussion 133-7. [PMID: 16550221 PMCID: PMC1375233 DOI: 10.1093/ecam/nek010] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2005] [Accepted: 12/26/2005] [Indexed: 12/21/2022]
Abstract
Effective therapeutic vaccines contain two primary constituents, antigen and adjuvant. Adjuvants consisting of microbial pattern molecules play a central role in vaccination. Successful vaccine requires efficient induction of antibody (Ab), type I interferons (IFN), cytokines/chemokines, cytotoxic T lymphocytes (CTL) and/or NK cells. Toll-like receptors (TLRs) in myeloid dendritic cells (mDC) essentially act as adjuvant receptors and sustain the molecular basis of adjuvant activity. Current consensus is that TLRs and their adapters introduce signals to preferentially induce IFN-α/β, chemokines and proinflammatory cytokines, and mature mDC to augment antigen presentation. Although most of these data were obtained with mice, the results are presumed to be adaptable to humans. Whenever TLR pathway is activated in mDC, NK and/or CTL activation is promoted. For induction of antigen-specific CTL toward phagocytosed material, cross-priming must be induced in mDC, which is also sustained by TLR signaling in mDC. Since the TLR responses vary with different adjuvants, mDC functions are skewed depending on adjuvant-specific direction of mDC maturation. It appears that the directed maturation of mDC largely relies on selection of appropriate sets of TLRs and their adapter signaling pathways. Synthetic chimera molecules consisting of TLR agonists and target antigens are found to be effective in induction of CTL to eliminate target cells in vivo. Here, we review the role of human TLRs and adapters in a variety of host immune responses. We will also describe the relevance of adjuvants in the manipulation of receptors and adapters in vaccine therapy.
Collapse
Affiliation(s)
- Tsukasa Seya
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Nishi, Sapporo, Japan.
| | | | | | | |
Collapse
|