1
|
Wang A, Liu G, Zheng L, Wang S. A review: Mechanism and research progress of the effects of Astragalus polysaccharides on obesity. Int J Biol Macromol 2025; 311:143984. [PMID: 40339857 DOI: 10.1016/j.ijbiomac.2025.143984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/17/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
As living standards rise, health has become a top concern, and the issue of obesity has drawn extensive attention. Astragalus polysaccharides (APS), the key active component of Astragalus, have emerged as a promising subject in weight-loss research. Recent breakthroughs in APS studies-such as its dual regulatory effects on gut microbiota and metabolic pathways, novel insights into its anti-inflammatory mechanisms via TLR4/NF-κB signaling, and synergistic interactions with other herbal compounds-warrant an updated synthesis of current knowledge. Previous reviews on APS and obesity have predominantly focused on isolated mechanisms (e.g., lipid metabolism or inflammation), yet a comprehensive analysis integrating its multi-target effects, comparative advantages over conventional anti-obesity drugs, and clinical translation challenges remains lacking. This review uniquely consolidates advances in APS research over the past five years, emphasizing its holistic action on inflammation, insulin resistance, hepatic steatosis, and gut dysbiosis. By systematically comparing APS with pharmacological and nutritional interventions, we highlight its potential as a natural, low-toxicity alternative with multi-organ regulatory capabilities. Furthermore, we address critical gaps in bioavailability optimization and clinical validation, providing a roadmap for future research and therapeutic development.
Collapse
Affiliation(s)
- Anna Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan 410128, China; Department of Cardiology, The First People's Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling 317500, Zhejiang Province, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan 410128, China.
| | - Lin Zheng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan 410128, China
| | - Shuangshuang Wang
- Department of Cardiology, The First People's Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling 317500, Zhejiang Province, China
| |
Collapse
|
2
|
Wang H, Akbari-Alavijeh S, Parhar RS, Gaugler R, Hashmi S. Partners in diabetes epidemic: A global perspective. World J Diabetes 2023; 14:1463-1477. [PMID: 37970124 PMCID: PMC10642420 DOI: 10.4239/wjd.v14.i10.1463] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 09/01/2023] [Indexed: 10/09/2023] Open
Abstract
There is a recent increase in the worldwide prevalence of both obesity and diabetes. In this review we assessed insulin signaling, genetics, environment, lipid metabolism dysfunction and mitochondria as the major determinants in diabetes and to identify the potential mechanism of gut microbiota in diabetes diseases. We searched relevant articles, which have key information from laboratory experiments, epidemiological evidence, clinical trials, experimental models, meta-analysis and review articles, in PubMed, MEDLINE, EMBASE, Google scholars and Cochrane Controlled Trial Database. We selected 144 full-length articles that met our inclusion and exclusion criteria for complete assessment. We have briefly discussed these associations, challenges, and the need for further research to manage and treat diabetes more efficiently. Diabetes involves the complex network of physiological dysfunction that can be attributed to insulin signaling, genetics, environment, obesity, mitochondria and stress. In recent years, there are intriguing findings regarding gut microbiome as the important regulator of diabetes. Valid approaches are necessary for speeding medical advances but we should find a solution sooner given the burden of the metabolic disorder - What we need is a collaborative venture that may involve laboratories both in academia and industries for the scientific progress and its application for the diabetes control.
Collapse
Affiliation(s)
- Huan Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
- Rutgers Center for Vector Biology, Rutgers University, New Brunswick, NJ 08901, United States
| | - Safoura Akbari-Alavijeh
- Rutgers Center for Vector Biology, Rutgers University, New Brunswick, NJ 08901, United States
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Ranjit S Parhar
- Department of Biological and Medical Research, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Randy Gaugler
- Rutgers Center for Vector Biology, Rutgers University, New Brunswick, NJ 08901, United States
| | - Sarwar Hashmi
- Rutgers Center for Vector Biology, Rutgers University, New Brunswick, NJ 08901, United States
- Research and Diagnostics, Ghazala and Sanya Hashmi Foundation, Holmdel, NJ 07733, United States
| |
Collapse
|
3
|
Ziyaei K, Abdi F, Mokhtari M, Daneshmehr MA, Ataie Z. Phycocyanin as a nature-inspired antidiabetic agent: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154964. [PMID: 37544212 DOI: 10.1016/j.phymed.2023.154964] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Nutraceuticals have been important for more than two decades for their safety, efficacy, and outstanding effects. Diabetes is a major metabolic syndrome, which may be improved using nutritional pharmaceuticals. Some microalgae species, such as spirulina, stand out by providing biomass with exceptional nutritional properties. Spirulina has a wide range of pharmacological effects, mostly related to phycocyanin. Phycocyanin is a protein compound with antidiabetic properties, known as a nutraceutical. OBJECTIVE This review delves into phycocyanin applications in diabetes and its complications and ascertains the mechanisms involved. METHODS Scopus, PubMed, Cochrane Library, Web of Science, and ProQuest databases were systematically reviewed (up to April 30, 2023), in which only animal and cellular studies were found. RESULTS According to animal studies, the administration of phycocyanin affected biochemical parameters (primary outcome) related to diabetes. These results showed an increase in fasting insulin serum and a decrease in fasting blood glucose, glycosylated serum protein, and glycosylated hemoglobin. In cellular studies, though, phycocyanin prevented methylglyoxal and human islet amyloid polypeptide-induced dysfunction in β-cells and induced apoptosis through different molecular pathways (secondary outcome), including activation of Nrf2, PI3K/Akt, and suppression of JNK and p38. Also, phycocyanin exerted its antidiabetic effect by affecting the pathways regulating hepatic glucose metabolism. CONCLUSIONS Thus, based on the available information and literature, targeting these pathways by phycocyanin may unleash an array of benefits, including positive outcomes of the antidiabetic effects of phycocyanin as a nutraceutical. OTHER This systematic review was registered in the International Prospective Register of Systematic Reviews (PROSPERO) at the National Institute of Health. The registration number is CRD42022307522.
Collapse
Affiliation(s)
- Kobra Ziyaei
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Fatemeh Abdi
- Non-communicable Diseases Research Centre, Alborz University of Medical Sciences, Karaj, Iran
| | - Majid Mokhtari
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran; Department of Bioinformatics, Personalized Precision Medicine Institute, Tehran, Iran
| | - Mohammad Ali Daneshmehr
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Ataie
- Evidence-based Phytotherapy & Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
4
|
Ruan Q, Chen Y, Wen J, Qiu Y, Huang Y, Zhang Y, Farag MA, Zhao C. Regulatory mechanisms of the edible alga Ulva lactuca polysaccharide via modulation of gut microbiota in diabetic mice. Food Chem 2023; 409:135287. [PMID: 36603475 DOI: 10.1016/j.foodchem.2022.135287] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 10/19/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
In this study, Ulva lactuca polysaccharide (ULP) antihyperglycemic effect was assessed by monitoring changes in the gut microbiota of aging diabetic mice. The results showed that ULP alleviated type 2 diabetes by improving insulin tolerance, increasing SOD and CAT activities, and thus lowering blood glucose level. Moreover, ULP regulated the expressions of INSR and AMPK concurrent with inhibition the expression of JNK, JAK, STAT3, p16 and p38 to improve glucose metabolism dysfunction. Interestingly, the abundance of Alloprevotella and Pediococcus change might the key factor for ULP antihyperglycemic effectiveness in aging-related diabetes. These results suggest that ULP can exert a mechanism of blood glucose regulation by improving intestinal diversity composition asides from direct insulin mimetic actions.
Collapse
Affiliation(s)
- Qiling Ruan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yihan Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiahui Wen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yinghui Qiu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yajun Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
5
|
Exploring Anti-Type 2 Diabetes Mellitus Mechanism of Gegen Qinlian Decoction by Network Pharmacology and Experimental Validation. DISEASE MARKERS 2022; 2022:1927688. [PMID: 36284987 PMCID: PMC9588339 DOI: 10.1155/2022/1927688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022]
Abstract
Purpose. Gegen Qinlian Decoction (GGQL) has been employed to treat type 2 diabetes mellitus (T2DM) in the clinical practice of traditional Chinese medicine. However, the underlying mechanism of GGQL in the treatment of T2DM remains unknown. This study was aimed at exploring the pharmacological mechanisms of GGQL against T2DM via network pharmacology analysis combined with experimental validation. Methods. The effective components of GGQL were screened, and the target was predicted by using traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP). The candidate targets of GGQL were predicted by network pharmacological analysis, and crucial targets were chosen by the protein-protein interaction (PPI) network. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses were performed to predict the core targets and pathways of GGQL against T2DM. Then, T2DM mice were induced by a high-fat diet combined with streptozotocin. The model and GGQL groups were given normal saline and GGQL aqueous solution (10 and 20 g/kg/d) intragastric administration, respectively, for 8 weeks. The mice in the GGQLT groups were administered with GGQLT at 10 and 20 g/kg/d, respectively. The pathological changes in liver tissues were observed by hematoxylin-eosin staining. The protein expression of TNF-α and NF-κB was verified by western blotting. Results. A total of 204 common targets of GGQL for the treatment of T2DM were obtained from 140 active ingredients and 212 potential targets of T2DM. GO and KEGG enrichment analysis involved 119 signaling pathways, mainly in inflammatory TNF signaling pathways. Animal experiments showed that GGQL significantly reduced the serum levels of body mass, fasting blood glucose, fasting insulin, HOMA-IR, TNF-α, and IL-17. The liver pathological section showed that GGQL could improve the vacuolar degeneration and lipid deposition in the liver of T2DM mice. Mechanistically, GGQL downregulated the mRNA expression of TNF-α and NF-κB. Conclusions. This study demonstrated that GGQL may exert antidiabetic effects against T2DM by suppressing TNF-α signaling pathway activation, thus providing a basis for its potential use in clinical practice and further study in treating T2DM.
Collapse
|
6
|
Xu W, Tang Y, Ji Y, Yu H, Li Y, Piao C, Xie L. The association between serum selenium level and gestational diabetes mellitus: A systematic review and meta-analysis. Diabetes Metab Res Rev 2022; 38:e3522. [PMID: 35080114 DOI: 10.1002/dmrr.3522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/28/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND The relationship between serum selenium level and gestational diabetes mellitus (GDM) is controversial. The purpose is to update and summarize previous studies to understand the relationship in more detail. METHODS PubMed, The Cochrane Library, EMBASE, Web of science, CNKI, WANFANG DATA and Cqvip were searched for studies published up to 3 September 2021. The random-effects model was used to measure the combined estimation. The overall effect was reported in a standard mean difference (SMD) and 95% confidence interval (95% CI). All data were analysed by Review Manager 5.4. RESULTS Twenty-seven studies involving 1588 patients with GDM and 2450 healthy pregnant women contributed to this meta-analysis. Selenium level was significantly lower in women with GDM than those without GDM (SMD = -1.29; 95% CI: -1.60 to -0.97, p < 0.00001). Subgroup analyses showed that such trend was consistent within the non-European population (Asia: SMD = -1.44; 95% CI: -1.79 to -1.08, p < 0.00001; Africa: SMD = -2.62; 95% CI: -4.50 to -0.74, p = 0.006) and in the second and third trimesters (the second trimester: SMD = -1.41; 95% CI: -1.82 to -0.99, p < 0.00001; the third trimester: SMD = -1.54; 95% CI: -2.09 to -0.98, p < 0.00001), but not within the European population (SMD = -0.47; 95% CI: -1.09 to 0.16, p = 0.14) or in the first trimester (SMD = -0.52; 95% CI: -1.13 to 0.10, p = 0.10). CONCLUSIONS This meta-analysis showed that the serum selenium level of patients with GDM was lower than that in healthy pregnant women, especially within the non-European population and in the second and third trimesters.
Collapse
Affiliation(s)
- Wenhui Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Yiwei Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Ye Ji
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Haitao Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Yueting Li
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Chunji Piao
- Department of Clinical Radiation Injury, School of Public Health, Jilin University, Changchun, China
| | - Lin Xie
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
7
|
Membrane polarization in non-neuronal cells as a potential mechanism of metabolic disruption by depolarizing insecticides. Food Chem Toxicol 2022; 160:112804. [PMID: 34990786 DOI: 10.1016/j.fct.2021.112804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/22/2021] [Accepted: 12/31/2021] [Indexed: 01/01/2023]
Abstract
A significant rise in the incidence of obesity and type 2 diabetes has occurred worldwide in the last two decades. Concurrently, a growing body of evidence suggests a connection between exposure to environmental pollutants, particularly insecticides, and the development of obesity and type 2 diabetes. This review summarizes key evidence of (1) the presence of different types of neuronal receptors - target sites for neurotoxic insecticides - in non-neuronal cells, (2) the activation of these receptors in non-neuronal cells by membrane-depolarizing insecticides, and (3) changes in metabolic functions, including lipid and glucose accumulation, associated with changes in membrane potential. Based on these findings, we propose that changes in membrane potential (Vmem) by certain insecticides serve as a novel regulator of lipid and glucose metabolism in non-excitable cells associated with obesity and type 2 diabetes.
Collapse
|
8
|
Ye X, Chen W, Tu P, Jia R, Liu Y, Li Y, Tang Q, Zheng X, Chu Q. Food-derived cyanidin-3- O-glucoside alleviates oxidative stress: evidence from the islet cell line and diabetic db/db mice. Food Funct 2021; 12:11599-11610. [PMID: 34713882 DOI: 10.1039/d1fo02385c] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Type 2 diabetes mellitus is a disease associated with an oxidative milieu that often leads to adverse health outcomes. Multiple anthocyanins have been reported to possess outstanding antioxidant activity, however, their effects on hyperglycemia-related oxidative stress remain elusive. In the present study, cyanidin-3-O-glucoside (C3G), a typical anthocyanin with various widely accepted health benefits, was applied to alleviate oxidative stress in pancreas islets under the conditions of hyperglycemia. Firstly, significantly decreased mitochondrial membrane potential (MMP) and antioxidant enzymes, as well as increased reactive oxygen species (ROS) and O2- levels, were detected after exposure to a series of concentrations of high glucose (HG) and palmitic acid (PA), which manifested oxidative stress triggered by mitochondrial damage. To evaluate the antioxidant effect of C3G in vitro, the islet cell line NIT-1 was used, and results proved that C3G could effectively relieve cellular oxidative stress induced by HG and PA. Furthermore, we found that the antioxidant effect of C3G was achieved by activating mitophagy via the PINK1-PARKIN signaling pathway. More importantly, an autophagy inhibitor chloroquine (CQ) was added to verify our findings at the protein level, and we observed the co-localization of mitochondria and lysosomes, which may form autophagolysosomes to clean damaged mitochondria. Immediately afterwards, more studies were conducted on pancreatic islets of diabetic db/db mice to verify the antioxidant effect of C3G discovered in islet cells. Along with the decline in fasting blood glucose, the oxidative stress in pancreas islets was successfully alleviated in diabetic db/db mice after supplementation with C3G. This was demonstrated by increased levels of ROS, and the impaired activities of anti-oxidative enzymes superoxide dismutase (SOD) and catalase (CAT) were partly reversed by C3G intervention. Our study has provided evidence for the alleviation effect of C3G against oxidative stress in pancreas islets, which may provide enlightenment for improving the health situation of diabetic patients in the future.
Collapse
Affiliation(s)
- Xiang Ye
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| | - Wen Chen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| | - Pengcheng Tu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| | - Ruoyi Jia
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| | - Yangyang Liu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| | - Yonglu Li
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| | - Qiong Tang
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| | - Qiang Chu
- Tea Research Institute, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Choi EM, Suh KS, Yun SJ, Park J, Park SY, Chin SO, Chon S. Oleuropein attenuates the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-perturbing effects on pancreatic β-cells. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:752-761. [PMID: 33985414 DOI: 10.1080/10934529.2021.1923312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an endocrine disrupting compound and persistent organic pollutant that has been associated with diabetes in several epidemiological studies. Oleuropein, a major phenolic compound in olive fruit, is a superior antioxidant and radical scavenger. This study aimed to examine the effects of oleuropein against TCDD-induced stress response in a pancreatic beta cell line, INS-1 cells. Cells were pre-incubated with various concentrations of oleuropein and then stimulated with TCDD (10 nM) for 48 hrs. When treated with TCDD, INS-1 cells produced robust amounts of prostaglandin E2 (PGE2) compared to the untreated control, and this increase was inhibited by oleuropein treatment. TCDD increased Ca2+-independent phospholipase A2 (iPLA2β) level, but had no effect on Group 10 secretory phospholipase A2 (PLA2G10) level, while oleuropein deceased the levels of iPLA2β and PLA2G10 in the presence of TCDD. Cyclooxygenase-1 (COX-1) was significantly increased by TCDD treatment and attenuated with oleuropein pretreatment. Oleuropein decreased TCDD-mediated production of JNK, TNF-α, and ROS. In addition, oleuropein increased Akt and GLUT2 levels suppressed by TCDD in INS-1 cells. Thus, the results suggest that oleuropein prevents pancreatic beta cell impairment by TCDD.
Collapse
Affiliation(s)
- Eun Mi Choi
- Department of Endocrinology & Metabolism, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Kwang Sik Suh
- Department of Endocrinology & Metabolism, Kyung Hee University Hospital, Seoul, Republic of Korea
- Department of Endocrinology & Metabolism, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Soo Jin Yun
- Department of Endocrinology & Metabolism, Kyung Hee University Hospital, Seoul, Republic of Korea
- Department of Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Jinsun Park
- Department of Endocrinology & Metabolism, Kyung Hee University Hospital, Seoul, Republic of Korea
- Department of Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - So Young Park
- Department of Endocrinology & Metabolism, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Sang Ouk Chin
- Department of Endocrinology & Metabolism, Kyung Hee University Hospital, Seoul, Republic of Korea
- Department of Endocrinology & Metabolism, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Suk Chon
- Department of Endocrinology & Metabolism, Kyung Hee University Hospital, Seoul, Republic of Korea
- Department of Endocrinology & Metabolism, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Liu JY, Zhang YC, Xie RR, Song LN, Yang WL, Xin Z, Cao X, Yang JK. Nifuroxazide improves insulin secretion and attenuates high glucose-induced inflammation and apoptosis in INS-1 cells. Eur J Pharmacol 2021; 899:174042. [PMID: 33745960 DOI: 10.1016/j.ejphar.2021.174042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022]
Abstract
Inflammation and oxidative stress are important factors that cause islet β-cell dysfunction. STAT3 is not only a major factor in cell proliferation and differentiation, but also plays an important role in mediating inflammation. As a potent inhibitor of STAT3, the effect of Nifuroxazide (Nifu) on pancreatic islet cells in a high glucose environment has not been reported. In the present study, we used high concentration glucose-induced INS-1 cells to examine the effects of Nifu on high glucose-induced cell function by glucose-stimulated insulin secretion (GSIS). The effects of Nifu on high glucose-induced oxidative stress were recorded by oxidative factors and antioxidant factors. Simultaneously, the effect of Nifu on the inflammatory response, apoptosis, and STAT3/SOCS3 signal pathway were validated by quantitative real-time PCR (qRT-PCR) and Western blot. Our study indicated that Nifu significantly improved cell vitality and insulin secretion of INS-1 cells induced by high glucose. We found Nifu significantly inhibited pro-oxidative factors (ROS, MDA) and promoted anti-oxidative factors (SOD, GSH-PX, CAT). Meanwhile, qRT-PCR and Western blot results showed that inflammatory and apoptosis factors were remarkably inhibited by Nifu. Further research indicated that Nifu clearly suppressed the activation of the STAT3/SOCS3 signaling pathway. In conclusion, Nifu can significantly improve the insulin secretion function, protect oxidative stress injury, and reduce inflammatory response and apoptosis in high glucose-induced INS-1 cells. Therefore, Nifu has a new positive effect on maintaining the normal function of pancreatic islet cells in a high glucose environment and provides new drug candidates for the treatment and prevention of diabetes.
Collapse
Affiliation(s)
- Jing-Yi Liu
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Yi-Chen Zhang
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Rong-Rong Xie
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Li-Ni Song
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Wei-Li Yang
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Zhong Xin
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Xi Cao
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| | - Jin-Kui Yang
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
11
|
Sun Y, Wang J, Guo X, Zhu N, Niu L, Ding X, Xie Z, Chen X, Yang F. Oleic Acid and Eicosapentaenoic Acid Reverse Palmitic Acid-induced Insulin Resistance in Human HepG2 Cells via the Reactive Oxygen Species / JUN Pathway. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:754-771. [PMID: 33631425 PMCID: PMC9170756 DOI: 10.1016/j.gpb.2019.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 06/18/2019] [Accepted: 06/27/2019] [Indexed: 12/17/2022]
Abstract
Oleic acid (OA), a monounsaturated fatty acid (MUFA), has previously been shown to reverse saturated fatty acid palmitic acid (PA)-induced hepatic insulin resistance (IR). However, its underlying molecular mechanism is unclear. In addition, previous studies have shown that eicosapentaenoic acid (EPA), a ω-3 polyunsaturated fatty acid (PUFA), reverses PA-induced muscle IR, but whether EPA plays the same role in hepatic IR and its possible mechanism involved need to be further clarified. Here, we confirmed that EPA reversed PA-induced IR in HepG2 cells and compared the proteomic changes in HepG2 cells after treatment with different free fatty acids (FFAs). A total of 234 proteins were determined to be differentially expressed after PA+OA treatment. Their functions were mainly related to responses to stress and endogenous stimuli, lipid metabolic process, and protein binding. For PA+EPA treatment, the PA-induced expression changes of 1326 proteins could be reversed by EPA, 415 of which were mitochondrial proteins, with most of the functional proteins involved in oxidative phosphorylation (OXPHOS) and tricarboxylic acid (TCA) cycle. Mechanistic studies revealed that the protein encoded by JUN and reactive oxygen species (ROS) play a role in OA- and EPA-reversed PA-induced IR, respectively. EPA and OA alleviated PA-induced abnormal adenosine triphosphate (ATP) production, ROS generation, and calcium (Ca2+) content. Importantly, H2O2-activated production of ROS increased the protein expression of JUN, further resulting in IR in HepG2 cells. Taken together, we demonstrate that ROS/JUN is a common response pathway employed by HepG2 cells toward FFA-regulated IR.
Collapse
Affiliation(s)
- Yaping Sun
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jifeng Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaojing Guo
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Nali Zhu
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lili Niu
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiang Ding
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhensheng Xie
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiulan Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Fuquan Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Li W, Lin K, Zhou M, Xiong Q, Li C, Ru Q. Polysaccharides from Opuntia milpa alta alleviate alloxan-induced INS-1 cells apoptosis via reducing oxidative stress and upregulating Nrf2 expression. Nutr Res 2020; 77:108-118. [PMID: 32422500 DOI: 10.1016/j.nutres.2020.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/11/2020] [Accepted: 02/06/2020] [Indexed: 11/29/2022]
Abstract
The incidence and progression of type 2 diabetes are closely related to pancreatic β-cell damage. Oxidative stress may be one of the key factors contributing to β-cell apoptosis. Opuntia milpa alta polysaccharides (MAPs) are water-soluble macromolecular polysaccharides that have antidiabetic effects in vivo. Therefore, we hypothesized that MAPs might effectively prevent β-cell apoptosis via the inhibition of oxidative damages. In this study, INS-1 cells were exposed to alloxan with different concentrations of MAPs in vitro, and the cell viability, oxidative enzyme activities, nitric oxide production, reactive oxygen species production, apoptosis, and the expression of proteins in the antioxidant nucleus transcription factor NF-E2-related factor 2 (Nrf2) pathway and proteins related to apoptosis were measured to assess oxidative stress responses and apoptosis. The results indicated that INS-1 cell viabilities and superoxide dismutase and reduced glutathione activities were significantly restored, whereas lactate dehydrogenase releases and reactive oxygen species, nitric oxide, and malondialdehyde levels were greatly decreased after MAPs treatment. We found that MAPs could attenuate alloxan-induced apoptosis by increasing the expression of Bcl-2 and decreasing the expression of Bax and the activities of caspase-3 and caspase-9. The results of Western blot revealed that MAPs suppressed the expression of cleaved caspase-3 and cleaved PARP and upregulated the expression of nucleus Nrf2 and its downstream protein. These findings indicated that MAPs could alleviate alloxan-induced β-cell apoptosis by reducing oxidative stress and upregulating Nrf2 expression.
Collapse
Affiliation(s)
- Weiling Li
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, Hubei 430056, PR China.
| | - Kuan Lin
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, Hubei 430056, PR China.
| | - Mei Zhou
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, Hubei 430056, PR China.
| | - Qi Xiong
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, Hubei 430056, PR China.
| | - Chaoying Li
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, Hubei 430056, PR China.
| | - Qin Ru
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, Hubei 430056, PR China.
| |
Collapse
|
13
|
Jiao Y, Zhang S, Zhang J, Du J. Tetramethylpyrazine attenuates placental oxidative stress, inflammatory responses and endoplasmic reticulum stress in a mouse model of gestational diabetes mellitus. Arch Pharm Res 2019; 42:1092-1100. [DOI: 10.1007/s12272-019-01197-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022]
|
14
|
Zaulkffali AS, Md Razip NN, Syed Alwi SS, Abd Jalil A, Abd Mutalib MS, Gopalsamy B, Chang SK, Zainal Z, Ibrahim NN, Zakaria ZA, Khaza'ai H. Vitamins D and E Stimulate the PI3K-AKT Signalling Pathway in Insulin-Resistant SK-N-SH Neuronal Cells. Nutrients 2019; 11:nu11102525. [PMID: 31635074 PMCID: PMC6836113 DOI: 10.3390/nu11102525] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/20/2019] [Accepted: 09/27/2019] [Indexed: 01/06/2023] Open
Abstract
This study investigated the effects of vitamins D and E on an insulin-resistant model and hypothesized that this treatment would reverse the effects of Alzheimer’s disease (AD) and improves insulin signalling. An insulin-resistant model was induced in SK-N-SH neuronal cells with a treatment of 250 nM insulin and re-challenged with 100 nM at two different incubation time (16 h and 24 h). The effects of vitamin D (10 and 20 ng/mL), vitamin E in the form of tocotrienol-rich fraction (TRF) (200 ng/mL) and the combination of vitamins D and E on insulin signalling markers (IR, PI3K, GLUT3, GLUT4, and p-AKT), glucose uptake and AD markers (GSK3β and TAU) were determined using quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). The results demonstrated an improvement of the insulin signalling pathway upon treatment with vitamin D alone, with significant increases in IR, PI3K, GLUT3, GLUT4 expression levels, as well as AKT phosphorylation and glucose uptake, while GSK3β and TAU expression levels was decreased significantly. On the contrary, vitamin E alone, increased p-AKT, reduced the ROS as well as GSK3β and TAU but had no effect on the insulin signalling expression levels. The combination of vitamins D and E only showed significant increase in GLUT4, p-AKT, reduced ROS as well as GSK3β and TAU. Thus, the universal role of vitamin D, E alone and in combinations could be the potential nutritional agents in restoring the sensitivity of neuronal cells towards insulin and delaying the pathophysiological progression of AD.
Collapse
Affiliation(s)
- Amirah Salwani Zaulkffali
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| | - Nurliyana Najwa Md Razip
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| | - Sharifah Sakinah Syed Alwi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| | - Afifah Abd Jalil
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| | - Mohd Sokhini Abd Mutalib
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| | - Banulata Gopalsamy
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| | - Sui Kiat Chang
- Department of Nutrition and Dietetics, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia.
| | - Zaida Zainal
- Nutrition Unit, Product Development and Advisory Services Division, Malaysian Palm Oil Board, Bandar Baru Bangi 43000, Malaysia.
| | - Nafissa Nadia Ibrahim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| | - Zainul Amiruddin Zakaria
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| | - Huzwah Khaza'ai
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| |
Collapse
|
15
|
Du XX, Tao X, Liang S, Che JY, Yang S, Li H, Chen JG, Wang CM. Hypoglycemic Effect of Acidic Polysaccharide from Schisandra chinensis on T2D Rats Induced by High-Fat Diet Combined with STZ. Biol Pharm Bull 2019; 42:1275-1281. [DOI: 10.1248/bpb.b18-00915] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xing-Xu Du
- Department of Endocrinology, Affiliated Hospital, Beihua University
| | - Xue Tao
- Department of Pharmacology, College of Pharmacy, Beihua University
| | - Shuang Liang
- Department of Pharmacology, College of Pharmacy, Beihua University
| | - Jin-Ying Che
- Department of Pharmacology, College of Pharmacy, Beihua University
| | - Shuo Yang
- Department of Pharmacology, College of Pharmacy, Beihua University
| | - He Li
- Department of Pharmacology, College of Pharmacy, Beihua University
| | - Jian-Guang Chen
- Department of Pharmacology, College of Pharmacy, Beihua University
| | - Chun-Mei Wang
- Department of Pharmacology, College of Pharmacy, Beihua University
| |
Collapse
|
16
|
Kitano S, Kondo T, Matsuyama R, Ono K, Goto R, Takaki Y, Hanatani S, Sakaguchi M, Igata M, Kawashima J, Motoshima H, Matsumura T, Kai H, Araki E. Impact of hepatic HSP72 on insulin signaling. Am J Physiol Endocrinol Metab 2019; 316:E305-E318. [PMID: 30532989 DOI: 10.1152/ajpendo.00215.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Heat shock protein 72 (HSP72) is a major inducible molecule in the heat shock response that enhances intracellular stress tolerance. Decreased expression of HSP72 is observed in type 2 diabetes, which may contribute to the development of insulin resistance and chronic inflammation. We used HSP72 knockout (HSP72-KO) mice to investigate the impact of HSP72 on glucose metabolism and endoplasmic reticulum (ER) stress, particularly in the liver. Under a high-fat diet (HFD) condition, HSP72-KO mice showed glucose intolerance, insulin resistance, impaired insulin secretion, and enhanced hepatic gluconeogenic activity. Furthermore, activity of the c-Jun NH2-terminal kinase (JNK) was increased and insulin signaling suppressed in the liver. Liver-specific expression of HSP72 by lentivirus (lenti) in HFD-fed HSP72-KO mice ameliorated insulin resistance and hepatic gluconeogenic activity. Furthermore, increased adipocyte size and hepatic steatosis induced by the HFD were suppressed in HSP72-KO lenti-HSP72 mice. Increased JNK activity and ER stress upon HFD were suppressed in the liver as well as the white adipose tissue of HSP72-KO lenti-HSP72 mice. Thus, HSP72 KO caused a deterioration in glucose metabolism, hepatic gluconeogenic activity, and β-cell function. Moreover, liver-specific recovery of HSP72 restored glucose homeostasis. Therefore, hepatic HSP72 may play a critical role in the pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- Sayaka Kitano
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Tatsuya Kondo
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Rina Matsuyama
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Kaoru Ono
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Rieko Goto
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Yuki Takaki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Satoko Hanatani
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Masaji Sakaguchi
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Motoyuki Igata
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Junji Kawashima
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Hiroyuki Motoshima
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Takeshi Matsumura
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Faculty of Life Sciences, Global COE "Cell Fate Regulation Research and Education Unit, " Kumamoto University , Kumamoto , Japan
| | - Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University , Kumamoto , Japan
| |
Collapse
|
17
|
GPR120 protects lipotoxicity-induced pancreatic β-cell dysfunction through regulation of PDX1 expression and inhibition of islet inflammation. Clin Sci (Lond) 2019; 133:101-116. [PMID: 30523046 DOI: 10.1042/cs20180836] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 12/23/2022]
Abstract
G-protein coupled receptor 120 (GPR120) has been shown to act as an omega-3 unsaturated fatty acid sensor and is involved in insulin secretion. However, the underlying mechanism in pancreatic β cells remains unclear. To explore the potential link between GPR120 and β-cell function, its agonists docosahexaenoic acid (DHA) and GSK137647A were used in palmitic acid (PA)-induced pancreatic β-cell dysfunction, coupled with GPR120 knockdown (KD) in MIN6 cells and GPR120 knockout (KO) mice to identify the underlying signaling pathways. In vitro and ex vivo treatments of MIN6 cells and islets isolated from wild-type (WT) mice with DHA and GSK137647A restored pancreatic duodenal homeobox-1 (PDX1) expression levels and β-cell function via inhibiting PA-induced elevation of proinflammatory chemokines and activation of nuclear factor κB, c-Jun amino (N)-terminal kinases1/2 and p38MAPK signaling pathways. On the contrary, these GPR120 agonism-mediated protective effects were abolished in GPR120 KD cells and islets isolated from GPR120 KO mice. Furthermore, GPR120 KO mice displayed glucose intolerance and insulin resistance relative to WT littermates, and β-cell functional related genes were decreased while inflammation was exacerbated in islets with increased macrophages in pancreas from GPR120 KO mice. DHA and GSK137647A supplementation ameliorated glucose tolerance and insulin sensitivity, as well as improved Pdx1 expression and islet inflammation in diet-induced obese WT mice, but not in GPR120 KO mice. These findings indicate that GPR120 activation is protective against lipotoxicity-induced pancreatic β-cell dysfunction, via the mediation of PDX1 expression and inhibition of islet inflammation, and that GPR120 activation may serve as a preventative and therapeutic target for obesity and diabetes.
Collapse
|
18
|
Liu L, Du X, Zhang Z, Zhou J. Trigonelline inhibits caspase 3 to protect β cells apoptosis in streptozotocin-induced type 1 diabetic mice. Eur J Pharmacol 2018; 836:115-121. [DOI: 10.1016/j.ejphar.2018.08.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/16/2018] [Accepted: 08/16/2018] [Indexed: 12/20/2022]
|
19
|
Farzaei MH, Bahramsoltani R, Abbasabadi Z, Braidy N, Nabavi SM. Role of green tea catechins in prevention of age-related cognitive decline: Pharmacological targets and clinical perspective. J Cell Physiol 2018; 234:2447-2459. [PMID: 30187490 DOI: 10.1002/jcp.27289] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 08/30/2018] [Indexed: 12/19/2022]
Abstract
Over the past decade, a wide range of scientific investigations have been performed to reveal neuropathological aspects of cognitive disorders; however, only limited therapeutic approaches currently exist. The failures of conventional therapeutic options as well as the predicted dramatic rise in the prevalence of cognitive decline in the coming future show the necessity for novel therapeutic agents. Recently, a wide range of research has focused on pharmacological activities of green tea catechins worldwide. Current investigations have clarified mechanistic effects of the catechins in inflammatory cascades, oxidative damages, different cellular transcription as well as transduction pathway in various body systems. It has been demonstrated that green tea polyphenols prevent age-related neurodegeneration through improvement of endogenous antioxidant defense mechanisms, modulation of neural growth factors, attenuation of neuroinflammatory pathway, and regulation of apoptosis. The catechins exhibited beneficial effects in cellular and animal models of neurodegenerative diseases including Alzheimer's disease, MS, and Parkinson's disease. The present review discusses the current pharmacological targets, which can be involved in the treatment of cognitive decline and addresses the action of catechin derivatives elicited from green tea on the multiple neural targets.
Collapse
Affiliation(s)
- Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roodabeh Bahramsoltani
- Department of Pharmacy in Persian Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Abbasabadi
- Phyto Pharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Long noncoding RNA MALAT1 regulates generation of reactive oxygen species and the insulin responses in male mice. Biochem Pharmacol 2018; 152:94-103. [PMID: 29577871 DOI: 10.1016/j.bcp.2018.03.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/20/2018] [Indexed: 01/17/2023]
Abstract
The metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a long noncoding RNA and its overexpression is associated with the development of many types of malignancy. MALAT1 null mice show no overt phenotype. However, in transcriptome analysis of MALAT1 null mice we found significant upregulation of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) regulated antioxidant genes including Nqo1 and Cat with significant reduction in reactive oxygen species (ROS) and greatly reduced ROS-generated protein carbonylation in hepatocyte and islets. We performed lncRNA pulldown assay using biotinylated antisense oligonucleotides against MALAT1 and found MALAT1 interacted with Nrf2, suggesting Nrf2 is transcriptionally regulated by MALAT1. Exposure to excessive ROS has been shown to cause insulin resistance through activation of c-Jun N-terminal kinase (JNK) which leads to inhibition of insulin receptor substrate 1 (IRS-1) and insulin-induced phosphorylation of serine/threonine kinase Akt. We found MALAT1 ablation suppressed JNK activity with concomitant insulin-induced activation of IRS-1 and phosphorylation of Akt suggesting MALAT1 regulated insulin responses. MALAT1 null mice exhibited sensitized insulin-signaling response to fast-refeeding and glucose/insulin challenges and significantly increased insulin secretion in response to glucose challenge in isolated MALAT1 null islets, suggesting an increased insulin sensitivity. In summary, we demonstrate that MALAT1 plays an important role in regulating insulin sensitivity and has the potential as a therapeutic target for the treatment of diabetes as well as other diseases caused by excessive exposure to ROS.
Collapse
|
21
|
Liu L, Fang C, Yang J, Zhang H, Huang Y, Xuan C, Wang Y, Li S, Sha J, Zha M, Guo M. The effect of noise exposure on insulin sensitivity in mice may be mediated by the JNK/IRS1 pathway. Environ Health Prev Med 2018; 23:6. [PMID: 29433422 PMCID: PMC5809884 DOI: 10.1186/s12199-018-0694-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/29/2018] [Indexed: 01/07/2023] Open
Abstract
Background Epidemiological studies have suggested that noise exposure may increase the risk of type 2 diabetes mellitus (T2DM), and experimental studies have demonstrated that noise exposure can induce insulin resistance in rodents. The aim of the present study was to explore noise-induced processes underlying impaired insulin sensitivity in mice. Methods Male ICR mice were randomly divided into four groups: a control group without noise exposure and three noise groups exposed to white noise at a 95-dB sound pressure level for 4 h/day for 1, 10, or 20 days (N1D, N10D, and N20D, respectively). Systemic insulin sensitivity was evaluated at 1 day, 1 week, and 1 month post-noise exposure (1DPN, 1WPN, and 1MPN) via insulin tolerance tests (ITTs). Several insulin-related processes, including the phosphorylation of Akt, IRS1, and JNK in the animals’ skeletal muscles, were examined using standard immunoblots. Biomarkers of inflammation (circulating levels of TNF-α and IL-6) and oxidative stress (SOD and CAT activities and MDA levels in skeletal muscles) were measured via chemical analyses. Results The data obtained in this study showed the following: (1) The impairment of systemic insulin sensitivity was transient in the N1D group but prolonged in the N10D and N20D groups. (2) Noise exposure led to enhanced JNK phosphorylation and IRS1 serine phosphorylation as well as reduced Akt phosphorylation in skeletal muscles in response to exogenous insulin stimulation. (3) Plasma levels of TNF-α and IL-6, CAT activity, and MDA concentrations in skeletal muscles were elevated after 20 days of noise exposure. Conclusions Impaired insulin sensitivity in noise-exposed mice might be mediated by an enhancement of the JNK/IRS1 pathway. Inflammation and oxidative stress might contribute to insulin resistance after chronic noise exposure.
Collapse
Affiliation(s)
- Lijie Liu
- Medical College, Southeast University, No.87, Dingjiaqiao Street, Gulou, Nanjing, China.
| | - Cong Fang
- Institute of Life Sciences, Southeast University, Nanjing, China
| | - Jing Yang
- Institute of Life Sciences, Southeast University, Nanjing, China
| | - Hongyu Zhang
- Institute of Life Sciences, Southeast University, Nanjing, China
| | - Yi Huang
- Institute of Life Sciences, Southeast University, Nanjing, China
| | - Chuanying Xuan
- Institute of Life Sciences, Southeast University, Nanjing, China
| | - Yongfang Wang
- Medical College, Southeast University, No.87, Dingjiaqiao Street, Gulou, Nanjing, China
| | - Shengwei Li
- Medical College, Southeast University, No.87, Dingjiaqiao Street, Gulou, Nanjing, China
| | - Jun Sha
- Medical College, Southeast University, No.87, Dingjiaqiao Street, Gulou, Nanjing, China
| | - Mingming Zha
- Medical College, Southeast University, No.87, Dingjiaqiao Street, Gulou, Nanjing, China
| | - Min Guo
- Medical College, Southeast University, No.87, Dingjiaqiao Street, Gulou, Nanjing, China
| |
Collapse
|
22
|
Abstract
Angiogenesis plays an important role in controlling tissue development and maintaining normal tissue function. Dysregulated angiogenesis is implicated in the pathogenesis of a variety of diseases, particularly diabetes, cancers, and neurodegenerative disorders. As the major regulator of angiogenesis, the vascular endothelial growth factor (VEGF) family is composed of a group of crucial members including VEGF-B. While the physiological roles of VEGF-B remain debatable, increasing evidence suggests that this protein is able to protect certain type of cells from apoptosis under pathological conditions. More importantly, recent studies reveal that VEGF-B is involved in lipid transport and energy metabolism, implicating this protein in obesity, diabetes and related metabolic complications. This article summarizes the current knowledge and understanding of VEGF-B in physiology and pathology, and shed light on the therapeutic potential of this crucial protein.
Collapse
Affiliation(s)
- Hongyu Zhu
- a State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University , Nanjing , China
| | - Mingming Gao
- b Department of Pharmaceutical and Biomedical Sciences , University of Georgia , Athens , GA , USA
| | - Xiangdong Gao
- a State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University , Nanjing , China
| | - Yue Tong
- a State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University , Nanjing , China
| |
Collapse
|
23
|
Abo El Gheit R, Emam MN. Targeting heme oxygenase-1 in early diabetic nephropathy in streptozotocin-induced diabetic rats. Physiol Int 2017; 103:413-427. [PMID: 28229631 DOI: 10.1556/2060.103.2016.4.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Diabetic nephropathy (DN) is one of the most common microvascular diabetic complications. This study was designed to evaluate the possible protective effect and underlying mechanisms of HO-1 induction in streptozotocin (STZ)-induced early DN in rats. The diabetic rats were divided into three groups: STZ-diabetic, cobalt protoporphyrin (CoPP)-treated diabetic, and zinc protoporphyrin IX (ZnPP)-treated diabetic groups. Compared to the STZ-diabetic group, CoPP-induced HO-1 upregulation improved the diabetic state and renal functional parameters, suppressed the renal proinflammatory marker, NF-κB, abrogated the elevated renal hydroxyprolin, and decreased the enhanced renal nicotinamide adenine dinucleotide phosphate oxidase activity with parallel reduction of urinary oxidative stress markers. On the contrary, treatment with ZnPP abrogated HO-1 levels, aggravated the diabetic condition with further increases in renal oxidative stress, fibrotic and inflammatory markers, and exacerbated renal dysfunction in diabetic animals. These findings suggest that the reduced diabetic renal injury upon HO-1 induction implicates the role of HO-1 induction as a potential treatment for DN.
Collapse
Affiliation(s)
- R Abo El Gheit
- 1 Physiology Department, Faculty of Medicine, Tanta University , Tanta, Egypt
| | - M N Emam
- 1 Physiology Department, Faculty of Medicine, Tanta University , Tanta, Egypt
| |
Collapse
|
24
|
Bilal HM, Riaz F, Munir K, Saqib A, Sarwar MR. Histological changes in the liver of diabetic rats: A review of pathogenesis of nonalcoholic fatty liver disease in type 1 diabetes mellitus. COGENT MEDICINE 2017. [DOI: 10.1080/2331205x.2016.1275415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
| | - Fatima Riaz
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Kiran Munir
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Anum Saqib
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Rehan Sarwar
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- Akhtar Saeed College of Pharmaceutical Sciences, Lahore, Pakistan
| |
Collapse
|
25
|
A novel role for small molecule glycomimetics in the protection against lipid-induced endothelial dysfunction: Involvement of Akt/eNOS and Nrf2/ARE signaling. Biochim Biophys Acta Gen Subj 2017; 1861:3311-3322. [DOI: 10.1016/j.bbagen.2016.08.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/20/2016] [Accepted: 08/19/2016] [Indexed: 02/07/2023]
|
26
|
Park MH, Ju JW, Kim M, Han JS. The protective effect of daidzein on high glucose-induced oxidative stress in human umbilical vein endothelial cells. ACTA ACUST UNITED AC 2016; 71:21-8. [PMID: 26756092 DOI: 10.1515/znc-2015-0141] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 12/03/2015] [Indexed: 12/23/2022]
Abstract
Endothelial cell dysfunction is considered a major cause of vascular complications in diabetes. In the present study, we investigated the protective effect of daidzein, a natural isoflavonoid, against high-glucose-induced oxidative damage in human umbilical vein endothelial cells (HUVECs). Treatment with a high concentration of glucose (30 mM) induced oxidative stress in the endothelial cells, against which daidzein protected the cells as demonstrated by significantly increased cell viability. In addition, lipid peroxidation, intracellular reactive oxygen species (ROS) generation, and indirect nitric oxide levels induced by the high glucose treatment were significantly reduced in the presence of daidzein (0.02-0.1 mM) in a dose-dependent manner. High glucose levels induced the overexpression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and NF-κB proteins in HUVECs, which was suppressed by treatment with 0.04 mM daidzein. These findings indicate the potential of daidzein to reduce high glucose-induced oxidative stress.
Collapse
|
27
|
Zhang R, Chen J, Jiang X, Yin L, Zhang X. Antioxidant and hypoglycaemic effects of tilapia skin collagen peptide in mice. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13193] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ruilin Zhang
- College of Food Science and Engineering; South China University of Technology; Guangzhou China
- Era (China) Company Ltd; Shenzhen China
| | - Jian Chen
- College of Food Science and Engineering; South China University of Technology; Guangzhou China
| | | | | | - Xuewu Zhang
- College of Food Science and Engineering; South China University of Technology; Guangzhou China
| |
Collapse
|
28
|
Meyerovich K, Ortis F, Allagnat F, Cardozo AK. Endoplasmic reticulum stress and the unfolded protein response in pancreatic islet inflammation. J Mol Endocrinol 2016; 57:R1-R17. [PMID: 27067637 DOI: 10.1530/jme-15-0306] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 04/11/2016] [Indexed: 12/13/2022]
Abstract
Insulin-secreting pancreatic β-cells are extremely dependent on their endoplasmic reticulum (ER) to cope with the oscillatory requirement of secreted insulin to maintain normoglycemia. Insulin translation and folding rely greatly on the unfolded protein response (UPR), an array of three main signaling pathways designed to maintain ER homeostasis and limit ER stress. However, prolonged or excessive UPR activation triggers alternative molecular pathways that can lead to β-cell dysfunction and apoptosis. An increasing number of studies suggest a role of these pro-apoptotic UPR pathways in the downfall of β-cells observed in diabetic patients. Particularly, the past few years highlighted a cross talk between the UPR and inflammation in the context of both type 1 (T1D) and type 2 diabetes (T2D). In this article, we describe the recent advances in research regarding the interplay between ER stress, the UPR, and inflammation in the context of β-cell apoptosis leading to diabetes.
Collapse
Affiliation(s)
- Kira Meyerovich
- ULB Center for Diabetes ResearchUniversité Libre de Bruxelles (ULB), Brussels, Belgium
| | - Fernanda Ortis
- Department of Cell and Developmental BiologyUniversidade de São Paulo, São Paulo, Brazil
| | - Florent Allagnat
- Department of Vascular SurgeryCentre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Alessandra K Cardozo
- ULB Center for Diabetes ResearchUniversité Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
29
|
Abuelo A, Alves-Nores V, Hernandez J, Muiño R, Benedito JL, Castillo C. Effect of Parenteral Antioxidant Supplementation During the Dry Period on Postpartum Glucose Tolerance in Dairy Cows. J Vet Intern Med 2016; 30:892-8. [PMID: 26971714 PMCID: PMC4913581 DOI: 10.1111/jvim.13922] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/10/2016] [Accepted: 02/18/2016] [Indexed: 12/20/2022] Open
Abstract
Background Exacerbated postparturient insulin resistance (IR) has been associated with several pathologic conditions in dairy cattle. Oxidative stress (OS) plays a causative role in IR in humans, and an association, but not direct relationship, between OS and IR recently has been reported in transition dairy cattle. Hypothesis Supplementation with antioxidants shortly before calving improves glucose tolerance after parturition in dairy cattle. Animals Ten late‐pregnant Holstein cows entering their 2nd to 5th lactation. Methods Randomized placebo‐controlled trial: 15 ± 2 days before expected calving, the treatment group received an injection of DL‐alpha‐tocopheryl acetate at a dosage of 6 mg/kg body weight (BW) and 0.06 mg/kg BW of sodium selenite, and the control group was injected with isotonic saline. During the first week after calving, both groups underwent glucose tolerance testing (0.25 g glucose/kg BW). Commercial assays were used to quantify the concentrations of glucose, insulin, nonesterified fatty acids (NEFA), beta‐hydroxybutyrate, and markers of redox status in blood. Data were analyzed using the Mann–Whitney U‐test (α = 0.05). Results Supplemented cows showed a lower risk for OS, as reflected by a lower OS index (P = .036), different areas under the curve for the concentrations of glucose (P < .01), insulin (P = .043), and NEFA (P = .041), more rapid elimination rates (P = .080, <.01 and .047 respectively), and shorter half‐lives (P = .040, <.01 and .032) of these metabolites. Conclusions and Clinical Importance Supplementation with antioxidants before calving resulted in greater insulin sensitivity after calving, thereby suggesting the role of OS in the development of IR in cattle and the potential benefits of antioxidant supplementation in minimizing the consequences of negative energy balance.
Collapse
Affiliation(s)
- A Abuelo
- Department of Animal Pathology, College of Veterinary Medicine, Universidade de Santiago de Compostela, Lugo, Spain.,Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), School of Animal and Veterinary Sciences, Wagga Wagga, NSW, Australia
| | - V Alves-Nores
- Department of Animal Pathology, College of Veterinary Medicine, Universidade de Santiago de Compostela, Lugo, Spain.,Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), School of Animal and Veterinary Sciences, Wagga Wagga, NSW, Australia
| | - J Hernandez
- Department of Animal Pathology, College of Veterinary Medicine, Universidade de Santiago de Compostela, Lugo, Spain
| | - R Muiño
- Centro Veterinario de Meira, Meira, Spain
| | - J L Benedito
- Department of Animal Pathology, College of Veterinary Medicine, Universidade de Santiago de Compostela, Lugo, Spain
| | - C Castillo
- Department of Animal Pathology, College of Veterinary Medicine, Universidade de Santiago de Compostela, Lugo, Spain
| |
Collapse
|
30
|
Liu X, Li L, Li J, Cheng Y, Chen J, Shen M, Zhang S, Wei H. Insulin resistance contributes to multidrug resistance in HepG2 cells via activation of the PERK signaling pathway and upregulation of Bcl-2 and P-gp. Oncol Rep 2016; 35:3018-24. [PMID: 26935266 DOI: 10.3892/or.2016.4632] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 01/11/2016] [Indexed: 11/06/2022] Open
Abstract
Liver tumorigenesis frequently causes insulin resistance which may be used as an independent risk factor for evaluation of survival and post-surgery relapse of liver cancer patients. In the present study, HepG2/IR, an insulin resistant HepG2 cell line, was established by exposing HepG2 cells to 0.5 µmol/l of insulin for 72 h, and comparison of HepG2/IR with the parental HepG2 cells indicated that the HepG2/IR cells showed significantly enhanced resistance to the most frequently used chemotherapeutics for solid tumors, such as cisplatin, 5-fluorouracil, vincristine and mitomycin. Flow cytometric analysis of cisplatin-treated HepG2/IR cells showed a significantly decreased hypodiploid peak and a significantly downregulated expression level of pro-apoptotic protein caspase-3 compared with the parental HepG2 cells. Our data further showed swollen endoplasmic reticulum (ER) in the cisplatin-treated HepG2/IR cells with significantly increased levels of glucose-regulated protein 78 (GRP78), phosphorylated protein kinase R-like ER kinase (p-PERK) and P-glycoprotein (P-gp). There was also an upregulated expression of anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) whereas no significant change was observed for CCAAT-enhancer-binding protein homologous protein (CHOP), which is known to be induced by ER stress and to mediate apoptosis. Our results demonstrated that insulin resistance in HepG2 cells promoted a protective unfolded protein response and upregulated the expression of ER chaperone protein GRP78, which resulted in the phosphorylation of PERK kinase to activate the PERK-mediated ER stress signal transduction pathway and the upregulation of Bcl-2 and P-gp, leading to the inhibition of the caspase-3-dependent apoptosis pathway and to the survival of liver tumor cells.
Collapse
Affiliation(s)
- Xinyue Liu
- Department of Clinical Laboratory Center, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Linjing Li
- Department of Clinical Laboratory Center, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jing Li
- Department of Clinical Laboratory Center, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yan Cheng
- Experimental Center, Northwest University for Nationalities, Lanzhou, Gansu 730000, P.R. China
| | - Jing Chen
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Minghui Shen
- Department of Clinical Laboratory Center, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Shangdi Zhang
- Department of Clinical Laboratory Center, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Hulai Wei
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
31
|
Abuelo A, Hernández J, Benedito JL, Castillo C. Association of oxidative status and insulin sensitivity in periparturient dairy cattle: an observational study. J Anim Physiol Anim Nutr (Berl) 2015; 100:279-86. [PMID: 26174108 DOI: 10.1111/jpn.12365] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/20/2015] [Indexed: 12/11/2022]
Abstract
Post-parturient insulin resistance (IR) is a common feature in all mammalian animals. However, in dairy cows, it can be exacerbated because of high milk yield, leading to excessive negative energy balance, which is related with increased disease incidence, reduced milk production and worsened reproductive performance. IR has been extensively investigated in humans suffering from diabetes mellitus. In these subjects, it is known that oxidative stress (OS) plays a causative role in the onset of IR. Although OS occurs in transitional dairy cattle, there are yet no studies that investigated the association between IR and OS in dairy cattle. Therefore, the aim of this study was to investigate whether there is a relationship between OS and IR in dairy cattle. Serum samples were taken repeatedly from 22 dairy cows from 2 months prior to the expected calving date to 2 months after calving and were analysed for markers of metabolic and redox balance. Surrogate indices of insulin sensitivity were also calculated. Generalised linear mixed models revealed an effect of the oxidative status on peripheral insulin concentration and on indices of insulin sensitivity. Hence, field trials should investigate the effectiveness of antioxidant therapy on insulin sensitivity in peripheral tissues during the transition period of dairy cattle.
Collapse
Affiliation(s)
- A Abuelo
- Department of Animal Pathology, College of Veterinary Medicine, University of Santiago de Compostela, Lugo, Spain
| | - J Hernández
- Department of Animal Pathology, College of Veterinary Medicine, University of Santiago de Compostela, Lugo, Spain
| | - J L Benedito
- Department of Animal Pathology, College of Veterinary Medicine, University of Santiago de Compostela, Lugo, Spain
| | - C Castillo
- Department of Animal Pathology, College of Veterinary Medicine, University of Santiago de Compostela, Lugo, Spain
| |
Collapse
|
32
|
Lucchesi AN, Cassettari LL, Spadella CT. Alloxan-induced diabetes causes morphological and ultrastructural changes in rat liver that resemble the natural history of chronic fatty liver disease in humans. J Diabetes Res 2015; 2015:494578. [PMID: 25789328 PMCID: PMC4350960 DOI: 10.1155/2015/494578] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/03/2015] [Accepted: 02/03/2015] [Indexed: 12/15/2022] Open
Abstract
PURPOSE This study evaluated the long-term effects of alloxan-induced diabetes in rat liver. METHODS Thirty nondiabetic control rats (NC) and 30 untreated diabetic (UD) rats were divided into three subgroups sacrificed after 6, 14, or 26 weeks. Clinical and laboratory parameters were assessed. Fresh liver weight and its relationship with body weight were obtained, and liver tissue was analyzed. RESULTS UD rats showed sustained hyperglycemia, high glycosylated hemoglobin, and low plasma insulin. High serum levels of AST and ALT were observed in UD rats after 2 weeks, but only ALT remained elevated throughout the experiment. Fresh liver weight was equal between NC and UD rats, but the fresh liver weight/body weight ratio was significantly higher in UD rats after 14 and 26 weeks. UD rats showed liver morphological changes characterized by hepatic sinusoidal enlargement and micro- and macrovesicular hepatocyte fatty degeneration with progressive liver structure loss, steatohepatitis, and periportal fibrosis. Ultrastructural changes of hepatocytes, such as a decrease in the number of intracytoplasmic organelles and degeneration of mitochondria, rough endoplasmic reticulum, and nuclei, were also observed. CONCLUSION Alloxan-induced diabetes triggered liver morphological and ultrastructural changes that closely resembled human disease, ranging from steatosis to steatohepatitis and liver fibrosis.
Collapse
Affiliation(s)
- Amanda Natália Lucchesi
- Graduate Program in General Basis of Surgery, Faculty of Medicine, São Paulo State University (UNESP), 18618-970 Botucatu, SP, Brazil
| | | | - César Tadeu Spadella
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), 18618-970 Botucatu, SP, Brazil
- *César Tadeu Spadella:
| |
Collapse
|
33
|
Bhuvaneswari S, Yogalakshmi B, Sreeja S, Anuradha CV. Astaxanthin reduces hepatic endoplasmic reticulum stress and nuclear factor-κB-mediated inflammation in high fructose and high fat diet-fed mice. Cell Stress Chaperones 2014; 19:183-91. [PMID: 23852435 PMCID: PMC3933623 DOI: 10.1007/s12192-013-0443-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/13/2013] [Accepted: 06/13/2013] [Indexed: 01/14/2023] Open
Abstract
We recently showed that astaxanthin (ASX), a xanthophyll carotenoid, activates phosphatidylinositol 3-kinase pathway of insulin signaling and improves glucose metabolism in liver of high fructose-fat diet (HFFD)-fed mice. The aim of this study is to investigate whether ASX influences phosphorylation of c-Jun-N-terminal kinase 1 (JNK1), reactive oxygen species (ROS) production, endoplasmic reticulum (ER) stress, and inflammation in liver of HFFD-fed mice. Adult male Mus musculus mice were fed either with control diet or HFFD for 15 days. After this period, mice in each group were divided into two and administered ASX (2 mg/kg/day, p.o) in 0.3 ml olive oil or 0.3 ml olive oil alone for the next 45 days. At the end of 60 days, liver tissue was excised and examined for lipid accumulation (Oil red O staining), intracellular ROS production, ER stress, and inflammatory markers. Elevated ROS production, lipid accumulation, and increased hepatic expression of ER stress markers such as Ig-binding protein, PKR-like ER kinase, phosphorylated eukaryotic initiation factor 2α, X-box binding protein 1, activating transcription factor 6, and the apoptotic marker caspase 12 were observed in the liver of the HFFD group. ASX significantly reversed these changes. This reduction was accompanied by reduced activation of JNK1 and I kappa B kinase β phosphorylation and nuclear factor-kappa B p65 nuclear translocation in ASX-treated HFFD mice. These findings suggest that alleviation of inflammation and ER stress by ASX could be a mechanism responsible for its beneficial effect in this model. ASX could be a promising treatment strategy for insulin resistant patients.
Collapse
Affiliation(s)
- Saravanan Bhuvaneswari
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, 608 002 Tamil Nadu India
| | - Baskaran Yogalakshmi
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, 608 002 Tamil Nadu India
| | - S. Sreeja
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, 608 002 Tamil Nadu India
| | - Carani Venkatraman Anuradha
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, 608 002 Tamil Nadu India
| |
Collapse
|
34
|
Free Fatty Acids and Skeletal Muscle Insulin Resistance. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 121:267-92. [DOI: 10.1016/b978-0-12-800101-1.00008-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Kondo T, Sasaki K, Adachi H, Nakayama Y, Hatemura M, Matsuyama R, Tsuruzoe K, Furukawa N, Motoshima H, Morino Koga S, Yamashita Y, Miyamura N, Kai H, Araki E. Heat shock treatment with mild electrical stimulation safely reduced inflammatory markers in healthy male subjects. Obes Res Clin Pract 2013; 4:e83-e162. [PMID: 24345648 DOI: 10.1016/j.orcp.2009.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 09/24/2009] [Accepted: 09/25/2009] [Indexed: 12/31/2022]
Abstract
SUMMARY OBJECTIVE Obesity induces chronic inflammation, which contributes to the development and progression of insulin resistance, diabetes and atherosclerosis. We have recently shown that induction of heat shock protein 72 by mild electric current and thermo (MET) treatment in mouse model of type 2 diabetes ameliorated glucose homeostasis and insulin resistance accompanied by reduced adiposity. For clinical application of MET, we confirmed its safety in healthy subjects. METHODS MET was applied for 10 healthy Japanese male (12 V, 55 pulses/s, 30 min at 42 °C) twice a week for 8 weeks. Fat volume was measured by CT scan and several parameters were investigated. RESULTS MET did not induce any adverse effects nor muscle contraction/pain. There were no significant alterations in glucose homeostasis or insulin resistance. Visceral and subcutaneous fat volume showed a trend of decrease without significant difference (-3.9% and -4.3%, respectively), which were restored 8 weeks after withdrawal of MET. Interestingly, serum tumor necrosis factor-α (TNF-α: 0.91 ± 0.05 pg/mL vs. 0.67 ± 0.06 pg/mL; p = 0.006) and high sensitivity C-reactive protein (hs-CRP: 521.9 ± 73.9 ng/mL vs. 270.8 ± 43.7 ng/mL; p = 0.023) levels, both of which are associated with chronic inflammation, were significantly decreased. CONCLUSION MET may be beneficial for the reduction of an inflammatory response observed in diabetes and metabolic syndrome.
Collapse
Affiliation(s)
- Tatsuya Kondo
- Department of Metabolic Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Kazunari Sasaki
- Department of Metabolic Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Hironori Adachi
- Department of Metabolic Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Yoshiharu Nakayama
- Department of Metabolic Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Masahiro Hatemura
- Department of Metabolic Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Rina Matsuyama
- Department of Metabolic Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Kaku Tsuruzoe
- Department of Metabolic Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Noboru Furukawa
- Department of Metabolic Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Hiroyuki Motoshima
- Department of Metabolic Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Saori Morino Koga
- Department of Metabolic Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Yasuyuki Yamashita
- Department of Metabolic Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Nobuhiro Miyamura
- Department of Metabolic Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Hirofumi Kai
- Department of Metabolic Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Eiichi Araki
- Department of Metabolic Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan.
| |
Collapse
|
36
|
Ndisang JF, Jadhav A. Hemin therapy suppresses inflammation and retroperitoneal adipocyte hypertrophy to improve glucose metabolism in obese rats co-morbid with insulin-resistant type-2 diabetes. Diabetes Obes Metab 2013; 15:1029-39. [PMID: 23731386 DOI: 10.1111/dom.12130] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 01/12/2013] [Accepted: 05/08/2013] [Indexed: 12/22/2022]
Abstract
AIM Visceral adiposity and impaired glucose metabolism are common patho-physiological features in patients co-morbid with obesity and type-2 diabetes. We investigated the effects of the heme-oxygenase (HO) inducer hemin and the HO blocker stannous-mesoporphyrin (SnMP) on glucose metabolism, adipocyte hypertrophy and pro-inflammatory cytokines/mediators in Zucker diabetic fatty (ZDF) rats, a model characterized by obesity and type-2 diabetes. METHODS Histological, morphological/morphometrical, Western immunoblotting, enzyme immunoassay, ELISA and spectrophotometric analysis were used. RESULTS Treatment with hemin enhanced HO-1, HO activity and cGMP, but suppressed retroperitoneal adiposity and abated the elevated levels of macrophage-chemoattractant protein-1 (MCP-1), ICAM-1, tumour necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), IL-1β, NF-κB, c-Jun-NH2-terminal-kinase (JNK) and activating-protein (AP-1), with parallel reduction of adipocyte hypertrophy. Correspondingly, important proteins of lipid metabolism and insulin-signalling such as lipoprotein lipase (LPL), insulin-receptor substrate-1 (IRS-1), GLUT4, PKB/Akt, adiponectin, the insulin-sensitizing and anti-inflammatory protein and adenosine-monophosphate-activated protein kinase (AMPK) were significantly enhanced in hemin-treated ZDF rats. CONCLUSION Elevated retroperitoneal adiposity and the high levels of MCP-1, ICAM-1, TNF-α, IL-6, IL-1β, NF-κB, JNK and AP-1 in untreated ZDF are patho-physiological factors that exacerbate inflammatory insults, aggravate adipocyte hypertrophy, with corresponding reduction of adiponectin and deregulation of insulin-signalling and lipid metabolism. Therefore, the suppression of MCP-1, ICAM-1, TNF-α, IL-6, IL-1β, NF-κB, JNK, AP-1 and adipocyte hypertrophy, with the associated enhancement of LPL, adiponectin, AMPK, IRS-1, GLUT4, PKB/Akt and cGMP in hemin-treated ZDF are among the multifaceted mechanisms by which the HO system combats inflammation to potentiate insulin signalling and improve glucose and lipid metabolism. Thus, HO inducers may be explored in the search of novel remedies against the co-morbidities of obesity, dysfunctional lipid metabolism and impaired glucose metabolism.
Collapse
Affiliation(s)
- J F Ndisang
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | |
Collapse
|
37
|
Chang XH, Liang LN, Zhan LB, Lu XG, Shi X, Qi X, Feng ZL, Wu MJ, Sui H, Zheng LP, Zhang FL, Sun J, Bai CC, Li N, Han GZ. The effect of Chinese Jinzhida recipe on the hippocampus in a rat model of diabetes-associated cognitive decline. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:161. [PMID: 23829668 PMCID: PMC3735391 DOI: 10.1186/1472-6882-13-161] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 07/04/2013] [Indexed: 12/20/2022]
Abstract
Background To investigate the effects of treatment with Multi component Chinese Medicine Jinzhida (JZD) on behavioral deficits in diabetes-associated cognitive decline (DACD) rats and verify our hypothesis that JZD treatment improves cognitive function by suppressing the endoplasmic reticulum stress (ERS) and improving insulin signaling transduction in the rats’ hippocampus. Methods A rat model of type 2 diabetes mellitus (T2DM) was established using high fat diet and streptozotocin (30 mg/kg, ip). Insulin sensitivity was evaluated by the oral glucose tolerance test and the insulin tolerance test. After 7 weeks, the T2DM rats were treated with JZD. The step-down test and Morris water maze were used to evaluate behavior in T2DM rats after 5 weeks of treatment with JZD. Levels of phosphorylated proteins involved in the ERS and in insulin signaling transduction pathways were assessed by Western blot for T2DM rats’ hippocampus. Results Compared to healthy control rats, T2DM rats initially showed insulin resistance and had declines in acquisition and retrieval processes in the step-down test and in spatial memory in the Morris water maze after 12 weeks. Performance on both the step-down test and Morris water maze tasks improved after JZD treatment. In T2DM rats, the ERS was activated, and then inhibited the insulin signal transduction pathways through the Jun NH2-terminal kinases (JNK) mediated. JZD treatment suppressed the ERS, increased insulin signal transduction, and improved insulin resistance in the rats’ hippocampus. Conclusions Treatment with JZD improved cognitive function in the T2DM rat model. The possible mechanism for DACD was related with ERS inducing the insulin signal transduction dysfunction in T2DM rats’ hippocampus. The JZD could reduce ERS and improve insulin signal transduction and insulin resistance in T2DM rats’ hippocampus and as a result improved the cognitive function.
Collapse
|
38
|
Lucchesi AN, Freitas NTD, Cassettari LL, Marques SFG, Spadella CT. Diabetes mellitus triggers oxidative stress in the liver of alloxan-treated rats: a mechanism for diabetic chronic liver disease. Acta Cir Bras 2013; 28:502-8. [DOI: 10.1590/s0102-86502013000700005] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/24/2013] [Indexed: 01/05/2023] Open
|
39
|
Jadhav A, Tiwari S, Lee P, Ndisang JF. The heme oxygenase system selectively enhances the anti-inflammatory macrophage-M2 phenotype, reduces pericardial adiposity, and ameliorated cardiac injury in diabetic cardiomyopathy in Zucker diabetic fatty rats. J Pharmacol Exp Ther 2013; 345:239-49. [PMID: 23442249 DOI: 10.1124/jpet.112.200808] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac function is adversely affected by pericardial adiposity. We investigated the effects of the heme oxygenase (HO) inducer, hemin on pericardial adiposity, macrophage polarization, and diabetic cardiopathy in Zucker diabetic fatty rats (ZDFs) with use of echocardiographic, quantitative real-time polymerase chain reaction, Western immunoblotting, enzyme immunoassay, and spectrophotometric analysis. In ZDFs, hemin administration increased HO activity; normalized glycemia; potentiated insulin signaling by enhancing insulin receptor substrate 1(IRS-1), phosphatidylinositol-3-kinase (PI3K), and protein kinase B (PKB)/Akt; suppressed pericardial adiposity, cardiac hypertrophy, and left ventricular longitudinal muscle fiber thickness, a pathophysiological feature of cardiomyocyte hypertrophy; and correspondingly reduced systolic blood pressure, total peripheral resistance, and pro-inflammatory/oxidative mediators, including nuclear factor κB (NF-κB), cJNK, c-Jun-N-terminal kinase (cJNK), endothelin (ET-1), tumor necrosis factor α (TNF-α), interleukin (IL)-6, IL-1β, activating protein 1 (AP-1), and 8-isoprostane, whereas the HO inhibitor, stannous mesoporphyrin, nullified the effects. Furthermore, hemin reduced the pro-inflammatory macrophage M1 phenotype, but enhanced the M2 phenotype that dampens inflammation. Because NF-κB activates TNFα, IL-6, and IL-1β and TNF-α, cJNK, and AP-1 impair insulin signaling, the high levels of these cytokines in obesity/diabetes would create a vicious cycle that, together with 8-isoprostane and ET-1, exacerbates cardiac injury, compromising cardiac function. Therefore, the concomitant reduction of pro-inflammatory cytokines and macrophage infiltration coupled to increased expressions of IRS-1, PI3K, and PKB may account for enhanced glucose metabolism and amelioration of cardiac injury and function in diabetic cardiomyopathy. The hemin-induced preferential polarization of macrophages toward anti-inflammatory macrophage M2 phenotype in cardiac tissue with concomitant suppression of pericardial adiposity in ZDFs are novel findings. These data unveil the benefits of hemin against pericardial adiposity, impaired insulin signaling, and diabetic cardiomyopathy and suggest that its multifaceted protective mechanisms include the suppression of inflammatory/oxidative mediators.
Collapse
Affiliation(s)
- Ashok Jadhav
- Department of Physiology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, Canada
| | | | | | | |
Collapse
|
40
|
Belaïd-Nouira Y, Bakhta H, Haouas Z, Flehi-Slim I, Neffati F, Najjar MF, Cheikh HB. Fenugreek seeds, a hepatoprotector forage crop against chronic AlCl3 toxicity. BMC Vet Res 2013; 9:22. [PMID: 23363543 PMCID: PMC3568417 DOI: 10.1186/1746-6148-9-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/25/2013] [Indexed: 12/26/2022] Open
Abstract
Background Having considered how bioavailable aluminium (Al) may affect ecological systems and animals living there, especially cattle, and in search for a preventive dietary treatment against Al toxicity, we aimed to test the protective role of fenugreek seeds against chronic liver injury induced by aluminum chloride (AlCl3) in Wistar rats. Results Five months of AlCl3 oral exposure (500 mg/kg bw i.g for one month then 1600 ppm via drinking water) caused liver atrophy, an inhibition of aspartate transaminase (AST), alanine transaminase (ALT) and glutamyl transpeptidase (GGT), an enhancement of both lipid peroxidation and lactate dehydrogenase (LDH) activity and an increase of total protein level in liver. Moreover, histopathological and histochemical examinations revealed moderate alterations in the hepatic parenchyma in addition to a disrupted iron metabolism. Co-administration of fenugreek seed powder (FSP) at 5% in pellet diet during two months succeeded to antagonize the harmful effects of AlCl3 by restoring all tested parameters. Conclusion This study highlighted the hepatotoxicity of AlCl3 through biochemical and histological parameters in one hand and the hepatoprotective role of fenugreek seeds on the other hand. Thus this work could be a pilot study which will encourage farmers to use fenugreek seeds as a detoxifying diet supplement for domestic animals.
Collapse
Affiliation(s)
- Yosra Belaïd-Nouira
- Laboratory of Histology and Cytogenetic (Research unit of Genetic 02/UR/08-03), Faculty of Medicine, Avenue Ibnou Sina 5000, Monastir, Tunisia.
| | | | | | | | | | | | | |
Collapse
|
41
|
Meng Z, Bao X, Zhang M, Wei S, Chang W, Li J, Chen L, Nyomba BLG. Alteration of 11β-hydroxysteroid dehydrogenase type 1 and glucocorticoid receptor by ethanol in rat liver and mouse hepatoma cells. J Diabetes Res 2013; 2013:218102. [PMID: 23819126 PMCID: PMC3683472 DOI: 10.1155/2013/218102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/07/2013] [Indexed: 12/27/2022] Open
Abstract
Alcohol is a potential risk factor of type 2 diabetes, but its underlying mechanism is unclear. To explore this issue, Wistar rats and mouse hepatoma cells (Hepa 1-6) were exposed to ethanol, 8 g·kg(-1) ·d(-1) for 3 months and 100 mM for 48 h, respectively. Glucose and insulin tolerance tests in vivo were performed, and protein levels of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) and glucocorticoid receptor (GR) in liver and Hepa 1-6 cells were measured. Alterations of key enzymes of gluconeogenesis phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6 phosphatase (G6Pase), as well as glycogen synthase kinase 3a (GSK3 α ), were also examined. The results revealed that glucose levels were increased, and insulin sensitivity was impaired accompanied with liver injury in rats exposed to ethanol compared with controls. The 11β-HSD1, GR, PEPCK, G6Pase, and GSK3 α proteins were increased in the liver of rats treated with ethanol compared with controls. Ethanol-exposed Hepa 1-6 cells also showed higher expression of 11β-HSD1, GR, PEPCK, G6Pase, and GSK3 α proteins than control cells. After treatment of Hepa 1-6 cells exposed to ethanol with the GR inhibitor RU486, the expression of 11β-HSD1 and GR was significantly decreased. At the same time the increases in PEPCK, G6Pase, and GSK3 α levels induced by ethanol in Hepa 1-6 cells were also attenuated by RU486. The results indicate that ethanol causes glucose intolerance by increasing hepatic expression of 11β-HSD1 and GR, which leads to increased expression of gluconeogenic and glycogenolytic enzymes.
Collapse
Affiliation(s)
- Zhaojie Meng
- Department of Pharmacology, School of Norman Bethune Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Xueying Bao
- The 208th Hospital of the Chinese People's Liberation Amry, Changchun, Jilin 130062, China
| | - Ming Zhang
- Department of Pharmacology, School of Norman Bethune Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Shengnan Wei
- Department of Pharmacology, School of Norman Bethune Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Wenguang Chang
- Department of Pharmacology, School of Norman Bethune Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Jing Li
- Department of Pharmacology, School of Norman Bethune Medical Sciences, Jilin University, Changchun, Jilin 130021, China
- *Jing Li:
| | - Li Chen
- Department of Pharmacology, School of Norman Bethune Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - B. L. Grégoire Nyomba
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada R3E3P4
| |
Collapse
|
42
|
Jadhav A, Ndisang JF. Treatment with heme arginate alleviates adipose tissue inflammation and improves insulin sensitivity and glucose metabolism in a rat model of Human primary aldosteronism. Free Radic Biol Med 2012; 53:2277-86. [PMID: 23089228 DOI: 10.1016/j.freeradbiomed.2012.10.529] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 09/13/2012] [Accepted: 10/08/2012] [Indexed: 12/21/2022]
Abstract
Visceral adiposity and insulin resistance are common pathophysiological denominators in patients with primary aldosteronism. Although we recently reported the antidiabetic effects of heme oxygenase (HO), no study has examined the effects of upregulating HO on visceral adiposity in uninephrectomized (UnX) deoxycorticosterone acetate (DOCA-salt) hypertensive rats, a model of human primary aldosteronism characterized by elevated endothelin (ET-1) and oxidative/inflammatory events. Here, we report the effects of the HO inducer heme arginate and the HO blocker chromium mesoporphyrin (CrMP) on visceral adipose tissue obtained from retroperitoneal fat pads of UnX DOCA-salt rats. UnX DOCA-salt rats were hypertensive but normoglycemic. Heme arginate reduced visceral adiposity and enhanced HO activity and cGMP in the adipose tissue, but suppressed ET-1, nuclear-factor κB (NF-κB), activating-protein (AP-1), c-Jun-NH2-terminal kinase (JNK), macrophage chemoattractant protein-1 (MCP-1), intercellular adhesion molecule-1 (ICAM-1), and 8-isoprostane. These were associated with reduced glycemia, increased insulin, and the insulin-sensitizing protein adiponectin, with corresponding reduction in insulin resistance. In contrast, the HO inhibitor, CrMP, abolished the effects of heme arginate, aggravating insulin resistance, suggesting a role for the HO system in insulin signaling. Importantly, the effects of the HO system on ET-1, NF-κB, AP-1, JNK, MCP-1, and ICAM-1 in visceral or retroperitoneal adiposity in UnX-DOCA-salt rats have not been reported. Because 8-isoprostane stimulates ET-1 to enhance oxidative insults, and increased oxidative events deplete adiponectin and insulin levels, the suppression of oxidative/inflammatory mediators such as 8-isoprostane, NF-κB, AP-1, MCP-1, ICAM-1, and JNK, an inhibitor of insulin biosynthesis, may account for the potentiation of insulin signaling/glucose metabolism by heme arginate. These data indicate that although UnX DOCA-salt rats were normoglycemic, insulin signaling was impaired, suggesting that dysfunctional insulin signaling may be a forerunner to overt diabetes in primary aldosteronism.
Collapse
Affiliation(s)
- Ashok Jadhav
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E5
| | | |
Collapse
|
43
|
Wu YJ, Fang ZH, Zheng SG, Wu YB, Fan AH. [Effects of Chinese herbal medicine Danzhi Jiangtang Capsule and exercise on JNK signaling pathway in pancreatic tissues of diabetic rats]. ACTA ACUST UNITED AC 2012; 10:1279-85. [PMID: 23158947 DOI: 10.3736/jcim20121112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To explore the effects of exercise and Danzhi Jiangtang Capsule (DJC), a compound traditional herbal medicine, on the JNK signaling pathway in pancreatic tissues of diabetic rats and to investigate the possible mechanisms of exercise and DJC in treating diabetes. METHODS Seventy-eight male Wistar rats were injected with low dose of streptozotocin and fed a high-fat diet to establish a diabetic model in rats. Then 60 diabetic rats were divided into diabetes group, exercise group, DJC group and exercise combined with DJC group. Another twelve rats were used as normal control. After eight months of treatment, the expression levels of phosphor-c-Jun N-terminal kinase (p-JNK), pancreatic and duodenal homeobox-1 (PDX-1), and insulin protein in pancreatic tissues from rats were detected by immunohistochemical method and Western blotting. RESULTS In pancreatic tissues of diabetes group, the expression level of p-JNK protein was significantly higher than that in the normal group (P<0.01), and the expression levels of PDX-1 and insulin protein were significantly decreased (P<0.01). After administration of exercise and DJC, the expression level of p-JNK protein in pancreatic tissues of the diabetes group was decreased significantly, while the expression levels of PDX-1 and insulin protein were increased significantly (P<0.05 or P<0.01). CONCLUSION Exercise and DJC effectively protect isletβ-cell function in diabetic rats, which might be due to a decreased JNK signaling pathway.
Collapse
Affiliation(s)
- Yuan-jie Wu
- Department of Basic Theory of Traditional Chinese Medicine, Anhui College of Traditional Chinese Medicine, Anhui Province, China.
| | | | | | | | | |
Collapse
|
44
|
Ding Y, Dai X, Jiang Y, Zhang Z, Bao L, Li Y, Zhang F, Ma X, Cai X, Jing L, Gu J, Li Y. Grape seed proanthocyanidin extracts alleviate oxidative stress and ER stress in skeletal muscle of low-dose streptozotocin- and high-carbohydrate/high-fat diet-induced diabetic rats. Mol Nutr Food Res 2012; 57:365-9. [PMID: 23161660 DOI: 10.1002/mnfr.201200463] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/06/2012] [Accepted: 09/25/2012] [Indexed: 11/07/2022]
Abstract
Although ER stress in pancreas, liver, and adipose tissue was reported to be a novel event linked to the pathogenesis of type 2 diabetes mellitus, there is much less information on this event in skeletal muscle. Some studies indicated that treatment with antioxidants had beneficial effects on ER stress and diabetes. This study focuses on the effects of a strong antioxidant, grape seed proanthocyanidin extracts (GSPE), on skeletal muscle in diabetic rats induced with low dose streptozotocin- and a high-carbohydrate/high-fat diet. After 16 wk of GSPE treatment, diabetic rats showed decreased plasma glucose levels and insulin resistance. The efficacious effect of GSPE was manifested by the amelioration of muscular damage and dysfunction, as observed by histological examination and periodic acid Schiff staining. Concurrently, calcium overload and the abnormal activities of antioxidant enzymes and ATPases in diabetic muscles were partially reversed by GSPE treatment. GSPE also increased the activity of protein kinase B (a mediator of insulin's metabolic action) and partially alleviated severe ER stress. These findings suggest that GSPE may have auxiliary therapeutic potential for type 2 diabetes mellitus by decreasing oxidative stress and ER stress in skeletal muscle.
Collapse
Affiliation(s)
- Ye Ding
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, P R China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Molecular targets related to inflammation and insulin resistance and potential interventions. J Biomed Biotechnol 2012; 2012:379024. [PMID: 23049242 PMCID: PMC3463198 DOI: 10.1155/2012/379024] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/13/2012] [Accepted: 09/13/2012] [Indexed: 12/18/2022] Open
Abstract
Inflammation and insulin resistance are common in several chronic diseases, such as obesity, type 2 diabetes mellitus, metabolic syndrome, cancer, and cardiovascular diseases. Various studies show a relationship between these two factors, although the mechanisms involved are not completely understood yet. Here, we discuss the molecular basis of insulin resistance and inflammation and the molecular aspects on inflammatory pathways interfering in insulin action. Moreover, we explore interventions based on molecular targets for preventing or treating correlated disorders, advances for a better characterization, and understanding of the mechanisms and mediators involved in the different inflammatory and insulin resistance conditions. Finally, we address biotechnological studies for the development of new potential therapies and interventions.
Collapse
|
46
|
Lin N, Chen H, Zhang H, Wan X, Su Q. Mitochondrial reactive oxygen species (ROS) inhibition ameliorates palmitate-induced INS-1 beta cell death. Endocrine 2012; 42:107-17. [PMID: 22350662 DOI: 10.1007/s12020-012-9633-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 02/08/2012] [Indexed: 12/12/2022]
Abstract
The purpose of this study is to explore the possible link between oxidative stress and endoplasmic reticulum (ER) stress in palmitate (PA) induced apoptosis of INS-1 cells, and to figure out the main source of reactive oxygen species (ROS) and the effect of ROS inhibition on the level of ER stress. In this study, INS-1 cells were exposed to PA and oleate for the indicated times. Cell viability and apoptosis were measured by MTT and ELISA; ROS was detected by the probe DCFH-DA and MitoSOX Red using flow cytometer; and the ER stress-related chaperones were measured by western blotting and real time PCR. The level of JNK phosphorylation was also measured by western blotting. The results showed that, in PA-treated cells, apoptosis increased in a dose-dependent way. ROS generation was mainly increased through mitochondrion, and ROS inhibition reduced the expression of some ER chaperones and transcription factors levels. Also, inhibition of JNK phosphorylation ameliorated PA-induced apoptosis. It is concluded that, ROS inhibition, especially inhibiting the ROS from mitochondria, may reduce the expression of some ER stress-related effectors and show a protective role in PA-induced pancreatic beta-cell apoptosis.
Collapse
Affiliation(s)
- Ning Lin
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665, KongJiang Road, Shanghai, 200092, China
| | | | | | | | | |
Collapse
|
47
|
Pinto Júnior DAC, Seraphim PM. Cafeteria diet intake for fourteen weeks can cause obesity and insulin resistance in Wistar rats. REV NUTR 2012. [DOI: 10.1590/s1415-52732012000300001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE: Obesity is a strong predictor of some kinds of diseases. High intake of high-fat foods contributes significantly to the growth of the obese population globally. The aim of this study was to verify if consumption of a cafeteria diet for fourteen weeks could increase white fat mass, body weight and skeletal muscle mass and promote insulin resistance in male Wistar rats. METHODS: Twenty animals were divided into two groups: control and obese. Both were fed standard chow and water ad libitum. Additionally, a cafeteria diet consisting of bacon, bologna sausage, sandwich cookies and soft drink was given to the obese group. RESULTS: The obese group was significantly heavier (p<0.0001) than controls from the second week until the end of the cafeteria-diet intervention. Absolute and relative fat mass, liver weight and Lee Index increased significantly (p<0.05) in the obese group. Furthermore, the obese group had lower (p<0.05) insulin sensitivity than the control group. CONCLUSION: In conclusion, fourteen weeks of cafeteria diet promoted a progressive increase of fat mass and insulin resistance. Therefore, this is a great and inexpensive diet-induced insulin resistance model.
Collapse
|
48
|
Shahidi F, Zhong Y, Chandrasekara A. Antioxidants and Human Health. CEREALS AND PULSES 2012:273-308. [DOI: 10.1002/9781118229415.ch19] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
49
|
Kondo T, Sasaki K, Matsuyama R, Morino-Koga S, Adachi H, Suico MA, Kawashima J, Motoshima H, Furukawa N, Kai H, Araki E. Hyperthermia with mild electrical stimulation protects pancreatic β-cells from cell stresses and apoptosis. Diabetes 2012; 61:838-47. [PMID: 22362176 PMCID: PMC3314363 DOI: 10.2337/db11-1098] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Induction of heat shock protein (HSP) 72 improves metabolic profiles in diabetic model mice. However, its effect on pancreatic β-cells is not known. The current study investigated whether HSP72 induction can reduce β-cell stress signaling and apoptosis and preserve β-cell mass. MIN6 cells and db/db mice were sham-treated or treated with heat shock (HS) and mild electrical stimulation (MES) (HS+MES) to induce HSP72. Several cellular markers, metabolic parameters, and β-cell mass were evaluated. HS+MES treatment or HSP72 overexpression increased HSP72 protein levels and decreased tumor necrosis factor (TNF)-α-induced Jun NH(2)-terminal kinase (JNK) phosphorylation, endoplasmic reticulum (ER) stress, and proapoptotic signal in MIN6 cells. In db/db mice, HS+MES treatment for 12 weeks significantly improved insulin sensitivity and glucose homeostasis. Upon glucose challenge, a significant increase in insulin secretion was observed in vivo. Compared with sham treatment, levels of HSP72, insulin, pancreatic duodenal homeobox-1, GLUT2, and insulin receptor substrate-2 were upregulated in the pancreatic islets of HS+MES-treated mice, whereas JNK phosphorylation, nuclear translocation of forkhead box class O-1, and nuclear factor-κB p65 were reduced. Apoptotic signals, ER stress, and oxidative stress markers were attenuated. Thus, HSP72 induction by HS+MES treatment protects β-cells from apoptosis by attenuating JNK activation and cell stresses. HS+MES combination therapy may preserve pancreatic β-cell volume to ameliorate glucose homeostasis in diabetes.
Collapse
Affiliation(s)
- Tatsuya Kondo
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazunari Sasaki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Rina Matsuyama
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Saori Morino-Koga
- Department of Molecular Medicine, Faculty of Life Sciences, Global COE “Cell Fate Regulation Research and Education Unit,” Kumamoto University, Kumamoto, Japan
| | - Hironori Adachi
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Mary Ann Suico
- Department of Molecular Medicine, Faculty of Life Sciences, Global COE “Cell Fate Regulation Research and Education Unit,” Kumamoto University, Kumamoto, Japan
| | - Junji Kawashima
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroyuki Motoshima
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Noboru Furukawa
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Faculty of Life Sciences, Global COE “Cell Fate Regulation Research and Education Unit,” Kumamoto University, Kumamoto, Japan
| | - Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Corresponding author: Eiichi Araki,
| |
Collapse
|
50
|
Martins AR, Nachbar RT, Gorjao R, Vinolo MA, Festuccia WT, Lambertucci RH, Cury-Boaventura MF, Silveira LR, Curi R, Hirabara SM. Mechanisms underlying skeletal muscle insulin resistance induced by fatty acids: importance of the mitochondrial function. Lipids Health Dis 2012; 11:30. [PMID: 22360800 PMCID: PMC3312873 DOI: 10.1186/1476-511x-11-30] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 02/23/2012] [Indexed: 01/06/2023] Open
Abstract
Insulin resistance condition is associated to the development of several syndromes, such as obesity, type 2 diabetes mellitus and metabolic syndrome. Although the factors linking insulin resistance to these syndromes are not precisely defined yet, evidence suggests that the elevated plasma free fatty acid (FFA) level plays an important role in the development of skeletal muscle insulin resistance. Accordantly, in vivo and in vitro exposure of skeletal muscle and myocytes to physiological concentrations of saturated fatty acids is associated with insulin resistance condition. Several mechanisms have been postulated to account for fatty acids-induced muscle insulin resistance, including Randle cycle, oxidative stress, inflammation and mitochondrial dysfunction. Here we reviewed experimental evidence supporting the involvement of each of these propositions in the development of skeletal muscle insulin resistance induced by saturated fatty acids and propose an integrative model placing mitochondrial dysfunction as an important and common factor to the other mechanisms.
Collapse
Affiliation(s)
- Amanda R Martins
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Butantã, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|