1
|
Siedlecka-Kroplewska K, Kmiec Z, Zmijewski MA. The Interplay Between Autophagy and Apoptosis in the Mechanisms of Action of Stilbenes in Cancer Cells. Antioxidants (Basel) 2025; 14:339. [PMID: 40227400 PMCID: PMC11939748 DOI: 10.3390/antiox14030339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
Plant-based stilbenes are low-molecular-weight polyphenolic compounds that exhibit anti-oxidant, anti-microbial, anti-fungal, anti-inflammatory, anti-diabetic, cardioprotective, neuroprotective, and anti-cancer activities. They are phytoalexins produced in diverse plant species in response to stress, such as fungal and bacterial infections or excessive UV irradiation. Plant-derived dietary products containing stilbenes are common components of the human diet. Stilbenes appear to be promising chemopreventive and chemotherapeutic agents. Accumulating evidence indicates that stilbenes are able to trigger both apoptotic and autophagic molecular pathways in many human cancer cell lines. Of note, the molecular crosstalk between autophagy and apoptosis under cellular stress conditions determines the cell fate. The autophagy and apoptosis relationship is complex and depends on the cellular context, e.g., cell type and cellular stress level. Apoptosis is a type of regulated cell death, whereas autophagy may act as a pro-survival or pro-death mechanism depending on the context. The interplay between autophagy and apoptosis may have an important impact on chemotherapy efficiency. This review focuses on the in vitro effects of stilbenes in different human cancer cell lines concerning the interplay between autophagy and apoptosis.
Collapse
Affiliation(s)
| | - Zbigniew Kmiec
- Department of Anatomy and Histology, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland;
| | | |
Collapse
|
2
|
Güçlü E, Ayan İÇ, Çetinkaya S, Dursun HG, Vural H. Piceatannol induces caspase-dependent apoptosis by modulating intracellular reactive oxygen species/mitochondrial membrane potential and enhances autophagy in neuroblastoma cells. J Appl Toxicol 2024; 44:1714-1724. [PMID: 39004823 DOI: 10.1002/jat.4671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
The aim of this study was to evaluate the anticancer effects of piceatannol, a natural stilbenoid, on human neuroblastoma cells. In order to accomplish this goal, we performed various cellular assays, including the XTT cell proliferation assay for cell viability, colony formation assay for colony formation capacity, FITC Annexin V and cell death detection kit for apoptosis, matrigel invasion assay for invasion capacity, intracellular reactive oxygen species (ROS) red dye for intracellular ROS levels, TMRM staining method for mitochondrial membrane potential (MMP), and the CYTO-ID autophagy detection kit for autophagy. Furthermore, we analyzed the expression levels of genes associated with apoptosis and autophagy using RT-qPCR. Based on our findings, piceatannol exhibited cytotoxic effects on neuroblastoma cells. Besides, treatment with piceatannol at both 50 and 100 μM concentrations for 72 h decreased colony formation, induced apoptosis and autophagy, inhibited cell invasion, decreased MMP, and increased ROS levels in SH-SY5Y cells. In addition, we observed significant upregulation in the expression levels of CASP8, BECLIN, ATG5, ATG7, and MAPILC3A genes between the two doses. These results suggest that piceatannol enhances autophagic activity and induces caspase-dependent apoptosis, indicating its potential as a therapeutic agent against neuroblastoma cells.
Collapse
Affiliation(s)
- Ebru Güçlü
- Department of Basic Science and Health, Hemp Research Institute, Yozgat Bozok University, Yozgat, Turkey
| | - İlknur Çınar Ayan
- Department of Medical Biology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Sümeyra Çetinkaya
- Biotechnology Research Center, Field Crops Central Research Institute, Ankara, Türkiye
| | - Hatice Gül Dursun
- Department of Medical Biology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Hasibe Vural
- Department of Medical Biology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
3
|
Tanaka H, Nishimaki-Mogami T, Tamehiro N, Shibata N, Mandai H, Ito S, Wakamatsu K. Pterostilbene, a Dimethyl Derivative of Resveratrol, Exerts Cytotoxic Effects on Melanin-Producing Cells through Metabolic Activation by Tyrosinase. Int J Mol Sci 2024; 25:9990. [PMID: 39337478 PMCID: PMC11432345 DOI: 10.3390/ijms25189990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Pterostilbene (PTS), which is abundant in blueberries, is a dimethyl derivative of the natural polyphenol resveratrol (RES). Several plant species, including peanuts and grapes, also produce PTS. Although RES has a wide range of health benefits, including anti-cancer properties, PTS has a robust pharmacological profile that includes a better intestinal absorption and an increased hepatic stability compared to RES. Indeed, PTS has a higher bioavailability and a lower toxicity compared to other stilbenes, making it an attractive drug candidate for the treatment of various diseases, including diabetes, cancer, cardiovascular disease, neurodegenerative disorders, and aging. We previously reported that RES serves as a substrate for tyrosinase, producing an o-quinone metabolite that is highly cytotoxic to melanocytes. The present study investigated whether PTS may also be metabolized by tyrosinase, similarly to RES. PTS was oxidized as a substrate by tyrosinase to form an o-quinone, which reacted with thiols, such as N-acetyl-L-cysteine, to form di- and tri-adducts. We also confirmed that PTS was taken up and metabolized by human tyrosinase-expressing 293T cells in amounts several times greater than RES. In addition, PTS showed a tyrosinase-dependent cytotoxicity against B16BL6 melanoma cells that was stronger than RES and also inhibited the formation of melanin in B16BL6 melanoma cells and in the culture medium. These results suggest that the two methyl groups of PTS, which are lipophilic, increase its membrane permeability, making it easier to bind to intracellular proteins, and may therefore be more cytotoxic to melanin-producing cells.
Collapse
Affiliation(s)
- Hitomi Tanaka
- Department of Medical Technology, School of Health Sciences, Gifu University of Medical Science, 795-1 Nagamine, Ichihiraga, Seki 501-3892, Japan
- Institute for Melanin Chemistry, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Tomoko Nishimaki-Mogami
- Division of Biochemistry, National Institute of Health Sciences, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Norimasa Tamehiro
- Division of Biochemistry, National Institute of Health Sciences, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Norihito Shibata
- Division of Biochemistry, National Institute of Health Sciences, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Hiroki Mandai
- Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science, 4-3-3 Nijigaoka, Kani 509-0293, Japan
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| |
Collapse
|
4
|
Wu T, Zhu W, Chen L, Jiang T, Dong Y, Wang L, Tong X, Zhou H, Yu X, Peng Y, Wang L, Xiao Y, Zhong T. A review of natural plant extracts in beverages: Extraction process, nutritional function, and safety evaluation. Food Res Int 2023; 172:113185. [PMID: 37689936 DOI: 10.1016/j.foodres.2023.113185] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 09/11/2023]
Abstract
The demand for foods and beverages with therapeutic and functional features has increased as a result of rising consumer awareness of health and wellness. In natural, plants are abundant, widespread, and inexpensive, in addition to being rich in bioactive components that are beneficial to health. The bioactive substances contained in plants include polyphenols, polysaccharides, flavonoids, aromatics, aliphatics, terpenoids, etc., which have rich active functions and application potential for plant-based beverages. In this review, various existing extraction processes and their advantages and disadvantages are introduced. The antioxidant, anti-inflammatory, intestinal flora regulation, metabolism regulation, and nerve protection effects of plant beverages are described. The biotoxicity and sensory properties of plant-based beverages are also summarized. With the diversification of the food industry and commerce, plant-based beverages may become a promising new category of health functional foods in our daily lives.
Collapse
Affiliation(s)
- Tong Wu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Wanying Zhu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Linyan Chen
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Tao Jiang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Yuhe Dong
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Letao Wang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Xinyang Tong
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Hui Zhou
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Ling Wang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao.
| |
Collapse
|
5
|
Gołąbek-Grenda A, Kaczmarek M, Juzwa W, Olejnik A. Natural resveratrol analogs differentially target endometriotic cells into apoptosis pathways. Sci Rep 2023; 13:11468. [PMID: 37454164 PMCID: PMC10349804 DOI: 10.1038/s41598-023-38692-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
The specific characteristics of endometriotic cells are their ability to evade the apoptotic machinery and abnormal response to apoptotic stimuli. Natural-originated compounds may constitute a beneficial strategy in apoptosis modulation in endometriosis. We investigated and compared the potency of natural resveratrol analogs, including piceatannol, polydatin, and pterostilbene, in targeting cell death pathways, including apoptosis-related morphologic and biochemical processes, alongside the modulation of the critical genes expression. Upon resveratrol and pterostilbene treatment, a significant reduction of endometriotic cell viability and an increased apoptotic proportion of cells were noted. The lower antiproliferative potential was found for piceatannol and polydatin. Endometrial stromal T HESC cells were significantly more resistant than endometriotic epithelial 12Z cells to the cytotoxic activity of all analyzed compounds. They differentially affected endometriotic cell viability, cell cycle, anti- and proapoptotic genes regulation, caspases expression and enzymatic activity, and DNA fragmentation. Pterostilbene-mediated endometriotic cell apoptosis modulation was confirmed to be most effective but without evident caspase 3 upregulation. Our study provides valuable insight into the apoptogenic activity of resveratrol and its natural analogs in endometriotic cells. Data obtained revealed the highest therapeutic potential of pterostilbene by effectively targeting cell death determinants in endometriosis, strengthening its optimization in further extensive research.
Collapse
Affiliation(s)
- Agata Gołąbek-Grenda
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego St., 60-627, Poznan, Poland
| | - Mariusz Kaczmarek
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-866, Poznan, Poland
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, 61-866, Poznan, Poland
| | - Wojciech Juzwa
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego St., 60-627, Poznan, Poland
| | - Anna Olejnik
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego St., 60-627, Poznan, Poland.
| |
Collapse
|
6
|
Ahmed IA, Hafiz S, van Ginkel S, Pondugula SR, Abdelhaffez AS, Sayyed HG, El-Aziz EAA, Mansour MM. Augmentation of Docetaxel-Induced Cytotoxicity in Human PC-3 Androgen-Independent Prostate Cancer Cells by Combination With Four Natural Apoptosis-Inducing Anticancer Compounds. Nat Prod Commun 2023; 18:10.1177/1934578x231175323. [PMID: 37292146 PMCID: PMC10249917 DOI: 10.1177/1934578x231175323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
Docetaxel (DTX) is the treatment of choice for metastatic castration-resistant prostate cancer. However, developing drug resistance is a significant challenge for achieving effective therapy. This study evaluated the anticancer and synergistic effects on DTX of four natural compounds (calebin A, 3'-hydroxypterostilbene, hispolon, and tetrahydrocurcumin) using PC-3 androgen-resistant human prostate cancer cells. We utilized the CellTiter-Glo® luminescent cell viability assay and human PC-3 androgen-independent prostate cancer cells to determine the antiproliferative effects of the four compounds alone and combined with DTX. Cytotoxicity to normal human prostate epithelial cells was tested in parallel using normal immortalized human prostate epithelial cells (RWPE-1). We used cell imaging and quantitative caspase-3 activity to determine whether these compounds induce apoptosis. We also measured the capacity of each drug to inhibit TNF-α-induced NF-kB using a colorimetric assay. Our results showed that all four natural compounds significantly augmented the toxicity of DTX to androgen-resistant PC-3 prostate cancer cells at IC50. Interestingly, when used alone, each of the four compounds had a higher cytotoxic activity to PC-3 than DTX. Mechanistically, these compounds induced apoptosis, which we confirmed by cell imaging and caspase-3 colorimetric assays. Further, when used either alone or combined with DTX, the four test compounds inhibited TNF-α-induced NF-kB production. More significantly, the cytotoxic effects on normal immortalized human prostate epithelial cells were minimal and non-significant, suggesting prostate cancer-specific effects. In conclusion, the combination of DTX with the four test compounds could effectively enhance the anti-prostate cancer activity of DTX. This combination has the added value of reducing the DTX effective concentration. We surmise that calebin A, 3'-hydroxypterostilbene, hispolon, and tetrahydrocurcumin were all excellent drug candidates that produced significant antiproliferative activity when used alone and synergistically enhanced the anticancer effect of DTX. Further in vivo studies using animal models of prostate cancer are needed to confirm our in vitro findings.
Collapse
Affiliation(s)
- Inass A Ahmed
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
- Faculty of Veterinary Medicine, Assiut University, Egypt
| | - Saly Hafiz
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Sabrina van Ginkel
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Satyanarayana R Pondugula
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | | | - Hayam G Sayyed
- Department of Physiology, Faculty of Medicine, Assiut University, Egypt
| | | | - Mahmoud M Mansour
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| |
Collapse
|
7
|
Li Y, Sun C, Zhang Y, Chen X, Huang H, Han L, Xing H, Zhao D, Chen X, Zhang Y. Phase I Metabolism of Pterostilbene, a Dietary Resveratrol Derivative: Metabolite Identification, Species Differences, Isozyme Contribution, and Further Bioactivation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:331-346. [PMID: 36538288 DOI: 10.1021/acs.jafc.2c05334] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Pterostilbene (PTE), a dietary derivative of resveratrol, displayed pleiotropic health-promoting activities. This study aimed to explore the metabolic profiles and species differences of the phase I metabolism of PTE and to investigate subsequent detoxification after PTE bioactivation. PTE was found to be biotransformed to two pharmacologically active metabolites, pinostilbene and 3'-hydroxypterostilbene, in vivo and in vitro with substantial species differences. Human CYP1A2 was proved to be mainly responsible for the demethylation and 3'-hydroxylation of PTE, with its contribution to a demethylation of 94.5% and to a 3'-hydroxylation of 97.9%. An in vitro glutathione trapping experiment revealed the presence of an ortho-quinone intermediate formed by further oxidation of 3'-hydroxypterostilbene. Human glutathione S-transferase isoforms A2, T1, and A1 inactivated the ortho-quinone intermediate by catalyzing glutathione conjugation, implicating a potential protective pathway against PTE bioactivation-derived toxicity. Overall, this study provided a comprehensive view of PTE phase I metabolism and facilitated its further development as a promising nutraceutical.
Collapse
Affiliation(s)
- Ying Li
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Changcheng Sun
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yutian Zhang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473004, China
| | - Xiang Chen
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Haoyan Huang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Luyao Han
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Han Xing
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Di Zhao
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xijing Chen
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yongjie Zhang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
8
|
Nowicki A, Wawrzyniak D, Czajkowski M, Józkowiak M, Pawlak M, Wierzchowski M, Rolle K, Skupin-Mrugalska P, Piotrowska-Kempisty H. Enhanced biological activity of liposomal methylated resveratrol analog 3'-hydroxy-3,4,5,4'-tetramethoxystilbene (DMU-214) in 3D patient-derived ovarian cancer model. Drug Deliv 2022; 29:2459-2468. [PMID: 35892260 PMCID: PMC9336483 DOI: 10.1080/10717544.2022.2103210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
3′-hydroxy-3,4,5,4′-tetramethoxystilbene (DMU-214) belongs to methoxystilbenes family and is an active metabolite of 3,4,5,4′-tetramethoxystilbene (DMU-212). In several of our previous studies, the anti-apoptotic activity of DMU-214 was significantly higher than that of the parent compound, especially in ovarian cancer cells. Due to increased lipophilicity and limited solubility, methoxystilbenes require a solubilization strategy enabling DMU-214 administration to the aqueous environment. In this study, DMU-214-loaded liposomes were developed for the first time, and its antitumor activity was tested in the ovarian cancer model. First, several liposomal formulations of DMU-214 were obtained by the thin lipid film hydration method followed by extrusion and then characterized. The diameter of the resulting vesicles was in the range of 118.0-155.5 nm, and samples presented monodisperse size distribution. The release of DMU-214 from the studied liposomes was governed by the contribution of two mechanisms, Fickian diffusion and liposome relaxation. Subsequently, in vitro activity of DMU-214 in the form of a free compound or liposome-bound was studied, including commercial cell line SK-OV-3 and patient-derived ovarian cancer cells in monolayer and spheroid cell culture models. DMU-214 liposomal formulations were found to be more potent (had lower IC50 values) than the free DMU-214 both in the monolayer and, more significantly, in both examined spheroid models. The above results, with particular emphasis on the patient-derived ovarian cancer model, indicate the importance of further development of liposomal DMU-214 as a potential anticancer formulation for ovarian cancer treatment.
Collapse
Affiliation(s)
- Andrzej Nowicki
- Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland
| | - Dariusz Wawrzyniak
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Mikołaj Czajkowski
- Department of Inorganic & Analytical Chemistry, Collegium Pharmaceuticum, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | - Marcin Wierzchowski
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Poznan, PL, Poland
| | - Katarzyna Rolle
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Paulina Skupin-Mrugalska
- Department of Inorganic & Analytical Chemistry, Collegium Pharmaceuticum, Poznan University of Medical Sciences, Poznan, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland.,Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| |
Collapse
|
9
|
Biotechnological Advances in Pharmacognosy and In Vitro Manipulation of Pterocarpus marsupium Roxb. PLANTS 2022; 11:plants11030247. [PMID: 35161227 PMCID: PMC8839240 DOI: 10.3390/plants11030247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022]
Abstract
Trees are vital resources for economic, environmental, and industrial growth, supporting human life directly or indirectly through a wide variety of therapeutic compounds, commodities, and ecological services. Pterocarpus marsupium Roxb. (Fabaceae) is one of the most valuable multipurpose forest trees in India and Sri Lanka, as it is cultivated for quality wood as well as pharmaceutically bioactive compounds, especially from the stem bark and heartwood. However, propagation of the tree in natural conditions is difficult due to the low percentage of seed germination coupled with overexploitation of this species for its excellent multipurpose properties. This overexploitation has ultimately led to the inclusion of P. marsupium on the list of endangered plant species. However, recent developments in plant biotechnology may offer a solution to the overuse of such valuable species if such advances are accompanied by technology transfer in the developing world. Specifically, techniques in micropropagation, genetic manipulation, DNA barcoding, drug extraction, delivery, and targeting as well as standardization, are of substantial concern. To date, there are no comprehensive and detailed reviews of P. marsupium in terms of biotechnological research developments, specifically pharmacognosy, pharmacology, tissue culture, authentication of genuine species, and basic gene transfer studies. Thus, the present review attempts to present a comprehensive overview of the biotechnological studies centered on this species and some of the recent novel approaches for its genetic improvement.
Collapse
|
10
|
Dahmardeh Ghalehno A, Boustan A, Abdi H, Aganj Z, Mosaffa F, Jamialahmadi K. The Potential for Natural Products to Overcome Cancer Drug Resistance by Modulation of Epithelial-Mesenchymal Transition. Nutr Cancer 2022; 74:2686-2712. [PMID: 34994266 DOI: 10.1080/01635581.2021.2022169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The acquisition of resistance and ultimately disease relapse after initial response to chemotherapy put obstacles in the way of cancer therapy. Epithelial-mesenchymal transition (EMT) is a biologic process that epithelial cells alter to mesenchymal cells and acquire fibroblast-like properties. EMT plays a significant role in cancer metastasis, motility, and survival. Recently, emerging evidence suggested that EMT pathways are very important in making drug-resistant involved in cancer. Natural products are gradually emerging as a valuable source of safe and effective anticancer compounds. Natural products could interfere with the different processes implicated in cancer drug resistance by reversing the EMT process. In this review, we illustrate the molecular mechanisms of EMT in the emergence of cancer metastasis. We then present the role of natural compounds in the suppression of EMT pathways in different cancers to overcome cancer cell drug resistance and improve tumor chemotherapy. HighlightsDrug-resistance is one of the obstacles to cancer treatment.EMT signaling pathways have been correlated to tumor invasion, metastasis, and drug-resistance.Various studies on the relationship between EMT and resistance to chemotherapy agents were reviewed.Different anticancer natural products with EMT inhibitory properties and drug resistance reversal effects were compared.
Collapse
Affiliation(s)
- Asefeh Dahmardeh Ghalehno
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arad Boustan
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hakimeh Abdi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Aganj
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Siedlecka-Kroplewska K, Wrońska A, Kmieć Z. Piceatannol, a Structural Analog of Resveratrol, Is an Apoptosis Inducer and a Multidrug Resistance Modulator in HL-60 Human Acute Myeloid Leukemia Cells. Int J Mol Sci 2021; 22:10597. [PMID: 34638937 PMCID: PMC8509003 DOI: 10.3390/ijms221910597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Acute myeloid leukemia is characterized by uncontrolled clonal proliferation of abnormal myeloid progenitor cells. Despite recent advances in the treatment of this disease, the prognosis and overall long-term survival for patients remain poor, which drives the search for new chemotherapeutics and treatment strategies. Piceatannol, a polyphenolic compound present in grapes and wine, appears to be a promising chemotherapeutic agent in the treatment of leukemia. The aim of the present study was to examine whether piceatannol induces autophagy and/or apoptosis in HL-60 human acute myeloid leukemia cells and whether HL-60 cells are able to acquire resistance to piceatannol toxicity. We found that piceatannol at the IC90 concentration of 14 µM did not induce autophagy in HL-60 cells. However, it induced caspase-dependent apoptosis characterized by phosphatidylserine externalization, disruption of the mitochondrial membrane potential, caspase-3 activation, internucleosomal DNA fragmentation, PARP1 cleavage, chromatin condensation, and fragmentation of cell nuclei. Our findings also imply that HL-60 cells are able to acquire resistance to piceatannol toxicity via mechanisms related to MRP1 activity. Our results suggest that the use of piceatannol as a potential chemotherapeutic agent may be associated with the risk of multidrug resistance, warranting its use in combination with other chemotherapeutic agents.
Collapse
|
12
|
Koh YC, Ho CT, Pan MH. Recent Advances in Health Benefits of Stilbenoids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10036-10057. [PMID: 34460268 DOI: 10.1021/acs.jafc.1c03699] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biological targeting or molecular targeting is the main strategy in drug development and disease prevention. However, the problem of "off-targets" cannot be neglected. Naturally derived drugs are preferred over synthetic compounds in pharmaceutical markets, and the main goals are high effectiveness, lower cost, and fewer side effects. Single-target drug binding may be the major cause of failure, as the pathogenesis of diseases is predominantly multifactorial. Naturally derived drugs are advantageous because they are expected to have multitarget effects, but not off-targets, in disease prevention or therapeutic actions. The capability of phytochemicals to modulate molecular signals in numerous diseases has been widely discussed. Among them, stilbenoids, especially resveratrol, have been well-studied, along with their potential molecular targets, including AMPK, Sirt1, NF-κB, PKC, Nrf2, and PPARs. The analogues of resveratrol, pterostilbene, and hydroxylated-pterostilbene may have similar, if not more, potential biological targeting effects compared with their original counterpart. Furthermore, new targets that have been discussed in recent studies are reviewed in this paper.
Collapse
Affiliation(s)
- Yen-Chun Koh
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Min-Hsiung Pan
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City, Taiwan 404
- Department of Health and Nutrition Biotechnology, Asia University, Taichung City, Taiwan 413
| |
Collapse
|
13
|
|
14
|
Pterostilbene promotes mitochondrial apoptosis and inhibits proliferation in glioma cells. Sci Rep 2021; 11:6381. [PMID: 33737656 PMCID: PMC7973728 DOI: 10.1038/s41598-021-85908-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 03/09/2021] [Indexed: 01/15/2023] Open
Abstract
Glioma is the most general primary and lethal intracranial malignant tumor. Pterostilbene (PTE), an analog of stilbene and resveratrol, has attracted attention in recent years due to its significant antitumor activity in multiple solid tumors; however, its effect on drug-resistant glioma cells and the underlying mechanism have not yet been reported. In this study, we found that pterostilbene inhibited proliferation, induced intrinsic mitochondria-mediated apoptosis and caused S phase arrest, inhibited migration and excessive invasion in glioma cells. Pretreatment with the pan-caspase-inhibitor Z-VAD-FMK attenuated the PTE-induced apoptosis of glioma cells. Moreover, PTE significantly increased the production of reactive oxygen species (ROS) and reduce the mitochondrial membrane potential (MMP). Inhibition of ROS with N-acetyl-l-cysteine not only rescued PTE-induced reduction of cellular viability but also prevented glioma cell apoptosis. We also discovered ERK 1/2 and JNK signaling pathways were activated by PTE and contributed to induce glioma cell apoptosis. In addition, specific inhibitors of ERK 1/2 and JNK attenuated PTE-induced apoptosis. Besides, PTE significantly reduced tumor volume and prolonged median survival of tumor-bearing rats in vivo. In summary, the results of this study indicate that the anti-tumor effect of PTE on glioma cells may provide a new treatment option for glioma patients.
Collapse
|
15
|
Toxicological Evaluation of Piceatannol, Pterostilbene, and ε-Viniferin for Their Potential Use in the Food Industry: A Review. Foods 2021; 10:foods10030592. [PMID: 33799882 PMCID: PMC7998146 DOI: 10.3390/foods10030592] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
The application of stilbenes in the food industry is being considered because of their biological activities. Piceatannol, pterostilbene and ε-viniferin have awakened the industry’s interest. However, before they can be commercialized, we must first guarantee their safety for consumers. The present work reviews the toxicological studies performed with these stilbenes. A wide variety of studies has demonstrated their cytotoxic effects in both cancer and non-cancerous cell lines. In contrast, although DNA damage was detected by some authors, in vitro genotoxic studies on the effects of piceatannol, pterostilbene, and ε-viniferin remain scarce. None of the three reviewed substances have been evaluated using the in vitro tests required by the European Food Safety Authority (EFSA) as the first step in genotoxicity testing. We did not find any study on the toxic effects of these stilbenes in vivo. Thus, more studies are needed to confirm their safe use before they can be authorized as additive in the food industry.
Collapse
|
16
|
Chen RJ, Wang YJ. Pterostilbene and cancer chemoprevention. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Lee PS, Chiou YS, Chou PY, Nagabhushanam K, Ho CT, Pan MH. 3'-Hydroxypterostilbene Inhibits 7,12-Dimethylbenz[a]anthracene (DMBA)/12-O-Tetradecanoylphorbol-13-Acetate (TPA)-Induced Mouse Skin Carcinogenesis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 81:153432. [PMID: 33310310 DOI: 10.1016/j.phymed.2020.153432] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND A natural pterostilbene analogue isolated from the herb Sphaerophysa salsula, 3'-hydroxypterostilbene (HPSB), exhibits antiproliferative activity in several cancer cell lines; however, the inhibitory effects of HPSB on skin carcinogenesis remains unclear. PURPOSE The aim of this study was to evaluate the inhibitory effects of HPSB on two-stage skin carcinogenesis in mice and its potential mechanism. STUDY DESIGN AND METHODS This study investigated the anti-inflammatory and anti-tumor effects of HPSB in the 12-O-tetradecanoylphorbol-13-acetate (TPA)-stimulated acute skin inflammation and 7,12-dimethylbenz[a]anthracene (DMBA)/TPA-induced two-stage skin carcinogenesis model. In addition, the effects of HPSB on the modulation of the phase I and phase II metabolizing enzymes in the DMBA-induced HaCaT cell model were investigated. RESULTS The results provide evidence that topical treatment with HPSB significantly inhibits TPA-induced epidermal hyperplasia and leukocyte infiltration through the down-regulation of cyclooxygenase-2 (COX-2), matrix metalloprotein-9 (MMP-9), and ornithine decarboxylase (ODC) protein expression in mouse skin. Furthermore, HPSB suppresses DMBA/TPA-induced skin tumor incidence and multiplicity via the inhibition of proliferating cell nuclear antigen (PCNA), Cyclin B1 and cyclin-dependent kinase 1 (CDK1) expression in the two-stage skin carcinogenesis model. In addition, pretreatment with HPSB markedly reduces DMBA-induced cytochrome P450 1A1 (CYP1A1) and cytochrome P450 1B1 (CYP1B1) gene expression in human keratinocytes; however, HPSB does not significantly affect the gene expression of the phase II enzymes. CONCLUSION This is the first study to show that topical treatment with HPSB prevents mouse skin tumorigenesis. Overall, our study suggests that natural HPSB may serve as a novel chemopreventive agent capable of preventing carcinogen activation and inflammation-associated tumorigenesis.
Collapse
Affiliation(s)
- Pei-Sheng Lee
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Shiou Chiou
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan; Tsinghua Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, China
| | - Pin-Yu Chou
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | | | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan.
| |
Collapse
|
18
|
Lin WS, Leland JV, Ho CT, Pan MH. Occurrence, Bioavailability, Anti-inflammatory, and Anticancer Effects of Pterostilbene. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12788-12799. [PMID: 32064876 DOI: 10.1021/acs.jafc.9b07860] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Supplementation with natural compounds found in fruits and vegetables has long been associated with a reduced risk of several types of cancer. Pterostilbene is a natural stilbenoid and a dimethylated analogue of resveratrol which is found primarily in blueberries. Pterostilbene exhibits a range of pharmacological properties, particularly anti-inflammatory and anticancer effects. Due to two methoxy groups in its skeleton, pterostilbene is more lipophilic than resveratrol and thus possesses higher intestinal permeability and cellular uptake and enhanced stability. Moreover, pterostilbene exhibits less toxicity and fewer adverse effects, providing it with superior potential in cancer chemoprevention and chemotherapy applications. Numerous research studies have demonstrated that pterostilbene possesses detoxification activities, mediating the anti-inflammation response, regulating the cell cycle, augmenting apoptosis, enhancing autophagy, and inhibiting tumor angiogenesis, invasion, and metastasis by modulating signal transduction pathways which block multiple stages of carcinogenesis. In this review, we illustrate that pterostilbene is a natural compound having bioavailability. The extensive metabolism of pterostilbene will be discussed. We also summarize recent research on pterostilbene's anti-inflammatory and anticancer properties in the multistage carcinogenesis process and related molecular mechanism and conclude that it should contribute to improved cancer management.
Collapse
Affiliation(s)
- Wei-Sheng Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | | | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901-8520, United States
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
19
|
Recent Advances in Synthesis, Bioactivity, and Pharmacokinetics of Pterostilbene, an Important Analog of Resveratrol. Molecules 2020; 25:molecules25215166. [PMID: 33171952 PMCID: PMC7664215 DOI: 10.3390/molecules25215166] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Pterostilbene is a natural 3,5-dimethoxy analog of resveratrol. This stilbene compound has a strong bioactivity and exists widely in Dalbergia and Vaccinium spp. Besides natural extraction, pterostilbene can be obtained by biosynthesis. Pterostilbene has become popular because of its remarkable pharmacological activities, such as anti-tumor, anti-oxidation, anti-inflammation, and neuroprotection. Pterostilbene can be rapidly absorbed and is widely distributed in tissues, but it does not seriously accumulate in the body. Pterostilbene can easily pass through the blood-brain barrier because of its low molecular weight and good liposolubility. In this review, the studies performed in the last three years on resources, synthesis, bioactivity, and pharmacokinetics of pterostilbene are summarized. This review focuses on the effects of pterostilbene on certain diseases to explore its targets, explain the possible mechanism, and look for potential therapeutic applications.
Collapse
|
20
|
Soleimani D, Miryan M, Tutunchi H, Navashenaq JG, Sadeghi E, Ghayour-Mobarhan M, Ferns GA, Ostadrahimi A. A systematic review of preclinical studies on the efficacy of propolis for the treatment of inflammatory bowel disease. Phytother Res 2020; 35:701-710. [PMID: 32989885 DOI: 10.1002/ptr.6856] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022]
Abstract
Propolis is a resinous substance produced by bees from plants. There has been some evidence indicating that propolis may be a candidate for the treatment of inflammatory bowel disease (IBD) because of its potent antioxidant properties and ability to modulate immune response and gut microbiome. The objective of this systematic review was to investigate the role of propolis in the treatment of IBD, emphasizing possible mechanisms underlying the anti-inflammatory properties of it. Searches were performed in ISI, PubMed/Medline, Scopus, EMBASE, and Cochrane Library databases up to March 2020. According to the studies examined in this review, the administration of propolis can be useful in attenuating many aspects of clinical, macroscopic, and histological features of colitis in animal models. The efficacy of propolis in the treatment of IBD might be attributed to its potent antioxidants and anti-inflammatory activities. Propolis may also be involved in the modulation of the gut microbiota and in the improvement of the intestinal mucosal barrier function. The major mechanism of action is most likely to be mediated via the prevention of some transcriptional factors and associated proteins. However, future studies are warranted to investigate the clinical utility of propolis as a candidate in the treatment of IBD.
Collapse
Affiliation(s)
- Davood Soleimani
- Nutritional Sciences Department, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahsa Miryan
- Nutrition Research Center, Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helda Tutunchi
- Nutrition Research Center, Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamshid G Navashenaq
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran.,Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Ehsan Sadeghi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of medical Sciences, Kermanshah, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,International UNESCO center for Health-Related Basic Sciences and Human Nutrition, Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Brighton, UK
| | - Alireza Ostadrahimi
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Kiani BH, Kayani WK, Khayam AU, Dilshad E, Ismail H, Mirza B. Artemisinin and its derivatives: a promising cancer therapy. Mol Biol Rep 2020; 47:6321-6336. [PMID: 32710388 DOI: 10.1007/s11033-020-05669-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022]
Abstract
The world is experiencing a cancer epidemic and an increase in the prevalence of the disease. Cancer remains a major killer, accounting for more than half a million deaths annually. There is a wide range of natural products that have the potential to treat this disease. One of these products is artemisinin; a natural product from Artemisia plant. The Nobel Prize for Medicine was awarded in 2015 for the discovery of artemisinin in recognition of the drug's efficacy. Artemisinin produces highly reactive free radicals by the breakdown of two oxygen atoms that kill cancerous cells. These cells sequester iron and accumulate as much as 1000 times in comparison with normal cells. Generally, chemotherapy is toxic to both cancerous cells and normal cells, while no significant cytotoxicity from artemisinin to normal cells has been found in more than 4000 case studies, which makes it far different than conventional chemotherapy. The pleiotropic response of artemisinin in cancer cells is responsible for growth inhibition by multiple ways including inhibition of angiogenesis, apoptosis, cell cycle arrest, disruption of cell migration, and modulation of nuclear receptor responsiveness. It is very encouraging that artemisinin and its derivatives are anticipated to be a novel class of broad-spectrum antitumor agents based on efficacy and safety. This review aims to highlight these achievements and propose potential strategies to develop artemisinin and its derivatives as a new class of cancer therapeutic agents.
Collapse
Affiliation(s)
- Bushra Hafeez Kiani
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad, 44000, Pakistan.
| | - Waqas Khan Kayani
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, 23053, Alnarp, Sweden
| | - Asma Umer Khayam
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Erum Dilshad
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Hammad Ismail
- Department of Biochemistry and Molecular Biology, University of Gujrat, Gujrat, 50700, Pakistan
| | - Bushra Mirza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| |
Collapse
|
22
|
Chen D, Liu JR, Cheng Y, Cheng H, He P, Sun Y. Metabolism of Rhaponticin and Activities of its Metabolite, Rhapontigenin: A Review. Curr Med Chem 2020; 27:3168-3186. [DOI: 10.2174/0929867326666190121143252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/22/2018] [Accepted: 12/28/2018] [Indexed: 12/13/2022]
Abstract
Rhaponticin is a stilbenoid glucoside compound, found in medicinal plant of rhubarb
rhizomes. Rhapontigenin (RHAG), the stilbene aglycone metabolite of rhaponticin, has
shown various biological activities including anticancer activities to act a potential human cytochrome
P450 inhibitor, antihyperlipidemic effect, anti-allergic action, antioxidant and antibacterial
activities. Moreover, it was reported to scavenge intracellular Reactive Oxygen Species
(ROS), the 1,1-Diphenyl-2-Picrylliydrazyl (DPPH) radical, and Hydrogen Peroxide
(H2O2). Meanwhile, RHAG exhibited the inhibitory activity for the synthesis of DNA, RNA
and protein, and also presented the capacity of inducing morphological changes and apoptosis
of C. albicans. Here, the structure, pharmacokinetics, pharmacological effects as well as underlying
mechanisms of rhaponticin and its metabolite, RHAG, have been extensively reviewed.
This review will provide a certain reference value for developing the therapeutic drug
of rhaponticin or RHAG.
Collapse
Affiliation(s)
- Dan Chen
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Jing-Ru Liu
- School of Life Science, Northwest University, Xi’an, Shaanxi 710069, China
| | - Yanjin Cheng
- School of Mathematics and Statistics, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Hua Cheng
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Ping He
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Yang Sun
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| |
Collapse
|
23
|
Hsu YH, Chen SY, Wang SY, Lin JA, Yen GC. Pterostilbene Enhances Cytotoxicity and Chemosensitivity in Human Pancreatic Cancer Cells. Biomolecules 2020; 10:biom10050709. [PMID: 32375296 PMCID: PMC7281188 DOI: 10.3390/biom10050709] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 12/12/2022] Open
Abstract
Gemcitabine (GEM) drug resistance causes high mortality rates and poor outcomes in pancreatic ductal adenocarcinoma (PDAC) patients. Receptor for advanced glycation end products (RAGE) involvement in the GEM resistance process has been demonstrated. Therefore, finding a safe and effective way to inhibit receptors for RAGE-initiated GEM resistance is urgent. Pterostilbene (PTE), a natural methoxylated analogue derived from resveratrol and found in grapes and blueberries, has diverse bioactivities, such as antioxidative, anti-inflammatory, and anticancer qualities. The overall research objective was to determine the potential of PTE to enhance tumor cytotoxicity and chemosensitivity in PDAC cells. Our results have demonstrated that PTE induced S-phase cell cycle arrest, apoptosis, and autophagic cell death and inhibited multidrug resistance protein 1 (MDR1) expression by downregulating RAGE/PI3K/Akt signaling in both MIA PaCa-2 and MIA PaCa-2 GEMR cells (GEM-resistant cells). Remarkably, convincing evidence was established by RAGE small interfering RNA transfection. Taken together, our study demonstrated that PTE promoted chemosensitivity by inhibiting cell proliferation and MDR1 expression via the RAGE/PI3K/Akt axis in PDAC cells. The observations in these experiments indicate that PTE may play a crucial role in MDR1 modulation for PDAC treatment.
Collapse
Affiliation(s)
- Yi-Hao Hsu
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan; (Y.-H.H.); (S.-Y.C.)
| | - Sheng-Yi Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan; (Y.-H.H.); (S.-Y.C.)
| | - Sheng-Yang Wang
- Department of Forestry, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan;
| | - Jer-An Lin
- Graduate Institute of Food Safety, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan;
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan; (Y.-H.H.); (S.-Y.C.)
- Graduate Institute of Food Safety, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan;
- Correspondence: ; Tel.: +886-4-2287-9755; Fax: +886-4-2285-4378
| |
Collapse
|
24
|
Wei YX, Lü XF, Cheng H, Luo JY, Zou Y, Yang Z. Enzymatic synthesis of a catecholic polyphenol product with excellent antioxidant activity. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1756789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Yi-Xiong Wei
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen University, Shenzhen, China
| | - Xiao-Feng Lü
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen University, Shenzhen, China
| | - Hui Cheng
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen University, Shenzhen, China
| | - Jia-Yi Luo
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Yong Zou
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhen Yang
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
25
|
Garbicz D, Tobiasz P, Borys F, Pilżys T, Marcinkowski M, Poterała M, Grzesiuk E, Krawczyk H. The stilbene and dibenzo[b,f]oxepine derivatives as anticancer compounds. Biomed Pharmacother 2020; 123:109781. [DOI: 10.1016/j.biopha.2019.109781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 02/08/2023] Open
|
26
|
Almeida TP, Ramos AA, Ferreira J, Azqueta A, Rocha E. Bioactive Compounds from Seaweed with Anti-Leukemic Activity: A Mini-Review on Carotenoids and Phlorotannins. Mini Rev Med Chem 2020; 20:39-53. [PMID: 30854962 DOI: 10.2174/1389557519666190311095655] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 04/08/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022]
Abstract
Chronic Myeloid Leukemia (CML) represents 15-20% of all new cases of leukemia and is characterized by an uncontrolled proliferation of abnormal myeloid cells. Currently, the first-line of treatment involves Tyrosine Kinase Inhibitors (TKIs), which specifically inhibits the activity of the fusion protein BCR-ABL. However, resistance, mainly due to mutations, can occur. In the attempt to find more effective and less toxic therapies, several approaches are taken into consideration such as research of new anti-leukemic drugs and "combination chemotherapy" where different drugs that act by different mechanisms are used. Here, we reviewed the molecular mechanisms of CML, the main mechanisms of drug resistance and current strategies to enhance the therapeutic effect of TKIs in CML. Despite major advances in CML treatment, new, more potent anticancer drugs and with fewer side effects are needed. Marine organisms, and particularly seaweed, have a high diversity of bioactive compounds with some of them having anticancer activity in several in vitro and in vivo models. The state-of-art suggests that their use during cancer treatment may improve the outcome. We reviewed here the yet few data supporting anti-leukemic activity of some carotenoids and phlorotannins in some leukemia models. Also, strategies to overcome drug resistance are discussed, particularly the combination of conventional drugs with natural compounds.
Collapse
Affiliation(s)
- Tânia P Almeida
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR/CIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.,Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal.,FCUP - Faculty of Sciences, U. Porto - University of Porto (U.Porto), Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Alice A Ramos
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR/CIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.,Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal
| | - Joana Ferreira
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR/CIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.,Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal.,FCUP - Faculty of Sciences, U. Porto - University of Porto (U.Porto), Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, C/Irunlarrea 1, CP 31008 Pamplona, Navarra, Spain
| | - Eduardo Rocha
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR/CIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.,Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal
| |
Collapse
|
27
|
Yektaeian N, Mehrabani D, Sepaskhah M, Zare S, Jamhiri I, Hatam G. Lipophilic tracer Dil and fluorescence labeling of acridine orange used for Leishmania major tracing in the fibroblast cells. Heliyon 2019; 5:e03073. [PMID: 31890980 PMCID: PMC6928280 DOI: 10.1016/j.heliyon.2019.e03073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 09/15/2019] [Accepted: 12/13/2019] [Indexed: 12/18/2022] Open
Abstract
Background This study aims to evaluate the use of fluorescent dye Dil and super vital dye acridine orange (AO) in vitro tracking of labeled L. major in the fibroblast cells. Methods Dil crystal and AO were used to stain L. major in a co-culture of the fibroblasts with the parasite. AO staining solution was added to 1 × 106 parasites. After 10 min, the stained parasites were centrifuged and washed seven times with phosphate buffered saline (PBS). The stained promastigote was incubated with fibroblasts for 6-8 h. The presence of stained parasites with AO in the fibroblast was assessed using a fluorescence microscope. 1 × 106/mL promastigote of L. major was gently suspended and mixed by Dil staining solution with an ultimate concentration of 0.002 μg/mL and it was kept for 20 min at the room temperature. Subsequently, after washing it in PBS for seven times, it was centrifuged at 3000 rpm for 10 min. The supernatant was removed and the precipitate containing stained promastigote was suspended in fresh DMEM F12 with fibroblasts at 37 °C for 6 h. The presence of stained parasites with Dil in fibroblast was assessed using a fluorescence microscope. Fibroblast characterization was undertaken by a real-time polymerase chain reaction (PCR). Results Acridine orange staining assisted in detection of the live parasite in the fibroblast cells. Free promastigote looked green before entering into the fibroblasts after 12 h culture. The parasite entered the cytoplasm of fibroblasts at the beginning of the exposure and gradually entered the nucleus of the fibroblast. The fibroblast nucleus was entirely stained green by AO. The L. major appeared green under the fluorescent microscope. Dil staining revealed that the internalized parasites with red/orange color were localized within the cytoplasm after 6-hours and the nucleus of the fibroblasts after 72-hours following culture. Human fibroblasts were positive at the expression of CD10, CD26, matrix metalloproteinase-1 (MMP-1) and matrix metalloproteinase-3 (MMP-3) and negative for CD106 and integrin alpha 11. Conclusion The fluorescent dye Dil staining is a safe, easy to use, inexpensive and fast method for labeling of the Leishmania parasite in the fibroblast cells. Acridine orange staining could be useful for tracing the parasites in the fibroblasts too. In this study, both Dil and AO were compared and considered as suitable vital dyes for identifying labeled Leishmania in the fibroblast in vitro, but Dil was superior to AO with its feature does not transfer from the labeled to unlabeled cells.
Collapse
Affiliation(s)
- Narjes Yektaeian
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Davood Mehrabani
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mozhdeh Sepaskhah
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrokh Zare
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Jamhiri
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Hatam
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
28
|
Tseng PY, Liu YT, Lin CC, Chuang YC, Lo YS, Hsi YT, Hsieh MJ, Chen MK. Pinostilbene Hydrate Inhibits the Migration and Invasion of Human Nasopharyngeal Carcinoma Cells by Downregulating MMP-2 Expression and Suppressing Epithelial-Mesenchymal Transition Through the Mitogen-Activated Protein Kinase Signaling Pathways. Front Oncol 2019; 9:1364. [PMID: 31850235 PMCID: PMC6901791 DOI: 10.3389/fonc.2019.01364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/18/2019] [Indexed: 12/28/2022] Open
Abstract
Background: Nasopharyngeal carcinoma (NPC) is one of the most common head and neck cancers in East and Southeast Asia. During the past decades, advances in radiotherapy and chemotherapy had shown the improvement in tumor control with fewer side effects. Nevertheless, metastasis of NPC causes treatment failure and is often associated with poor clinical outcome and cancer mortality. Hypothesis/Purpose: Pinostilbene hydrate (PSH) was recently demonstrated to have anti-metastatic properties on human oral cancers. However, the effects of PSH on NPC cells remain unknown. Methods and Results: This study aims to investigate the anti-cancer ability of PSH on human NPC by wound healing, transwell assays, zymography assay, and Western blot assay to explore the possible underlying mechanisms. PSH significantly reduced the migrated distance of NPC cells in a dose-dependent manner and the abilities of cancer cell migration and invasion were markedly inhibited. The activity and the expression of MMP-2 were also significantly decreased after treatment with PSH. Furthermore, combined treatment of PSH with ERK1/2 inhibitor (U0126) caused significant elevation of the activity and the expression of MMP-2. Additionally, PSH upregulated the expression levels of E-cadherin and Claudin-1 while downregulating that of N-cadherin and vimentin on both NPC cell lines. Conclusion: Our research illustrates that PSH inhibits the migration and invasion of human NPC cells. After exposure to PSH on NPC, the expression of MMP-2 is downregulated and EMT is suppressed through MAPK signaling pathways. These observations suggest that PSH could be a potential anti-metastatic agent for patients with NPC.
Collapse
Affiliation(s)
- Pao-Yu Tseng
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Yen-Tze Liu
- Department of Family Medicine, Changhua Christian Hospital, Changhua, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Holistic Wellness, Mingdao University, Changhua, Taiwan.,Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Chia-Chieh Lin
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Yi-Ching Chuang
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Yu-Sheng Lo
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Yi-Ting Hsi
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Ming-Ju Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Holistic Wellness, Mingdao University, Changhua, Taiwan.,Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| |
Collapse
|
29
|
Siedlecka-Kroplewska K, Ślebioda T, Kmieć Z. Induction of autophagy, apoptosis and aquisition of resistance in response to piceatannol toxicity in MOLT-4 human leukemia cells. Toxicol In Vitro 2019; 59:12-25. [DOI: 10.1016/j.tiv.2019.03.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/09/2019] [Accepted: 03/29/2019] [Indexed: 01/09/2023]
|
30
|
Ma Z, Zhang X, Xu L, Liu D, Di S, Li W, Zhang J, Zhang H, Li X, Han J, Yan X. Pterostilbene: Mechanisms of its action as oncostatic agent in cell models and in vivo studies. Pharmacol Res 2019; 145:104265. [DOI: 10.1016/j.phrs.2019.104265] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/23/2019] [Accepted: 05/05/2019] [Indexed: 12/26/2022]
|
31
|
Krawczyk H. The stilbene derivatives, nucleosides, and nucleosides modified by stilbene derivatives. Bioorg Chem 2019; 90:103073. [PMID: 31234131 DOI: 10.1016/j.bioorg.2019.103073] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/23/2019] [Accepted: 06/15/2019] [Indexed: 12/31/2022]
Abstract
In this short review, including 187 references, the issues of biological activity of stilbene derivatives and nucleosides and the biological and medicinal potential of fusion of these two classes are discussed. The stilbenes, especially the stilbenoids, and nucleosides are both biologically active. Hybrids formed from binding of these compounds have not yet been broadly studied. However, those that have been investigated exhibit desirable medicinal properties. The review is divided in such parts: I. Derivative of stilbene (biomedical investigations, biological activities in cells, enzymes and hazard), parts II. naturally occurred nucleoside and its derivatives: uridine, thymidine and 5-methyluridine, cytidine, adenosine, guanosine and part III. hybrid molecules- drugs and hybrid molecules- nucleoside - stilbene and its derivative.
Collapse
Affiliation(s)
- Hanna Krawczyk
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| |
Collapse
|
32
|
Imaging Flow Cytometric Analysis of Stilbene-Dependent Apoptosis in Drug Resistant Human Leukemic Cell Lines. Molecules 2019; 24:molecules24101896. [PMID: 31108853 PMCID: PMC6571880 DOI: 10.3390/molecules24101896] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/03/2019] [Accepted: 05/16/2019] [Indexed: 01/08/2023] Open
Abstract
Background: The natural compounds have been researched extensively as an alternative to the conventional chemotherapy and radiation. Stilbene derivatives appear as a group of therapeutics which deserves special attention. The present study was designed to analyze the effects of stilbene derivatives on drug resistant human leukemic cells. The aim of this work was to evaluate the apoptotic effect of stilbene derivatives in various concentrations on leukemic cells (LC) with and without resistant phenotype. Methods: Human acute promyelocytic leukemia (APL) cell lines (HL60, HL60/MX1, HL60/MX2) and acute lymphoblastic leukemia (ALL) cell lines (CEM/C1, CCRF-CEM) were studied. T-resveratrol, piceatannol, rhaponticin, deoxyrhaponticin, pterostilbene were used to stimulate apoptosis. Mitoxantrone (MIT) was applied to induce drug resistance. Results: t-Resveratrol (RES), deoxyrhaponticin (D-RHAP), rhaponticin (RHAP), pterostilbene (PTER), and piceatannol (PIC) influenced viability and induced apoptosis in all investigated cell lines. Conclusions: Our results confirmed that RES, PIC, RHAP, D-RHAP, and PTER are essential therapeutic compounds with anticancer activity exhibited by induction of apoptosis in leukemic cells with and without resistant phenotype. Stilbene-induced apoptosis in HL60/MX1, HL60/MX2, CEM/C1, and CCRF-CEM leukemia cell lines have been presented in very few studies so far and our research is an important contribution to the investigation of these substances.
Collapse
|
33
|
Chillemi R, Sciuto S, Spatafora C, Tringali C. Anti-tumor Properties of Stilbene-based Resveratrol Analogues: Recent Results. Nat Prod Commun 2019. [DOI: 10.1177/1934578x0700200419] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent literature about stilbene-based analogues of resveratrol (1) has been reviewed, and a total of 94 compounds are reported (see structures 4 – 97), selected either for their promising anti-tumor properties or as comparative terms in SAR studies. As a general outline, these recent literature data confirm the previously reported observation that minimal modification in the nature and position of the substituents on the stilbene nucleus may cause large variations in their biological activity and, more specifically, in their anti-tumor properties. Among the polyhydroxylated stilbenes, it has been established that those with either a catechol or pyrogallol moiety are far better radical scavengers than either 1 or other analogues lacking an ortho-dihydroxy group, and this property was shown to be related to pro-apoptotic activity. In the large majority of cases where couples of E- and Z-isomers were evaluated for either cytotoxic or pro-apoptotic activity, the Z-isomers were significantly more active than their E analogues; nevertheless, a general rule stating that stilbenoids with Z configuration of the double bond display a considerably higher antiproliferative activity than their E-isomers cannot be considered as established. A variety of methoxystilbenes has been reported recently: in many cases these analogues showed either potent antiproliferative and pro-apoptotic activity or strong inhibition of TNFα-induced activation of NF- kB. Globally considered, polymethoxystilbenes are a sub-group of great interest among the resveratrol analogues: these analogues appear worthy of a deeper evaluation also in connection with their potential anti-angiogenic properties. In addition, in vivo studies indicate that methoxystilbenes undergo different metabolic conversion and have a higher bioavailability than resveratrol. The potent activity of some amino- and halogenated stilbenes is undoubtedly worthy of attention, but the toxicity of these compounds to normal cells has rarely been evaluated. In conclusion, the synthesis and evaluation of stilbene-based resveratrol analogues proved to be a highly active field of research and has recently afforded compounds with either cytotoxic or pro-apoptotic activity in the nanomolar range. Nevertheless, the exact structural determinants to optimize the anti-tumor properties of these compounds and details of their mechanism of action remain to be clarified.
Collapse
Affiliation(s)
- Rosa Chillemi
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Sebastiano Sciuto
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Carmela Spatafora
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Corrado Tringali
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy
| |
Collapse
|
34
|
Zhang X, Zhang J, Xu L, Ma Z, Di S, Gao Y, Li X, Yan X, Zhang H. [Emerging Actions of Pterostilebene on Cancer Research]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2019; 21:931-936. [PMID: 30591102 PMCID: PMC6318568 DOI: 10.3779/j.issn.1009-3419.2018.12.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
紫檀芪(3, 5-二甲氧基-4’-羟基二苯乙烯)是一种主要存在于蓝莓、葡萄和花榈木中的多酚类化合物。已有的研究发现紫檀芪具有抗肺癌、乳腺癌、胃癌、结肠癌等多种肿瘤的抗癌作用。其作用机制涉及调控影响多种肿瘤生物学特性。此外,紫檀芪具有比白藜芦醇更高的生物利用度和生物活性,其抗肿瘤作用和机制值得深入探讨和研究。
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Clinical Oncology, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China.,Department of Thoracic Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China.,Battalion 5, the First Brigade of Cadets, the Fourth Military Medical University, Xi'an 710032, China
| | - Jiao Zhang
- Department of Thoracic Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| | - Liqun Xu
- Department of Thoracic Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China.,Battalion 5, the First Brigade of Cadets, the Fourth Military Medical University, Xi'an 710032, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| | - Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| | - Yuan Gao
- Department of Thoracic Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| | - Hongmei Zhang
- Department of Clinical Oncology, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
35
|
Ramezani G, Pourgheysari B, Shirzad H, Sourani Z. Pterostilbene increases Fas expression in T-lymphoblastic leukemia cell lines. Res Pharm Sci 2019; 14:55-63. [PMID: 30936933 PMCID: PMC6407337 DOI: 10.4103/1735-5362.251853] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Treatment of acute lymphoblastic leukemia (ALL) has been promising in last decades, but side effects still persist and searching for the least toxic agents continue. Pterostilbene (PTE) is a natural compound with several anti-cancer and anti-oxidant properties. Fas, as a member of death inducing family of tumor necrosis factor (TNF) receptors with an intracellular death domain, can initiate the extrinsic apoptosis signaling pathway. Here after the half maximal inhibitory concentration (IC50) determination in cell lines, we searched for PTE effects on Fas, both in mRNA and surface levels in two ALL cell lines, Jurkat and Molt-4. After harvesting cells in optimum situations, MTS assay was used to determine IC50 concentrations. Real-time polymerase chain reaction (RT-PCR) and flow cytometry were performed for Fas mRNA and surface expression variations after exposure to PTE. The findings showed that PTE decreases cell viability with different extent in two ALL cell lines. In addition to inducing apoptosis, it can increase Fas in both gene and cell surface expression in the same concentrations. Pterostilbene as a natural anti-cancer agent can increase Fas expression both in mRNA and surface levels that results in apoptosis signal transduction improvement which sensitizes cells to apoptosis by immune effector cells. As a result, abnormal cells removal would be more efficiently with the minimum side effects on normal cells.
Collapse
Affiliation(s)
- Gelareh Ramezani
- Immunology Department, Shahrekord University of Medical Sciences, Shahrekord, I.R. Iran
| | - Batoul Pourgheysari
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, I.R. Iran.,Pathology and Hematology Department, Shahrekord University of Medical Sciences, Shahrekord, I.R. Iran
| | - Hedayatollah Shirzad
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, I.R. Iran
| | - Zahra Sourani
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, I.R. Iran.,Department of Medical Laboratory Sciences, Shahrekord University of Medical Sciences, Shahrekord, I.R. Iran
| |
Collapse
|
36
|
Shrestha A, Pandey RP, Pokhrel AR, Dhakal D, Chu LL, Sohng JK. Modular pathway engineering for resveratrol and piceatannol production in engineered Escherichia coli. Appl Microbiol Biotechnol 2018; 102:9691-9706. [PMID: 30178203 DOI: 10.1007/s00253-018-9323-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/04/2018] [Accepted: 08/08/2018] [Indexed: 12/20/2022]
Abstract
Resveratrol and its ortho-hydroxylated derivative piceatannol were biosynthesized by modular pathway engineering in Escherichia coli. The biosynthetic pathway was divided into three different modules. Module I includes polyketide biosynthetic genes; module II genes include acetyl-CoA and malonyl-CoA pool-enhancing genes from three different organisms; and module III genes are regiospecific 3'-hydroxylating enzymes. E. coli BL21(DE3) with module I produced 8.6 mg/L of resveratrol from exogenously fed 1 mM p-coumaric acid after 72 h. Combination of module I and acetyl-CoA supplementing module IIb genes from N. farcinica IFM10152 produced 2.5-fold higher (60 mg/L) titer of resveratrol than the module IIa genes from E. coli. The exogenous supplementation of sodium acetate further enhanced production to 64 mg/L. Furthermore, module I with module IIc harboring matBC from S. coelicolor A3(2) produced 73 mg/L of resveratrol, which was elevated to 151 mg/L upon supplementing disodium malonate exogenously. This increment is 17.5-fold higher than module I harboring E. coli BL21(DE3). The combination of module I and two different module II genes yielded 137 mg/L resveratrol when supplemented with both sodium acetate and disodium malonate. The high resveratrol-producing combination module was further modified with incorporation of hpaBC for the ortho-hydroxylation of resveratrol to produce piceatannol. The engineered strain harboring modules I, IIc and III produced 124 mg/L of piceatannol, the highest titer after 72 h in disodium malonate-supplemented strain, which is 2-fold higher than in non-supplemented strain. The remaining resveratrol was about 30 mg/L. Furthermore, caffeic acid (85.5 mg/L) was also produced in the same strain. Resveratrol and piceatannol were biosynthesized along with caffeic acid by three different modules overexpressing acetate and malonate assimilation pathway genes from three different sources. The production titer of both resveratrol and piceatannol could be achieved higher upon blocking acetyl-CoA and malonyl-CoA utilizing pathway genes in host strain.
Collapse
Affiliation(s)
- Anil Shrestha
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Ramesh Prasad Pandey
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea.,Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Anaya Raj Pokhrel
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Luong Luan Chu
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea. .,Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea.
| |
Collapse
|
37
|
Cheng H, Zou Y, Luo X, Song XH, Yang Z. Enzymatic synthesis of catechol-functionalized polyphenols with excellent selectivity and productivity. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Zhang L, Wen X, Li M, Li S, Zhao H. Targeting cancer stem cells and signaling pathways by resveratrol and pterostilbene. Biofactors 2018; 44:61-68. [PMID: 29205560 DOI: 10.1002/biof.1398] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 11/02/2017] [Indexed: 12/20/2022]
Abstract
In past decades, increasing evidence regarding cancer stem cells (CSCs) may account for carcinogenesis, tumor drug-resistant, and metastasis. CSCs are even considered as the root causes of tumor recurrence and metastases. Targeting CSCs may provide a new clue to cure cancer. Epidemiological and clinical studies have suggested that intake of dietary natural products may bring health benefits including lowering risk of cancer incidence. In this review, we have particularly focused on targeting signaling pathways of CSCs by natural resveratrol and its dimethylated derivative pterostilbene. © 2017 BioFactors, 44(1):61-68, 2018.
Collapse
Affiliation(s)
- Lingling Zhang
- Tianjin Key Laboratory of Food and Biotechnology, Food Science Division, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources, Food Science Division, Huanggang Normal University, Huanggang, Hubei, China
- Department of Pharmacology and Toxicology, National Evaluation Centre for the Toxicology of Fertility Regulating Drug, Shanghai Institute of Planned Parenthood Research, Shanghai, China
- Key Laboratory of Reproduction Regulation of NPFPC of Shanghai; Food Science Division, Reproductive and Developmental Research Institute of Fudan University, Shanghai, China
| | - Xiang Wen
- Tianjin Key Laboratory of Food and Biotechnology, Food Science Division, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Mengmeng Li
- Tianjin Key Laboratory of Food and Biotechnology, Food Science Division, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Shiming Li
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources, Food Science Division, Huanggang Normal University, Huanggang, Hubei, China
| | - Hui Zhao
- Tianjin Key Laboratory of Food and Biotechnology, Food Science Division, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| |
Collapse
|
39
|
Pan MH, Wu JC, Ho CT, Lai CS. Antiobesity molecular mechanisms of action: Resveratrol and pterostilbene. Biofactors 2018; 44:50-60. [PMID: 29315906 DOI: 10.1002/biof.1409] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/29/2017] [Accepted: 12/10/2017] [Indexed: 12/25/2022]
Abstract
Obesity is a current global epidemic that has led to a marked increase in metabolic diseases. However, its treatment remains a challenge. Obesity is a multifactorial disease, which involves the dysfunction of neuropeptides, hormones, and inflammatory adipokines from the brain, gut, and adipose tissue. An understanding of the mechanisms and signal interactions in the crosstalk between organs and tissue in the coordination of whole-body energy metabolism would be helpful to provide therapeutic and putative approaches to the treatment and prevention of obesity and related complications. Resveratrol and pterostilbene are well-known stilbenes that provide various potential benefits to human health. In particular, their potential anti-obesity effects have been proven in numerous cell culture and animal studies. Both compounds act to regulate energy intake, adipocyte life cycle and function, white adipose tissue (WAT) inflammation, energy expenditure, and gut microbiota by targeting multiple molecules and signaling pathways as an intervention for obesity. Although the efficacy of both compounds in humans requires further investigation with respect to their oral bioavailability, promising scientific findings have highlighted their potential as candidates for the treatment of obesity and the improvement of obesity-related metabolic diseases. © 2018 BioFactors, 44(1):50-60, 2018.
Collapse
Affiliation(s)
- Min-Hsiung Pan
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Jia-Ching Wu
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Ching-Shu Lai
- Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung, Taiwan
| |
Collapse
|
40
|
Lai CS, Yang G, Li S, Lee PS, Wang BN, Chung MC, Nagabhushanam K, Ho CT, Pan MH. 3'-Hydroxypterostilbene Suppresses Colitis-Associated Tumorigenesis by Inhibition of IL-6/STAT3 Signaling in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9655-9664. [PMID: 29032686 DOI: 10.1021/acs.jafc.7b03712] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
3'-Hydroxypterostilbene (trans-3,5-dimethoxy-3',4'-hydroxystilbene) presents in Sphaerophysa salsula, Pterocarpus marsupium, and honey bee propolis and has been reported to exhibit several biological activities. Herein, we aimed to explore the chemopreventive effects of dietary 3'-hydroxypterostilbene and underlying molecular mechanisms on colitis-associated cancer using the azoxymethane (AOM)/dextran sodium sulfate (DSS) model. 3'-Hydroxypterostilbene administration effectively ameliorated the colon shortening and number of tumors in AOM/DSS-treated mice (3.2 ± 1.2 of the high-dose treatment versus 13.8 ± 5.3 of the AOM/DSS group, p < 0.05). Molecular analysis exhibited the anti-inflammatory activity of 3'-hydroxypterostilbene by a significant decrease in the levels of inducible nitric oxide synthase, cyclooxygenase-2, and interleukin-6 (IL-6) (p < 0.05). Moreover, dietary 3'-hydroxypterostilbene also significantly diminished IL-6/signal transducer and activator of transcription signaling and restored colonic suppressor of cytokine signaling 3 levels in the colonic tissue of mice (p < 0.05). Collectively, these results demonstrated for the first time the in vivo chemopreventive efficacy and molecular mechanisms of dietary 3'-hydroxypterostilbene against colitis-associated colonic tumorigenesis.
Collapse
Affiliation(s)
- Ching-Shu Lai
- Department of Seafood Science, National Kaohsiung Marine University , Kaohsiung 811, Taiwan
| | - Guliang Yang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University , Huanggang, Hubei China
| | - Shiming Li
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University , Huanggang, Hubei China
| | - Pei-Sheng Lee
- Institute of Food Science and Technology, National Taiwan University , Taipei 10617, Taiwan
| | - Bi Ni Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University , Xi'an 710119, China
| | - Min-Ching Chung
- Department of Seafood Science, National Kaohsiung Marine University , Kaohsiung 811, Taiwan
| | | | - Chi-Tang Ho
- Department of Food Science, Rutgers University , New Brunswick, New Jersey 08901, United States
| | - Min-Hsiung Pan
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University , Huanggang, Hubei China
- Institute of Food Science and Technology, National Taiwan University , Taipei 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University , Taichung 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University , Taichung, Taiwan
| |
Collapse
|
41
|
Chen G, Xu Z, Chang G, Hou J, Hu L, Zhang Y, Yu D, Li B, Chang S, Xie Y, Zhang Y, Wei R, Wu H, Xiao W, Sun X, Tao Y, Gao L, Dai B, Shi J, Zhu W. The blueberry component pterostilbene has potent anti-myeloma activity in bortezomib-resistant cells. Oncol Rep 2017; 38:488-496. [PMID: 28560392 DOI: 10.3892/or.2017.5675] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/17/2017] [Indexed: 11/05/2022] Open
Abstract
Multiple myeloma (MM) is an incurable hematologic malignancy because of its drug resistance. Pterostilbene (Pter) is found mainly in blueberries and grapes. The effects of Pter and its exact pharmacologic mechanisms on chemoresistant myeloma are not known. Herein, we investigated the anti-myeloma activity of Pter in bortezomib-resistant cell line H929R and explored the related mechanism of action for the first time. We found that Pter inhibited proliferation of H929R cells and promoted apoptosis of the cells through a caspase-dependent pathway, loss of mitochondrial membrane potential, and activation of Akt and p38 mitogen-activated protein kinase (MAPK) signaling pathways. DNA damage and S-phase arrest might be involved in Pter-related toxicity in H929R cells. Pter and the histone deacetylase inhibitors panobinostat or vorinostat inhibited proliferation of H929R cells in a synergistic manner. These data supported that Pter might be a promising natural compound for relapsed/refractory myeloma therapy, especially against myeloma resistant to bortezomib chemotherapy.
Collapse
Affiliation(s)
- Gege Chen
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Gaomei Chang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Jun Hou
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Liangning Hu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Yiwen Zhang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Dandan Yu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Bo Li
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Shuaikang Chang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Yongsheng Xie
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Yong Zhang
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Rong Wei
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Huiqun Wu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Wenqin Xiao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Xi Sun
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Yi Tao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Lu Gao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Bojie Dai
- College of Life Science and Technology, Tongji University, Shanghai 200092, P.R. China
| | - Jumei Shi
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| |
Collapse
|
42
|
Zhang AJ, Rimando AM, Mizuno CS, Mathews ST. α-Glucosidase inhibitory effect of resveratrol and piceatannol. J Nutr Biochem 2017; 47:86-93. [PMID: 28570943 DOI: 10.1016/j.jnutbio.2017.05.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/10/2017] [Accepted: 05/16/2017] [Indexed: 01/01/2023]
Abstract
Dietary polyphenols have been shown to inhibit α-glucosidase, an enzyme target of some antidiabetic drugs. Resveratrol, a polyphenol found in grapes and wine, has been reported to inhibit the activity of yeast α-glucosidase. This triggered our interest to synthesize analogs and determine their effect on mammalian α-glucosidase activity. Using either sucrose or maltose as substrate resveratrol, piceatannol and 3'-hydroxypterostilbene showed strong inhibition of mammalian α-glucosidase activity; pinostilbene, cis-desoxyrhapontigenin and trans-desoxyrhapontigenin had moderate inhibition. Compared to acarbose (IC50 3-13 μg/ml), piceatannol and resveratrol inhibited mammalian α-glucosidase to a lesser extent (IC50 14-84 and 111-120 μg/ml, respectively). 3'-Hydroxypterostilbene (IC50 105-302 μg/ml) was 23-35-fold less potent than acarbose. We investigated the effect of piceatannol and resveratrol on postprandial blood glucose response in high-fat-fed C57Bl/6 mice. Animals administered resveratrol (30 mg/kg body weight [BW]) or piceatannol (14 mg/kg BW) 60 min prior to sucrose or starch loading had a delayed absorption of carbohydrates, resulting in significant lowering of postprandial blood glucose concentrations, similar to the antidiabetic drug acarbose, while no significant effect was observed with the glucose-loaded animals. Our studies demonstrate that the dietary polyphenols resveratrol and piceatannol lower postprandial hyperglycemia and indicate that inhibition of intestinal α-glucosidase activity may be a potential mechanism contributing to their antidiabetic property.
Collapse
Affiliation(s)
- Albert J Zhang
- Department of Nutrition and Dietetics, Boshell Diabetes and Metabolic Diseases Research Program, Auburn University, Auburn, AL 36849
| | - Agnes M Rimando
- U.S. Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, P.O. Box 1848, University, MS 38677
| | - Cassia S Mizuno
- U.S. Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, P.O. Box 1848, University, MS 38677
| | - Suresh T Mathews
- Department of Nutrition and Dietetics, Boshell Diabetes and Metabolic Diseases Research Program, Auburn University, Auburn, AL 36849.
| |
Collapse
|
43
|
Evaluation of 90 day repeated dose oral toxicity and reproductive/developmental toxicity of 3'-hydroxypterostilbene in experimental animals. PLoS One 2017; 12:e0172770. [PMID: 28257483 PMCID: PMC5336210 DOI: 10.1371/journal.pone.0172770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/09/2017] [Indexed: 11/19/2022] Open
Abstract
3'-Hydroxypterostilbene (3'-HPT) is one of the active constituents of Sphaerophysa salsula and Pterocarpus marsupium. Despite many proposed therapeutic applications, the safety profile of 3'-HPT has not been established. The present work investigated 90 day repeated oral dose and reproductive (developmental) toxicity of 3'-HPT as a test substance in rats as per OECD guidelines. 90 day toxicity was conducted in sixty Sprague Dawley rats of each sex (120 rats), grouped into six dosage groups of 0 (control), 0 (control recovery), 20 (low dose), 80 (mid dose), 200 (high dose) and 200 (high dose recovery) mg/kg bwt/day (body weight/day) respectively. For the reproductive toxicity study forty Wistar rats of each sex (80 rats) divided into four dosage groups received 0 (vehicle control), 20 (low dose), 100 (mid dose) and 200 (high dose) mg/kg bwt/day of 3'-HPT respectively for a period of two weeks while pre-mating, mating, on the day before sacrifice, in females during pregnancy and four days of lactation period. Results showed no significant differences in body weight, food intake, absolute organ weight, haematology, with no adverse effects (toxicity) on biochemical values nor any abnormal clinical signs or behavioural changes were observed in any of the control/treatment groups, including reproductive and developmental parameters, gross and histopathological changes. In conclusion, the results suggested a No-Observed-Adverse-Effect-Level (NOAEL) of 200 mg/kg bwt/day in rats after oral administration, implying 3'-HPT did not exhibit any toxicity under the study conditions employed.
Collapse
|
44
|
Guleria S, Zhou J, Koffas MA. Nutraceuticals (Vitamin C, Carotenoids, Resveratrol). Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807833.ch10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Sanjay Guleria
- Sher-e-Kashmir University of Agricultural Sciences and Technology; Division of Biochemistry, Faculty of Basic Sciences; Main Campus Chatha Jammu 180 009 India
| | - Jingwen Zhou
- Jiangnan University; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology; 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Mattheos A.G. Koffas
- Rensselaer Polytechnic Institute; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies; 110 8th Street Troy NY 12180 USA
| |
Collapse
|
45
|
Pterostilbene induces apoptosis and cell cycle arrest in diffuse large B-cell lymphoma cells. Sci Rep 2016; 6:37417. [PMID: 27869173 PMCID: PMC5116667 DOI: 10.1038/srep37417] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/28/2016] [Indexed: 02/06/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma (NHL). Pterostilbene, a natural dimethylated analog of resveratrol, has been shown to possess diverse pharmacological activities, including anti-inflammatory, antioxidant and anticancer properties. However, to the best of our knowledge, there has been no study of the effects of pterostilbene upon hematological malignancies. Herein, we report the antitumor activity and mechanism of pterostilbene against DLBCL cells both in vitro and in vivo. We found that pterostilbene treatment resulted in a dose-dependent inhibition of cell viability. In addition, pterostilbene exhibited a strong cytotoxic effect, as evidenced not only by reductions of mitochondrial membrane potential (MMP) but also by increases in cellular apoptotic index and reactive oxygen species (ROS) levels, leading to arrest in the S-phase of the cell cycle. Furthermore, pterostilbene treatment directly up-regulated p-p38MAPK and down-regulated p-ERK1/2. In vivo, intravenous administration of pterostilbene inhibited tumor development in xenograft mouse models. Overall, the results suggested that pterostilbene is a potential anti-cancer pharmaceutical against human DLBCL by a mechanism involving the suppression of ERK1/2 and activation of p38MAPK signaling pathways.
Collapse
|
46
|
Biological actions and molecular effects of resveratrol, pterostilbene, and 3'-hydroxypterostilbene. J Food Drug Anal 2016; 25:134-147. [PMID: 28911531 PMCID: PMC9333438 DOI: 10.1016/j.jfda.2016.07.004] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/28/2016] [Accepted: 07/06/2016] [Indexed: 11/22/2022] Open
Abstract
Stilbenes are a class of polyphenolic compounds, naturally found in a wide variety of dietary sources such as grapes, berries, peanuts, red wine, and some medicinal plants. There are several well-known stilbenes including trans-resveratrol, pterostilbene, and 3′-hydroxypterostilbene. The core chemical structure of stilbene compounds is 1,2-diphenylethylene. Recently, stilbenes have attracted extensive attention and interest due to their wide range of health-beneficial effects such as anti-inflammation, -carcinogenic, -diabetes, and -dyslipidemia activities. Moreover, accumulating in vitro and in vivo studies have reported that stilbene compounds act as inducers of multiple cell-death pathways such as apoptosis, cell cycle arrest, and autophagy for chemopreventive and chemotherapeutic agents in several types of cancer cells. The aim of this review is to highlight recent molecular findings and biological actions of trans-resveratrol, pterostilbene, and 3′-hydroxypterostilbene.
Collapse
|
47
|
Kosuru R, Rai U, Prakash S, Singh A, Singh S. Promising therapeutic potential of pterostilbene and its mechanistic insight based on preclinical evidence. Eur J Pharmacol 2016; 789:229-243. [PMID: 27475678 DOI: 10.1016/j.ejphar.2016.07.046] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/26/2016] [Accepted: 07/26/2016] [Indexed: 11/30/2022]
Abstract
Pterostilbene (PS) is a well-recognized antioxidant that primarily exists in blueberries, grapevines and heartwood of red sandalwood. Interest in this compound has been renewed in recent years, and studies have found that PS possesses an array of pharmacological properties, including chemopreventive, antiinflammatory, antidiabetic, antidyslipidemic, antiatherosclerotic and neuroprotective effects. However, the greater in vivo bioavailability of PS, as compared to resveratrol, is an added advantage for its efficacy. This review provides a summary regarding the sources, pharmacokinetic aspects and pharmacodynamics of PS, with a focus on the molecular mechanisms underlying its protective effects against cancer, brain injuries and heart disease. Studies regarding the safety profile of PS have also been included. Based on the presently available evidence, we conclude that PS represents an active phytonutrient and a potential drug with pleiotropic health applications.
Collapse
Affiliation(s)
- Ramoji Kosuru
- Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Uddipak Rai
- Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Swati Prakash
- Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Abhishank Singh
- Faculty of Pharmacy, Pharmaceutical Medicine, Jamia Hamdard, New Delhi, India
| | - Sanjay Singh
- Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India.
| |
Collapse
|
48
|
Adiabouah Achy-Brou CA, Billack B. A comparative assessment of the cytotoxicity and nitric oxide reducing ability of resveratrol, pterostilbene and piceatannol in transformed and normal mouse macrophages. Drug Chem Toxicol 2016; 40:36-46. [PMID: 27079867 DOI: 10.3109/01480545.2016.1169542] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The present study investigated the pharmacological effects of three stilbenoids, resveratrol (RES), pterostilbene (PTR) and piceatannol (PIC), in transformed and normal macrophages. Our first aim was to comparatively assess the cytotoxicity of RES, PTR and PIC in unstimulated transformed mouse macrophages (RAW 264.7 cells) and primary peritoneal macrophages (PMs) harvested from both wild type and Nrf2 (nuclear factor erythroid 2-related factor 2)-deficient female mice. Our second aim was to investigate whether the inhibitory effect of RES, PTR and PIC on nitric oxide (NO) release from stimulated PMs depends on the status of the transcription factor Nrf2. The rationale for investigating Nrf2 status was based upon recent reports showing that certain compounds (sulforaphane and linalool) suppress LPS-induced inflammation in an Nrf2-dependent manner. Cell viability studies confirmed our prior work in unstimulated RAW 264.7 cells, with cytotoxic potency decreasing in the order of PTR > PIC > RES. Unstimulated PMs, regardless of Nrf2 status, were less sensitive to stilbenes, requiring at least a threefold higher stilbene concentration to inhibit cell viability, with cytotoxic potency again decreasing in the order of PTR > PIC > RES. In studies focused on our second aim, IC50 values for NO inhibition (measured as [Formula: see text]) in wild type PMs were similar for all three stilbenes (∼10 μM). In Nrf2-deficient PMs, the IC50 for NO inhibition by PIC did not change; however, a rightward shift in the concentration effect curve was observed for both RES and PTR, indicating a role for Nrf2 in the suppression of LPS-induced [Formula: see text] accumulation by these particular stilbenes.
Collapse
Affiliation(s)
| | - Blase Billack
- a Department of Pharmaceutical Sciences , College of Pharmacy and Health Sciences, St. John's University , Jamaica , NY , USA
| |
Collapse
|
49
|
Mizutani N, Omori Y, Kawamoto Y, Sobue S, Ichihara M, Suzuki M, Kyogashima M, Nakamura M, Tamiya-Koizumi K, Nozawa Y, Murate T. Resveratrol-induced transcriptional up-regulation of ASMase (SMPD1) of human leukemia and cancer cells. Biochem Biophys Res Commun 2016; 470:851-6. [PMID: 26809095 DOI: 10.1016/j.bbrc.2016.01.134] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 01/21/2016] [Indexed: 11/18/2022]
Abstract
Resveratrol (RSV) is a plant-derived phytoalexin present in plants, whose pleiotropic effects for health benefits have been previously reported. Its anti-cancer activity is among the current topics for novel cancer treatment. Here, effects of RSV on cell proliferation and the sphingolipid metabolism of K562, a human leukemia cell line, were analyzed. Some experiments were also performed in HCT116, a human colon cancer cell line. RSV inhibited cell proliferation of both cell lines. Increased cellular ceramide and decreased sphingomyelin and S1P by RSV were observed in RSV-treated K562 cells. Further analysis revealed that acid sphingomyelinase mRNA and enzyme activity levels were increased by RSV. Desipramine, a functional ASMase inhibitor, prevented RSV-induced ceramide increase. RSV increased ATF3, EGR1, EGR3 proteins and phosphorylated c-Jun and FOXO3. However, co-transfection using these transcription factor expression vectors and ASMase promoter reporter vector revealed positive effects of EGR1 and EGR3 but not others. Electrophoresis mobility shift assay (EMSA) and Chromatin immunoprecipitation (ChIP) assay demonstrated the direct binding of EGR1/3 transcription factors with ASMase 5'-promoter. These results indicate that increased EGR1/3 and ASMase expression play an important role in cellular ceramide increase by RSV treatment.
Collapse
Affiliation(s)
- Naoki Mizutani
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya, Japan; College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Yukari Omori
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Sayaka Sobue
- College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | | | - Motoshi Suzuki
- Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mamoru Kyogashima
- Department of Microbiology and Molecular Biology, Nihon Pharmaceutical University, Saitama, Japan
| | - Mitsuhiro Nakamura
- Department of Drug Information, Gifu Pharmaceutical University, Gifu, Japan
| | | | | | - Takashi Murate
- College of Life and Health Sciences, Chubu University, Kasugai, Japan.
| |
Collapse
|
50
|
Lewandowska U, Fichna J, Gorlach S. Enhancement of anticancer potential of polyphenols by covalent modifications. Biochem Pharmacol 2016; 109:1-13. [PMID: 26776305 DOI: 10.1016/j.bcp.2015.12.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 12/23/2015] [Indexed: 12/23/2022]
Abstract
As evidenced by a growing number of respective clinical trials, a promising and increasingly valued approach to cancer prevention is chemoprevention which is based on using synthetic, semisynthetic, or natural compounds with the aim of preventing, delaying, arresting, or reversing carcinogenesis. Research carried out in the last two decades indicates that natural polyphenols isolated from plants (as well as their derivatives and synthetic analogs) exhibit pleiotropic actions toward cancer cells and therefore they could be used in both cancer prevention and therapy. This review discusses selected covalent modifications of polyphenols as a means for increasing their anticancer potential in relation to the parent compounds. The modifications include hydroxylation, methylation, acylation, and galloylation, among others. They were demonstrated to enhance cytotoxic, pro-oxidant, antiproliferative, proapoptotic, proautophagic, and antimigratory activities of phenolics toward various cancer cell lines in vitro. Importantly, some derivatives proved to suppress tumor growth and metastasis in animal models more strongly than the parent compounds. Some of the above-mentioned covalent modifications were also shown to increase absorption and tissue distribution of tested phenolic compounds in vivo. Anticancer clinical trials with polyphenol derivatives therefore seem warranted.
Collapse
Affiliation(s)
| | - Jakub Fichna
- Department of Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Sylwia Gorlach
- Department of Biochemistry, Medical University of Lodz, Lodz, Poland
| |
Collapse
|