1
|
Li GX, Ma B, Zhang S, Liu R, Siddiqi IN, Sali A, El-Khoueiry A, Gross M, Salhia B, Sadeghi S, Gill PS. EphB4-ephrin-B2 are targets in castration resistant prostate cancer. Br J Cancer 2025; 132:679-689. [PMID: 40044981 PMCID: PMC11997055 DOI: 10.1038/s41416-025-02942-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/31/2024] [Accepted: 01/14/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND PI3K pathway activation is a common and early event in prostate cancer, from loss of function mutations in PTEN, or activating mutations in PIK3Ca or AKT leading to constitutive activation, induction of growth factor-receptors kinase EphB4 and its ligand ephrin-B2. We hypothesized that induction of EphB4 is an early event required for tumor initiation. Secondly, we hypothesized that EphB4 remains relevant when prostate cancer becomes androgen independent. METHODS Genetic mouse model of conditional PTEN deletion in prostate epithelium induces tumor in all mice. We tested this model against EPHB4 wild type and deleted in prostate epithelium. This allowed us to test its role in tumor initiation. We also tested an orthogonal approach by using decoy soluble EphB4 to block bidirectional signaling resulting from EphB4-ephrin-B2 interaction. Role of EphB4-ephrin-B2 in androgen deprived mice was tested for role in refractory cancer model. RESULTS PTEN deletion induces EphB4 and ephrin-B2 in prostate cancer which was substantially reduced when EPHB4 is deleted in the same prostate epithelial cells. sEphB4-alb fusion protein with improved pharmacokinetics similarly inhibited tumor formation, thus establishing the role in tumor initiation. sEphB4-alb retained the efficacy in castration resistant androgen independent prostate cancer. We have thus observed that induction of EphB4 is required for the initiation of prostate cancer in PTEN null mouse and that signaling downstream from EphB4 is required in androgen deprivation and thus castration resistant prostate cancer. Pharmacological inhibition of EphB4 pathway reproduced the results. Targeting EphB4 should be tested in prostate cancer especially those resistant to androgen deprivation therapy. CONCLUSIONS EphB4 and ephrin-B2 receptor ligand pair is induced in PTEN null prostate cancer, which significantly contributes to the tumor initiation. Secondly, EphB4-ephrin-B2 pathway continue to promote tumor progression even in androgen deprivation and thus hormone refractory tumor. EphB4-ephrin-B2 may be candidates for precision medicine with biomarker-based patient selection with and without concurrent standard of care.
Collapse
Affiliation(s)
- Grace Xiuqing Li
- Department of Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Binyun Ma
- Department of Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shaobing Zhang
- Department of Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ren Liu
- Merck Pharmaceutical Inc. Previous: Department of Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Imran N Siddiqi
- Department of Pathology, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Akash Sali
- Catherine & Joseph Aresty Department of Urology, USC Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anthony El-Khoueiry
- Department of Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mitchell Gross
- Department of Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bodour Salhia
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sarmad Sadeghi
- Department of Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Parkash S Gill
- Department of Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Kim HJ, Yang D, Hong JH. Various Cellular Components and Its Signaling Cascades Through the Involvement of Signaling Messengers in Keratinocyte Differentiation. Antioxidants (Basel) 2025; 14:426. [PMID: 40298779 PMCID: PMC12023943 DOI: 10.3390/antiox14040426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 03/28/2025] [Accepted: 03/30/2025] [Indexed: 04/30/2025] Open
Abstract
Skin is a highly differentiated tissue, in which various signaling molecules play critical roles in the differentiation and proliferation of keratinocytes. Among these, the second messenger calcium and its gradient across skin layers are pivotal in regulating keratinocyte differentiation. Additionally, a diverse array of cellular signaling molecules has been identified as essential for promoting keratinocyte differentiation, thereby maintaining skin integrity and barrier function. The barrier function of the skin provides essential protection against exogenous stimuli and pathogens while maintaining structural stability. The homeostatic processes of skin differentiation are modulated by these second messengers and various signaling molecules. Thus, this review highlights the components associated with keratinocyte differentiation and their biological and pathophysiological roles, as well as redox-sensitive differentiation factors in the modulation of skin homeostasis. This review aims to enhance our understanding of skin physiology and provide insights that may facilitate the development of novel therapeutic strategies for skin diseases.
Collapse
Affiliation(s)
| | - Dongki Yang
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| | - Jeong Hee Hong
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| |
Collapse
|
3
|
Fukuda R, Beppu S, Hinata D, Kamada Y, Okiyoneda T. Perturbation of EPHA2 and EFNA1 trans binding amplifies inflammatory response in airway epithelial cells. iScience 2025; 28:111872. [PMID: 39991543 PMCID: PMC11847143 DOI: 10.1016/j.isci.2025.111872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/07/2024] [Accepted: 01/20/2025] [Indexed: 02/25/2025] Open
Abstract
The interactions between EPH receptors and ephrin (EFN) ligands play a crucial role in maintaining epithelial integrity and aiding in defense against infections. However, it remains unclear how the EPH-EFN trans-binding changes during infections and how this alteration affects inflammatory response. Here we report that pathogen-associated molecular patterns (PAMPs) disrupt the EPHA2-EFNA1 trans-binding in airway epithelial cells (AECs). Mechanistically, flagellin induces the TLR5-dependent EFNA1 cleavage through the metalloproteinase ADAM9 concomitant with the activation of ligand-independent EPHA2 signaling. We found that the ablation of EPHA2 reduced the responsiveness of respiratory inflammation induced by flagellin and Pseudomonas aeruginosa both in vitro and in vivo. Notably, even in the absence of PAMPs, the inflammatory response in AECs was stimulated by forcibly induced EFNA1 shedding. These findings illustrate that the perturbation of the EPHA2-EFNA1 trans-binding acts as a sensing mechanism for infections and amplifies the inflammatory response, providing a defense mechanism for respiratory epithelia.
Collapse
Affiliation(s)
- Ryosuke Fukuda
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1330, Japan
| | - Shiori Beppu
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1330, Japan
| | - Daichi Hinata
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1330, Japan
| | - Yuka Kamada
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1330, Japan
| | - Tsukasa Okiyoneda
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1330, Japan
| |
Collapse
|
4
|
Liu M, Charek JG, Vicetti Miguel RD, Cherpes TL. Ephrin-Eph signaling: an important regulator of epithelial integrity and barrier function. Tissue Barriers 2025:2462855. [PMID: 39921660 DOI: 10.1080/21688370.2025.2462855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/20/2025] [Accepted: 01/29/2025] [Indexed: 02/10/2025] Open
Abstract
Eph receptor-interacting proteins (ephrin) ligands and their erythropoietin-producing human hepatocellular (Eph) receptors elicit bidirectional signals that regulate cell migration, angiogenesis, neuronal plasticity, and other developmental processes in the embryo. In adulthood, ephrin-Eph signaling regulates numerous homeostatic events, including epithelial cell proliferation and differentiation. Epithelial surfaces, including those of skin and vagina, are lined by layers of stratified squamous epithelium (SSE) that protect against mechanical stress and microbial pathogen invasion. Ephrin-Eph signaling is known to promote cutaneous epithelial barrier function by regulating the expression of specialized cell-cell adhesion junctions termed desmosomes, but the role of this signaling system in maintaining epithelial integrity and barrier function in the vagina is less explored. This review summarizes current understanding of ephrin-Eph signaling that regulates desmosome expression and barrier function in the skin and considers evidence that suggests ephrin-Eph signaling similarly regulates these processes in vaginal SSE.
Collapse
Affiliation(s)
- Mohan Liu
- Comparative Biomedical Sciences Graduate Program, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
- Department of Otolaryngology - Head and Neck Surgery, The Ohio State University, Columbus, OH, USA
| | - Joseph G Charek
- Department of Otolaryngology - Head and Neck Surgery, The Ohio State University, Columbus, OH, USA
| | - Rodolfo D Vicetti Miguel
- Department of Otolaryngology - Head and Neck Surgery, The Ohio State University, Columbus, OH, USA
| | - Thomas L Cherpes
- Department of Otolaryngology - Head and Neck Surgery, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
5
|
Horner JL, Vu MP, Clark JT, Innis IJ, Cheng C. Canonical ligand-dependent and non-canonical ligand-independent EphA2 signaling in the eye lens of wild-type, knockout, and aging mice. Aging (Albany NY) 2024; 16:13039-13075. [PMID: 39466050 PMCID: PMC11552635 DOI: 10.18632/aging.206144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/29/2024] [Indexed: 10/29/2024]
Abstract
Disruption of Eph-ephrin bidirectional signaling leads to human congenital and age-related cataracts, but the mechanisms for these opacities in the eye lens remain unclear. Eph receptors bind to ephrin ligands on neighboring cells to induce canonical ligand-mediated signaling. The EphA2 receptor also signals non-canonically without ligand binding in cancerous cells, leading to epithelial-to-mesenchymal transition (EMT). We have previously shown that the receptor EphA2 and the ligand ephrin-A5 have diverse functions in maintaining lens transparency in mice. Loss of ephrin-A5 leads to anterior cataracts due to EMT. Surprisingly, both canonical and non-canonical EphA2 activation are present in normal wild-type lenses and in the ephrin-A5 knockout lenses. Canonical EphA2 signaling is localized exclusively to lens epithelial cells and does not change with age. Non-canonical EphA2 signaling is in both epithelial and fiber cells and increases significantly with age. We hypothesize that canonical ligand-dependent EphA2 signaling is required for the morphogenesis and organization of hexagonal equatorial epithelial cells while non-canonical ligand-independent EphA2 signaling is needed for complex membrane interdigitations that change during fiber cell differentiation and maturation. This is the first demonstration of non-canonical EphA2 activation in a non-cancerous tissue or cell and suggests a possible physiological function for ligand-independent EphA2 signaling.
Collapse
Affiliation(s)
- Jenna L. Horner
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN 47405, USA
| | - Michael P. Vu
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN 47405, USA
| | - Jackson T. Clark
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN 47405, USA
| | - Isaiah J. Innis
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN 47405, USA
| | - Catherine Cheng
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
6
|
Gofur MR, Ogawa K. EphB2, EphB4, and ephrin-B1 expression and localization in postnatal developing epididymis in mice. Dev Dyn 2024. [PMID: 39390685 DOI: 10.1002/dvdy.752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Eph receptors and ephrin ligands, the transmembrane proteins, function as a mechanism of communication between cells. Therefore, we intended to explore the expression array of EphB2 and EphB4 receptors and ephrin-B1 ligand in postnatal developing mouse epididymis during 1 day to 8 weeks using RT-PCR amplification and immunofluorescence staining. RESULTS RT-PCR analysis indicated that the expression levels of EphB2, EphB4, and ephrin-B1 in the epididymis declined with the advancement of age during the initial phases of postnatal development and stayed relatively near to adult levels until 4 weeks. We discovered that the predominant compartments expressing EphB2/B4 and ephrin-B1 emerged in the excurrent duct epithelia of postnatal developing epididymis until 3 weeks. Consequently, even before spermatozoa reach the excurrent duct in epididymis, at the age of 3 weeks, the epididymal excurrent duct system exhibits characteristics similar to those of an adult in terms of expression of EphB2/B4 and ephrin-B1. Moreover, ephrin-B1 was expressed in epididymal epithelial cells throughout the development and EphB4 was expressed only in early postnatal stages while basal cells expressed EphB4 throughout the postnatal development. CONCLUSION The study represents the first expression analysis of ephrin-B1, EphB2, and EphB4 in the normal mouse epididymis during the postnatal development.
Collapse
Affiliation(s)
- Md Royhan Gofur
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Kazushige Ogawa
- Laboratory of Veterinary Anatomy, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka, Japan
| |
Collapse
|
7
|
Qiu C, Sun N, Zeng S, Chen L, Gong F, Tian J, Xiong Y, Peng L, He H, Ming Y. Unveiling the therapeutic promise of EphA2 in glioblastoma: a comprehensive review. Discov Oncol 2024; 15:501. [PMID: 39331302 PMCID: PMC11436538 DOI: 10.1007/s12672-024-01380-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Glioblastoma (GBM), a primary brain tumor, exhibits remarkable invasiveness and is characterized by its intricate location, infiltrative behavior, the presence of both the blood-brain barrier (BBB) and the blood-brain tumor barrier (BBTB), phenotypic diversity, an immunosuppressive microenvironment with limited development yet rich vascularity, as well as the resistant nature of glioblastoma stem cells (GSCs) towards traditional chemotherapy and radiotherapy. These formidable factors present substantial obstacles in the quest for effective GBM treatments. Following extensive research spanning three decades, the hepatocellular receptor A2 (EphA2) receptor tyrosine kinase has emerged as a promising molecular target with translational potential in the realm of cancer therapy. Numerous compounds aimed at targeting EphA2 have undergone rigorous evaluation and clinical investigation. This article provides a comprehensive account of the distinctive roles played by canonical and non-canonical EphA2 signaling in various contexts, while also exploring the involvement of the EphA2-ephrin A1 signaling axis in GBM pathogenesis. Additionally, the review offers an overview of completed clinical trials targeting EphA2 for GBM treatment, shedding light on both the prospects and challenges associated with EphA2-directed interventions in the domain of cancer therapeutics.
Collapse
Affiliation(s)
- Caohang Qiu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Ning Sun
- Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Shan Zeng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Feilong Gong
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Junjie Tian
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Yu Xiong
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Lilei Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Haiping He
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Yang Ming
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China.
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China.
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China.
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China.
| |
Collapse
|
8
|
Mongiat M, Pascal G, Poletto E, Williams DM, Iozzo RV. Proteoglycans of basement membranes: Crucial controllers of angiogenesis, neurogenesis, and autophagy. PROTEOGLYCAN RESEARCH 2024; 2:e22. [PMID: 39184370 PMCID: PMC11340296 DOI: 10.1002/pgr2.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/02/2024] [Indexed: 08/27/2024]
Abstract
Anti-angiogenic therapy is an established method for the treatment of several cancers and vascular-related diseases. Most of the agents employed target the vascular endothelial growth factor A, the major cytokine stimulating angiogenesis. However, the efficacy of these treatments is limited by the onset of drug resistance. Therefore, it is of fundamental importance to better understand the mechanisms that regulate angiogenesis and the microenvironmental cues that play significant role and influence patient treatment and outcome. In this context, here we review the importance of the three basement membrane heparan sulfate proteoglycans (HSPGs), namely perlecan, agrin and collagen XVIII. These HSPGs are abundantly expressed in the vasculature and, due to their complex molecular architecture, they interact with multiple endothelial cell receptors, deeply affecting their function. Under normal conditions, these proteoglycans exert pro-angiogenic functions. However, in pathological conditions such as cancer and inflammation, extracellular matrix remodeling leads to the degradation of these large precursor molecules and the liberation of bioactive processed fragments displaying potent angiostatic activity. These unexpected functions have been demonstrated for the C-terminal fragments of perlecan and collagen XVIII, endorepellin and endostatin. These bioactive fragments can also induce autophagy in vascular endothelial cells which contributes to angiostasis. Overall, basement membrane proteoglycans deeply affect angiogenesis counterbalancing pro-angiogenic signals during tumor progression, and represent possible means to develop new prognostic biomarkers and novel therapeutic approaches for the treatment of solid tumors.
Collapse
Affiliation(s)
- Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Gabriel Pascal
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Davion M. Williams
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Renato V. Iozzo
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
9
|
Cui Z, Liu C, Wang X, Xiang Y. A pan-cancer analysis of EphA family gene expression and its association with prognosis, tumor microenvironment, and therapeutic targets. Front Oncol 2024; 14:1378087. [PMID: 38952552 PMCID: PMC11215048 DOI: 10.3389/fonc.2024.1378087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/30/2024] [Indexed: 07/03/2024] Open
Abstract
Background Erythropoietin-producing human hepatocellular (Eph) receptors stand out as the most expansive group of receptor tyrosine kinases (RTKs). Accumulating evidence suggests that within this expansive family, the EphA subset is implicated in driving cancer cell progression, proliferation, invasion, and metastasis, making it a promising target for anticancer treatment. Nonetheless, the extent of EphA family involvement across diverse cancers, along with its intricate interplay with immunity and the tumor microenvironment (TME), remains to be fully illuminated. Methods The relationships between EphA gene expression and patient survival, immunological subtypes, and TME characteristics were investigated based on The Cancer Genome Atlas (TCGA) database. The analyses employed various R packages. Results A significant difference in expression was identified for most EphA genes when comparing cancer tissues and non-cancer tissues. These genes independently functioned as prognostic factors spanning multiple cancer types. Moreover, a significant correlation surfaced between EphA gene expression and immune subtypes, except for EphA5, EphA6, and EphA8. EphA3 independently influenced the prognosis of papillary renal cell carcinoma (KIRP). This particular gene exhibited links with immune infiltration subtypes and clinicopathologic parameters, holding promise as a valuable biomarker for predicting prognosis and responsiveness to immunotherapy in patients with KIRP. Conclusion By meticulously scrutinizing the panorama of EphA genes in a spectrum of cancers, this study supplemented a complete map of the effect of EphA family in Pan-cancer and suggested that EphA family may be a potential target for cancer therapy.
Collapse
Affiliation(s)
- Zhe Cui
- Division of Hematology and Transfusion Medicine, Tianjin Baodi Hospital, Tianjin Baodi Affiliated Hospital of Tianjin Medical University, Tianjin, China
| | - Chengwang Liu
- Department of Laboratory Medicine, Tianjin Baodi Affiliated Hospital of Tianjin Medical University, Tianjin, China
| | - Xuechao Wang
- Department of Laboratory Medicine, Tianjin Baodi Affiliated Hospital of Tianjin Medical University, Tianjin, China
| | - Yiping Xiang
- Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
10
|
Huaman C, Clouse C, Rader M, Yan L, Bai S, Gunn BM, Amaya M, Laing ED, Broder CC, Schaefer BC. An in vivo BSL-2 model for henipavirus infection based on bioluminescence imaging of recombinant Cedar virus replication in mice. FRONTIERS IN CHEMICAL BIOLOGY 2024; 3:1363498. [PMID: 38770087 PMCID: PMC11105800 DOI: 10.3389/fchbi.2024.1363498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Henipaviruses are enveloped single-stranded, negative-sense RNA viruses of the paramyxovirus family. Two henipaviruses, Nipah virus and Hendra virus, cause a systemic respiratory and/or neurological disease in humans and ten additional species of mammals, with a high fatality rate. Because of their highly pathogenic nature, Nipah virus and Hendra virus are categorized as BSL-4 pathogens, which limits the number and scope of translational research studies on these important human pathogens. To begin to address this limitation, we are developing a BSL-2 model of authentic henipavirus infection in mice, using the non-pathogenic henipavirus, Cedar virus. Notably, wild-type mice are highly resistant to Hendra virus and Nipah virus infection. However, previous work has shown that mice lacking expression of the type I interferon receptor (IFNAR-KO mice) are susceptible to both viruses. Here, we show that luciferase-expressing recombinant Cedar virus (rCedV-luc) is also able to replicate and establish a transient infection in IFNAR-KO mice, but not in wild-type mice. Using longitudinal bioluminescence imaging (BLI) of luciferase expression, we detected rCedV-luc replication as early as 10 h post-infection. Viral replication peaks between days 1 and 3 post-infection, and declines to levels undetectable by BLI by 7 days post-infection. Immunohistochemistry is consistent with viral infection and replication in endothelial cells and other non-immune cell types within tissue parenchyma. Serology analyses demonstrate significant IgG responses to the Cedar virus surface glycoprotein with potent neutralizing activity in IFNAR-KO mice, whereas antibody responses in wild-type animals were non-significant. Overall, these data suggest that rCedV-luc infection of IFNAR-KO mice represents a viable platform for the study of in vivo henipavirus replication, anti-henipavirus host responses and henipavirus-directed therapeutics.
Collapse
Affiliation(s)
- Celeste Huaman
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - Caitlyn Clouse
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - Madeline Rader
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - Lianying Yan
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, MD, USA
| | - Shuangyi Bai
- Paul G. Allen School of Global Health, College of Veterinary Medicine, Washington State University, Pullman WA 99164 USA
| | - Bronwyn M. Gunn
- Paul G. Allen School of Global Health, College of Veterinary Medicine, Washington State University, Pullman WA 99164 USA
| | - Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Eric D. Laing
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Brian C. Schaefer
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| |
Collapse
|
11
|
Shi X, Lingerak R, Herting CJ, Ge Y, Kim S, Toth P, Wang W, Brown BP, Meiler J, Sossey-Alaoui K, Buck M, Himanen J, Hambardzumyan D, Nikolov DB, Smith AW, Wang B. Time-resolved live-cell spectroscopy reveals EphA2 multimeric assembly. Science 2023; 382:1042-1050. [PMID: 37972196 PMCID: PMC11114627 DOI: 10.1126/science.adg5314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Ephrin type-A receptor 2 (EphA2) is a receptor tyrosine kinase that initiates both ligand-dependent tumor-suppressive and ligand-independent oncogenic signaling. We used time-resolved, live-cell fluorescence spectroscopy to show that the ligand-free EphA2 assembles into multimers driven by two types of intermolecular interactions in the ectodomain. The first type entails extended symmetric interactions required for ligand-induced receptor clustering and tumor-suppressive signaling that inhibits activity of the oncogenic extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) protein kinases and suppresses cell migration. The second type is an asymmetric interaction between the amino terminus and the membrane proximal domain of the neighboring receptors, which supports oncogenic signaling and promotes migration in vitro and tumor invasiveness in vivo. Our results identify the molecular interactions that drive the formation of the EphA2 multimeric signaling clusters and reveal the pivotal role of EphA2 assembly in dictating its opposing functions in oncogenesis.
Collapse
Affiliation(s)
- Xiaojun Shi
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Cleveland, OH 44109, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ryan Lingerak
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Cleveland, OH 44109, USA
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Cameron J. Herting
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA 30322, USA
| | - Yifan Ge
- Department of Molecular Biology, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Soyeon Kim
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Cleveland, OH 44109, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Paul Toth
- Department of Chemistry, University of Akron, Akron, OH 44325, USA
| | - Wei Wang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Cleveland, OH 44109, USA
| | - Benjamin P. Brown
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Jens Meiler
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Khalid Sossey-Alaoui
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Cleveland, OH 44109, USA
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - Juha Himanen
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dolores Hambardzumyan
- Departments Oncological Sciences and Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
| | - Dimitar B. Nikolov
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Adam W. Smith
- Department of Chemistry, University of Akron, Akron, OH 44325, USA
| | - Bingcheng Wang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Cleveland, OH 44109, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
12
|
Zhou Y, Oki R, Tanaka A, Song L, Takashima A, Hamada N, Yokoyama S, Yano S, Sakurai H. Cellular stress induces non-canonical activation of the receptor tyrosine kinase EphA2 through the p38-MK2-RSK signaling pathway. J Biol Chem 2023; 299:104699. [PMID: 37059179 DOI: 10.1016/j.jbc.2023.104699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/16/2023] Open
Abstract
The receptor tyrosine kinase EphA2 is overexpressed in malignant tumors. We previously reported that non-canonical EphA2 phosphorylation at Ser-897 was catalyzed by p90 ribosomal S6 kinase (RSK) via the MEK-ERK pathway in ligand- and tyrosine kinase-independent manners. Non-canonical EphA2 activation plays a key role in tumor progression; however, its activation mechanism remains unclear. In the present study, we focused on cellular stress signaling as a novel inducer of non-canonical EphA2 activation. p38, instead of ERK in the case of epidermal growth factor signaling, activated RSK-EphA2 under cellular stress conditions, including anisomycin, cisplatin and high osmotic stress. Notably, p38 activated the RSK-EphA2 axis via downstream MAPK-activated protein kinase 2 (MK2). Furthermore, MK2 directly phosphorylated both RSK1 Ser-380 and RSK2 Ser-386, critical residues for the activation of their N-terminal kinases, which is consistent with the result showing that the C-terminal kinase domain of RSK1 was dispensable for MK2-mediated EphA2 phosphorylation. Moreover, the p38-MK2-RSK-EphA2 axis promoted glioblastoma cell migration induced by temozolomide, a chemotherapeutic agent for the treatment of glioblastoma patients. Collectively, the present results reveal a novel molecular mechanism for non-canonical EphA2 activation under stress conditions in the tumor microenvironment.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama; Toyama 930-0194, Japan
| | - Ryota Oki
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama; Toyama 930-0194, Japan
| | - Akihiro Tanaka
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama; Toyama 930-0194, Japan
| | - Leixin Song
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama; Toyama 930-0194, Japan
| | - Atsushi Takashima
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama; Toyama 930-0194, Japan
| | - Naru Hamada
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama; Toyama 930-0194, Japan
| | - Satoru Yokoyama
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama; Toyama 930-0194, Japan
| | - Seiji Yano
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Takara-Machi, Kanazawa, Ishikawa 920-0934, Japan
| | - Hiroaki Sakurai
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama; Toyama 930-0194, Japan.
| |
Collapse
|
13
|
Lau A, Le N, Nguyen C, Kandpal RP. Signals transduced by Eph receptors and ephrin ligands converge on MAP kinase and AKT pathways in human cancers. Cell Signal 2023; 104:110579. [PMID: 36572189 DOI: 10.1016/j.cellsig.2022.110579] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Eph receptors, the largest known family of receptor tyrosine kinases, and ephrin ligands have been implicated in a variety of human cancers. The novel bidirectional signaling events initiated by binding of Eph receptors to their cognate ephrin ligands modulate many cellular processes such as proliferation, metastasis, angiogenesis, invasion, and apoptosis. The relationships between the abundance of a unique subset of Eph receptors and ephrin ligands with associated cellular processes indicate a key role of these molecules in tumorigenesis. The combinatorial expression of these molecules converges on MAP kinase and/or AKT/mTOR signaling pathways. The intracellular target proteins of the initial signal may, however, vary in some cancers. Furthermore, we have also described the commonality of up- and down-regulation of individual receptors and ligands in various cancers. The current state of research in Eph receptors illustrates MAP kinase and mTOR pathways as plausible targets for therapeutic interventions in various cancers.
Collapse
Affiliation(s)
- Andreas Lau
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States of America
| | - Nghia Le
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States of America
| | - Claudia Nguyen
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States of America
| | - Raj P Kandpal
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States of America.
| |
Collapse
|
14
|
Furukawa T, Kimura H, Sasaki M, Yamada T, Iwasawa T, Yagi Y, Kato K, Yasui H. Novel [ 111 In]In-BnDTPA-EphA2-230-1 Antibody for Single-Photon Emission Computed Tomography Imaging Tracer Targeting of EphA2. ACS OMEGA 2023; 8:7030-7035. [PMID: 36844571 PMCID: PMC9948553 DOI: 10.1021/acsomega.2c07849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Erythropoietin-producing hepatocellular receptor A2 (EphA2) is overexpressed in cancer cells and causes abnormal cell proliferation. Therefore, it has attracted attention as a target for diagnostic agents. In this study, the EphA2-230-1 monoclonal antibody (EphA2-230-1) was labeled with [111In]In and evaluated as an imaging tracer for single-photon emission computed tomography (SPECT) of EphA2. EphA2-230-1 was conjugated with 2-(4-isothiocyanatobenzyl)-diethylenetriaminepentaacetic acid (p-SCN-BnDTPA) and then labeled with [111In]In. [111In]In-BnDTPA-EphA2-230-1 was evaluated in cell-binding, biodistribution, and SPECT/computed tomography (CT) studies. The cellular uptake ratio of [111In]In-BnDTPA-EphA2-230-1 was 14.0 ± 2.1%/mg protein at 4 h in the cell-binding study. In the biodistribution study, a high uptake of [111In]In-BnDTPA-EphA2-230-1 was observed in tumor tissue (14.6 ± 3.2% injected dose/g at 72 h). The superior accumulation of [111In]In-BnDTPA-EphA2-230-1 in tumors was also confirmed using SPECT/CT. Therefore, [111In]In-BnDTPA-EphA2-230-1 has potential as a SPECT imaging tracer for EphA2.
Collapse
Affiliation(s)
- Takenori Furukawa
- Department
of Analytical and Bioinorganic Chemistry, Division of Analytical and
Physical Science, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Hiroyuki Kimura
- Department
of Analytical and Bioinorganic Chemistry, Division of Analytical and
Physical Science, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Minon Sasaki
- Department
of Analytical and Bioinorganic Chemistry, Division of Analytical and
Physical Science, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Takumu Yamada
- Department
of Biomedical Engineering, Faculty of Science and Engineering, Toyo University, 2100 Nakanodai, Kujirai, Kawagoe, Saitama 350-0815, Japan
| | - Takumi Iwasawa
- Department
of Biomedical Engineering, Faculty of Science and Engineering, Toyo University, 2100 Nakanodai, Kujirai, Kawagoe, Saitama 350-0815, Japan
| | - Yusuke Yagi
- Department
of Analytical and Bioinorganic Chemistry, Division of Analytical and
Physical Science, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
- Department
of Radiological Technology, Faculty of Medicinal Science, Kyoto College of Medical Science, 1-3 Imakita, Oyama-higashi, Sonobe,
Nantan, Kyoto 622-0022, Japan
| | - Kazunori Kato
- Department
of Biomedical Engineering, Faculty of Science and Engineering, Toyo University, 2100 Nakanodai, Kujirai, Kawagoe, Saitama 350-0815, Japan
| | - Hiroyuki Yasui
- Department
of Analytical and Bioinorganic Chemistry, Division of Analytical and
Physical Science, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| |
Collapse
|
15
|
Hunting for Novel Routes in Anticancer Drug Discovery: Peptides against Sam-Sam Interactions. Int J Mol Sci 2022; 23:ijms231810397. [PMID: 36142306 PMCID: PMC9499636 DOI: 10.3390/ijms231810397] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 01/10/2023] Open
Abstract
Among the diverse protein binding modules, Sam (Sterile alpha motif) domains attract attention due to their versatility. They are present in different organisms and play many functions in physiological and pathological processes by binding multiple partners. The EphA2 receptor contains a Sam domain at the C-terminus (EphA2-Sam) that is able to engage protein regulators of receptor stability (including the lipid phosphatase Ship2 and the adaptor Odin). Ship2 and Odin are recruited by EphA2-Sam through heterotypic Sam-Sam interactions. Ship2 decreases EphA2 endocytosis and consequent degradation, producing chiefly pro-oncogenic outcomes in a cellular milieu. Odin, through its Sam domains, contributes to receptor stability by possibly interfering with ubiquitination. As EphA2 is upregulated in many types of tumors, peptide inhibitors of Sam-Sam interactions by hindering receptor stability could function as anticancer therapeutics. This review describes EphA2-Sam and its interactome from a structural and functional perspective. The diverse design strategies that have thus far been employed to obtain peptides targeting EphA2-mediated Sam-Sam interactions are summarized as well. The generated peptides represent good initial lead compounds, but surely many efforts need to be devoted in the close future to improve interaction affinities towards Sam domains and consequently validate their anticancer properties.
Collapse
|
16
|
Pashirzad M, Sathyapalan T, Sheikh A, Kesharwani P, Sahebkar A. Cancer stem cells: An overview of the pathophysiological and prognostic roles in colorectal cancer. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Papadakos SP, Petrogiannopoulos L, Pergaris A, Theocharis S. The EPH/Ephrin System in Colorectal Cancer. Int J Mol Sci 2022; 23:2761. [PMID: 35269901 PMCID: PMC8910949 DOI: 10.3390/ijms23052761] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/26/2022] [Accepted: 02/27/2022] [Indexed: 01/27/2023] Open
Abstract
The EPH/ephrin system constitutes a bidirectional signaling pathway comprised of a family of tyrosine kinase receptors in tandem with their plasma membrane-bound ligand (ephrins). Its significance in a wide variety of physiologic and pathologic processes has been recognized during the past decades. In carcinogenesis, EPH/ephrins coordinate a wide spectrum of pathologic processes, such as angiogenesis, vessel infiltration, and metastasis. Despite the recent advances in colorectal cancer (CRC) diagnosis and treatment, it remains a leading cause of death globally, accounting for 9.2% of all cancer deaths. A growing body of literature has been published lately revitalizing our scientific interest towards the role of EPH/ephrins in pathogenesis and the treatment of CRC. The aim of the present review is to present the recent CRC data which might lead to clinical practice changes in the future.
Collapse
Affiliation(s)
| | | | | | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece; (S.P.P.); (L.P.); (A.P.)
| |
Collapse
|
18
|
Deng M, Tong R, Zhang Z, Wang T, Liang C, Zhou X, Hou G. EFNA3 as a predictor of clinical prognosis and immune checkpoint therapy efficacy in patients with lung adenocarcinoma. Cancer Cell Int 2021; 21:535. [PMID: 34645436 PMCID: PMC8513303 DOI: 10.1186/s12935-021-02226-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/24/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Ephrin receptors (Eph) and their ligands, called ephrins, function in various disease processes. However, the expression level and prognostic value of Eph/ephrins in lung adenocarcinoma (LUAD) are still unclear. METHODS The Oncomine and GEPIA databases were used to explore the differential expression of Eph/ephrins in LUAD. Kaplan-Meier plotter was selected to explore the prognostic value of Eph/ephrins. The cBioPortal database was used to analyze the genetic variation of the EFNA3 gene. Immunohistochemistry was used to analyze the expression level and clinical value of ephrin-A3 protein in clinical LUAD tissue. Weighted coexpression network analysis (WGCNA) and gene set enrichment analysis (GSEA) identified the potential regulatory mechanism of EFNA3. CCK-8 assays and colony-forming experiments were used to investigate whether EFNA3 can regulate cell proliferation ability in LUAD. Analysis of lactate, ATP, and glucose uptake levels was used to explore the effect of EFNA3 on glycolysis ability. In addition, we investigated the relationship between EFNA3 and tumor infiltrating immune cells (TIICs). Finally, the potential immunotherapy response prediction value of EFNA3 was also explored. RESULTS In this study, we found that EFNA3 expression was significantly correlated with both overall survival (OS) and progression-free survival (PFS) in LUAD patients based on a comprehensive analysis of the Eph/Ephrin family. Next, the expression of the EFNA3 protein was increased in LUAD tissues and was designated an independent prognostic risk factor. Mechanistically, EFNA3 may be involved in nuclear division, synaptic function, and ion channel activity-related pathways. In vitro experiments confirmed the role of EFNA3 in promoting LUAD cells and showed that it could regulate glycolytic capacity. Moreover, EFNA3 was negatively associated with immunity, stromal infiltration, and several TIICs. Finally, EFNA3 was found to be positively related to multiple immunotherapy biomarkers. CONCLUSIONS In conclusion, increased EFNA3 in LUAD patients predicted worse clinical prognosis, promoted LUAD cell proliferation and glycolysis ability, and was related to immunotherapy response.
Collapse
Affiliation(s)
- Mingming Deng
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100029, China
- National Center for Respiratory Medicine, Beijing, 100029, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China
- National Clinical Research Center for Respiratory Diseases, Beijing, 100029, China
| | - Run Tong
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
- National Center for Respiratory Medicine, Beijing, 100029, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China
- National Clinical Research Center for Respiratory Diseases, Beijing, 100029, China
| | - Zhe Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, 110001, China
| | - Tao Wang
- Department of Pathology, Shenyang KingMed Center for Clinical Laboratory Co., Ltd., Shenyang, 110001, China
| | - Chaonan Liang
- Department of Pulmonary and Critical Care Medicine, First Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaoming Zhou
- Department of Pulmonary and Critical Care Medicine, Fourth Hospital of China Medical University, Shenyang, 110001, China
| | - Gang Hou
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100029, China.
- National Center for Respiratory Medicine, Beijing, 100029, China.
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China.
- National Clinical Research Center for Respiratory Diseases, Beijing, 100029, China.
| |
Collapse
|
19
|
Mutation of the EPHA2 Tyrosine-Kinase Domain Dysregulates Cell Pattern Formation and Cytoskeletal Gene Expression in the Lens. Cells 2021; 10:cells10102606. [PMID: 34685586 PMCID: PMC8534143 DOI: 10.3390/cells10102606] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
Genetic variations in ephrin type-A receptor 2 (EPHA2) have been associated with inherited and age-related forms of cataract in humans. Here, we have characterized the eye lens phenotype and transcript profile of germline Epha2 knock-in mutant mice homozygous for either a missense variant associated with age-related cataract in humans (Epha2-Q722) or a novel insertion-deletion mutation (Epha2-indel722) that were both located within the tyrosine-kinase domain of EPHA2. Confocal imaging of ex vivo lenses from Epha2-indel722 mice on a fluorescent reporter background revealed misalignment of epithelial-to-fiber cell meridional-rows at the lens equator and severe disturbance of Y-suture formation at the lens poles, whereas Epha2-Q722 lenses displayed mild disturbance of posterior sutures. Immunofluorescent labeling showed that EPHA2 was localized to radial columns of hexagonal fiber cell membranes in Epha2-Q722 lenses, whereas Epha2-indel722 lenses displayed disorganized radial cell columns and cytoplasmic retention of EPHA2. Immunoprecipitation/blotting studies indicated that EPHA2 formed strong complexes with Src kinase and was mostly serine phosphorylated in the lens. RNA sequencing analysis revealed differential expression of several cytoskeleton-associated genes in Epha2-mutant and Epha2-null lenses including shared downregulation of Lgsn and Clic5. Collectively, our data suggest that mutations within the tyrosine-kinase domain of EPHA2 result in lens cell patterning defects and dysregulated expression of several cytoskeleton-associated proteins.
Collapse
|
20
|
Satake E, Saulnier PJ, Kobayashi H, Gupta MK, Looker HC, Wilson JM, Md Dom ZI, Ihara K, O’Neil K, Krolewski B, Pipino C, Pavkov ME, Nair V, Bitzer M, Niewczas MA, Kretzler M, Mauer M, Doria A, Najafian B, Kulkarni RN, Duffin KL, Pezzolesi MG, Kahn CR, Nelson RG, Krolewski AS. Comprehensive Search for Novel Circulating miRNAs and Axon Guidance Pathway Proteins Associated with Risk of ESKD in Diabetes. J Am Soc Nephrol 2021; 32:2331-2351. [PMID: 34140396 PMCID: PMC8729832 DOI: 10.1681/asn.2021010105] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/23/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Mechanisms underlying the pro gression of diabetic kidney disease to ESKD are not fully understood. METHODS We performed global microRNA (miRNA) analysis on plasma from two cohorts consisting of 375 individuals with type 1 and type 2 diabetes with late diabetic kidney disease, and targeted proteomics analysis on plasma from four cohorts consisting of 746 individuals with late and early diabetic kidney disease. We examined structural lesions in kidney biopsy specimens from the 105 individuals with early diabetic kidney disease. Human umbilical vein endothelial cells were used to assess the effects of miRNA mimics or inhibitors on regulation of candidate proteins. RESULTS In the late diabetic kidney disease cohorts, we identified 17 circulating miRNAs, represented by four exemplars (miR-1287-5p, miR-197-5p, miR-339-5p, and miR-328-3p), that were strongly associated with 10-year risk of ESKD. These miRNAs targeted proteins in the axon guidance pathway. Circulating levels of six of these proteins-most notably, EFNA4 and EPHA2-were strongly associated with 10-year risk of ESKD in all cohorts. Furthermore, circulating levels of these proteins correlated with severity of structural lesions in kidney biopsy specimens. In contrast, expression levels of genes encoding these proteins had no apparent effects on the lesions. In in vitro experiments, mimics of miR-1287-5p and miR-197-5p and inhibitors of miR-339-5p and miR-328-3p upregulated concentrations of EPHA2 in either cell lysate, supernatant, or both. CONCLUSIONS This study reveals novel mechanisms involved in progression to ESKD and points to the importance of systemic factors in the development of diabetic kidney disease. Some circulating miRNAs and axon guidance pathway proteins represent potential targets for new therapies to prevent and treat this condition.
Collapse
Affiliation(s)
- Eiichiro Satake
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Pierre-Jean Saulnier
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona
- Poitiers University Hospital, University of Poitiers, Institut National de la Santé et de la Recherche Médicale (INSERM), Clinical Investigation Center CIC1402, Poitiers, France
| | - Hiroki Kobayashi
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Manoj K. Gupta
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Helen C. Looker
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona
| | - Jonathan M. Wilson
- Diabetes and Complication Department, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Zaipul I. Md Dom
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Katsuhito Ihara
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Kristina O’Neil
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Bozena Krolewski
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Caterina Pipino
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology (CAST), University G. d’Annunzio, Chieti, Italy
| | - Meda E. Pavkov
- Division of Diabetes Translation, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Viji Nair
- Nephrology/Internal Medicine and Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Markus Bitzer
- Nephrology/Internal Medicine and Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Monika A. Niewczas
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Matthias Kretzler
- Nephrology/Internal Medicine and Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Michael Mauer
- Department of Pediatrics and Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Alessandro Doria
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Behzad Najafian
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Rohit N. Kulkarni
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Kevin L. Duffin
- Diabetes and Complication Department, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Marcus G. Pezzolesi
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Division of Nephrology and Hypertension, University of Utah, Salt Lake City, Utah
| | - C. Ronald Kahn
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Robert G. Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona
| | - Andrzej S. Krolewski
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
21
|
Furukawa T, Kimura H, Torimoto H, Yagi Y, Kawashima H, Arimitsu K, Yasui H. A Putative Single-Photon Emission CT Imaging Tracer for Erythropoietin-Producing Hepatocellular A2 Receptor. ACS Med Chem Lett 2021; 12:1238-1244. [PMID: 34413953 DOI: 10.1021/acsmedchemlett.1c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 07/09/2021] [Indexed: 11/29/2022] Open
Abstract
Erythropoietin-producing hepatocellular (Eph) receptors are receptor tyrosine kinases involved in cell-cell contact. The EphA2 receptor is associated with cancer proliferation and migration. Therefore, EphA2 receptor imaging has the potential for cancer diagnosis. Here, we synthesized N-(5-((4-((4-ethylpiperazin-1-yl)methyl)-3-(trifluoromethyl)phenyl)carbamoyl)-2-methylphenyl)-5-[123I]iodonicotinamide ([123I]ETB) and evaluated it as an imaging tracer for single-photon emission computed tomography (SPECT) imaging of the EphA2 receptor. [123I]ETB was designed on the basis of ALW-II-41-27, an inhibitor of EphA2 receptor kinase. Nonradioactive ETB was also synthesized and has been shown to efficiently inhibit EphA2 receptor kinase activity in vitro (IC50: ETB, 90.2 ± 18.9 nM). A cell-binding assay demonstrated that [125I]ETB binds specifically to the EphA2 receptor. The ex vivo biodistribution study of [125I]ETB in U87MG tumor-bearing mice also revealed tumor uptake (2.2% ID/g at 240 min). In addition, [123I]ETB uptake in tumors was visualized via SPECT/CT imaging. On the basis of the above, [123I]ETB can be considered a potential SPECT imaging tracer for the EphA2 receptor.
Collapse
Affiliation(s)
- Takenori Furukawa
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Hiroyuki Kimura
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Hanae Torimoto
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Yusuke Yagi
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Hidekazu Kawashima
- Radioisotope Research Center, Kyoto Pharmaceutical University, 1 Shichono-cho, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan
| | - Kenji Arimitsu
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Hiroyuki Yasui
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| |
Collapse
|
22
|
Expression and localisation of ephrin-B1 and EphB4 in steroidogenic cells in the naturally cycling mouse ovary. Reprod Biol 2021; 21:100511. [PMID: 33991765 DOI: 10.1016/j.repbio.2021.100511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 12/21/2022]
Abstract
Ephrin receptors and ligands are membrane-bound molecules that modulate diverse cellular functions such as cell adhesion, epithelial-mesenchymal transition, motility, differentiation and proliferation. We recently reported the co-expression of ephrin-B1 and EphB4 in adult and foetal Leydig cells of the mouse testis, and thus speculated that their co-expression is a common property in gonadal steroidogenic cells. Therefore, in this study we examined the expression and localisation of ephrin-B1 and EphB4 in the naturally cycling mouse ovary, as their expression patterns in the ovary are virtually unknown. We found that ephrin-B1 and EphB4 were co-expressed in steroidogenic cells of all kinds, i.e. granulosa cells and CYP17A1-positive steroidogenic theca cells as well as in 3β-HSD-positive luteal cells and the interstitial glands; their co-expression potentially serves as a good marker to identify sex steroid-producing cells even in extra-gonadal organs/tissues. We also found that ephrin-B1 and EphB4 expression in granulosa cells was faint and strong, respectively; ephrin-B1 expression in luteal cells was weak in developing and temporally mature corpora lutea (those of the current cycle) and likely strong in regressing corpora lutea (those of the previous cycle) and EphB4 expression in luteal cells was weak in corpora lutea of the current cycle and likely faint/negative in the corpora lutea of the previous cycle. These findings suggest that a luteinising hormone surge triggers the upregulation of ephrin-B1 and downregulation of EphB4, as this expression fluctuation occurs after the surge. Overall, ephrin-B1 and EphB4 expression patterns may represent benchmarks for steroidogenic cells in the ovary.
Collapse
|
23
|
Harding P, Toms M, Schiff E, Owen N, Bell S, Lloyd IC, Moosajee M. EPHA2 Segregates with Microphthalmia and Congenital Cataracts in Two Unrelated Families. Int J Mol Sci 2021; 22:2190. [PMID: 33671840 PMCID: PMC7926380 DOI: 10.3390/ijms22042190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
EPHA2 is a transmembrane tyrosine kinase receptor that, when disrupted, causes congenital and age-related cataracts. Cat-Map reports 22 pathogenic EPHA2 variants associated with congenital cataracts, variable microcornea, and lenticonus, but no previous association with microphthalmia (small, underdeveloped eye, ≥2 standard deviations below normal axial length). Microphthalmia arises from ocular maldevelopment with >90 monogenic causes, and can include a complex ocular phenotype. In this paper, we report two pathogenic EPHA2 variants in unrelated families presenting with bilateral microphthalmia and congenital cataracts. Whole genome sequencing through the 100,000 Genomes Project and cataract-related targeted gene panel testing identified autosomal dominant heterozygous mutations segregating with the disease: (i) missense c.1751C>T, p.(Pro584Leu) and (ii) splice site c.2826-9G>A. To functionally validate pathogenicity, morpholino knockdown of epha2a/epha2b in zebrafish resulted in significantly reduced eye size ± cataract formation. Misexpression of N-cadherin and retained fibre cell nuclei were observed in the developing lens of the epha2b knockdown morphant fish by 3 days post-fertilisation, which indicated a putative mechanism for microphthalmia pathogenesis through disruption of cadherin-mediated adherens junctions, preventing lens maturation and the critical signals stimulating eye growth. This study demonstrates a novel association of EPHA2 with microphthalmia, suggesting further analysis of pathogenic variants in unsolved microphthalmia cohorts may increase molecular diagnostic rates.
Collapse
Affiliation(s)
- Philippa Harding
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (P.H.); (M.T.); (N.O.)
| | - Maria Toms
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (P.H.); (M.T.); (N.O.)
- The Francis Crick Institute, London NW1 1AT, UK
| | - Elena Schiff
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK; (E.S.); (S.B.)
| | - Nicholas Owen
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (P.H.); (M.T.); (N.O.)
| | - Suzannah Bell
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK; (E.S.); (S.B.)
| | - Ian Christopher Lloyd
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK;
- Manchester Academic Health Sciences Centre, University of Manchester, Manchester, M13 9PT, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Mariya Moosajee
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (P.H.); (M.T.); (N.O.)
- The Francis Crick Institute, London NW1 1AT, UK
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK; (E.S.); (S.B.)
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| |
Collapse
|
24
|
Ankamreddy H, Bok J, Groves AK. Uncovering the secreted signals and transcription factors regulating the development of mammalian middle ear ossicles. Dev Dyn 2020; 249:1410-1424. [PMID: 33058336 DOI: 10.1002/dvdy.260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/11/2020] [Accepted: 10/11/2020] [Indexed: 12/22/2022] Open
Abstract
The mammalian middle ear comprises a chain of ossicles, the malleus, incus, and stapes that act as an impedance matching device during the transmission of sound from the tympanic membrane to the inner ear. These ossicles are derived from cranial neural crest cells that undergo endochondral ossification and subsequently differentiate into their final functional forms. Defects that occur during middle ear development can result in conductive hearing loss. In this review, we summarize studies describing the crucial roles played by signaling molecules such as sonic hedgehog, bone morphogenetic proteins, fibroblast growth factors, notch ligands, and chemokines during the differentiation of neural crest into the middle ear ossicles. In addition to these cell-extrinsic signals, we also discuss studies on the function of transcription factor genes such as Foxi3, Tbx1, Bapx1, Pou3f4, and Gsc in regulating the development and morphology of the middle ear ossicles.
Collapse
Affiliation(s)
| | - Jinwoong Bok
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea.,Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
25
|
Wang X, Wang Z. Identification of the soluble EphA7-interacting protein Nicalin as a regulator of EphA7 expression. Mol Cell Biochem 2020; 476:213-220. [PMID: 32914261 DOI: 10.1007/s11010-020-03898-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
A soluble form of EphA7 (sEphA7) has been found to antagonize the role of full-length EphA7 (EphA7-FL) to stabilize the membrane level of the tight junction protein Claudin6 (CLDN6) during Xenopus pronephros development. However, the mechanism underlying this antagonistic effect remains unclear. In this study, we identified Nicalin, a Nicastrin-like protein, as a novel sEphA7-interacting protein using immunoprecipitation (IP)/mass spectrometry (MS). In HEK293 cells, Nicalin interacted with sEphA7 and they predominantly co-localized in the endoplasmic reticulum (ER). Interestingly, Nicalin diminished the protein level of sEphA7 in the membranous fraction but increased that in the insoluble cytoplasmic fraction with a reduced molecular weight, suggesting that Nicalin restricts the entry of sEphA7 into the ER for further modification. sEphA7 probably acted as a chaperone and enhanced the membrane level of EphA7-FL and the formation of EphA7 complex, however, this effect was reversed by Nicalin. Our work suggested that Nicalin limits sEphA7 secretion, thereby preventing the formation of EphA7 complex. These results demonstrated the potential role of Nicalin in regulating EphA7 expression and revealed a potential mechanism underlying the antagonistic effect between sEphA7 and EphA7-FL.
Collapse
Affiliation(s)
- Xiaolei Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Zhaobao Wang
- School of Control Science and Engineering, Shandong University, 17923 Jingshi Road, Jinan, 250061, China.
| |
Collapse
|
26
|
Li Y, Luo ZY, Hu YY, Bi YW, Yang JM, Zou WJ, Song YL, Li S, Shen T, Li SJ, Huang L, Zhou AJ, Gao TM, Li JM. The gut microbiota regulates autism-like behavior by mediating vitamin B 6 homeostasis in EphB6-deficient mice. MICROBIOME 2020; 8:120. [PMID: 32819434 PMCID: PMC7441571 DOI: 10.1186/s40168-020-00884-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/23/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a developmental disorder, and the effective pharmacological treatments for the core autistic symptoms are currently limited. Increasing evidence, particularly that from clinical studies on ASD patients, suggests a functional link between the gut microbiota and the development of ASD. However, the mechanisms linking the gut microbiota with brain dysfunctions (gut-brain axis) in ASD have not yet been full elucidated. Due to its genetic mutations and downregulated expression in patients with ASD, EPHB6, which also plays important roles in gut homeostasis, is generally considered a candidate gene for ASD. Nonetheless, the role and mechanism of EPHB6 in regulating the gut microbiota and the development of ASD are unclear. RESULTS Here, we found that the deletion of EphB6 induced autism-like behavior and disturbed the gut microbiota in mice. More importantly, transplantation of the fecal microbiota from EphB6-deficient mice resulted in autism-like behavior in antibiotic-treated C57BL/6J mice, and transplantation of the fecal microbiota from wild-type mice ameliorated the autism-like behavior in EphB6-deficient mice. At the metabolic level, the disturbed gut microbiota in EphB6-deficient mice led to vitamin B6 and dopamine defects. At the cellular level, the excitation/inhibition (E/I) balance in the medial prefrontal cortex was regulated by gut microbiota-mediated vitamin B6 in EphB6-deficient mice. CONCLUSIONS Our study uncovers a key role for the gut microbiota in the regulation of autism-like social behavior by vitamin B6, dopamine, and the E/I balance in EphB6-deficient mice, and these findings suggest new strategies for understanding and treating ASD. Video abstract.
Collapse
Affiliation(s)
- Ying Li
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Zheng-Yi Luo
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yu-Ying Hu
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Yue-Wei Bi
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Jian-Ming Yang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Wen-Jun Zou
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yun-Long Song
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Shi Li
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Tong Shen
- Department of Pathology, Soochow University Medical School, Suzhou, 215123, People's Republic of China
| | - Shu-Ji Li
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Lang Huang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Ai-Jun Zhou
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| | - Jian-Ming Li
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.
- Department of Pathology, Soochow University Medical School, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
27
|
Gofur MR, Alam J, Ogawa K. Expression and localisation of ephrin-B1, EphB2, and EphB4 in the mouse testis during postnatal development. Reprod Biol 2020; 20:321-332. [PMID: 32620380 DOI: 10.1016/j.repbio.2020.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
Abstract
The erythropoietin-producing hepatocellular receptor B (EphB) class and ephrin-B ligand have been implicated in boundary formation in various epithelia. We recently found that ephrin-B1 and EphB2/EphB4 exhibit complementary expression in the epithelia along the excurrent duct system in the adult mouse testis. Moreover, the organisation and integrity of the duct system is indispensable for the transport of spermatozoa. Here, we examined ephrin-B1, EphB2 and EphB4 expression in the mouse testis during postnatal development. RT-PCR analysis revealed that the relative expression levels of these molecules decreased with age in early postnatal development, and were similar to those of adults by four weeks of age. Furthermore, immunostaining revealed that the excurrent duct system compartments exhibiting complementary expression of ephrin-B1 and EphB2/EphB4 were formed by two weeks of age. Meanwhile, ephrin-B1 and EphB4 were effective markers for spermatogonia in the neonatal testis due to their negative expression in gonocytes. Alternatively, EphB2 was a suitable marker for assessing completion of the first wave of spermatogenesis in puberty, due to its strong expression in the elongated spermatids of seminiferous tubules. Lastly, ephrin-B1 and EphB4 proved to be markers of both foetal and adult Leydig cells during postnatal development, as they were expressed in CYP17A1-positive cells. This study is the first to investigate the expression of ephrin-B1, EphB2, and EphB4 in normal mouse testes during postnatal development. The expression patterns of ephrin-B and EphBs may represent suitable tools for examining organisation of the excurrent duct system and monitoring reproductive toxicity during postnatal development.
Collapse
Affiliation(s)
- Md Royhan Gofur
- Laboratory of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka 598-8531, Japan
| | - Jahagir Alam
- Laboratory of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka 598-8531, Japan
| | - Kazushige Ogawa
- Laboratory of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka 598-8531, Japan.
| |
Collapse
|
28
|
Leite M, Marques MS, Melo J, Pinto MT, Cavadas B, Aroso M, Gomez-Lazaro M, Seruca R, Figueiredo C. Helicobacter Pylori Targets the EPHA2 Receptor Tyrosine Kinase in Gastric Cells Modulating Key Cellular Functions. Cells 2020; 9:cells9020513. [PMID: 32102381 PMCID: PMC7072728 DOI: 10.3390/cells9020513] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori, a stomach-colonizing Gram-negative bacterium, is the main etiological factor of various gastroduodenal diseases, including gastric adenocarcinoma. By establishing a life-long infection of the gastric mucosa, H. pylori continuously activates host-signaling pathways, in particular those associated with receptor tyrosine kinases. Using two different gastric epithelial cell lines, we show that H. pylori targets the receptor tyrosine kinase EPHA2. For long periods of time post-infection, H. pylori induces EPHA2 protein downregulation without affecting its mRNA levels, an effect preceded by receptor activation via phosphorylation. EPHA2 receptor downregulation occurs via the lysosomal degradation pathway and is independent of the H.pylori virulence factors CagA, VacA, and T4SS. Using small interfering RNA, we show that EPHA2 knockdown affects cell–cell and cell–matrix adhesion, invasion, and angiogenesis, which are critical cellular processes in early gastric lesions and carcinogenesis mediated by the bacteria. This work contributes to the unraveling of the underlying mechanisms of H. pylori–host interactions and associated diseases. Additionally, it raises awareness for potential interference between H. pylori infection and the efficacy of gastric cancer therapies targeting receptors tyrosine kinases, given that infection affects the steady-state levels and dynamics of some receptor tyrosine kinases (RTKs) and their signaling pathways.
Collapse
Affiliation(s)
- Marina Leite
- Ipatimup–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; (M.S.M.); (J.M.); (M.T.P.); (B.C.); (R.S.)
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
- Department of Pathology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- Correspondence: (M.L.); (C.F.); Tel.: +351-220-408-800 (M.L. & C.F.)
| | - Miguel S. Marques
- Ipatimup–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; (M.S.M.); (J.M.); (M.T.P.); (B.C.); (R.S.)
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
| | - Joana Melo
- Ipatimup–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; (M.S.M.); (J.M.); (M.T.P.); (B.C.); (R.S.)
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
- ICBAS–Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Marta T. Pinto
- Ipatimup–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; (M.S.M.); (J.M.); (M.T.P.); (B.C.); (R.S.)
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
| | - Bruno Cavadas
- Ipatimup–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; (M.S.M.); (J.M.); (M.T.P.); (B.C.); (R.S.)
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
- ICBAS–Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Miguel Aroso
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Maria Gomez-Lazaro
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Raquel Seruca
- Ipatimup–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; (M.S.M.); (J.M.); (M.T.P.); (B.C.); (R.S.)
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
- Department of Pathology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
| | - Ceu Figueiredo
- Ipatimup–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; (M.S.M.); (J.M.); (M.T.P.); (B.C.); (R.S.)
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
- Department of Pathology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- Correspondence: (M.L.); (C.F.); Tel.: +351-220-408-800 (M.L. & C.F.)
| |
Collapse
|
29
|
Kawachi H, Fukusumi Y. New insight into podocyte slit diaphragm, a therapeutic target of proteinuria. Clin Exp Nephrol 2020; 24:193-204. [PMID: 32020343 PMCID: PMC7040068 DOI: 10.1007/s10157-020-01854-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/15/2020] [Indexed: 12/26/2022]
Abstract
Dysfunction of slit diaphragm, a cell–cell junction of glomerular podocytes, is involved in the development of proteinuria in several glomerular diseases. Slit diaphragm should be a target of a novel therapy for proteinuria. Nephrin, NEPH1, P-cadherin, FAT, and ephrin-B1 were reported to be extracellular components forming a molecular sieve of the slit diaphragm. Several cytoplasmic proteins such as ZO-1, podocin, CD2AP, MAGI proteins and Par-complex molecules were identified as scaffold proteins linking the slit diaphragm to the cytoskeleton. In this article, new insights into these molecules and the pathogenic roles of the dysfunction of these molecules were introduced. The slit diaphragm functions not only as a barrier but also as a signaling platform transfer the signal to the inside of the cell. For maintaining the slit diaphragm function properly, the phosphorylation level of nephrin is strictly regulated. The recent studies on the signaling pathway from nephrin, NEPH1, and ephrin-B1 were reviewed. Although the mechanism regulating the function of the slit diaphragm had remained unclear, recent studies revealed TRPC6 and angiotensin II-regulating mechanisms play a critical role in regulating the barrier function of the slit diaphragm. In this review, recent investigations on the regulation of the slit diaphragm function were reviewed, and a strategy for the establishment of a novel therapy for proteinuria was proposed.
Collapse
Affiliation(s)
- Hiroshi Kawachi
- Department of Cell Biology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan.
| | - Yoshiyasu Fukusumi
- Department of Cell Biology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| |
Collapse
|
30
|
Matsumura K, Ito S. Novel biomarker genes which distinguish between smokers and chronic obstructive pulmonary disease patients with machine learning approach. BMC Pulm Med 2020; 20:29. [PMID: 32013930 PMCID: PMC6998147 DOI: 10.1186/s12890-020-1062-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 01/24/2020] [Indexed: 02/06/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is combination of progressive lung diseases. The diagnosis of COPD is generally based on the pulmonary function testing, however, difficulties underlie in prognosis of smokers or early stage of COPD patients due to the complexity and heterogeneity of the pathogenesis. Computational analyses of omics technologies are expected as one of the solutions to resolve such complexities. Methods We obtained transcriptomic data by in vitro testing with exposures of human bronchial epithelial cells to the inducers for early events of COPD to identify the potential descriptive marker genes. With the identified genes, the machine learning technique was employed with the publicly available transcriptome data obtained from the lung specimens of COPD and non-COPD patients to develop the model that can reflect the risk continuum across smoking and COPD. Results The expression levels of 15 genes were commonly altered among in vitro tissues exposed to known inducible factors for earlier events of COPD (exposure to cigarette smoke, DNA damage, oxidative stress, and inflammation), and 10 of these genes and their corresponding proteins have not previously reported as COPD biomarkers. Although these genes were able to predict each group with 65% accuracy, the accuracy with which they were able to discriminate COPD subjects from smokers was only 29%. Furthermore, logistic regression enabled the conversion of gene expression levels to a numerical index, which we named the “potential risk factor (PRF)” index. The highest significant index value was recorded in COPD subjects (0.56 at the median), followed by smokers (0.30) and non-smokers (0.02). In vitro tissues exposed to cigarette smoke displayed dose-dependent increases of PRF, suggesting its utility for prospective risk estimation of tobacco products. Conclusions Our experimental-based transcriptomic analysis identified novel genes associated with COPD, and the 15 genes could distinguish smokers and COPD subjects from non-smokers via machine-learning classification with remarkable accuracy. We also suggested a PRF index that can quantitatively reflect the risk continuum across smoking and COPD pathogenesis, and we believe it will provide an improved understanding of smoking effects and new insights into COPD.
Collapse
Affiliation(s)
- Kazushi Matsumura
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama, Kanagawa, 227-8512, Japan.
| | - Shigeaki Ito
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama, Kanagawa, 227-8512, Japan
| |
Collapse
|
31
|
Suo F, Zhong B, Lu F, Dong Z. The combined use of EphA2/MMP-2 expression and MRI findings contributes to the determination of cerebral glioma grade. Oncol Lett 2019; 18:5607-5613. [PMID: 31620202 DOI: 10.3892/ol.2019.10912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/14/2019] [Indexed: 12/31/2022] Open
Abstract
Glioma is the most aggressive brain tumor and is associated with a high mortality rate. The aim of the present study was to explore the association between matrix metalloproteinase 2 (MMP-2) and ephrin type-A receptor 2 (EphA2) expression in glioma cells, and to investigate the contribution of magnetic resonance imaging (MRI) in glioma classification. A total of 43 patients with pathologically confirmed glioma were divided into two groups as follows: Low-grade (grades I and II; n=21) and high-grade (grades IV and IV; n=22). Subsequently, immunohistochemistry staining was performed to detect the expression levels of MMP-2 and EphA2 in the low- and high-grade groups. MRI routine and enhanced scans were used to measure the peritumoral edema index (EI), tumor enhancement percentage (EP) and maximum tumor diameter. The results demonstrated that the proportion of MMP-2-positive patients in the high-grade group was 86.36% (19/22), which was significantly higher than that of the low-grade group (57.14%; 12/21) (P<0.05). Furthermore, the proportion of EphA2-positive patients in the high-grade group was 90.91% (20/22), significantly higher than that in the low-grade group (4.76%; 1/21) (P<0.01). In addition, the MRI results indicated that the EI, EP and maximum tumor diameter were significantly higher in the high-grade group compared with the low-grade group (P<0.01, P<0.01 and P<0.05, respectively). Finally, the expression levels of MMP-2 and EphA2 were significantly associated with the EI, EP and maximum tumor diameter (all P<0.05). In conclusion, the expression levels of MMP-2 and EphA2 were positively correlated with glioma invasion. The correlation between these expression levels and MRI assessment of the EI, EP and maximum tumor diameter indicated that the combination of these two methods may be used for the evaluation of the tumor grade and for further clinical treatment applications.
Collapse
Affiliation(s)
- Fangfang Suo
- Department of Radiology, Luoyang Central Hospital, Luoyang, Henan 471000, P.R. China
| | - Binfeng Zhong
- Department of Neurosurgery, Luoyang Central Hospital, Luoyang, Henan 471000, P.R. China
| | - Fangfang Lu
- Department of Radiology, Luoyang Central Hospital, Luoyang, Henan 471000, P.R. China
| | - Zhihui Dong
- Department of Radiology, Luoyang Central Hospital, Luoyang, Henan 471000, P.R. China
| |
Collapse
|
32
|
Gomez-Soler M, Petersen Gehring M, Lechtenberg BC, Zapata-Mercado E, Hristova K, Pasquale EB. Engineering nanomolar peptide ligands that differentially modulate EphA2 receptor signaling. J Biol Chem 2019; 294:8791-8805. [PMID: 31015204 DOI: 10.1074/jbc.ra119.008213] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/18/2019] [Indexed: 11/06/2022] Open
Abstract
The EPH receptor A2 (EphA2) tyrosine kinase plays an important role in a plethora of biological and disease processes, ranging from angiogenesis and cancer to inflammation and parasitic infections. EphA2 is therefore considered an important drug target. Two short peptides previously identified by phage display, named YSA and SWL, are widely used as EphA2-targeting agents owing to their high specificity for this receptor. However, these peptides have only modest (micromolar) potency. Lack of structural information on the binding interactions of YSA and SWL with the extracellular EphA2 ligand-binding domain (LBD) has for many years precluded structure-guided improvements. We now report the high-resolution (1.53-2.20 Å) crystal structures of the YSA peptide and several of its improved derivatives in complex with the EphA2 LBD, disclosing that YSA targets the ephrin-binding pocket of EphA2 and mimics binding features of the ephrin-A ligands. The structural information obtained enabled iterative peptide modifications conferring low nanomolar potency. Furthermore, contacts observed in the crystal structures shed light on how C-terminal features can convert YSA derivatives from antagonists to agonists that likely bivalently interact with two EphA2 molecules to promote receptor oligomerization, autophosphorylation, and downstream signaling. Consistent with this model, quantitative FRET measurements in live cells revealed that the peptide agonists promote the formation of EphA2 oligomeric assemblies. Our findings now enable rational strategies to differentially modify EphA2 signaling toward desired outcomes by using appropriately engineered peptides. Such peptides could be used as research tools to interrogate EphA2 function and to develop pharmacological leads.
Collapse
Affiliation(s)
- Maricel Gomez-Soler
- From the Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037 and
| | - Marina Petersen Gehring
- From the Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037 and
| | - Bernhard C Lechtenberg
- From the Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037 and
| | - Elmer Zapata-Mercado
- the Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218
| | - Kalina Hristova
- the Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218
| | - Elena B Pasquale
- From the Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037 and
| |
Collapse
|
33
|
Li JY, Xiao T, Yi HM, Yi H, Feng J, Zhu JF, Huang W, Lu SS, Zhou YH, Li XH, Xiao ZQ. S897 phosphorylation of EphA2 is indispensable for EphA2-dependent nasopharyngeal carcinoma cell invasion, metastasis and stem properties. Cancer Lett 2018; 444:162-174. [PMID: 30583071 DOI: 10.1016/j.canlet.2018.12.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/04/2018] [Accepted: 12/11/2018] [Indexed: 12/22/2022]
Abstract
Our phosphoproteomics identified that phosphorylation of EphA2 at serine 897 (pS897-EphA2) was significantly upregulated in the high metastatic nasopharyngeal carcinoma (NPC) cells relative to non-metastatic NPC cells. However, the role and underlying mechanism of pS897-EphA2 in cancer metastasis and stem properties maintenance remain poorly understood. In this study, we established NPC cell lines with stable expression of exogenous EphA2 and EphA2-S897A using endogenous EphA2 knockdown cells, and observed that pS897-EphA2 maintained EphA2-dependent NPC cell in vitro migration and invasion, in vivo metastasis and cancer stem properties. Using phospho-kinase antibody array to identify signaling downstream of pS897-EphA2, we found that AKT/Stat3 signaling mediated pS897-EphA2-promoting NPC cell invasion, metastasis and stem properties, and Sox-2 and c-Myc were the effectors of pS897-EphA2. Immunohistochemistry showed that pS897-EphA2 was positively correlated with NPC metastasis and negatively correlated with patient overall survival. Moreover, ERK/RSK signaling controlled serum-induced pS897-EphA2 in NPC cells. Collectively, our results demonstrate that pS897-EphA2 is indispensable for EphA2-dependent NPC cell invasion, metastasis and stem properties by activating AKT/Stat3/Sox-2 and c-Myc signaling pathway, suggesting that pS897-EphA2 can serve as a therapeutic target in NPC and perhaps in other cancers.
Collapse
Affiliation(s)
- Jiao-Yang Li
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ta Xiao
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, 210042, China
| | - Hong-Mei Yi
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hong Yi
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Juan Feng
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jin-Feng Zhu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Wei Huang
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shan-Shan Lu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yan-Hong Zhou
- Cancer Research Institute, Xiangya Medical School, Central South University, Changsha, Hunan, 410078, China
| | - Xin-Hui Li
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhi-Qiang Xiao
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
34
|
Kurtzeborn K, Cebrian C, Kuure S. Regulation of Renal Differentiation by Trophic Factors. Front Physiol 2018; 9:1588. [PMID: 30483151 PMCID: PMC6240607 DOI: 10.3389/fphys.2018.01588] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/23/2018] [Indexed: 12/11/2022] Open
Abstract
Classically, trophic factors are considered as proteins which support neurons in their growth, survival, and differentiation. However, most neurotrophic factors also have important functions outside of the nervous system. Especially essential renal growth and differentiation regulators are glial cell line-derived neurotrophic factor (GDNF), bone morphogenetic proteins (BMPs), and fibroblast growth factors (FGFs). Here we discuss how trophic factor-induced signaling contributes to the control of ureteric bud (UB) branching morphogenesis and to maintenance and differentiation of nephrogenic mesenchyme in embryonic kidney. The review includes recent advances in trophic factor functions during the guidance of branching morphogenesis and self-renewal versus differentiation decisions, both of which dictate the control of kidney size and nephron number. Creative utilization of current information may help better recapitulate renal differentiation in vitro, but it is obvious that significantly more basic knowledge is needed for development of regeneration-based renal therapies.
Collapse
Affiliation(s)
- Kristen Kurtzeborn
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Medicum, University of Helsinki, Helsinki, Finland
| | - Cristina Cebrian
- Developmental Biology Division, Cincinnati Children’s Hospital, Cincinnati, OH, United States
| | - Satu Kuure
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Medicum, University of Helsinki, Helsinki, Finland
- GM-Unit, Laboratory Animal Centre, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
35
|
Hong HN, Won YJ, Shim JH, Kim HJ, Han SH, Kim BS, Kim HS. Cancer-associated fibroblasts promote gastric tumorigenesis through EphA2 activation in a ligand-independent manner. J Cancer Res Clin Oncol 2018; 144:1649-1663. [PMID: 29948146 DOI: 10.1007/s00432-018-2683-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/05/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE Under physiologic conditions, the binding of erythropoietin-producing hepatocellular (Eph) A2 receptor and its ligand ephrinA1 results in decreased EphA2 level and tumor suppression. However, EphA2 and ephrinA1 are highly expressed in human cancers including gastric adenocarcinoma. In this study, we tested our hypothesis that cancer-associated fibroblasts (CAFs) promote gastric tumorigenesis through EphA2 signaling in a ligand-independent manner. METHODS Expression of EphA2 protein in primary tumor tissues of 91 patients who underwent curative surgery for gastric adenocarcinoma was evaluated by immunohistochemistry and western blotting. Conditioned medium of cancer-associated fibroblasts (CAF-CM) was used to evaluate the tumorigenic effect of CAFs on gastric cancer cell lines. Epithelial-mesenchymal transition (EMT), cell proliferation, migration, and invasion were assessed. EphrinA1-Fc ligand was used to determine the suppressor role of EphA2 receptor-ligand binding. RESULTS CAF-CM-induced EMT and promoted cancer cell motility even without cell-cell interaction. Treatment with a selective EphA2 inhibitor (ALW-II-41-27) or EphA2-targeted siRNA markedly reduced CAF-CM-induced gastric tumorigenesis. EphrinA1-Fc ligand treatment showing ligand-dependent tumor suppression diminished the EphA2 expression and EMT progression. In contrast, ephrinA1-targeted siRNA did not significantly affect CAF-CM-mediated increases in EphA2 expression and EMT progression. Treatment with VEGF showed effects like CAF-CM in terms of EphA2 activation and EMT progression. CONCLUSION CAFs may contribute to gastric tumorigenesis by activating EphA2 signaling pathway in a ligand-independent manner. Our results suggest that ligand-independent activation of EphA2 was triggered by VEGF released from CAF-CM. Our result may partially explain why ligand-dependent tumor suppressor roles of EphA2 are not evident in gastric cancer despite the prominent level of ephrinA1.
Collapse
Affiliation(s)
- Hea Nam Hong
- Department of Anatomy, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - You Jin Won
- Department of Anatomy, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Ju Hee Shim
- Department of Anatomy, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Hyun Ji Kim
- Department of Anatomy, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Seung Hee Han
- Department of Anatomy, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Byung Sik Kim
- Department of Gastric Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Hee Sung Kim
- Department of Gastric Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
36
|
Gofur MR, Ogawa K. Compartments with predominant ephrin‐B1 and EphB2/B4 expression are present alternately along the excurrent duct system in the adult mouse testis and epididymis. Andrology 2018; 7:888-901. [DOI: 10.1111/andr.12523] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/23/2018] [Accepted: 06/12/2018] [Indexed: 12/29/2022]
Affiliation(s)
- M. R. Gofur
- Laboratory of Veterinary Anatomy Graduate School of Life and Environmental Sciences Osaka Prefecture University Izumisano Japan
| | - K. Ogawa
- Laboratory of Veterinary Anatomy Graduate School of Life and Environmental Sciences Osaka Prefecture University Izumisano Japan
| |
Collapse
|
37
|
Zhou Y, Sakurai H. Emerging and Diverse Functions of the EphA2 Noncanonical Pathway in Cancer Progression. Biol Pharm Bull 2018; 40:1616-1624. [PMID: 28966234 DOI: 10.1248/bpb.b17-00446] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Erythropoietin-producing hepatocellular receptor A2 (EphA2) receptor tyrosine kinase controls multiple physiological processes to maintain homeostasis in normal cells. In many types of solid tumors, it has been reported that EphA2 is overexpressed and plays a critical role in oncogenic signaling. However, in recent years, the opposing functions of EphA2 have been explained by the canonical and noncanonical signaling pathways. Ligand- and tyrosine kinase-dependent EphA2 activation (the canonical pathway) inhibits cancer cell proliferation and motility. In contrast, ligand- and tyrosine kinase-independent EphA2 signaling (the noncanonical pathway) promotes tumor survival and metastasis and controls acquired drug resistance and maintenance of cancer stem cell-like properties. Evidence has accumulated showing that the EphA2 noncanonical pathway is mainly regulated by inflammatory cytokines and growth factors via phosphorylation at Ser-897 in the intracellular C-tail region via some serine/threonine kinases, including p90 ribosomal S6 kinase. In this review, we focus on the regulation of Ser-897 phosphorylation and its functional importance in tumor malignancy and discuss future therapeutic targeting.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama.,The MOE Key Laboratory for Standardization of Chinese Medicines and the Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine
| | - Hiroaki Sakurai
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
38
|
Redundant angiogenic signaling and tumor drug resistance. Drug Resist Updat 2018; 36:47-76. [DOI: 10.1016/j.drup.2018.01.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/22/2017] [Accepted: 01/11/2018] [Indexed: 02/07/2023]
|
39
|
Sun J, Wang X, Shi Y, Li J, Li C, Shi Z, Chen Y, Mao B. EphA7 regulates claudin6 and pronephros development in Xenopus. Biochem Biophys Res Commun 2017; 495:1580-1587. [PMID: 29223398 DOI: 10.1016/j.bbrc.2017.12.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/05/2017] [Indexed: 11/28/2022]
Abstract
Eph/ephrin molecules are widely expressed during embryonic development, and function in a variety of developmental processes. Here we studied the roles of the Eph receptor EphA7 and its soluble form in Xenopus pronephros development. EphA7 is specifically expressed in pronephric tubules at tadpole stages and knockdown of EphA7 by a translation blocking morpholino led to defects in tubule cell differentiation and morphogenesis. A soluble form of EphA7 (sEphA7) was also identified. Interestingly, the membrane level of claudin6 (CLDN6), a tetraspan transmembrane tight junction protein, was dramatically reduced in the translation blocking morpholino injected embryos, but not when a splicing morpholino was used, which blocks only the full length EphA7. In cultured cells, EphA7 binds and phosphorylates CLDN6, and reduces its distribution at the cell surface. Our work suggests a role of EphA7 in the regulation of cell adhesion during pronephros development, whereas sEphA7 works as an antagonist.
Collapse
Affiliation(s)
- Jian Sun
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xiaolei Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yu Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jiejing Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Chaocui Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zhaoying Shi
- Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yonglong Chen
- Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
40
|
Messina-Baas O, Cuevas-Covarrubias SA. Inherited Congenital Cataract: A Guide to Suspect the Genetic Etiology in the Cataract Genesis. Mol Syndromol 2017; 8:58-78. [PMID: 28611546 DOI: 10.1159/000455752] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2016] [Indexed: 01/23/2023] Open
Abstract
Cataracts are the principal cause of treatable blindness worldwide. Inherited congenital cataract (CC) shows all types of inheritance patterns in a syndromic and nonsyndromic form. There are more than 100 genes associated with cataract with a predominance of autosomal dominant inheritance. A cataract is defined as an opacity of the lens producing a variation of the refractive index of the lens. This variation derives from modifications in the lens structure resulting in light scattering, frequently a consequence of a significant concentration of high-molecular-weight protein aggregates. The aim of this review is to introduce a guide to identify the gene involved in inherited CC. Due to the manifold clinical and genetic heterogeneity, we discarded the cataract phenotype as a cardinal sign; a 4-group classification with the genes implicated in inherited CC is proposed. We consider that this classification will assist in identifying the probable gene involved in inherited CC.
Collapse
|
41
|
Oweida A, Bhatia S, Hirsch K, Calame D, Griego A, Keysar S, Pitts T, Sharma J, Eckhardt G, Jimeno A, Wang XJ, Parkash G, Califano J, Karam SD. Ephrin-B2 overexpression predicts for poor prognosis and response to therapy in solid tumors. Mol Carcinog 2016; 56:1189-1196. [PMID: 27649287 DOI: 10.1002/mc.22574] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 09/16/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022]
Abstract
Ephrin B2 is variably expressed on tumor cells and its blockade has been shown to inhibit angiogenesis in animal models of pancreatic, colorectal, lung and head, and neck squamous cell carcinomas. However, the implications of ephrinB2 expression in cancer patients have remained elusive. In this study, we analyzed the cancer genome atlas (TCGA) for ephrinB2 expression. We report significant correlations between EFNB2 expression, overall survival and disease-free survival in head and neck squamous cell carcinoma (HNSCC, n = 519), pancreatic adenocarcinoma (n = 186), and bladder urothelial carcinoma (n = 410). In HNSCC patients, high-EFNB2 mRNA expression was associated with tumor HPV negativity, oral cavity location, alcohol intake, higher TP53 mutation, and EGFR amplification. EphrinB2 overexpression also correlated with worse response to chemotherapy and radiotherapy. The therapeutic potential of blocking ephrinB2 was validated in HNSCC patient-derived tumor xenografts and showed significant improvement in survival and tumor growth delay. Our data shows that ephrinB2 overexpression can serve as a critical biomarker for patient prognosis and response to therapy. These results should guide design of future clinical trials exploring EphrinB2 inhibition in cancer patients. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ayman Oweida
- Department of Radiation Oncology, Anschutz Medical Campus, University of Colorado Denver, Denver, Colorado
| | - Shilpa Bhatia
- Department of Radiation Oncology, Anschutz Medical Campus, University of Colorado Denver, Denver, Colorado
| | - Kellen Hirsch
- Department of Radiation Oncology, Anschutz Medical Campus, University of Colorado Denver, Denver, Colorado
| | - Dylan Calame
- Department of Radiation Oncology, Anschutz Medical Campus, University of Colorado Denver, Denver, Colorado
| | - Anastacia Griego
- Department of Radiation Oncology, Anschutz Medical Campus, University of Colorado Denver, Denver, Colorado
| | - Steve Keysar
- Department of Oncology, Anschutz Medical Campus, University of Colorado Denver, Denver, Colorado
| | - Todd Pitts
- Division of Medical Oncology, Anschutz Medical Campus, University of Colorado Denver, Denver, Colorado
| | - Jaspreet Sharma
- Department of Radiation Oncology, Anschutz Medical Campus, University of Colorado Denver, Denver, Colorado
| | - Gail Eckhardt
- Division of Medical Oncology, Anschutz Medical Campus, University of Colorado Denver, Denver, Colorado
| | - Antonio Jimeno
- Department of Oncology, Anschutz Medical Campus, University of Colorado Denver, Denver, Colorado
| | - Xiao Jing Wang
- Department of Pathology, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado
| | - Gill Parkash
- Vasgene Therapeutics, Los Angeles, California.,Department of Oncology, University of Southern California, Los Angeles, Southern California
| | - Joseph Califano
- Department of Otolaryngology, University of Southern California, San Diego, Southern California
| | - Sana D Karam
- Department of Radiation Oncology, Anschutz Medical Campus, University of Colorado Denver, Denver, Colorado
| |
Collapse
|
42
|
EphA2 is a biomarker of hMSCs derived from human placenta and umbilical cord. Taiwan J Obstet Gynecol 2016; 54:749-56. [PMID: 26700997 DOI: 10.1016/j.tjog.2015.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2015] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE The heterogeneous nature of mesenchymal stem cells (MSCs) and the absence of known MSC-specific biomarkers make it challenging to define MSC phenotypes and characteristics. In this study, we compared the phenotypic and functional features of human placenta-derived MSCs with those of human dermal fibroblasts in vitro in order to identify a biomarker that can be used to increase the purity of MSCs in a primary culture of placenta-derived cells. MATERIALS AND METHODS Liquid chromatography-tandem mass spectrometry analysis was used to analyze and compare the proteome of human placenta-derived MSCs with that of fibroblasts. Quantitative real-time polymerase chain reaction, immunofluorescence, and flow cytometry were used to determine expression levels of EphA2 in placenta-derived MSCs. EphA2-positive cells were enriched by magnetic-activated cell sorting or with a cell sorter. An shRNA-mediated EphA2 knockdown was used to assess the role of EphA2 in MSC response to Tumor necrosis factor (TNF)-α stimulation. RESULTS Analysis of proteomics data from MSCs and fibroblasts resulted in the identification of the EphA2 surface protein biomarker, which could reliably distinguish MSCs from fibroblasts. EphA2 was significantly upregulated in placenta-derived MSCs when compared to fibroblasts. EphA2 played an important role in MSC migration in response to inflammatory stimuli, such as TNF-α. EphA2-enriched MSCs were also more responsive to inflammatory stimuli in vitro when compared to unsorted MSCs, indicating a role for EphA2 in the immunomodulatory functionality of MSCs. CONCLUSION EphA2 can be used to distinguish and isolate MSCs from a primary culture of placenta-derived cells. EphA2-sorted MSCs exhibited superior responsiveness to TNF-α signaling in an inflammatory environment compared with unsorted MSCs or MSC-like cells.
Collapse
|
43
|
Barquilla A, Lamberto I, Noberini R, Heynen-Genel S, Brill LM, Pasquale EB. Protein kinase A can block EphA2 receptor-mediated cell repulsion by increasing EphA2 S897 phosphorylation. Mol Biol Cell 2016; 27:2757-70. [PMID: 27385333 PMCID: PMC5007095 DOI: 10.1091/mbc.e16-01-0048] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/24/2016] [Indexed: 12/18/2022] Open
Abstract
The EphA2 receptor plays multiple roles in cancer through two distinct signaling mechanisms. In a novel cross-talk, the β2-adrenoceptor/cAMP/PKA axis can promote EphA2 pro-oncogenic, ligand-independent signaling, blocking cell repulsion induced by ligand-dependent signaling. PKA emerges as a third kinase, besides AKT and RSK, that can regulate EphA2. The EphA2 receptor tyrosine kinase plays key roles in tissue homeostasis and disease processes such as cancer, pathological angiogenesis, and inflammation through two distinct signaling mechanisms. EphA2 “canonical” signaling involves ephrin-A ligand binding, tyrosine autophosphorylation, and kinase activity; EphA2 “noncanonical” signaling involves phosphorylation of serine 897 (S897) by AKT and RSK kinases. To identify small molecules counteracting EphA2 canonical signaling, we developed a high-content screening platform measuring inhibition of ephrin-A1–induced PC3 prostate cancer cell retraction. Surprisingly, most hits from a screened collection of pharmacologically active compounds are agents that elevate intracellular cAMP by activating G protein–coupled receptors such as the β2-adrenoceptor. We found that cAMP promotes phosphorylation of S897 by protein kinase A (PKA) as well as increases the phosphorylation of several nearby serine/threonine residues, which constitute a phosphorylation hotspot. Whereas EphA2 canonical and noncanonical signaling have been viewed as mutually exclusive, we show that S897 phosphorylation by PKA can coexist with EphA2 tyrosine phosphorylation and block cell retraction induced by EphA2 kinase activity. Our findings reveal a novel paradigm in EphA2 function involving the interplay of canonical and noncanonical signaling and highlight the ability of the β2-adrenoceptor/cAMP/PKA axis to rewire EphA2 signaling in a subset of cancer cells.
Collapse
Affiliation(s)
- Antonio Barquilla
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Ilaria Lamberto
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Roberta Noberini
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Susanne Heynen-Genel
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Laurence M Brill
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037 Pathology Department, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
44
|
Jing X, Sonoki T, Miyajima M, Sawada T, Terada N, Takemura S, Sakaguchi K. EphA4-deleted microenvironment regulates cancer development and leukemoid reaction of the isografted 4T1 murine breast cancer via reduction of an IGF1 signal. Cancer Med 2016; 5:1214-27. [PMID: 26923183 PMCID: PMC4924380 DOI: 10.1002/cam4.670] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 12/10/2015] [Accepted: 01/19/2016] [Indexed: 12/22/2022] Open
Abstract
EphA4 belongs to the largest family of receptor tyrosine kinases (RTKs). Although EphA4 is highly expressed in the central nervous system, EphA4 has also been implicated in cancer progression. Most of the studies focus on the expression and function in tumor cells. It is unknown whether EphA4‐deleted microenvironment affects tumor progression. Some of cancers in animals and humans, such as 4T1 cancer cells, are known to produce a large amount of granulocyte colony‐stimulating factors (G‐CSF/Csf3) which can stimulate myeloproliferation, such as myeloid‐derived suppressor cells (MDSCs) leading to a poor recipient prognosis. We isografted 4T1 breast cancer cells into both EphA4‐knockout and control wild‐type female littermate mice. The results showed that the EphA4‐deleted host could inhibit primary tumor growth and tumor metastasis mainly by decreasing the amount of IGF1 synthesis in the circulation and locally tissues. The EphA4‐deleted microenvironment and delayed tumor development reduced the production of G‐CSF resulting in the decrease of splenomegaly and leukemoid reaction including MDSCs, which in turn inhibit the tumor progression. This inhibition can be reversed by supplying the mice with IGF1. However, an excess of IGF1 supply over demand to the control mice could not further accelerate the tumor growth and metastasis. A better understanding and re‐evaluation of the main role of IGF1 in regulating tumor progression could further enhance our cognition of the tumor development niche. Our findings demonstrated that EphA4‐deleted microenvironment impairs tumor‐supporting conditions. Conclusion: Host EphA4 expression regulates cancer development mainly via EphA4‐mediated IGF1 synthesis signal. Thus, targeting this signaling pathway may provide a potential therapeutic option for cancer treatment.
Collapse
Affiliation(s)
- Xuefeng Jing
- Departments of Molecular Cell Biology and Molecular Medicine, Institute of Advanced Medicine, Wakayama Medical University, School of Medicine, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Takashi Sonoki
- Departments of Hematology/Oncology, University Hospital, Wakayama Medical University, School of Medicine, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Masayasu Miyajima
- Laboratory Animal Center, Wakayama Medical University, School of Medicine, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Takahiro Sawada
- Departments of Molecular Cell Biology and Molecular Medicine, Institute of Advanced Medicine, Wakayama Medical University, School of Medicine, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Nanako Terada
- Departments of Molecular Cell Biology and Molecular Medicine, Institute of Advanced Medicine, Wakayama Medical University, School of Medicine, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Shigeki Takemura
- Department of Hygiene, Wakayama Medical University, School of Medicine, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Kazushige Sakaguchi
- Departments of Molecular Cell Biology and Molecular Medicine, Institute of Advanced Medicine, Wakayama Medical University, School of Medicine, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| |
Collapse
|
45
|
The Polymorphisms with Cataract Susceptibility Impair the EPHA2 Receptor Stability and Its Cytoprotective Function. J Ophthalmol 2015; 2015:401894. [PMID: 26664742 PMCID: PMC4668318 DOI: 10.1155/2015/401894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 11/19/2022] Open
Abstract
Despite accumulating evidence revealing susceptibility genes for age-related cataract, its pathophysiology leading to visual impairment at the cellular and molecular level remains poorly understood. Recent bioinformatic studies uncovered the association of two single nucleotide polymorphisms in human EPHA2, rs2291806 and rs1058371, with age-related cataract. Here we investigated the role of EPHA2 in counteracting oxidative stress-induced apoptosis of lens epithelial cells. The cataract-associated missense mutations resulted in the destabilization of EPHA2 receptor without altering the mRNA transcription. The cytoprotective and antiapoptotic function of EPHA2 in lens epithelial cells was abolished by the functional polymorphisms. Furthermore, our results suggest that the downstream signaling of activated EPHA2 promotes the antioxidative capacity of lens epithelial cells to eradicate the overproduction of reactive oxygen species. In contrast, the overexpression of EPHA2 with nonsynonymous mutations in the lens epithelial cells offered limited antioxidative protection against oxidative stress. Thus, our study not only sheds the light on the potential cytoprotective function of EPHA2 signaling in lens but also provides the cellular mechanisms underlying the pathogenesis of age-related cataract.
Collapse
|
46
|
Wijeratne DT, Rodger J, Wood FM, Fear MW. The role of Eph receptors and Ephrins in the skin. Int J Dermatol 2015; 55:3-10. [PMID: 26498559 DOI: 10.1111/ijd.12968] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/21/2014] [Accepted: 12/31/2014] [Indexed: 12/01/2022]
Abstract
Eph receptors and Ephrin ligands are widely expressed in the skin. Various studies have been carried out to identify the effects of these molecules on many aspects of skin development. Here we summarize the literature that has identified roles for Eph receptors and Ephrins in the skin, focusing mainly on the epidermis, hair follicles, and cutaneous innervation. This review may help direct and focus further investigations into the role of Eph receptors and Ephrins in the development, maintenance, and repair processes in cutaneous biology.
Collapse
Affiliation(s)
- Dulharie T Wijeratne
- Burn Injury Research Unit, School of Surgery, University of Western Australia, Perth, WA, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Animal Biology, University of Western Australia, Perth, WA, Australia
| | - Fiona M Wood
- Burn Injury Research Unit, School of Surgery, University of Western Australia, Perth, WA, Australia.,The Fiona Wood Foundation, Perth, WA, Australia
| | - Mark W Fear
- Burn Injury Research Unit, School of Surgery, University of Western Australia, Perth, WA, Australia.,The Fiona Wood Foundation, Perth, WA, Australia
| |
Collapse
|
47
|
Abstract
Epithelial cells are tightly coupled together through specialized intercellular junctions, including adherens junctions, desmosomes, tight junctions, and gap junctions. A growing body of evidence suggests epithelial cells also directly exchange information at cell-cell contacts via the Eph family of receptor tyrosine kinases and their membrane-associated ephrin ligands. Ligand-dependent and -independent signaling via Eph receptors as well as reverse signaling through ephrins impact epithelial tissue homeostasis by organizing stem cell compartments and regulating cell proliferation, migration, adhesion, differentiation, and survival. This review focuses on breast, gut, and skin epithelia as representative examples for how Eph receptors and ephrins modulate diverse epithelial cell responses in a context-dependent manner. Abnormal Eph receptor and ephrin signaling is implicated in a variety of epithelial diseases raising the intriguing possibility that this cell-cell communication pathway can be therapeutically harnessed to normalize epithelial function in pathological settings like cancer or chronic inflammation.
Collapse
Key Words
- ADAM, a disintegrin and metalloprotease
- Apc, adenomatous polyposis coli
- Breast
- ER, estrogen receptor
- Eph receptor
- Eph, erythropoietin-producing hepatocellular
- Erk, extracellular signal-regulated kinase
- GEF, guanine nucleotide exchange factor
- GPI, glycosylphosphatidylinositol
- HER2, human epidermal growth factor receptor 2
- HGF, hepatocyte growth factor
- IBD, inflammatory bowel disease
- KLF, Krüppel-like factor
- MAPK, mitogen-activated protein kinase
- MMTV-LTR, mouse mammary tumor virus-long terminal repeat
- MT1-MMP, membrane-type 1 matrix metalloproteinase
- PDZ, postsynaptic density protein 95, discs large 1, and zonula occludens-1
- PTP, protein tyrosine phosphatase
- RTK, receptor tyrosine kinase
- SH2, Src homology 2
- SHIP2, SH2 inositol phosphatase 2
- SLAP, Src-like adaptor protein
- TCF, T-cell specific transcription factor
- TEB, terminal end bud
- TNFα, tumor necrosis factor α.
- cell-cell
- ephrin
- epithelial
- intestine
- receptor tyrosine kinase
- skin
- stem cell
Collapse
|
48
|
Crucial roles of RSK in cell motility by catalysing serine phosphorylation of EphA2. Nat Commun 2015; 6:7679. [PMID: 26158630 PMCID: PMC4510653 DOI: 10.1038/ncomms8679] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 05/31/2015] [Indexed: 12/19/2022] Open
Abstract
Crosstalk between inflammatory signalling pathways and receptor tyrosine kinases has been revealed as an indicator of cancer malignant progression. In the present study, we focus on EphA2 receptor tyrosine kinase, which is overexpressed in many human cancers. It has been reported that ligand-independent phosphorylation of EphA2 at Ser-897 is induced by Akt. We show that inflammatory cytokines promote RSK-, not Akt-, dependent phosphorylation of EphA2 at Ser-897. In addition, the RSK-EphA2 signalling pathway controls cell migration and invasion of metastatic breast cancer cells. Moreover, Ser-897-phosphorylated EphA2 co-localizes with phosphorylated active form of RSK in various human tumour specimens, and this double positivity is related to poor survival in lung cancer patients, especially those with a smoking history. Taken together, these results indicate that the phosphorylation of EphA2 at Ser-897 is controlled by RSK and the RSK-EphA2 axis might contribute to cell motility and promote tumour malignant progression.
Collapse
|
49
|
Miao H, Gale NW, Guo H, Qian J, Petty A, Kaspar J, Murphy AJ, Valenzuela DM, Yancopoulos G, Hambardzumyan D, Lathia JD, Rich JN, Lee J, Wang B. EphA2 promotes infiltrative invasion of glioma stem cells in vivo through cross-talk with Akt and regulates stem cell properties. Oncogene 2015; 34:558-67. [PMID: 24488013 PMCID: PMC4119862 DOI: 10.1038/onc.2013.590] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 01/24/2023]
Abstract
Diffuse infiltrative invasion is a major cause for the dismal prognosis of glioblastoma multiforme (GBM), but the underlying mechanisms remain incompletely understood. Using human glioma stem cells (GSCs) that recapitulate the invasive propensity of primary GBM, we find that EphA2 critically regulates GBM invasion in vivo. EphA2 was expressed in all seven GSC lines examined, and overexpression of EphA2 enhanced intracranial invasion. The effects required Akt-mediated phosphorylation of EphA2 on serine 897. In vitro the Akt-EphA2 signaling axis is maintained in the absence of ephrin-A ligands and is disrupted upon ligand stimulation. To test whether ephrin-As in tumor microenvironment can regulate GSC invasion, the newly established Efna1;Efna3;Efna4 triple knockout mice (TKO) were used in an ex vivo brain slice invasion assay. We observed significantly increased GSC invasion through the brain slices of TKO mice relative to wild-type (WT) littermates. Mechanistically EphA2 knockdown suppressed stem cell properties of GSCs, causing diminished self-renewal, reduced stem marker expression and decreased tumorigenicity. In a subset of GSCs, the reduced stem cell properties were associated with lower Sox2 expression. Overexpression of EphA2 promoted stem cell properties in a kinase-independent manner and increased Sox2 expression. Disruption of Akt-EphA2 cross-talk attenuated stem cell marker expression and neurosphere formation while having minimal effects on tumorigenesis. Taken together, the results show that EphA2 endows invasiveness of GSCs in vivo in cooperation with Akt and regulates glioma stem cell properties.
Collapse
Affiliation(s)
- Hui Miao
- Rammelkamp Center for Research, MetroHealth Campus, and Department of Pharmacology and Oncology, Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, Ohio 44109, USA
- VelociGene Division, Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | - Hong Guo
- Rammelkamp Center for Research, MetroHealth Campus, and Department of Pharmacology and Oncology, Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, Ohio 44109, USA
- VelociGene Division, Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Juan Qian
- Rammelkamp Center for Research, MetroHealth Campus, and Department of Pharmacology and Oncology, Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, Ohio 44109, USA
- VelociGene Division, Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Aaron Petty
- Rammelkamp Center for Research, MetroHealth Campus, and Department of Pharmacology and Oncology, Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, Ohio 44109, USA
- VelociGene Division, Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - James Kaspar
- Rammelkamp Center for Research, MetroHealth Campus, and Department of Pharmacology and Oncology, Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, Ohio 44109, USA
- VelociGene Division, Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | | | | | - Dolores Hambardzumyan
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 9500 Euclid Ave, Cleveland, Ohio, 44195, USA
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, 11100 Euclid Ave, Cleveland Ohio, 44106, USA
| | - Justin D. Lathia
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 9500 Euclid Ave, Cleveland, Ohio, 44195, USA
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, 11100 Euclid Ave, Cleveland Ohio, 44106, USA
| | - Jeremy N. Rich
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 9500 Euclid Ave, Cleveland, Ohio, 44195, USA
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, 11100 Euclid Ave, Cleveland Ohio, 44106, USA
| | - Jeongwu Lee
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 9500 Euclid Ave, Cleveland, Ohio, 44195, USA
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, 11100 Euclid Ave, Cleveland Ohio, 44106, USA
| | - Bingcheng Wang
- Rammelkamp Center for Research, MetroHealth Campus, and Department of Pharmacology and Oncology, Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, Ohio 44109, USA
- VelociGene Division, Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, 11100 Euclid Ave, Cleveland Ohio, 44106, USA
| |
Collapse
|
50
|
Gucciardo E, Sugiyama N, Lehti K. Eph- and ephrin-dependent mechanisms in tumor and stem cell dynamics. Cell Mol Life Sci 2014; 71:3685-710. [PMID: 24794629 PMCID: PMC11113620 DOI: 10.1007/s00018-014-1633-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/31/2014] [Accepted: 04/17/2014] [Indexed: 01/17/2023]
Abstract
The erythropoietin-producing hepatocellular (Eph) receptors comprise the largest family of receptor tyrosine kinases (RTKs). Initially regarded as axon-guidance and tissue-patterning molecules, Eph receptors have now been attributed with various functions during development, tissue homeostasis, and disease pathogenesis. Their ligands, ephrins, are synthesized as membrane-associated molecules. At least two properties make this signaling system unique: (1) the signal can be simultaneously transduced in the receptor- and the ligand-expressing cell, (2) the signaling outcome through the same molecules can be opposite depending on cellular context. Moreover, shedding of Eph and ephrin ectodomains as well as ligand-dependent and -independent receptor crosstalk with other RTKs, proteases, and adhesion molecules broadens the repertoire of Eph/ephrin functions. These integrated pathways provide plasticity to cell-microenvironment communication in varying tissue contexts. The complex molecular networks and dynamic cellular outcomes connected to the Eph/ephrin signaling in tumor-host communication and stem cell niche are the main focus of this review.
Collapse
Affiliation(s)
- Erika Gucciardo
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, P.O.B. 63, 00014 Helsinki, Finland
| | - Nami Sugiyama
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, P.O.B. 63, 00014 Helsinki, Finland
- Department of Biosystems Science and Bioengineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Kaisa Lehti
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, P.O.B. 63, 00014 Helsinki, Finland
| |
Collapse
|