1
|
Trant J, Sanchez G, McDermott JP, Blanco G. The cystogenic effects of ouabain in autosomal dominant polycystic kidney disease require cell caveolae. Exp Cell Res 2025; 444:114356. [PMID: 39586486 DOI: 10.1016/j.yexcr.2024.114356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
We have previously shown that the hormone ouabain is a circulating factor which can accelerate the progression of autosomal dominant polycystic kidney disease (ADPKD). At physiologic concentrations, ouabain increases cyst area and fibrosis in kidneys from ADPKD but not wildtype mice. These effects are due to an increased affinity for ouabain by its receptor, Na,K-ATPase (NKA), in the kidneys of ADPKD mice which leads to over-activation of NKA signaling function. Previous studies suggested that ouabain's stimulation of NKA signal transduction is mediated by NKA located within cell caveolae. Here, we determined whether caveolae are involved in the ouabain-induced progression of ADPKD cysts. We generated an ADPKD mouse with a global knockout of the main structural component of caveolae, caveolin-1 (CAV1), which we confirmed lacks caveolae in the kidney. When given physiological amounts of ouabain for 5 months, Pkd1RC/RCCav1-/- mice did not exhibit any changes in cyst progression, contrasting with the Pkd1RC/RC mice which showed a significant increase in cystic area and kidney fibrosis. Also, measures of ouabain-induced cell proliferation, including the number of Ki67-positive nuclei and phosphorylation of the extracellular regulated kinase (ERK) and protein kinase B (Akt), did not increase in the Pkd1RC/RCCav1-/- mice compared with the Pkd1RC/RC mice. Moreover, the abnormally increased affinity for ouabain of NKA in Pkd1RC/RC mice was restored to wildtype levels in the Pkd1RC/RCCav1-/- mice. This work highlights the role of caveolae in ouabain-induced NKA signaling and ADPKD cyst progression.
Collapse
Affiliation(s)
- Jordan Trant
- Department of Cell Biology and Physiology and the Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Gladis Sanchez
- Department of Cell Biology and Physiology and the Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jeffery P McDermott
- Department of Cell Biology and Physiology and the Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Gustavo Blanco
- Department of Cell Biology and Physiology and the Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
2
|
Nakamura F. The Role of Mechanotransduction in Contact Inhibition of Locomotion and Proliferation. Int J Mol Sci 2024; 25:2135. [PMID: 38396812 PMCID: PMC10889191 DOI: 10.3390/ijms25042135] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Contact inhibition (CI) represents a crucial tumor-suppressive mechanism responsible for controlling the unbridled growth of cells, thus preventing the formation of cancerous tissues. CI can be further categorized into two distinct yet interrelated components: CI of locomotion (CIL) and CI of proliferation (CIP). These two components of CI have historically been viewed as separate processes, but emerging research suggests that they may be regulated by both distinct and shared pathways. Specifically, recent studies have indicated that both CIP and CIL utilize mechanotransduction pathways, a process that involves cells sensing and responding to mechanical forces. This review article describes the role of mechanotransduction in CI, shedding light on how mechanical forces regulate CIL and CIP. Emphasis is placed on filamin A (FLNA)-mediated mechanotransduction, elucidating how FLNA senses mechanical forces and translates them into crucial biochemical signals that regulate cell locomotion and proliferation. In addition to FLNA, trans-acting factors (TAFs), which are proteins or regulatory RNAs capable of directly or indirectly binding to specific DNA sequences in distant genes to regulate gene expression, emerge as sensitive players in both the mechanotransduction and signaling pathways of CI. This article presents methods for identifying these TAF proteins and profiling the associated changes in chromatin structure, offering valuable insights into CI and other biological functions mediated by mechanotransduction. Finally, it addresses unanswered research questions in these fields and delineates their possible future directions.
Collapse
Affiliation(s)
- Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
3
|
Bannell TAK, Cockburn JJB. The molecular structure and function of fibrocystin, the key gene product implicated in autosomal recessive polycystic kidney disease (ARPKD). Ann Hum Genet 2024; 88:58-75. [PMID: 37905714 DOI: 10.1111/ahg.12535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/14/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023]
Abstract
Autosomal recessive polycystic kidney disease is an early onset inherited hepatorenal disorder affecting around 1 in 20,000 births with no approved specific therapies. The disease is almost always caused by variations in the polycystic kidney and hepatic disease 1 gene, which encodes fibrocystin (FC), a very large, single-pass transmembrane glycoprotein found in primary cilia, urine and urinary exosomes. By comparison to proteins involved in autosomal dominant PKD, our structural and molecular understanding of FC has lagged far behind such that there are no published experimentally determined structures of any part of the protein. Bioinformatics analyses predict that the ectodomain contains a long chain of immunoglobulin-like plexin-transcription factor domains, a protective antigen 14 domain, a tandem G8-TMEM2 homology region and a sperm protein, enterokinase and agrin domain. Here we review current knowledge on the molecular function of the protein from a structural perspective.
Collapse
Affiliation(s)
- Travis A K Bannell
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Joseph J B Cockburn
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
4
|
Trant J, Sanchez G, McDermott JP, Blanco G. Ouabain enhances renal cyst growth in a slowly progressive mouse model of autosomal dominant polycystic kidney disease. Am J Physiol Renal Physiol 2023; 325:F857-F869. [PMID: 37823195 PMCID: PMC10874652 DOI: 10.1152/ajprenal.00056.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023] Open
Abstract
Renal cyst progression in autosomal dominant polycystic kidney disease (ADPKD) is highly dependent on agents circulating in blood. We have previously shown, using different in vitro models, that one of these agents is the hormone ouabain. By binding to Na+-K+-ATPase (NKA), ouabain triggers a cascade of signal transduction events that enhance ADPKD cyst progression by stimulating cell proliferation, fluid secretion, and dedifferentiation of the renal tubular epithelial cells. Here, we determined the effects of ouabain in vivo. We show that daily administration of ouabain to Pkd1RC/RC ADPKD mice for 1-5 mo, at physiological levels, augmented kidney cyst area and number compared with saline-injected controls. Also, ouabain favored renal fibrosis; however, renal function was not significantly altered as determined by blood urea nitrogen levels. Ouabain did not have a sex preferential effect, with male and female mice being affected equally. By contrast, ouabain had no significant effect on wild-type mice. In addition, the actions of ouabain on Pkd1RC/RC mice were exacerbated when another mutation that increased the affinity of NKA for ouabain was introduced to the mice (Pkd1RC/RCNKAα1OS/OS mice). Altogether, this work highlights the role of ouabain as a procystogenic factor in the development of ADPKD in vivo, that the ouabain affinity site on NKA is critical for this effect, and that circulating ouabain is an epigenetic factor that worsens the ADPKD phenotype.NEW & NOTEWORTHY This work shows that the hormone ouabain enhances the progression of autosomal dominant polycystic kidney disease (ADPKD) in vivo. Ouabain augments the size and number of renal cysts, the kidney weight to body weight ratio, and kidney fibrosis in an ADPKD mouse model. The Na+-K+-ATPase affinity for ouabain plays a critical role in these effects. In addition, these outcomes are independent of the sex of the mice.
Collapse
Affiliation(s)
- Jordan Trant
- Department of Cell Biology and Physiology, University of Kansas Medical Center, The Kidney Institute, Kansas City, Kansas, United States
| | - Gladis Sanchez
- Department of Cell Biology and Physiology, University of Kansas Medical Center, The Kidney Institute, Kansas City, Kansas, United States
| | - Jeffrey P McDermott
- Department of Cell Biology and Physiology, University of Kansas Medical Center, The Kidney Institute, Kansas City, Kansas, United States
| | - Gustavo Blanco
- Department of Cell Biology and Physiology, University of Kansas Medical Center, The Kidney Institute, Kansas City, Kansas, United States
| |
Collapse
|
5
|
Yan Z, Wang D, Cai J, Shen L, Jiang M, Liu X, Huang J, Zhang Y, Luo E, Jing D. High-specificity protection against radiation-induced bone loss by a pulsed electromagnetic field. SCIENCE ADVANCES 2022; 8:eabq0222. [PMID: 36001662 PMCID: PMC9401628 DOI: 10.1126/sciadv.abq0222] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/11/2022] [Indexed: 05/28/2023]
Abstract
Radiotherapy increases tumor cure and survival rates; however, radiotherapy-induced bone damage remains a common issue for which effective countermeasures are lacking, especially considering tumor recurrence risks. We report a high-specificity protection technique based on noninvasive electromagnetic field (EMF). A unique pulsed-burst EMF (PEMF) at 15 Hz and 2 mT induces notable Ca2+ oscillations with robust Ca2+ spikes in osteoblasts in contrast to other waveforms. This waveform parameter substantially inhibits radiotherapy-induced bone loss by specifically modulating osteoblasts without affecting other bone cell types or tumor cells. Mechanistically, primary cilia are identified as major PEMF sensors in osteoblasts, and the differentiated ciliary expression dominates distinct PEMF sensitivity between osteoblasts and tumor cells. PEMF-induced unique Ca2+ oscillations depend on interactions between ciliary polycystins-1/2 and endoplasmic reticulum, which activates the Ras/MAPK/AP-1 axis and subsequent DNA repair Ku70 transcription. Our study introduces a previously unidentified method against radiation-induced bone damage in a noninvasive, cost-effective, and highly specific manner.
Collapse
Affiliation(s)
- Zedong Yan
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - Dan Wang
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - Jing Cai
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Liangliang Shen
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
| | - Maogang Jiang
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - Xiyu Liu
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - Jinghui Huang
- Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yong Zhang
- Department of Pulmonary and Critical Care of Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Erping Luo
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - Da Jing
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
- The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
6
|
Dow JAT, Simons M, Romero MF. Drosophila melanogaster: a simple genetic model of kidney structure, function and disease. Nat Rev Nephrol 2022; 18:417-434. [PMID: 35411063 DOI: 10.1038/s41581-022-00561-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/27/2022]
Abstract
Although the genetic basis of many kidney diseases is being rapidly elucidated, their experimental study remains problematic owing to the lack of suitable models. The fruitfly Drosophila melanogaster provides a rapid, ethical and cost-effective model system of the kidney. The unique advantages of D. melanogaster include ease and low cost of maintenance, comprehensive availability of genetic mutants and powerful transgenic technologies, and less onerous regulation, as compared with mammalian systems. Renal and excretory functions in D. melanogaster reside in three main tissues - the transporting renal (Malpighian) tubules, the reabsorptive hindgut and the endocytic nephrocytes. Tubules contain multiple cell types and regions and generate a primary urine by transcellular transport rather than filtration, which is then subjected to selective reabsorption in the hindgut. By contrast, the nephrocytes are specialized for uptake of macromolecules and equipped with a filtering slit diaphragm resembling that of podocytes. Many genes with key roles in the human kidney have D. melanogaster orthologues that are enriched and functionally relevant in fly renal tissues. This similarity has allowed investigations of epithelial transport, kidney stone formation and podocyte and proximal tubule function. Furthermore, a range of unique quantitative phenotypes are available to measure function in both wild type and disease-modelling flies.
Collapse
Affiliation(s)
- Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - Matias Simons
- INSERM UMR1163, Laboratory of Epithelial Biology and Disease, Imagine Institute, Université de Paris, Hôpital Necker-Enfants Malades, Paris, France
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael F Romero
- Department of Physiology and Biomedical Engineering, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
7
|
Genome-wide siRNA screening reveals several host receptors for the binding of human gut commensal Bifidobacterium bifidum. NPJ Biofilms Microbiomes 2022; 8:50. [PMID: 35768415 PMCID: PMC9243078 DOI: 10.1038/s41522-022-00312-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 05/31/2022] [Indexed: 11/08/2022] Open
Abstract
Bifidobacterium spp. are abundant gut commensals, especially in breast-fed infants. Bifidobacteria are associated with many health-promoting effects including maintenance of epithelial barrier and integrity as well as immunomodulation. However, the protective mechanisms of bifidobacteria on intestinal epithelium at molecular level are poorly understood. In this study, we developed a high-throughput in vitro screening assay to explore binding receptors of intestinal epithelial cells for Bifidobacterium bifidum. Short interfering RNAs (siRNA) were used to silence expression of each gene in the Caco-2 cell line one by one. The screen yielded four cell surface proteins, SERPINB3, LGICZ1, PKD1 and PAQR6, which were identified as potential receptors as the siRNA knock-down of their expression decreased adhesion of B. bifidum to the cell line repeatedly during the three rounds of siRNA screening. Furthermore, blocking of these host cell proteins by specific antibodies decreased the binding of B. bifidum significantly to Caco-2 and HT29 cell lines. All these molecules are located on the surface of epithelial cells and three out of four, SERPINB3, PKD1 and PAQR6, are involved in the regulation of cellular processes related to proliferation, differentiation and apoptosis as well as inflammation and immunity. Our results provide leads to the first steps in the mechanistic cascade of B. bifidum-host interactions leading to regulatory effects in the epithelium and may partly explain how this commensal bacterium is able to promote intestinal homeostasis.
Collapse
|
8
|
Papavassiliou KA, Gargalionis AN, Papavassiliou AG. Polycystins, mechanotransduction and cancer development. J Cell Mol Med 2022; 26:2741-2743. [PMID: 35366054 PMCID: PMC9077297 DOI: 10.1111/jcmm.17298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022] Open
Affiliation(s)
- Kostas A. Papavassiliou
- Department of Biological ChemistryMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Antonios N. Gargalionis
- Department of Biological ChemistryMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | | |
Collapse
|
9
|
Katsianou MA, Papavassiliou KA, Gargalionis AN, Agrogiannis G, Korkolopoulou P, Panagopoulos D, Themistocleous MS, Piperi C, Basdra EK, Papavassiliou AG. Polycystin-1 regulates cell proliferation and migration through AKT/mTORC2 pathway in a human craniosynostosis cell model. J Cell Mol Med 2022; 26:2428-2437. [PMID: 35285136 PMCID: PMC8995461 DOI: 10.1111/jcmm.17266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022] Open
Abstract
Craniosynostosis is the premature fusion of skull sutures and has a severe pathological impact on childrens' life. Mechanical forces are capable of triggering biological responses in bone cells and regulate osteoblastogenesis in cranial sutures, leading to premature closure. The mechanosensitive proteins polycystin-1 (PC1) and polycystin-2 (PC2) have been documented to play an important role in craniofacial proliferation and development. Herein, we investigated the contribution of PC1 to the pathogenesis of non-syndromic craniosynostosis and the associated molecular mechanisms. Protein expression of PC1 and PC2 was detected in bone fragments derived from craniosynostosis patients via immunohistochemistry. To explore the modulatory role of PC1 in primary cranial suture cells, we further abrogated the function of PC1 extracellular mechanosensing domain using a specific anti-PC1 IgPKD1 antibody. Effect of IgPKD1 treatment was evaluated with cell proliferation and migration assays. Activation of PI3K/AKT/mTOR pathway components was further detected via Western blot in primary cranial suture cells following IgPKD1 treatment. PC1 and PC2 are expressed in human tissues of craniosynostosis. PC1 functional inhibition resulted in elevated proliferation and migration of primary cranial suture cells. PC1 inhibition also induced activation of AKT, exhibiting elevated phospho (p)-AKT (Ser473) levels, but not 4EBP1 or p70S6K activation. Our findings indicate that PC1 may act as a mechanosensing molecule in cranial sutures by modulating osteoblastic cell proliferation and migration through the PC1/AKT/mTORC2 cascade with a potential impact on the development of non-syndromic craniosynostosis.
Collapse
Affiliation(s)
- Maria A. Katsianou
- Department of Biological ChemistryMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Kostas A. Papavassiliou
- Department of Biological ChemistryMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Antonios N. Gargalionis
- Department of Biological ChemistryMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - George Agrogiannis
- First Department of PathologyMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Penelope Korkolopoulou
- First Department of PathologyMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | | | | | - Christina Piperi
- Department of Biological ChemistryMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Efthimia K. Basdra
- Department of Biological ChemistryMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | | |
Collapse
|
10
|
ADULT DOMINANT POLYCYSTIC KIDNEY DISEASE: A PROTOTYPICAL DISEASE FOR PHARMANUTRITION INTERVENTIONS. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2022.100294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
KIAA0319 influences cilia length, cell migration and mechanical cell-substrate interaction. Sci Rep 2022; 12:722. [PMID: 35031635 PMCID: PMC8760330 DOI: 10.1038/s41598-021-04539-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 12/17/2021] [Indexed: 01/11/2023] Open
Abstract
Following its association with dyslexia in multiple genetic studies, the KIAA0319 gene has been extensively investigated in different animal models but its function in neurodevelopment remains poorly understood. We developed the first human cellular knockout model for KIAA0319 in RPE1 retinal pigment epithelia cells via CRISPR-Cas9n to investigate its role in processes suggested but not confirmed in previous studies, including cilia formation and cell migration. We observed in the KIAA0319 knockout increased cilia length and accelerated cell migration. Using Elastic Resonator Interference Stress Microscopy (ERISM), we detected an increase in cellular force for the knockout cells that was restored by a rescue experiment. Combining ERISM and immunostaining we show that RPE1 cells exert highly dynamic, piconewton vertical pushing forces through actin-rich protrusions that are surrounded by vinculin-rich pulling sites. This protein arrangement and force pattern has previously been associated to podosomes in other cells. KIAA0319 depletion reduces the fraction of cells forming these actin-rich protrusions. Our results suggest an involvement of KIAA0319 in cilia biology and cell-substrate force regulation.
Collapse
|
12
|
Jung SH, You JE, Choi SW, Kang KS, Cho JY, Lyu J, Kim PH. Polycystin-1 Enhances Stemmness Potential of Umbilical Cord Blood-Derived Mesenchymal Stem Cells. Int J Mol Sci 2021; 22:ijms22094868. [PMID: 34064452 PMCID: PMC8125233 DOI: 10.3390/ijms22094868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/28/2021] [Accepted: 05/01/2021] [Indexed: 01/01/2023] Open
Abstract
Polycystic Kidney Disease (PKD) is a disorder that affects the kidneys and other organs, and its major forms are encoded by polycystin-1 (PC1) and polycystin-2 (PC2), as PKD1 and PKD2. It is located sandwiched inside and outside cell membranes and interacts with other cells. This protein is most active in kidney cells before birth, and PC1 and PC2 work together to help regulate cell proliferation, cell migration, and interactions with other cells. The molecular relationship and the function between PKD1 and cancer is well known, such as increased or decreased cell proliferation and promoting or suppressing cell migration depending on the cancer cell type specifically. However, its function in stem cells has not been revealed. Therefore, in this study, we investigated the biological function of PC1 and umbilical cord blood-derived mesenchymal stem cell (UCB-MSC). Furthermore, we assessed how it affects cell migration, proliferation, and the viability of cells when expressed in the PKD1 gene. In addition, we confirmed in an ex vivo artificial tooth model generated by the three-dimension printing technique that the ability to differentiate into osteocytes improved according to the expression level of the stemness markers when PKD1 was expressed. This study is the first report to examine the biological function of PKD1 in UCB-MSC. This gene may be capable of enhancing differentiation ability and maintaining long-term stemness for the therapeutic use of stem cells.
Collapse
Affiliation(s)
- Se-Hwa Jung
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea; (S.-H.J.); (J.-E.Y.)
| | - Ji-Eun You
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea; (S.-H.J.); (J.-E.Y.)
| | - Soon-Won Choi
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.-W.C.); (K.-S.K.)
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.-W.C.); (K.-S.K.)
| | - Je-Yeol Cho
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea;
| | - Jungmook Lyu
- Myung-Gok Eye Research Institute, Department of Medical Science, Konyang University, Daejeon 320-832, Korea;
| | - Pyung-Hwan Kim
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea; (S.-H.J.); (J.-E.Y.)
- Correspondence: ; Tel.: +82-42-600-8436; Fax: +82-42-600-8408
| |
Collapse
|
13
|
Katsianou M, Papavassiliou KA, Zoi I, Gargalionis AN, Panagopoulos D, Themistocleous MS, Piperi C, Papavassiliou AG, Basdra EK. Polycystin-1 modulates RUNX2 activation and osteocalcin gene expression via ERK signalling in a human craniosynostosis cell model. J Cell Mol Med 2021; 25:3216-3225. [PMID: 33656806 PMCID: PMC8034462 DOI: 10.1111/jcmm.16391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Craniosynostosis refers to the premature fusion of one or more cranial sutures leading to skull shape deformities and brain growth restriction. Among the many factors that contribute to abnormal suture fusion, mechanical forces seem to play a major role. Nevertheless, the underlying mechanobiology-related mechanisms of craniosynostosis still remain unknown. Understanding how aberrant mechanosensation and mechanotransduction drive premature suture fusion will offer important insights into the pathophysiology of craniosynostosis and result in the development of new therapies, which can be used to intervene at an early stage and prevent premature suture fusion. Herein, we provide evidence for the first time on the role of polycystin-1 (PC1), a key protein in cellular mechanosensitivity, in craniosynostosis, using primary cranial suture cells isolated from patients with trigonocephaly and dolichocephaly, two common types of craniosynostosis. Initially, we showed that PC1 is expressed at the mRNA and protein level in both trigonocephaly and dolichocephaly cranial suture cells. Followingly, by utilizing an antibody against the mechanosensing extracellular N-terminal domain of PC1, we demonstrated that PC1 regulates runt-related transcription factor 2 (RUNX2) activation and osteocalcin gene expression via extracellular signal-regulated kinase (ERK) signalling in our human craniosynostosis cell model. Altogether, our study reveals a novel mechanotransduction signalling axis, PC1-ERK-RUNX2, which affects osteoblastic differentiation in cranial suture cells from trigonocephaly and dolichocephaly patients.
Collapse
Affiliation(s)
- Maira Katsianou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Kostas A Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ilianna Zoi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios N Gargalionis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthimia K Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
14
|
Verschuren EHJ, Rigalli JP, Castenmiller C, Rohrbach MU, Bindels RJM, Peters DJM, Arjona FJ, Hoenderop JGJ. Pannexin-1 mediates fluid shear stress-sensitive purinergic signaling and cyst growth in polycystic kidney disease. FASEB J 2020; 34:6382-6398. [PMID: 32159259 DOI: 10.1096/fj.201902901r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/07/2020] [Accepted: 03/01/2020] [Indexed: 12/16/2022]
Abstract
Tubular ATP release is regulated by mechanosensation of fluid shear stress (FSS). Polycystin-1/polycystin-2 (PC1/PC2) functions as a mechanosensory complex in the kidney. Extracellular ATP is implicated in polycystic kidney disease (PKD), where PC1/PC2 is dysfunctional. This study aims to provide new insights into the ATP signaling under physiological conditions and PKD. Microfluidics, pharmacologic inhibition, and loss-of-function approaches were combined to assess the ATP release in mouse distal convoluted tubule 15 (mDCT15) cells. Kidney-specific Pkd1 knockout mice (iKsp-Pkd1-/- ) and zebrafish pkd2 morphants (pkd2-MO) were as models for PKD. FSS-exposed mDCT15 cells displayed increased ATP release. Pannexin-1 inhibition and knockout decreased FSS-modulated ATP release. In iKsp-Pkd1-/- mice, elevated renal pannexin-1 mRNA expression and urinary ATP were observed. In Pkd1-/- mDCT15 cells, elevated ATP release was observed upon the FSS mechanosensation. In these cells, increased pannexin-1 mRNA expression was observed. Importantly, pannexin-1 inhibition in pkd2-MO decreased the renal cyst growth. Our results demonstrate that pannexin-1 channels mediate ATP release into the tubular lumen due to pro-urinary flow. We present pannexin-1 as novel therapeutic target to prevent the renal cyst growth in PKD.
Collapse
Affiliation(s)
- Eric H J Verschuren
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Juan P Rigalli
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Charlotte Castenmiller
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Meike U Rohrbach
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Francisco J Arjona
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
15
|
Margaria JP, Campa CC, De Santis MC, Hirsch E, Franco I. The PI3K/Akt/mTOR pathway in polycystic kidney disease: A complex interaction with polycystins and primary cilium. Cell Signal 2019; 66:109468. [PMID: 31715259 DOI: 10.1016/j.cellsig.2019.109468] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 12/19/2022]
Abstract
Over-activation of the PI3K/Akt/mTOR network is a well-known pathogenic event that leads to hyper-proliferation. Pharmacological targeting of this pathway has been developed for the treatment of multiple diseases, including cancer. In polycystic kidney disease (PKD), the mTOR cascade promotes cyst growth by boosting proliferation, size and metabolism of kidney tubule epithelial cells. Therefore, mTOR inhibition has been tested in pre-clinical and clinical studies, but only the former showed positive results. This review reports recent discoveries describing the activity and molecular mechanisms of mTOR activation in tubule epithelial cells and cyst formation and discusses the evidence of an upstream regulation of mTOR by the PI3K/Akt axis. In particular, the complex interconnections of the PI3K/Akt/mTOR network with the principal signaling routes involved in the suppression of cyst formation are dissected. These interactions include the antagonism and the reciprocal negative regulation between mTOR complex 1 and the proteins whose deletion causes Autosomal Dominant PKD, the polycystins. In addition, the emerging role of phopshoinositides, membrane components modulated by PI3K, will be presented in the context of primary cilium signaling, cell polarization and protection from cyst formation. Overall, studies demonstrate that the activity of various members of the PI3K/Akt/mTOR network goes beyond the classical transduction of mitogenic signals and can impact several aspects of kidney tubule homeostasis and morphogenesis. These properties might be useful to guide the establishment of more effective treatment protocols to be tested in clinical trials.
Collapse
Affiliation(s)
- Jean Piero Margaria
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Carlo Cosimo Campa
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Maria Chiara De Santis
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Emilio Hirsch
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Irene Franco
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, 14157 Huddinge, Sweden.
| |
Collapse
|
16
|
Winokurow N, Schumacher S. A role for polycystin-1 and polycystin-2 in neural progenitor cell differentiation. Cell Mol Life Sci 2019; 76:2851-2869. [PMID: 30895336 PMCID: PMC11105687 DOI: 10.1007/s00018-019-03072-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 02/17/2019] [Accepted: 03/14/2019] [Indexed: 10/27/2022]
Abstract
Polycystin-1 (PC1) and polycystin-2 (PC2) are transmembrane proteins encoded by the Pkd1 and Pkd2 genes, respectively. Mutations in these genes are causative for the development of autosomal-dominant polycystic kidney disease. A prominent feature of this disease is an unbalanced cell proliferation. PC1 and PC2 physically interact to form a complex, which localizes to the primary cilia of renal epithelial cells. Recently, PC1 and PC2 have also been described to be present in primary cilia of radial glial cells (RGCs) and to contribute to the planar cell polarity of late RGCs and E1 ependymal cells. As neural progenitor cells (NPCs), early RGCs have to balance proliferation for expansion, or for self-renewal and differentiation to generate neurons. It is not known whether the polycystins play a role in this process. Here, we show that PC1 and PC2 are expressed in RGCs of the developing mouse cerebral cortex during neurogenesis. Loss-of-function analysis and cell-based assays reveal that a reduction of PC1 or PC2 expression leads to increased NPC proliferation, while the differentiation to neurons becomes impaired. The increased NPC proliferation is preceded by enhanced Notch signaling and accompanied by a rise in the number of symmetric cell divisions. The transcription factor STAT3 seems to be mechanistically important for polycystin signaling in NPCs as either STAT3 knockdown or inhibition of STAT3 function abrogates the increased proliferation driven by reduced polycystin expression. Our findings indicate that PC1 and PC2 are critical for maintaining a balance between proliferation and differentiation of NPCs.
Collapse
Affiliation(s)
- Natalie Winokurow
- Institute of Molecular and Cellular Anatomy, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Stefan Schumacher
- Institute of Molecular and Cellular Anatomy, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
17
|
Gargalionis AN, Basdra EK, Papavassiliou AG. Polycystins in disease mechanobiology. J Cell Biochem 2019; 120:6894-6898. [PMID: 30461048 DOI: 10.1002/jcb.28127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 10/29/2018] [Indexed: 01/24/2023]
Abstract
Distorted mechanotransduction represents the molecular hallmark of disease mechanobiology and is displayed with common features during the development of various pathophysiologies. Polycystins constitute a family of mechanosensitive proteins that facilitate pathogenic signal transduction mechanisms. The main representatives of the family are polycystin-1 (PC1) and polycystin-2 (PC2), which function as a mechano-induced membrane receptor and a calcium-permeable ion channel, respectively. PC1 and PC2 mediate extracellular mechanical stimulation, induce intracellular molecular signaling and evoke corresponding gene transcription. Recent reports reveal that polycystin-mediated signaling does not occur in polycystic kidney disease only, where it is most prominently studied. It is also present during the development of clinical entities such as endothelial dysfunction and atheromatosis, deregulation of osteoblast differentiation, cancer development, and psoriasis. In this study, we highlight emerging data that support the overall contribution of polycystins to disease mechanobiology and suggest further exploration of this protein family in diseases generated from force-bearing tissue structures.
Collapse
Affiliation(s)
- Antonios N Gargalionis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthimia K Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
18
|
Zemirli N, Boukhalfa A, Dupont N, Botti J, Codogno P, Morel E. The primary cilium protein folliculin is part of the autophagy signaling pathway to regulate epithelial cell size in response to fluid flow. Cell Stress 2019; 3:100-109. [PMID: 31225504 PMCID: PMC6551741 DOI: 10.15698/cst2019.03.180] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Autophagy is a conserved molecular pathway directly involved in the degradation and recycling of intracellular components. Autophagy is associated with a response to stress situations, such as nutrients deficit, chemical toxicity, mechanical stress or microbial host defense. We have recently shown that primary cilium-dependent autophagy is important to control kidney epithelial cell size in response to fluid flow induced shear stress. Here we show that the ciliary protein folliculin (FLCN) actively participates to the signaling cascade leading to the stimulation of fluid flow-dependent autophagy upstream of the cell size regulation in HK2 kidney epithelial cells. The knockdown of FLCN induces a shortening of the primary cilium, inhibits the activation of AMPK and the recruitment of the autophagy protein ATG16L1 at the primary cilium. Altogether, our results suggest that FLCN is essential in the dialog between autophagy and the primary cilium in epithelial cells to integrate shear stress-dependent signaling.
Collapse
Affiliation(s)
- Naïma Zemirli
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253.,Université Paris Descartes-Sorbonne Paris Cité, F-75993, Paris, France
| | - Asma Boukhalfa
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253.,Université Paris Descartes-Sorbonne Paris Cité, F-75993, Paris, France
| | - Nicolas Dupont
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253.,Université Paris Descartes-Sorbonne Paris Cité, F-75993, Paris, France
| | - Joëlle Botti
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253.,Université Paris Denis Diderot Sorbonne Paris Cité, F-75993, Paris, France
| | - Patrice Codogno
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253.,Université Paris Descartes-Sorbonne Paris Cité, F-75993, Paris, France
| | - Etienne Morel
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253.,Université Paris Descartes-Sorbonne Paris Cité, F-75993, Paris, France
| |
Collapse
|
19
|
Katsianou MA, Skondra FG, Gargalionis AN, Piperi C, Basdra EK. The role of transient receptor potential polycystin channels in bone diseases. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:246. [PMID: 30069448 DOI: 10.21037/atm.2018.04.10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Transient receptor potential (TRP) channels are cation channels which act as molecular sensors that enable cells to detect and respond to a plethora of mechanical and environmental cues. TRPs are involved in various physiological processes, such as mechanosensation, non-inception and thermosensation, while mutations in genes encoding them can lead to pathological conditions, called "channelopathies". The subfamily of transient receptor potential polycystins (TRPPs), Polycystin 1 (PC1, TRPP1) and Polycystin 2 (PC2, TRPP2), act as mechanoreceptors, sensing external mechanical forces, including strain, stretch and fluid shear stress, triggering a cascade of signaling pathways involved in osteoblastogenesis and ultimately bone formation. Both in vitro studies and research on animal models have already identified their implications in bone homeostasis. However, uncertainty veiling the role of polycystins (PCs) in bone disease urges studies to elucidate further their role in this field. Mutations in TRPPs have been related to autosomal polycystic kidney disease (ADKPD) and research groups try to identify their role beyond their well-established contribution in kidney disease. Such an elucidation would be beneficial for identifying signaling pathways where polycystins are involved in bone diseases related to exertion of mechanical forces such as osteoporosis, osteopenia and craniosynostosis. A better understanding of the implications of TRPPs in bone diseases would possibly lay the cornerstone for effective therapeutic schemes.
Collapse
Affiliation(s)
- Maria A Katsianou
- Cellular and Molecular Biomechanics Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Foteini G Skondra
- Cellular and Molecular Biomechanics Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios N Gargalionis
- Cellular and Molecular Biomechanics Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Piperi
- Cellular and Molecular Biomechanics Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthimia K Basdra
- Cellular and Molecular Biomechanics Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
20
|
Gargalionis AN, Basdra EK, Papavassiliou AG. Tumor mechanosensing and its therapeutic potential. J Cell Biochem 2018; 119:4304-4308. [PMID: 29479734 DOI: 10.1002/jcb.26786] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/06/2018] [Indexed: 02/04/2023]
Affiliation(s)
- Antonios N. Gargalionis
- Department of Biological ChemistryMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Efthimia K. Basdra
- Department of Biological ChemistryMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | | |
Collapse
|
21
|
Karamesinis K, Basdra EK. The biological basis of treating jaw discrepancies: An interplay of mechanical forces and skeletal configuration. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1675-1683. [PMID: 29454076 DOI: 10.1016/j.bbadis.2018.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/06/2018] [Accepted: 02/12/2018] [Indexed: 10/18/2022]
Abstract
Jaw discrepancies and malrelations affect a large proportion of the general population and their treatment is of utmost significance for individuals' health and quality of life. The aim of their therapy is the modification of aberrant jaw development mainly by targeting the growth potential of the mandibular condyle through its cartilage, and the architectural shape of alveolar bone through a suture type of structure, the periodontal ligament. This targeted treatment is achieved via external mechanical force application by using a wide variety of intraoral and extraoral appliances. Condylar cartilage and sutures exhibit a remarkable plasticity due to the mechano-responsiveness of the chondrocytes and the multipotent mesenchymal cells of the sutures. The tissues respond biologically and adapt to mechanical force application by a variety of signaling pathways and a final interplay between the proliferative activity and the differentiation status of the cells involved. These targeted therapeutic functional alterations within temporo-mandibular joint ultimately result in the enhancement or restriction of mandibular growth, while within the periodontal ligament lead to bone remodeling and change of its architectural structure. Depending on the form of the malrelation presented, the above treatment approaches, in conjunction or separately, lead to the total correction of jaw discrepancies and the achievement of facial harmony and function. Overall, the treatment of craniofacial and jaw anomalies can be seen as an interplay of mechanical forces and adaptations occurring within temporo-mandibular joint and alveolar bone. The aim of the present review is to present up-to-date knowledge on the mechano-biology behind jaw growth modification and alveolar bone remodeling. Furthermore, future molecular targeted therapeutic strategies are discussed aiming at the improvement of mechanically-driven chondrogenesis and osteogenesis.
Collapse
Affiliation(s)
- Konstantinos Karamesinis
- Department of Biological Chemistry, Cellular and Molecular Biomechanics Unit, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Efthimia K Basdra
- Department of Biological Chemistry, Cellular and Molecular Biomechanics Unit, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|
22
|
Ren JG, Xia HF, Yang JG, Zhu JY, Zhang W, Chen G, Zhao JH, Sun YF, Zhao YF. Down-regulation of polycystin in lymphatic malformations: possible role in the proliferation of lymphatic endothelial cells. Hum Pathol 2017; 65:231-238. [DOI: 10.1016/j.humpath.2017.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 04/27/2017] [Accepted: 05/10/2017] [Indexed: 02/04/2023]
|
23
|
Dalagiorgou G, Piperi C, Adamopoulos C, Georgopoulou U, Gargalionis AN, Spyropoulou A, Zoi I, Nokhbehsaim M, Damanaki A, Deschner J, Basdra EK, Papavassiliou AG. Mechanosensor polycystin-1 potentiates differentiation of human osteoblastic cells by upregulating Runx2 expression via induction of JAK2/STAT3 signaling axis. Cell Mol Life Sci 2017; 74:921-936. [PMID: 27699453 PMCID: PMC11107574 DOI: 10.1007/s00018-016-2394-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/15/2016] [Accepted: 09/30/2016] [Indexed: 01/08/2023]
Abstract
Polycystin-1 (PC1) has been proposed as a chief mechanosensing molecule implicated in skeletogenesis and bone remodeling. Mechanotransduction via PC1 involves proteolytic cleavage of its cytoplasmic tail (CT) and interaction with intracellular pathways and transcription factors to regulate cell function. Here we demonstrate the interaction of PC1-CT with JAK2/STAT3 signaling axis in mechanically stimulated human osteoblastic cells, leading to transcriptional induction of Runx2 gene, a master regulator of osteoblastic differentiation. Primary osteoblast-like PC1-expressing cells subjected to mechanical-stretching exhibited a PC1-dependent increase of the phosphorylated(p)/active form of JAK2. Specific interaction of PC1-CT with pJAK2 was observed after stretching while pre-treatment of cells with PC1 (anti-IgPKD1) and JAK2 inhibitors abolished JAK2 activation. Consistently, mechanostimulation triggered PC1-mediated phosphorylation and nuclear translocation of STAT3. The nuclear phosphorylated(p)/DNA-binding competent pSTAT3 levels were augmented after stretching followed by elevated DNA-binding activity. Pre-treatment with a STAT3 inhibitor either alone or in combination with anti-IgPKD1 abrogated this effect. Moreover, PC1-mediated mechanostimulation induced elevation of Runx2 mRNA levels. ChIP assays revealed direct regulation of Runx2 promoter activity by STAT3/Runx2 after mechanical-stretching that was PC1-dependent. Our findings show that mechanical load upregulates expression of Runx2 gene via potentiation of PC1-JAK2/STAT3 signaling axis, culminating to possibly control osteoblastic differentiation and ultimately bone formation.
Collapse
Affiliation(s)
- Georgia Dalagiorgou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Christos Adamopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Urania Georgopoulou
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521, Athens, Greece
| | - Antonios N Gargalionis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Anastasia Spyropoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Ilianna Zoi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Marjan Nokhbehsaim
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, 53111, Bonn, Germany
| | - Anna Damanaki
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, 53111, Bonn, Germany
| | - James Deschner
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, 53111, Bonn, Germany
| | - Efthimia K Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece.
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece.
| |
Collapse
|
24
|
Karamesinis K, Spyropoulou A, Dalagiorgou G, Katsianou MA, Nokhbehsaim M, Memmert S, Deschner J, Vastardis H, Piperi C. Continuous hydrostatic pressure induces differentiation phenomena in chondrocytes mediated by changes in polycystins, SOX9, and RUNX2. J Orofac Orthop 2016; 78:21-31. [PMID: 27909759 DOI: 10.1007/s00056-016-0061-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/21/2016] [Indexed: 02/07/2023]
Abstract
PURPOSE The present study aimed to investigate the long-term effects of hydrostatic pressure on chondrocyte differentiation, as indicated by protein levels of transcription factors SOX9 and RUNX2, on transcriptional activity of SOX9, as determined by pSOX9 levels, and on the expression of polycystin-encoding genes Pkd1 and Pkd2. MATERIALS AND METHODS ATDC5 cells were cultured in insulin-supplemented differentiation medium (ITS) and/or exposed to 14.7 kPa of hydrostatic pressure for 12, 24, 48, and 96 h. Cell extracts were assessed for SOX9, pSOX9, and RUNX2 using western immunoblotting. The Pkd1 and Pkd2 mRNA levels were detected by real-time PCR. RESULTS Hydrostatic pressure resulted in an early drop in SOX9 and pSOX9 protein levels at 12 h followed by an increase from 24 h onwards. A reverse pattern was followed by RUNX2, which reached peak levels at 24 h of hydrostatic pressure-treated chondrocytes in ITS culture. Pkd1 and Pkd2 mRNA levels increased at 24 h of combined hydrostatic pressure and ITS treatment, with the latter remaining elevated up to 96 h. CONCLUSIONS Our data indicate that long periods of continuous hydrostatic pressure stimulate chondrocyte differentiation through a series of molecular events involving SOX9, RUNX2, and polycystins-1, 2, providing a theoretical background for functional orthopedic mechanotherapies.
Collapse
Affiliation(s)
- Konstantinos Karamesinis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece.,Department of Orthodontics, Dental School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Anastasia Spyropoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Georgia Dalagiorgou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Maria A Katsianou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Marjan Nokhbehsaim
- Section of Experimental Dento-Maxillo-Facial Medicine, University of Bonn, Welschnonnenstrasse 17, 53111, Bonn, Germany
| | - Svenja Memmert
- Department of Orthodontics Dento-Maxillo-Facial Medicine, University of Bonn, Welschnonnenstrasse 17, 53111, Bonn, Germany
| | - James Deschner
- Section of Experimental Dento-Maxillo-Facial Medicine, University of Bonn, Welschnonnenstrasse 17, 53111, Bonn, Germany
| | - Heleni Vastardis
- Department of Orthodontics, Dental School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece.
| |
Collapse
|
25
|
Pesce M, Messina E, Chimenti I, Beltrami AP. Cardiac Mechanoperception: A Life-Long Story from Early Beats to Aging and Failure. Stem Cells Dev 2016; 26:77-90. [PMID: 27736363 DOI: 10.1089/scd.2016.0206] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The life-long story of the heart starts concomitantly with primary differentiation events occurring in multipotent progenitors located in the so-called heart tube. This initially tubular structure starts a looping process, which leads to formation of the final four-chambered heart with a primary contribution of geometric and position-associated cell sensing. While this establishes the correct patterning of the final cardiac structure, it also provides feedbacks to fundamental cellular machineries controlling proliferation and differentiation, thus ensuring a coordinated restriction of cell growth and a myocyte terminal differentiation. Novel evidences provided by embryological and cell engineering studies have clarified the relevance of mechanics-supported position sensing for the correct recognition of cell fate inside developing embryos and multicellular aggregates. One of the main components of this pathway, the Hippo-dependent signal transduction machinery, is responsible for cell mechanics intracellular transduction with important consequences for gene transcription and cell growth control. Being the Hippo pathway also directly connected to stress responses and altered metabolism, it is tempting to speculate that permanent alterations of mechanosensing may account for modifying self-renewal control in tissue homeostasis. In the present contribution, we translate these concepts to the aging process and the failing of the human heart, two pathophysiologic conditions that are strongly affected by stress responses and altered metabolism.
Collapse
Affiliation(s)
- Maurizio Pesce
- 1 Tissue Engineering Research Unit, Centro Cardiologico Monzino, IRCCS , Milan, Italy
| | - Elisa Messina
- 2 Department of Pediatric Cardiology, "Sapienza" University , Rome, Italy
| | - Isotta Chimenti
- 3 Department of Medical Surgical Science and Biotechnology, "Sapienza" University , Rome, Italy
| | | |
Collapse
|
26
|
Lemoine L, Sugarbaker P, Van der Speeten K. Pathophysiology of colorectal peritoneal carcinomatosis: Role of the peritoneum. World J Gastroenterol 2016; 22:7692-7707. [PMID: 27678351 PMCID: PMC5016368 DOI: 10.3748/wjg.v22.i34.7692] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/28/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the fourth most common cause of cancer-related death worldwide. Besides the lymphatic and haematogenous routes of dissemination, CRC frequently gives rise to transcoelomic spread of tumor cells in the peritoneal cavity, which ultimately leads to peritoneal carcinomatosis (PC). PC is associated with a poor prognosis and bad quality of life for these patients in their terminal stages of disease. A loco-regional treatment modality for PC combining cytoreductive surgery and hyperthermic intraperitoneal peroperative chemotherapy has resulted in promising clinical results. However, this novel approach is associated with significant morbidity and mortality. A comprehensive understanding of the molecular events involved in peritoneal disease spread is paramount in avoiding unnecessary toxicity. The emergence of PC is the result of a molecular crosstalk between cancer cells and host elements, involving several well-defined steps, together known as the peritoneal metastatic cascade. Individual or clumps of tumor cells detach from the primary tumor, gain access to the peritoneal cavity and become susceptible to the regular peritoneal transport. They attach to the distant peritoneum, subsequently invade the subperitoneal space, where angiogenesis sustains proliferation and enables further metastatic growth. These molecular events are not isolated events but rather a continuous and interdependent process. In this manuscript, we review current data regarding the molecular mechanisms underlying the development of colorectal PC, with a special focus on the peritoneum and the role of the surgeon in peritoneal disease spread.
Collapse
|
27
|
Katsianou MA, Adamopoulos C, Vastardis H, Basdra EK. Signaling mechanisms implicated in cranial sutures pathophysiology: Craniosynostosis. BBA CLINICAL 2016; 6:165-176. [PMID: 27957430 PMCID: PMC5144105 DOI: 10.1016/j.bbacli.2016.04.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/19/2016] [Accepted: 04/27/2016] [Indexed: 01/19/2023]
Abstract
Normal extension and skull expansion is a synchronized process that prevails along the osteogenic intersections of the cranial sutures. Cranial sutures operate as bone growth sites allowing swift bone generation at the edges of the bone fronts while they remain patent. Premature fusion of one or more cranial sutures can trigger craniosynostosis, a birth defect characterized by dramatic manifestations in appearance and functional impairment. Up until today, surgical correction is the only restorative measure for craniosynostosis associated with considerable mortality. Clinical studies have identified several genes implicated in the pathogenesis of craniosynostosis syndromes with useful insights into the underlying molecular signaling events that determine suture fate. In this review, we exploit the intracellular signal transduction pathways implicated in suture pathobiology, in an attempt to identify key signaling molecules for therapeutic targeting. Cranial sutures operate as bone growth sites. Premature fusion of one or more cranial sutures can trigger craniosynostosis. Several genes are involved in the pathogenesis of craniosynostosis syndromes. An array of molecular signaling events determine suture fate. Herein, the signal transduction pathways implicated in suture pathobiology are discussed.
Collapse
Affiliation(s)
- Maria A Katsianou
- Department of Biological Chemistry - Cellular and Molecular Biomechanics Unit, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Adamopoulos
- Department of Biological Chemistry - Cellular and Molecular Biomechanics Unit, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Heleni Vastardis
- Department of Orthodontics, Dental School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Efthimia K Basdra
- Department of Biological Chemistry - Cellular and Molecular Biomechanics Unit, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
28
|
|
29
|
|
30
|
Varela A, Piperi C, Sigala F, Agrogiannis G, Davos CH, Andri MA, Manopoulos C, Tsangaris S, Basdra EK, Papavassiliou AG. Elevated expression of mechanosensory polycystins in human carotid atherosclerotic plaques: association with p53 activation and disease severity. Sci Rep 2015; 5:13461. [PMID: 26286632 PMCID: PMC4541068 DOI: 10.1038/srep13461] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/21/2015] [Indexed: 12/22/2022] Open
Abstract
Atherosclerotic plaque formation is associated with irregular distribution of wall shear stress (WSS) that modulates endothelial function and integrity. Polycystins (PC)-1/-2 constitute a flow-sensing protein complex in endothelial cells, able to respond to WSS and induce cell-proliferation changes leading to atherosclerosis. An endothelial cell-culture system of measurable WSS was established to detect alterations in PCs expression under conditions of low- and high-oscillatory shear stress in vitro. PCs expression and p53 activation as a regulator of cell proliferation were further evaluated in vivo and in 69 advanced human carotid atherosclerotic plaques (AAPs). Increased PC-1/PC-2 expression was observed at 30–60 min of low shear stress (LSS) in endothelial cells. Elevated PC-1 expression at LSS was followed by p53 potentiation. PCs immunoreactivity localizes in areas with macrophage infiltration and neovascularization. PC-1 mRNA and protein levels were significantly higher than PC-2 in stable fibroatherotic (V) and unstable/complicated (VI) AAPs. Elevated PC-1 immunostaining was detected in AAPs from patients with diabetes mellitus, dyslipidemia, hypertension and carotid stenosis, at both arteries (50%) or in one artery (90%). PCs seem to participate in plaque formation and progression. Since PC-1 upregulation coincides with p38 and p53 activation, a potential interplay of these molecules in atherosclerosis induction is posed.
Collapse
Affiliation(s)
- Aimilia Varela
- 1] Department of Biological Chemistry, University of Athens Medical School, Athens 11527, Greece [2] Cardiovascular Research Laboratory, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Christina Piperi
- Department of Biological Chemistry, University of Athens Medical School, Athens 11527, Greece
| | - Fragiska Sigala
- Vascular Surgery Division, First Department of Propaedeutic Surgery, 'Hippokrateion' General Hospital, University of Athens Medical School, Athens 11527, Greece
| | - George Agrogiannis
- First Department of Pathology, 'Laikon' General Hospital, University of Athens Medical School, Athens 11527, Greece
| | - Constantinos H Davos
- Cardiovascular Research Laboratory, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Maria-Anastasia Andri
- Laboratory of Biofluid Mechanics and Biomedical Engineering, School of Mechanical Engineering, National Technical University of Athens, Athens 15780, Greece
| | - Christos Manopoulos
- Laboratory of Biofluid Mechanics and Biomedical Engineering, School of Mechanical Engineering, National Technical University of Athens, Athens 15780, Greece
| | - Sokrates Tsangaris
- Laboratory of Biofluid Mechanics and Biomedical Engineering, School of Mechanical Engineering, National Technical University of Athens, Athens 15780, Greece
| | - Efthimia K Basdra
- Department of Biological Chemistry, University of Athens Medical School, Athens 11527, Greece
| | | |
Collapse
|
31
|
Pedrozo Z, Criollo A, Battiprolu PK, Morales CR, Contreras-Ferrat A, Fernández C, Jiang N, Luo X, Caplan MJ, Somlo S, Rothermel BA, Gillette TG, Lavandero S, Hill JA. Polycystin-1 Is a Cardiomyocyte Mechanosensor That Governs L-Type Ca2+ Channel Protein Stability. Circulation 2015; 131:2131-42. [PMID: 25888683 PMCID: PMC4470854 DOI: 10.1161/circulationaha.114.013537] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 04/10/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND L-type calcium channel activity is critical to afterload-induced hypertrophic growth of the heart. However, the mechanisms governing mechanical stress-induced activation of L-type calcium channel activity are obscure. Polycystin-1 (PC-1) is a G protein-coupled receptor-like protein that functions as a mechanosensor in a variety of cell types and is present in cardiomyocytes. METHODS AND RESULTS We subjected neonatal rat ventricular myocytes to mechanical stretch by exposing them to hypo-osmotic medium or cyclic mechanical stretch, triggering cell growth in a manner dependent on L-type calcium channel activity. RNAi-dependent knockdown of PC-1 blocked this hypertrophy. Overexpression of a C-terminal fragment of PC-1 was sufficient to trigger neonatal rat ventricular myocyte hypertrophy. Exposing neonatal rat ventricular myocytes to hypo-osmotic medium resulted in an increase in α1C protein levels, a response that was prevented by PC-1 knockdown. MG132, a proteasomal inhibitor, rescued PC-1 knockdown-dependent declines in α1C protein. To test this in vivo, we engineered mice harboring conditional silencing of PC-1 selectively in cardiomyocytes (PC-1 knockout) and subjected them to mechanical stress in vivo (transverse aortic constriction). At baseline, PC-1 knockout mice manifested decreased cardiac function relative to littermate controls, and α1C L-type calcium channel protein levels were significantly lower in PC-1 knockout hearts. Whereas control mice manifested robust transverse aortic constriction-induced increases in cardiac mass, PC-1 knockout mice showed no significant growth. Likewise, transverse aortic constriction-elicited increases in hypertrophic markers and interstitial fibrosis were blunted in the knockout animals CONCLUSION PC-1 is a cardiomyocyte mechanosensor that is required for cardiac hypertrophy through a mechanism that involves stabilization of α1C protein.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Biomarkers
- Calcium Channels, L-Type/biosynthesis
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/physiology
- Cardiomegaly/etiology
- Cardiomegaly/prevention & control
- Cells, Cultured
- Fibrosis
- Hypertrophy
- Hypotonic Solutions/pharmacology
- Male
- Mechanotransduction, Cellular/physiology
- Mice
- Mice, Knockout
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/physiology
- Protein Interaction Mapping
- Protein Stability
- Protein Structure, Tertiary
- RNA Interference
- Rats
- Rats, Sprague-Dawley
- Recombinant Fusion Proteins/metabolism
- Stress, Mechanical
- TRPP Cation Channels/chemistry
- TRPP Cation Channels/genetics
- TRPP Cation Channels/physiology
Collapse
Affiliation(s)
- Zully Pedrozo
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT
| | - Alfredo Criollo
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT
| | - Pavan K Battiprolu
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT
| | - Cyndi R Morales
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT
| | - Ariel Contreras-Ferrat
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT
| | - Carolina Fernández
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT
| | - Nan Jiang
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT
| | - Xiang Luo
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT
| | - Michael J Caplan
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT
| | - Stefan Somlo
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT
| | - Beverly A Rothermel
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT
| | - Thomas G Gillette
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT
| | - Sergio Lavandero
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT.
| | - Joseph A Hill
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT.
| |
Collapse
|
32
|
Abstract
Skeletal loading is an important physiological regulator of bone mass. Theoretically, mechanical forces or administration of drugs that activate bone mechanosensors would be a novel treatment for osteoporotic disorders, particularly age-related osteoporosis and other bone loss caused by skeletal unloading. Uncertainty regarding the identity of the molecular targets that sense and transduce mechanical forces in bone, however, has limited the therapeutic exploitation of mechanosesning pathways to control bone mass. Recently, two evolutionally conserved mechanosensing pathways have been shown to function as "physical environment" sensors in cells of the osteoblasts lineage. Indeed, polycystin-1 (Pkd1, or PC1) and polycystin-2 (Pkd2, or PC2' or TRPP2), which form a flow sensing receptor channel complex, and TAZ (transcriptional coactivator with PDZ-binding motif, or WWTR1), which responds to the extracellular matrix microenvironment act in concert to reciprocally regulate osteoblastogenesis and adipogenesis through co-activating Runx2 and a co-repressing PPARγ activities. Interactions of polycystins and TAZ with other putative mechanosensing mechanism, such as primary cilia, integrins and hemichannels, may create multifaceted mechanosensing networks in bone. Moreover, modulation of polycystins and TAZ interactions identify novel molecular targets to develop small molecules that mimic the effects of mechanical loading on bone.
Collapse
Affiliation(s)
- Zhousheng Xiao
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38165, USA
| | - Leigh Darryl Quarles
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38165, USA
- Coleman College of Medicine Building, Suite B216, University of Tennessee Health Science Center, 956 Court Avenue, Memphis, TN 38163, USA
| |
Collapse
|
33
|
Rachel RA, Yamamoto EA, Dewanjee MK, May-Simera HL, Sergeev YV, Hackett AN, Pohida K, Munasinghe J, Gotoh N, Wickstead B, Fariss RN, Dong L, Li T, Swaroop A. CEP290 alleles in mice disrupt tissue-specific cilia biogenesis and recapitulate features of syndromic ciliopathies. Hum Mol Genet 2015; 24:3775-91. [PMID: 25859007 DOI: 10.1093/hmg/ddv123] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 04/07/2015] [Indexed: 12/22/2022] Open
Abstract
Distinct mutations in the centrosomal-cilia protein CEP290 lead to diverse clinical findings in syndromic ciliopathies. We show that CEP290 localizes to the transition zone in ciliated cells, precisely to the region of Y-linkers between central microtubules and plasma membrane. To create models of CEP290-associated ciliopathy syndromes, we generated Cep290(ko/ko) and Cep290(gt/gt) mice that produce no or a truncated CEP290 protein, respectively. Cep290(ko/ko) mice exhibit early vision loss and die from hydrocephalus. Retinal photoreceptors in Cep290(ko/ko) mice lack connecting cilia, and ciliated ventricular ependyma fails to mature. The minority of Cep290(ko/ko) mice that escape hydrocephalus demonstrate progressive kidney pathology. Cep290(gt/gt) mice die at mid-gestation, and the occasional Cep290(gt/gt) mouse that survives shows hydrocephalus and severely cystic kidneys. Partial loss of CEP290-interacting ciliopathy protein MKKS mitigates lethality and renal pathology in Cep290(gt/gt) mice. Our studies demonstrate domain-specific functions of CEP290 and provide novel therapeutic paradigms for ciliopathies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jeeva Munasinghe
- National Institute of Neurological Disease and Stroke, National Institutes of Health, Bethesda, MD 20892, USA and
| | | | - Bill Wickstead
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | | | | | | |
Collapse
|
34
|
Gargalionis AN, Korkolopoulou P, Farmaki E, Piperi C, Dalagiorgou G, Adamopoulos C, Levidou G, Saetta A, Fragkou P, Tsioli P, Kiaris H, Zizi-Serbetzoglou A, Karavokyros I, Papavassiliou KA, Tsavaris N, Patsouris E, Basdra EK, Papavassiliou AG. Polycystin-1 and polycystin-2 are involved in the acquisition of aggressive phenotypes in colorectal cancer. Int J Cancer 2015; 136:1515-1527. [PMID: 25123959 DOI: 10.1002/ijc.29140] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/01/2014] [Accepted: 08/07/2014] [Indexed: 01/01/2023]
Abstract
The polycystins PC1 and PC2 are emerging as major players in mechanotransduction, a process that influences all steps of the invasion/metastasis cascade. We hypothesized that PC1 and PC2 facilitate cancer aggressiveness. Immunoblotting, RT-PCR, semi-quantitative and quantitative real-time PCR and FACS analyses were employed to investigate the effect of polycystin overexpression in colorectal cancer (CRC) cells. The impact of PC1 inhibition on cancer-cell proliferation was evaluated through an MTT assay. In vitro data were analyzed by Student's t-test. HT29 human xenografts were treated with anti-PC1 (extracellular domain) inhibitory antibody and analyzed via immunohistochemistry to determine the in vivo role of PC1 in CRC. Clinical significance was assessed by examining PC1 and PC2 protein expression in CRC patients (immunohistochemistry). In vivo and clinical data were analyzed by non-parametric tests, Kaplan-Meier curves, log-rank test and Cox model. All statistical tests were two-sided. PC1 overexpression promotes epithelial-to-mesenchymal transition (EMT) in HCT116 cells, while PC2 overexpression results in upregulation of the mTOR pathway in SW480 cells. PC1 inhibition causes reduced cell proliferation in CRC cells inducing tumor necrosis and suppressing EMT in HT29 tumor xenografts. In clinical study, PC1 and PC2 overexpression associates with adverse pathological parameters, including invasiveness and mucinous carcinomas. Moreover, PC1 overexpression appears as an independent prognostic factor of reduced recurrence-free survival (HR = 1.016, p = 0.03) and lowers overall survival probability, while aberrant PC2 expression predicts poor overall survival (p = 0.0468). These results support, for the first time, a direct link between mechanosensing polycystins (PC1 and PC2) and CRC progression.
Collapse
|
35
|
Lee K, Boctor S, Barisoni LMC, Gusella GL. Inactivation of integrin-β1 prevents the development of polycystic kidney disease after the loss of polycystin-1. J Am Soc Nephrol 2014; 26:888-95. [PMID: 25145933 DOI: 10.1681/asn.2013111179] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Dysregulation of polycystin-1 (PC1) leads to autosomal dominant polycystic kidney disease (ADPKD), a disorder characterized by the formation of multiple bilateral renal cysts, the progressive accumulation of extracellular matrix (ECM), and the development of tubulointerstitial fibrosis. Correspondingly, cystic epithelia express higher levels of integrins (ECM receptors that control various cellular responses, such as cell proliferation, migration, and survival) that are characteristically altered in cystic cells. To determine whether the altered expression of ECM and integrins could establish a pathologic autostimulatory loop, we tested the role of integrin-β1 in vitro and on the cystic development of ADPKD in vivo. Compared with wild-type cells, PC1-depleted immortalized renal collecting duct cells had higher levels of integrin-β1 and fibronectin and displayed increased integrin-mediated signaling in the presence of Mn(2+). In mice, conditional inactivation of integrin-β1 in collecting ducts resulted in a dramatic inhibition of Pkd1-dependent cystogenesis with a concomitant suppression of fibrosis and preservation of normal renal function. Our data provide genetic evidence that a functional integrin-β1 is required for the early events leading to renal cystogenesis in ADPKD and suggest that the integrin signaling pathway may be an effective therapeutic target for slowing disease progression.
Collapse
Affiliation(s)
- Kyung Lee
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - Sylvia Boctor
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | | | - G Luca Gusella
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; and
| |
Collapse
|
36
|
O'Hagan R, Wang J, Barr MM. Mating behavior, male sensory cilia, and polycystins in Caenorhabditis elegans. Semin Cell Dev Biol 2014; 33:25-33. [PMID: 24977333 DOI: 10.1016/j.semcdb.2014.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 11/16/2022]
Abstract
The investigation of Caenorhabditis elegans males and the male-specific sensory neurons required for mating behaviors has provided insight into the molecular function of polycystins and mechanisms that are needed for polycystin ciliary localization. In humans, polycystin 1 and polycystin 2 are needed for kidney function; loss of polycystin function leads to autosomal dominant polycystic kidney disease (ADPKD). Polycystins localize to cilia in C. elegans and mammals, a finding that has guided research into ADPKD. The discovery that the polycystins form ciliary receptors in male-specific neurons needed for mating behaviors has also helped to unlock insights into two additional exciting new areas: the secretion of extracellular vesicles; and mechanisms of ciliary specialization. First, we will summarize the studies done in C. elegans regarding the expression, localization, and function of the polycystin 1 and 2 homologs, LOV-1 and PKD-2, and discuss insights gained from this basic research. Molecules that are co-expressed with the polycystins in the male-specific neurons may identify evolutionarily conserved molecular mechanisms for polycystin function and localization. We will discuss the finding that polycystins are secreted in extracellular vesicles that evoke behavioral change in males, suggesting that such vesicles provide a novel form of communication to conspecifics in the environment. In humans, polycystin-containing extracellular vesicles are secreted in urine and can be taken up by cilia, and quickly internalized. Therefore, communication by polycystin-containing extracellular vesicles may also use mechanisms that are evolutionarily conserved from nematode to human. Lastly, different cilia display structural and functional differences that specialize them for particular tasks, despite the fact that virtually all cilia are built by a conserved intraflagellar transport (IFT) mechanism and share some basic structural features. Comparative analysis of the male-specific cilia with the well-studied cilia of the amphid and phasmid neurons has allowed identification of molecules that specialize the male cilia. We will discuss the molecules that shape the male-specific cilia. The cell biology of cilia in male-specific neurons demonstrates that C. elegans can provide an excellent model of ciliary specialization.
Collapse
Affiliation(s)
- Robert O'Hagan
- Department of Genetics, Rutgers, The State University of New Jersey, 145 Bevier Rd., Piscataway, NJ 08854
| | - Juan Wang
- Department of Genetics, Rutgers, The State University of New Jersey, 145 Bevier Rd., Piscataway, NJ 08854
| | - Maureen M Barr
- Department of Genetics, Rutgers, The State University of New Jersey, 145 Bevier Rd., Piscataway, NJ 08854
| |
Collapse
|
37
|
Photoreceptor sensory cilia and ciliopathies: focus on CEP290, RPGR and their interacting proteins. Cilia 2012; 1:22. [PMID: 23351659 PMCID: PMC3563624 DOI: 10.1186/2046-2530-1-22] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/19/2012] [Indexed: 02/08/2023] Open
Abstract
Ciliopathies encompass a broad array of clinical findings associated with genetic defects in biogenesis and/or function of the primary cilium, a ubiquitous organelle involved in the transduction of diverse biological signals. Degeneration or dysfunction of retinal photoreceptors is frequently observed in diverse ciliopathies. The sensory cilium in a photoreceptor elaborates into unique outer segment discs that provide extensive surface area for maximal photon capture and efficient visual transduction. The daily renewal of approximately 10% of outer segments requires a precise control of ciliary transport. Here, we review the ciliopathies with associated retinal degeneration, describe the distinctive structure of the photoreceptor cilium, and discuss mouse models that allow investigations into molecular mechanisms of cilia biogenesis and defects. We have specifically focused on two ciliary proteins - CEP290 and RPGR - that underlie photoreceptor degeneration and syndromic ciliopathies. Mouse models of CEP290 and RPGR disease, and of their multiple interacting partners, have helped unravel new functional insights into cell type-specific phenotypic defects in distinct ciliary proteins. Elucidation of multifaceted ciliary functions and associated protein complexes will require concerted efforts to assimilate diverse datasets from in vivo and in vitro studies. We therefore discuss a possible framework for investigating genetic networks associated with photoreceptor cilia biogenesis and pathology.
Collapse
|
38
|
Mekahli D, Parys JB, Bultynck G, Missiaen L, De Smedt H. Polycystins and cellular Ca2+ signaling. Cell Mol Life Sci 2012; 70:2697-712. [PMID: 23076254 PMCID: PMC3708286 DOI: 10.1007/s00018-012-1188-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/01/2012] [Accepted: 10/02/2012] [Indexed: 12/19/2022]
Abstract
The cystic phenotype in autosomal dominant polycystic kidney disease is characterized by a profound dysfunction of many cellular signaling patterns, ultimately leading to an increase in both cell proliferation and apoptotic cell death. Disturbance of normal cellular Ca2+ signaling seems to be a primary event and is clearly involved in many pathways that may lead to both types of cellular responses. In this review, we summarize the current knowledge about the molecular and functional interactions between polycystins and multiple components of the cellular Ca2+-signaling machinery. In addition, we discuss the relevant downstream responses of the changed Ca2+ signaling that ultimately lead to increased proliferation and increased apoptosis as observed in many cystic cell types.
Collapse
Affiliation(s)
- D. Mekahli
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N-I, B-802, Herestraat 49, 3000 Leuven, Belgium
| | - Jan B. Parys
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N-I, B-802, Herestraat 49, 3000 Leuven, Belgium
| | - G. Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N-I, B-802, Herestraat 49, 3000 Leuven, Belgium
| | - L. Missiaen
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N-I, B-802, Herestraat 49, 3000 Leuven, Belgium
| | - H. De Smedt
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N-I, B-802, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Differences in local blood flow patterns along the endothelium may trigger abnormal vascular responses which can have profound pathophysiological consequences. While endothelial cells exposed to laminar blood flow (high shear stress) are protected from atherosclerosis formation, turbulent or disturbed blood flow, which occurs at bends and bifurcations of blood vessels, facilitates atherosclerosis formation. Here, we will highlight the endothelial cell mechanisms involved in detecting shear stress and their translation into downstream biochemical signals. RECENT FINDINGS Prior evidence supports a role for integrins as mechanotransducers in the endothelium by promoting phosphorylation of different targets through the activation of focal adhesion kinase. Our recent findings show that integrins contact integrin-linked kinase and regulate vasomotor responses by an endothelial nitric oxide synthase-dependent mechanism, which stabilizes the production of vasoactive factor nitric oxide. In addition, different structures of endothelial cells, mainly primary cilia, are investigated, as they can explain the differential responses to laminar versus disturbed flow. SUMMARY The discovery of a connection between endothelial cell structures such as cilia, integrin, extracellular matrix, and signaling events opens today a new chapter in our understanding of the molecular mechanisms regulating vascular responses to the changes in flow.
Collapse
Affiliation(s)
- Carlos Zaragoza
- National Center for Cardiovascular Research, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | | | | |
Collapse
|
40
|
Dalagiorgou G, Piperi C, Georgopoulou U, Adamopoulos C, Basdra EK, Papavassiliou AG. Mechanical stimulation of polycystin-1 induces human osteoblastic gene expression via potentiation of the calcineurin/NFAT signaling axis. Cell Mol Life Sci 2012; 70:167-180. [PMID: 23014991 DOI: 10.1007/s00018-012-1164-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/03/2012] [Accepted: 09/06/2012] [Indexed: 01/12/2023]
Abstract
Mechanical forces trigger biological responses in bone cells that ultimately control osteoblastogenesis and bone program. Although several mechanosensors have been postulated, the precise mechanotransduction pathway remains obscure as the initial mechanosensing event has not yet been identified. Studies in kidney cells have shown that polycystin-1 (PC1), via its extracellular N-terminal part, may function as an "antenna-like" protein providing a linkage between environmental cues and their conversion into biochemical responses that regulate various cellular processes via the calcineurin/NFAT pathway. Here we explored the involvement of PC1 in mechanical load (stretching)-induced signaling cascades that control osteoblastogenesis/bone formation. FACS and TransAM Transcription Factor ELISA analyses employing extracts from primary human osteoblast-like, PC1 expressing cells subjected to mechanical stretching (0-6 h) revealed that unphosphorylated/DNA-binding competent NFATc1 increased at 0.5-1 h and returned to normal at 6 h. In accordance with the activation mechanism of NFATc1, stretching of cultured cells pre-treated with cyclosporin A (CsA, a specific inhibitor of the calcineurin/NFAT pathway) abrogated the observed decrease in the abundance of the cytoplasmic pNFATc1 (phosphorylated/inactive) species. Furthermore, stretching of osteoblastic cells pre-treated with an antibody against the mechanosensing N-terminal part of PC1 also abrogated the observed decrease in the cytoplasmic levels of the inactive pNFATc1 species. Importantly, under similar conditions (pre-incubation of stretched cells with the inhibitory anti-PC1 antibody), the expression of the key osteoblastic, NFATc1-target gene runx2 decreased compared to untreated cells. Therefore, PC1 acts as chief mechanosensing molecule that modulates osteoblastic gene transcription and hence bone-cell differentiation through the calcineurin/NFAT signaling cascade.
Collapse
Affiliation(s)
- Georgia Dalagiorgou
- Department of Biological Chemistry, University of Athens Medical School, 11527 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, University of Athens Medical School, 11527 Athens, Greece
| | - Urania Georgopoulou
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11527 Athens, Greece
| | - Christos Adamopoulos
- Department of Biological Chemistry, University of Athens Medical School, 11527 Athens, Greece
| | - Efthimia K Basdra
- Department of Biological Chemistry, University of Athens Medical School, 11527 Athens, Greece
| | | |
Collapse
|
41
|
Abstract
Protein conformational switches alter their shape upon receiving an input signal, such as ligand binding, chemical modification, or change in environment. The apparent simplicity of this transformation--which can be carried out by a molecule as small as a thousand atoms or so--belies its critical importance to the life of the cell as well as its capacity for engineering by humans. In the realm of molecular switches, proteins are unique because they are capable of performing a variety of biological functions. Switchable proteins are therefore of high interest to the fields of biology, biotechnology, and medicine. These molecules are beginning to be exploited as the core machinery behind a new generation of biosensors, functionally regulated enzymes, and "smart" biomaterials that react to their surroundings. As inspirations for these designs, researchers continue to analyze existing examples of allosteric proteins. Recent years have also witnessed the development of new methodologies for introducing conformational change into proteins that previously had none. Herein we review examples of both natural and engineered protein switches in the context of four basic modes of conformational change: rigid-body domain movement, limited structural rearrangement, global fold switching, and folding-unfolding. Our purpose is to highlight examples that can potentially serve as platforms for the design of custom switches. Accordingly, we focus on inducible conformational changes that are substantial enough to produce a functional response (e.g., in a second protein to which it is fused), yet are relatively simple, structurally well-characterized, and amenable to protein engineering efforts.
Collapse
Affiliation(s)
| | - Stewart N. Loh
- Department of Biochemistry & Molecular Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210 (USA), Tel: (315)464-8731, Fax: (315)464-8750
| |
Collapse
|
42
|
Abstract
The non-motile primary cilium is a single, microtubule-based hair-like projection that emanates from most, if not all, non-dividing mammalian cells. Enriched in a variety of signalling receptors and accessories, the cilium mediates crucial sensory and regulatory functions during development and postnatal tissue homoeostasis. Maintenance of ciliary morphology and function requires continuous IFT (intraflagellar transport), and recent findings have shed light on some molecular details of how ciliogenesis is dependent on targeted exocytic membrane trafficking from the Golgi. The ARL [Arf (ADP ribosylation factor)-related] small GTPase Arf4 functions in TGN (trans-Golgi network) sorting of cilia-targeted rhodopsin into carrier vesicles, while Arl6 (Arf-like 6) and Arl13b regulate aspects of ciliary transport and IFT. Ciliogenesis and ciliary functions are also regulated by small Rabs. Rab8a, in conjunction with Rab11a, and via its interaction with a multitude of proteins associated with the ciliary basal body and axoneme/membrane, appears to be critical for ciliogenesis. Rab8's close homologue Rab10 may also play a ciliogenic role in some cells. Rab23, the depletion or inactivation of which affects cilia formation, may regulate specific ciliary protein targeting and turnover, particularly those involved in Shh (Sonic hedgehog) signalling. Recent findings have also implicated Ran, a small GTPase better known for nuclear import, in ciliary targeting of the KIF17 motor protein. We highlight and discuss recent findings on how Rabs and other small GTPases mediate ciliogenesis and ciliary traffic.
Collapse
|
43
|
Farnum CE, Wilsman NJ. Orientation of primary cilia of articular chondrocytes in three-dimensional space. Anat Rec (Hoboken) 2011; 294:533-49. [PMID: 21337716 DOI: 10.1002/ar.21330] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 11/11/2010] [Indexed: 12/17/2022]
Abstract
Primary cilia have functions as sensory organelles integral to signal transduction and establishment of cell polarity. In articular cartilage the primary cilium has been hypothesized to function as an antenna to sense the biomechanical environment, regulate the secretion of extracellular matrix components, and maintain cellular positional information, leading to high tissue anisotropy. We used analysis of electron microscopy serial sections to demonstrate positional attributes of the primary cilium of adult equine articular chondrocytes in situ. Data for ~500 axonemes, comparing superficial to radiate chondrocytes from both load-bearing and non-load-bearing regions, were graphed using spherical co-ordinates θ, φ. The data demonstrate the axoneme has a definable orientation in 3D space differing in superficial and radiate zone chondrocytes, cells that differ by 90° in the orientation of their major axes to the articular surface. Axonemal orientation is more definable in load-bearing than in non-load-bearing areas. The position of emergence of the axoneme from the cell also is variable. In load-bearing regions of the superficial zone, extension of the axoneme is from the cellular side facing the subchondral bone. In radiate zone cells, axonemes extend from either face of the chondrocyte, that is, both toward the articular surface or toward the subchondral bone. In non-load-bearing regions this consistency is lost. These observations relate to current hypotheses concerning establishment of tissue anisotropy in articular cartilage during development, involving both migration of cells from the joint periphery and a restricted zone of division within the tissue resulting in the columnar arrangement of radiate zone cells.
Collapse
Affiliation(s)
- Cornelia E Farnum
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA.
| | | |
Collapse
|