1
|
Wang Y, Jin M, Cheng CK, Li Q. Tubular injury in diabetic kidney disease: molecular mechanisms and potential therapeutic perspectives. Front Endocrinol (Lausanne) 2023; 14:1238927. [PMID: 37600689 PMCID: PMC10433744 DOI: 10.3389/fendo.2023.1238927] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Diabetic kidney disease (DKD) is a chronic complication of diabetes and the leading cause of end-stage renal disease (ESRD) worldwide. Currently, there are limited therapeutic drugs available for DKD. While previous research has primarily focused on glomerular injury, recent studies have increasingly emphasized the role of renal tubular injury in the pathogenesis of DKD. Various factors, including hyperglycemia, lipid accumulation, oxidative stress, hypoxia, RAAS, ER stress, inflammation, EMT and programmed cell death, have been shown to induce renal tubular injury and contribute to the progression of DKD. Additionally, traditional hypoglycemic drugs, anti-inflammation therapies, anti-senescence therapies, mineralocorticoid receptor antagonists, and stem cell therapies have demonstrated their potential to alleviate renal tubular injury in DKD. This review will provide insights into the latest research on the mechanisms and treatments of renal tubular injury in DKD.
Collapse
Affiliation(s)
- Yu Wang
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital, Shenzhen, Guangdong, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Mingyue Jin
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Chak Kwong Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Qiang Li
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Cao J, Zhao C, Gong L, Cheng X, Yang J, Zhu M, Lv X. MiR-181 enhances proliferative and migratory potentials of retinal endothelial cells in diabetic retinopathy by targeting KLF6. Curr Eye Res 2022; 47:882-888. [PMID: 35179443 DOI: 10.1080/02713683.2022.2039206] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE We aimed to uncover the role of microRNA-181 (miR-181) in the disease onset of diabetic retinopathy (DR) and its underlying mechanism. METHODS MiR-181 levels in plasma and aqueous humor samples of non-proliferative diabetic retinopathy (NPDR), proliferative diabetic retinopathy (PDR) and healthy subjects were analyzed by microarray and quantitative real-time polymerase chain reaction (qRT-PCR). Proliferative and migrative capacities of human retinal endothelial cells (hRECs) regulated by miR-181 were assessed. The binding between miR-181 and kruppel-like factor 6 (KLF6) was verified by dual-luciferase reporter assay. RESULTS MiR-181 was upregulated in plasma and aqueous humor samples of NPDR and PDR patients. Overexpression of miR-181 stimulated hRECs to proliferate and migrate. KLF6 was the downstream gene binding miR-181, which was involved in the regulation of hRECs by miR-181. CONCLUSIONS MiR-181 is upregulated in plasma and aqueous humor of DR patients. It enhances proliferative and migratory potentials of retinal endothelial cells by targeting KLF6.
Collapse
Affiliation(s)
- Jin Cao
- Department of Ophthalmology, Xianning Central Hospital, The First Affiliated Hospital Of Hubei University of Science And Technology, Xianning 437100, China
| | - Chujin Zhao
- Department of ENT, Xianning Central Hospital, The First Affiliated Hospital Of Hubei University Of Science And Technology, 228 Jingui Road, Xianning 437100, China
| | - Lanlan Gong
- Department of Ophthalmology, Xianning Central Hospital, The First Affiliated Hospital Of Hubei University of Science And Technology, Xianning 437100, China
| | - Xinchao Cheng
- Department of Ophthalmology, Xianning Central Hospital, The First Affiliated Hospital Of Hubei University of Science And Technology, Xianning 437100, China
| | - Jie Yang
- Department of Ophthalmology, Xianning Central Hospital, The First Affiliated Hospital Of Hubei University of Science And Technology, Xianning 437100, China
| | - Mengnan Zhu
- Department of Ophthalmology, Xianning Central Hospital, The First Affiliated Hospital Of Hubei University of Science And Technology, Xianning 437100, China
| | - Xudong Lv
- Department of Ophthalmology, Xianning Central Hospital, The First Affiliated Hospital Of Hubei University of Science And Technology, Xianning 437100, China
| |
Collapse
|
3
|
Xu L, Shao F. Sitagliptin protects renal glomerular endothelial cells against high glucose-induced dysfunction and injury. Bioengineered 2021; 13:655-666. [PMID: 34967261 PMCID: PMC8805972 DOI: 10.1080/21655979.2021.2012550] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Sitagliptin is a well-established anti-diabetic drug that also exerts protective effects on diabetic complications. Previous work reveals that sitagliptin has a protective effect on diabetic nephropathy (DN). Vascular impairment frequently occurs in diabetic renal complications. Here, we evaluated the protective function of sitagliptin in human renal glomerular endothelial cells (HrGECs) under high glucose (HG) conditions. Expressions of the pro-inflammatory cytokines interleukin-1β (IL-1β) and interleukin-8 (IL-8) were assessed using real-time PCR and ELISA. Endothelial cells permeability was assayed using the fluorescein isothiocyanate dextran (FITC-dextran) and trans-endothelial electrical resistance (TEER) assay. The results show that sitagliptin mitigated HG-induced oxidative stress in HrGECs with decreased levels of mitochondrial reactive oxygen species (ROS), Malondialdehyde (MDA), and 8-hydroxydeoxyguanosine (8-OHdG). Sitagliptin inhibited HG-induced production of pro-inflammatory cytokines interleukin-1β (IL-1β) and interleukin-8 (IL-8) in HrGECs. It also ameliorated HG-induced aggravation of HrGECs permeability and reduction of the tight junction component claudin-5. Moreover, kruppel Like Factor 6 (KLF6) mediated the protective effects of sitagliptin on endothelial monolayer permeability against HG. Collectively, sitagliptin reversed the HG-induced oxidative stress, inflammation, and increased permeability in HrGECs via regulating KLF6. This study suggests that sitagliptin might be implicated as an effective strategy for preventing diabetic renal injuries in the future.
Collapse
Affiliation(s)
- Liang Xu
- Department of Nephrology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Fengmin Shao
- Department of Nephrology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Syafruddin SE, Mohtar MA, Wan Mohamad Nazarie WF, Low TY. Two Sides of the Same Coin: The Roles of KLF6 in Physiology and Pathophysiology. Biomolecules 2020; 10:biom10101378. [PMID: 32998281 PMCID: PMC7601070 DOI: 10.3390/biom10101378] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/26/2020] [Accepted: 09/26/2020] [Indexed: 12/12/2022] Open
Abstract
The Krüppel-like factors (KLFs) family of proteins control several key biological processes that include proliferation, differentiation, metabolism, apoptosis and inflammation. Dysregulation of KLF functions have been shown to disrupt cellular homeostasis and contribute to disease development. KLF6 is a relevant example; a range of functional and expression assays suggested that the dysregulation of KLF6 contributes to the onset of cancer, inflammation-associated diseases as well as cardiovascular diseases. KLF6 expression is either suppressed or elevated depending on the disease, and this is largely due to alternative splicing events producing KLF6 isoforms with specialised functions. Hence, the aim of this review is to discuss the known aspects of KLF6 biology that covers the gene and protein architecture, gene regulation, post-translational modifications and functions of KLF6 in health and diseases. We put special emphasis on the equivocal roles of its full-length and spliced variants. We also deliberate on the therapeutic strategies of KLF6 and its associated signalling pathways. Finally, we provide compelling basic and clinical questions to enhance the knowledge and research on elucidating the roles of KLF6 in physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Saiful E. Syafruddin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.A.M.); (T.Y.L.)
- Correspondence: ; Tel.: +60-3-9145-9040
| | - M. Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.A.M.); (T.Y.L.)
| | - Wan Fahmi Wan Mohamad Nazarie
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.A.M.); (T.Y.L.)
| |
Collapse
|
5
|
Mayilsamy K, Markoutsa E, Das M, Chopade P, Puro D, Kumar A, Gulick D, Willing AE, Mohapatra SS, Mohapatra S. Treatment with shCCL20-CCR6 nanodendriplexes and human mesenchymal stem cell therapy improves pathology in mice with repeated traumatic brain injury. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102247. [PMID: 32599163 DOI: 10.1016/j.nano.2020.102247] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) is a devastating neurological disorder, although the underlying pathophysiology is poorly understood. TBI causes blood-brain barrier (BBB) disruption, immune cell trafficking, neuroinflammation and neurodegeneration. CCL20 is an important chemokine mediating neuroinflammation. Human mesenchymal stem cell (hMSC) therapy is a promising regenerative approach but the inflammatory microenvironment in the brain tends to decrease the efficacy of the hMSC transplantation. Reducing the inflammation prior to hMSC therapy improves the outcome. We developed a combined nano-cell therapy by using dendrimers complexed with plasmids (dendriplexes) targeting CCL20 and its sole receptor CCR6 to reduce inflammation followed by hMSC transplantation. Treatment of TBI mice with shRNA conjugated dendriplexes followed by hMSC administration downregulated the inflammatory markers and significantly increased brain-derived neurotrophic factor (BDNF) expression in the cerebral cortex indicating future possible neurogenesis and improved behavioral deficits. Taken together, this nano-cell therapy ameliorates neuroinflammation and promotes brain tissue repair after TBI.
Collapse
Affiliation(s)
- Karthick Mayilsamy
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA; James A Haley VA Hospital, Tampa, FL, USA
| | - Eleni Markoutsa
- Center for Research and Education in Nanobio-engineering, Department of Internal Medicine, University of South Florida, Tampa, FL, USA; College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL, USA; James A Haley VA Hospital, Tampa, FL, USA
| | - Mahasweta Das
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA; James A Haley VA Hospital, Tampa, FL, USA
| | - Pratik Chopade
- College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL, USA
| | - Durga Puro
- College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL, USA
| | - Akanksha Kumar
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Danielle Gulick
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Alison E Willing
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Shyam S Mohapatra
- Center for Research and Education in Nanobio-engineering, Department of Internal Medicine, University of South Florida, Tampa, FL, USA; College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL, USA; James A Haley VA Hospital, Tampa, FL, USA
| | - Subhra Mohapatra
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA; Center for Research and Education in Nanobio-engineering, Department of Internal Medicine, University of South Florida, Tampa, FL, USA; James A Haley VA Hospital, Tampa, FL, USA.
| |
Collapse
|
6
|
Yu T, Gong Y, Liu Y, Xia L, Zhao C, Liu L, Xie M, Wu Z, Zhao D, Qiu W, Wang Y, Zhang J, Ji M. KLF6 Acetylation Promotes Sublytic C5b-9-Induced Production of MCP-1 and RANTES in Experimental Mesangial Proliferative Glomerulonephritis. Int J Biol Sci 2020; 16:2340-2356. [PMID: 32760202 PMCID: PMC7378648 DOI: 10.7150/ijbs.46573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
Rat Thy-1 nephritis (Thy-1N) is an experimental mesangial proliferative glomerulonephritis (MsPGN) for studying human MsPGN. Although sublytic C5b-9 complex formation on glomerular mesangial cells (GMCs) and renal MCP-1 and RANTES production in rats with Thy-1N have been proved, the role and mechanism of MCP-1 or RANTES synthesis in GMCs induced by sublytic C5b-9 are poorly elucidated. In this study, we first found the expression of transcription factor (KLF6), co-activator (KAT7) and chemokines (MCP-1 and RANTES) was all up-regulated both in renal tissue of Thy-1N rats (in vivo) and in sublytic C5b-9-induced GMCs (in vitro). Further in vitro experiments revealed that KLF6 bound to MCP-1 promoter (-297 to -123 nt) and RANTES promoter (-343 to -191 nt), leading to MCP-1 and RANTES gene transcription. Meanwhile, KAT7 also bound to the same region of MCP-1 and RANTES promoter in a KLF6-dependent manner, and KLF6 was acetylated by KAT7 at lysine residue 100, which finally promoted MCP-1 and RANTES expression. Moreover, our in vivo experiments discovered that knockdown of renal KAT7 or KLF6 gene obviously reduced MCP-1 and RANTES production, GMCs proliferation, ECM accumulation, and proteinuria secretion in Thy-1N rats. Collectively, our study indicates that sublytic C5b-9-induced MCP-1 and RANTES synthesis is associated with KAT7-mediated KLF6 acetylation and elevated KLF6 transcriptional activity, which might provide a new insight into the pathogenesis of rat Thy-1N and human MsPGN.
Collapse
Affiliation(s)
- Tianyi Yu
- Department of Immunology, Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yajuan Gong
- Department of Immunology, Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yu Liu
- Department of Immunology, Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Lu Xia
- Department of Immunology, Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chenhui Zhao
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Longfei Liu
- Department of Immunology, Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Mengxiao Xie
- Department of Immunology, Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zhijiao Wu
- Department of Immunology, Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Dan Zhao
- Department of Immunology, Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wen Qiu
- Department of Immunology, Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yingwei Wang
- Department of Immunology, Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jing Zhang
- Department of Immunology, Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Key Laboratory of Antibody Technology of Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Mingde Ji
- Department of Laboratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| |
Collapse
|
7
|
Liang X, Xu W. miR-181a-5p regulates the proliferation and apoptosis of glomerular mesangial cells by targeting KLF6. Exp Ther Med 2020; 20:1121-1128. [PMID: 32742352 DOI: 10.3892/etm.2020.8780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 12/12/2019] [Indexed: 12/22/2022] Open
Abstract
Diabetic nephropathy (DN) is a chronic loss of kidney function that frequently occurs in patients with diabetes mellitus and is characterized by abnormal glomerular mesangial cell (GMC) proliferation and apoptosis. By using microarray analysis, microRNA (miR)-181a-5p has previously been identified to be dysregulated in DN. The present study aimed to determine the underlying molecular mechanisms and function of miR-181a-5p in GMCs under DN conditions. First, reverse transcription-quantitative PCR was performed to detect miR-181a-5p and kruppel-like factor 6 (KLF6) expression in GMCs following high-glucose treatment. Subsequently, MTT and flow cytometric assays were performed in order to determine the effect of miR-181a-5p and KLF6 on high-glucose-driven GMC proliferation and apoptosis. After confirming that KLF6 was a target gene of miR-181a-5p via a bioinformatics analysis and luciferase reporter assay, the mRNA and protein expression levels of associated factors in different treatment groups were measured. The results demonstrated that miR-181a-5p was significantly downregulated, while KLF6 was significantly upregulated in GMCs following treatment with high glucose. Furthermore, overexpression of miR-181a led to suppression of cell proliferation and promoted apoptosis of GMCs induced by high glucose, while these effects were inhibited by co-transfection with KLF6. Finally, miR-181-5p was demonstrated to inhibit the expression of KLF6, Bcl-2, Wnt1 and β-catenin, while increasing the expression levels of Bax and caspase-3. In conclusion, the expression levels of miR-181a-5p were downregulated in GMCs following treatment with high glucose and overexpression of miR-181a-5p may inhibit GMC proliferation and promote apoptosis, at least partially through targeting KLF6 via the Wnt/β-catenin signaling pathway. Overall, the results of the present study suggest that miR-181a-5p may have a crucial role in the occurrence and development of DN and may be a valuable diagnostic marker and therapeutic target for DN.
Collapse
Affiliation(s)
- Xinyue Liang
- Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Wen Xu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200127, P.R. China
| |
Collapse
|
8
|
Dumayne C, Tarussio D, Sanchez-Archidona AR, Picard A, Basco D, Berney XP, Ibberson M, Thorens B. Klf6 protects β-cells against insulin resistance-induced dedifferentiation. Mol Metab 2020; 35:100958. [PMID: 32244185 PMCID: PMC7093812 DOI: 10.1016/j.molmet.2020.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES In the pathogenesis of type 2 diabetes, development of insulin resistance triggers an increase in pancreatic β-cell insulin secretion capacity and β-cell number. Failure of this compensatory mechanism is caused by a dedifferentiation of β-cells, which leads to insufficient insulin secretion and diabetic hyperglycemia. The β-cell factors that normally protect against dedifferentiation remain poorly defined. Here, through a systems biology approach, we identify the transcription factor Klf6 as a regulator of β-cell adaptation to metabolic stress. METHODS We used a β-cell specific Klf6 knockout mouse model to investigate whether Klf6 may be a potential regulator of β-cell adaptation to a metabolic stress. RESULTS We show that inactivation of Klf6 in β-cells blunts their proliferation induced by the insulin resistance of pregnancy, high-fat high-sucrose feeding, and insulin receptor antagonism. Transcriptomic analysis showed that Klf6 controls the expression of β-cell proliferation genes and, in the presence of insulin resistance, it prevents the down-expression of genes controlling mature β-cell identity and the induction of disallowed genes that impair insulin secretion. Its expression also limits the transdifferentiation of β-cells into α-cells. CONCLUSION Our study identifies a new transcription factor that protects β-cells against dedifferentiation, and which may be targeted to prevent diabetes development.
Collapse
Affiliation(s)
- Christopher Dumayne
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
| | - David Tarussio
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Ana Rodriguez Sanchez-Archidona
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; Vital-IT, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.
| | - Alexandre Picard
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Davide Basco
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Xavier Pascal Berney
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Mark Ibberson
- Vital-IT, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.
| | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
9
|
Das M, Mayilsamy K, Tang X, Han JY, Foran E, Willing AE, Mohapatra SS, Mohapatra S. Pioglitazone treatment prior to transplantation improves the efficacy of human mesenchymal stem cells after traumatic brain injury in rats. Sci Rep 2019; 9:13646. [PMID: 31541141 PMCID: PMC6754424 DOI: 10.1038/s41598-019-49428-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury is a leading cause of death and disability around the world. So far, drugs are not available to repair brain damage. Human mesenchymal stem cell (hMSC) transplantation therapy is a promising approach, although the inflammatory microenvironment of the injured brain affects the efficacy of transplanted hMSCs. We hypothesize that reducing the inflammation in the cerebral microenvironment by reducing pro-inflammatory chemokines prior to hMSC administration will improve the efficacy of hMSC therapy. In a rat model of lateral fluid percussion injury, combined pioglitazone (PG) and hMSC (combination) treatment showed less anxiety-like behavior and improved sensorimotor responses to a noxious cold stimulus. Significant reduction in brain lesion volume, neurodegeneration, microgliosis and astrogliosis were observed after combination treatment. TBI induced expression of inflammatory chemokine CCL20 and IL1-β were significantly decreased in the combination treatment group. Combination treatment significantly increased brain-derived neurotrophic factor (BDNF) level and subventricular zone (SVZ) neurogenesis. Taken together, reducing proinflammatory cytokine expression in the cerebral tissues after TBI by PG administration and prior to hMSC therapy improves the outcome of the therapy in which BDNF could have a role.
Collapse
Affiliation(s)
- Mahasweta Das
- James A. Haley Veterans Hospital, University of South Florida College of Medicine, Tampa, FL, 33612, USA
- Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL, 33612, USA
| | - Karthick Mayilsamy
- James A. Haley Veterans Hospital, University of South Florida College of Medicine, Tampa, FL, 33612, USA
- Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL, 33612, USA
| | - Xiaolan Tang
- James A. Haley Veterans Hospital, University of South Florida College of Medicine, Tampa, FL, 33612, USA
- Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL, 33612, USA
| | - Jung Yeon Han
- James A. Haley Veterans Hospital, University of South Florida College of Medicine, Tampa, FL, 33612, USA
- Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL, 33612, USA
| | - Elspeth Foran
- James A. Haley Veterans Hospital, University of South Florida College of Medicine, Tampa, FL, 33612, USA
- Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL, 33612, USA
| | - Alison E Willing
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, 33612, USA
| | - Shyam S Mohapatra
- James A. Haley Veterans Hospital, University of South Florida College of Medicine, Tampa, FL, 33612, USA
- Department of Internal Medicine, University of South Florida College of Medicine, Tampa, FL, 33612, USA
| | - Subhra Mohapatra
- James A. Haley Veterans Hospital, University of South Florida College of Medicine, Tampa, FL, 33612, USA.
- Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL, 33612, USA.
| |
Collapse
|
10
|
Kim GD, Ng HP, Patel N, Mahabeleshwar GH. Kruppel-like factor 6 and miR-223 signaling axis regulates macrophage-mediated inflammation. FASEB J 2019; 33:10902-10915. [PMID: 31262200 DOI: 10.1096/fj.201900867rr] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Macrophage-mediated inflammation is an explicitly robust biologic response that plays a critical role in maintaining tissue homeostasis by eliminating deleterious agents. These tissue macrophages tailor appropriate responses to external cues by altering inflammatory gene expression. Therefore, transcription factors and regulators that modulate inflammatory gene expression play an essential role in shaping the macrophage inflammatory response. Here, we identify that Kruppel-like factor (KLF)6 promotes inflammation by restraining microRNA-223 (miR-223) expression in macrophages. We uncovered that pro- and anti-inflammatory agents oppositely regulate KLF6 and miR-223 expression in macrophages. Using complementary gain- and loss-of-function studies, we observed that overexpression of KLF6 attenuates and deficiency of KLF6 elevates miR-223 expression in macrophages. Furthermore, heightened miR-223 expression in KLF6-deficient macrophages significantly attenuates inducible proinflammatory gene expression. Concordantly, myeloid-Klf6 deficiency significantly curbs diet-induced adipose tissue inflammation, obesity, glucose intolerance, and insulin resistance. At the molecular level, KLF6 directly represses miR-223 expression by occupying its promoter region. More importantly, genetic inhibition of miR-223-3P in KLF6-deficient macrophages completely reversed attenuated proinflammatory gene expression in macrophages. Collectively, our studies reveal that KLF6 promotes proinflammatory gene expression and functions by repressing miR-223 expression in macrophages.-Kim, G.-D., Ng, H. P., Patel, N., Mahabeleshwar, G. H. Kruppel-like factor 6 and miR-223 signaling axis regulates macrophage-mediated inflammation.
Collapse
Affiliation(s)
- Gun-Dong Kim
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Hang Pong Ng
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Nibedita Patel
- Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Ganapati H Mahabeleshwar
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.,Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
11
|
Das M, Tang X, Han JY, Mayilsamy K, Foran E, Biswal MR, Tzekov R, Mohapatra SS, Mohapatra S. CCL20-CCR6 axis modulated traumatic brain injury-induced visual pathologies. J Neuroinflammation 2019; 16:115. [PMID: 31151410 PMCID: PMC6544928 DOI: 10.1186/s12974-019-1499-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 05/06/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a major cause of death and disability in the USA and the world; it constitutes 30% of injury-related deaths (Taylor et al., MMWR Surveill Summ 66:1-16, 2017). Contact sports athletes often experience repetitive TBI (rTBI), which exerts a cumulative effect later in life. Visual impairment is a common after-effect of TBI. Previously, we have shown that C-C chemokine 20 (CCL20) plays a critical role in neurodegeneration and inflammation following TBI (Das et al., J Neuroinflammation 8:148, 2011). C-C chemokine receptor 6 (CCR6) is the only receptor that CCL20 interacts with. The objective of the present study was to investigate the role of CCL20-CCR6 axis in mediating rTBI-induced visual dysfunction (TVD). METHODS Wild type (WT) or CCR6 knock out (CCR6-/-) mice were subjected to closed head rTBI. Pioglitazone (PG) is a peroxisome proliferator-activated receptor γ (PPARγ) agonist which downregulates CCL20 production. Subsets of WT mice were treated with PG following final rTBI. A subset of mice was also treated with anti-CCL20 antibody to neutralize the CCL20 produced after rTBI. Histopathological assessments were performed to show cerebral pathologies, retinal pathologies, and inflammatory changes induced by rTBI. RESULTS rTBI induced cerebral neurodegeneration, retinal degeneration, microgliosis, astrogliosis, and CCL20 expression. CCR6-/- mice showed reduced retinal degeneration, microgliosis, and inflammation. Treatment with CCL20 neutralization antibody or PG showed reduced CCL20 expression along with reduced retinal degeneration and inflammation. rTBI-induced GFAP-positive glial activation in the optic nerve was not affected by knocking out CCR6. CONCLUSION The present data indicate that rTBI-induced retinal pathology is mediated at least in part by CCL20 in a CCR6-dependent manner.
Collapse
Affiliation(s)
- Mahasweta Das
- James A. Haley Veterans Hospital, Tampa, FL, USA.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Xiaolan Tang
- James A. Haley Veterans Hospital, Tampa, FL, USA.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jung Yeon Han
- James A. Haley Veterans Hospital, Tampa, FL, USA.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Karthick Mayilsamy
- James A. Haley Veterans Hospital, Tampa, FL, USA.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Elspeth Foran
- James A. Haley Veterans Hospital, Tampa, FL, USA.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Manas R Biswal
- Graduate Programs at College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Radouil Tzekov
- James A. Haley Veterans Hospital, Tampa, FL, USA.,Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Graduate Programs at College of Pharmacy, University of South Florida, Tampa, FL, USA.,Department of Medical Engineering, University of South Florida, Tampa, FL, USA.,The Roskamp Institute, Sarasota, FL, USA
| | - Shyam S Mohapatra
- James A. Haley Veterans Hospital, Tampa, FL, USA.,Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Graduate Programs at College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Subhra Mohapatra
- James A. Haley Veterans Hospital, Tampa, FL, USA. .,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
12
|
Broadgate S, Kiire C, Halford S, Chong V. Diabetic macular oedema: under-represented in the genetic analysis of diabetic retinopathy. Acta Ophthalmol 2018; 96 Suppl A111:1-51. [PMID: 29682912 DOI: 10.1111/aos.13678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/21/2017] [Indexed: 12/15/2022]
Abstract
Diabetic retinopathy, a complication of both type 1 and type 2 diabetes, is a complex disease and is one of the leading causes of blindness in adults worldwide. It can be divided into distinct subclasses, one of which is diabetic macular oedema. Diabetic macular oedema can occur at any time in diabetic retinopathy and is the most common cause of vision loss in patients with type 2 diabetes. The purpose of this review is to summarize the large number of genetic association studies that have been performed in cohorts of patients with type 2 diabetes and published in English-language journals up to February 2017. Many of these studies have produced positive associations with gene polymorphisms and diabetic retinopathy. However, this review highlights that within this large body of work, studies specifically addressing a genetic association with diabetic macular oedema, although present, are vastly under-represented. We also highlight that many of the studies have small patient numbers and that meta-analyses often inappropriately combine patient data sets. We conclude that there will continue to be conflicting results and no meaningful findings will be achieved if the historical approach of combining all diabetic retinopathy disease states within patient cohorts continues in future studies. This review also identifies several genes that would be interesting to analyse in large, well-defined cohorts of patients with diabetic macular oedema in future candidate gene association studies.
Collapse
Affiliation(s)
- Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
| | - Christine Kiire
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
- Oxford Eye Hospital; John Radcliffe Hospital; Oxford University NHS Foundation Trust; Oxford UK
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
| | - Victor Chong
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
| |
Collapse
|
13
|
Chiang MC, Cheng YC, Nicol CJ, Lin CH. The neuroprotective role of rosiglitazone in advanced glycation end product treated human neural stem cells is PPARgamma-dependent. Int J Biochem Cell Biol 2017; 92:121-133. [DOI: 10.1016/j.biocel.2017.09.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 09/08/2017] [Accepted: 09/26/2017] [Indexed: 12/11/2022]
|
14
|
Wang K, Zhou W, Cai Q, Cheng J, Cai R, Xing R. SUMOylation of KLF4 promotes IL-4 induced macrophage M2 polarization. Cell Cycle 2017; 16:374-381. [PMID: 28059602 DOI: 10.1080/15384101.2016.1269045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Macrophages, in response to different environmental cues, undergo the classical polarization (M1 macrophages) as well as the alternative polarization (M2 macrophages) that involve the functions of stimulus-specific transcription factors. Kruppel-like factor 4 (KLF4), a member of a subfamily of the zinc-finger class of DNA-binding transcription factors, plays as a critical regulator of macrophage polarization. KLF4 has been reported as a SUMOylated protein. In this study, we showed that SUMOylation of KLF4, is induced by IL-4 treatment in macrophages. IL4-induced KLF4 SUMOylation promotes RAW264.7 cells and bone marrow derived macrophages (BMDMs) to polarize into M2 subset. Thus, we identified an important post-translational modification (PTM), SUMOylation, plays a crucial role in regulating KLF4 activity during IL-4 induced macrophage M2 polarization. SUMOylation of KLF4 can be a potential therapeutic target in the resolution of inflammation.
Collapse
Affiliation(s)
- Kezhou Wang
- a Department of Biochemistry and Molecular Cell Biology , Shanghai Jiaotong University School of Medicine , Shanghai , China.,b Department of Pathophysiology , Dalian Medical University , Dalian , China
| | - Wei Zhou
- a Department of Biochemistry and Molecular Cell Biology , Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Qi Cai
- a Department of Biochemistry and Molecular Cell Biology , Shanghai Jiaotong University School of Medicine , Shanghai , China.,c Department of Clinical Laboratory , Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Jinke Cheng
- a Department of Biochemistry and Molecular Cell Biology , Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Rong Cai
- a Department of Biochemistry and Molecular Cell Biology , Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Rong Xing
- b Department of Pathophysiology , Dalian Medical University , Dalian , China
| |
Collapse
|
15
|
Zheng B, Chen L, Gonzalez FJ. ISN Forefronts Symposium 2015: Nuclear Receptors and Diabetic Nephropathy. Kidney Int Rep 2016; 1:177-188. [PMID: 28932823 PMCID: PMC5601313 DOI: 10.1016/j.ekir.2016.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/22/2016] [Accepted: 07/27/2016] [Indexed: 01/19/2023] Open
Abstract
Diabetic nephropathy (DN) is the major reason for end stage renal disease in the western world. Patients with DN developed more severe cardiovascular complications with worse prognosis. In spite of tight blood pressure and glucose control through applying angiotensin II receptor antagonism, angiotensin receptor inhibitors and even direct renin inhibitors, the progression and development of DN has continued to accelerate. Nuclear receptors are, with few exceptions, ligand-depended transcription factors some of which modulate genes involved in the transportation and metabolism of carbohydrate or lipid, and inflammation. Considering the diverse biological functions of nuclear receptors, efforts have been made to explore their contributions to the pathogenesis of DN and potential therapeutic strategies. This review is mainly focused on the association between various nuclear receptors and the pathogenesis of DN, the potential beneficial effects of targeting these receptors for preventing the progress of DN, and the important role that nuclear receptors may play in future therapeutic strategies for DN.
Collapse
Affiliation(s)
- Bo Zheng
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Lei Chen
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Sciancalepore AG, Portone A, Moffa M, Persano L, De Luca M, Paiano A, Sallustio F, Schena FP, Bucci C, Pisignano D. Micropatterning control of tubular commitment in human adult renal stem cells. Biomaterials 2016; 94:57-69. [PMID: 27105437 DOI: 10.1016/j.biomaterials.2016.03.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 03/19/2016] [Accepted: 03/28/2016] [Indexed: 12/12/2022]
Abstract
The treatment of renal injury by autologous, patient-specific adult stem cells is still an unmet need. Unsolved issues remain the spatial integration of stem cells into damaged areas of the organ, the commitment in the required cell type and the development of improved bioengineered devices. In this respect, biomaterials and architectures have to be specialized to control stem cell differentiation. Here, we perform an extensive study on micropatterned extracellular matrix proteins, which constitute a simple and non-invasive approach to drive the differentiation of adult renal progenitor/stem cells (ARPCs) from human donors. ARPCs are interfaced with fibronectin (FN) micropatterns, in the absence of exogenous chemicals or cellular reprogramming. We obtain the differentiation towards tubular cells of ARPCs cultured in basal medium conditions, the tubular commitment thus being specifically induced by micropatterned substrates. We characterize the stability of the tubular differentiation as well as the induction of a polarized phenotype in micropatterned ARPCs. Thus, the developed cues, driving the functional commitment of ARPCs, offer a route to recreate the microenvironment of the stem cell niche in vitro, that may serve, in perspective, for the development of ARPC-based bioengineered devices.
Collapse
Affiliation(s)
- Anna G Sciancalepore
- Istituto Nanoscienze-CNR, Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT), via Arnesano, 73100 Lecce, Italy; Center for Biomolecular Nanotechnologies @UNILE, Istituto Italiano di Tecnologia, via Barsanti, 73010 Arnesano, Lecce, Italy.
| | - Alberto Portone
- Istituto Nanoscienze-CNR, Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT), via Arnesano, 73100 Lecce, Italy; Dipartimento di Matematica e Fisica "Ennio De Giorgi", Università del Salento, via Arnesano, 73100 Lecce, Italy
| | - Maria Moffa
- Istituto Nanoscienze-CNR, Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT), via Arnesano, 73100 Lecce, Italy; Center for Biomolecular Nanotechnologies @UNILE, Istituto Italiano di Tecnologia, via Barsanti, 73010 Arnesano, Lecce, Italy
| | - Luana Persano
- Istituto Nanoscienze-CNR, Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT), via Arnesano, 73100 Lecce, Italy
| | - Maria De Luca
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, via Provinciale Monteroni, 73100 Lecce, Italy
| | - Aurora Paiano
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, via Provinciale Monteroni, 73100 Lecce, Italy
| | - Fabio Sallustio
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; Centro Addestramento Ricerca Scientifica in Oncologia (C.A.R.S.O.) Consortium, Strada Prov. le Valenzano-Casamassima, 70010 Valenzano, Italy
| | - Francesco P Schena
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; Centro Addestramento Ricerca Scientifica in Oncologia (C.A.R.S.O.) Consortium, Strada Prov. le Valenzano-Casamassima, 70010 Valenzano, Italy
| | - Cecilia Bucci
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, via Provinciale Monteroni, 73100 Lecce, Italy
| | - Dario Pisignano
- Istituto Nanoscienze-CNR, Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT), via Arnesano, 73100 Lecce, Italy; Center for Biomolecular Nanotechnologies @UNILE, Istituto Italiano di Tecnologia, via Barsanti, 73010 Arnesano, Lecce, Italy; Dipartimento di Matematica e Fisica "Ennio De Giorgi", Università del Salento, via Arnesano, 73100 Lecce, Italy.
| |
Collapse
|
17
|
Tang SCW, Yiu WH, Lin M, Lai KN. Diabetic nephropathy and proximal tubular damage. J Ren Nutr 2015; 25:230-3. [PMID: 25578352 DOI: 10.1053/j.jrn.2014.10.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 10/29/2014] [Indexed: 12/12/2022] Open
Abstract
Diabetic nephropathy (DN) is a major cause of uremia in developed societies. Inflammation is emerging as an important mechanism for its pathogenesis and progression. Herein, we review 4 recently described cellular receptors that have been shown to mediate diabetic interstitial kidney disease. Peroxisome proliferator-activated receptor-γ attenuates STAT-1 activation and has shown promise in renoprotection. Its clinical utility is limited mainly by fluid retention through upregulation of sodium-hydrogen exchanger-3 and aquaporin-1 channels in the proximal tubule. The bradykinin receptor 2 of the kallikrein-kinin system has been shown to mediate diabetic kidney injury and its blockade conferred renoprotective effects in animal models of DN. The related protease-activated receptor, especially receptor 4, has recently been shown to participate in DN. Further studies are required to confirm its role. Finally, the toll-like receptor, especially TLR4 and TLR2, has been verified in multiple models to be a significant sensor of and reactor to hyperglycemia and other diabetic substrates that orchestrate interstitial inflammation in DN.
Collapse
Affiliation(s)
- Sydney C W Tang
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong.
| | - Wai Han Yiu
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong
| | - Miao Lin
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kar Neng Lai
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
18
|
Intermediate conductance, Ca2+-activated K+ channels: a novel target for chronic renal diseases. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11515-014-1339-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
19
|
Zhao L, Xia J, Wang X, Xu F. Transcriptional regulation of CCL20 expression. Microbes Infect 2014; 16:864-70. [DOI: 10.1016/j.micinf.2014.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/03/2014] [Accepted: 08/07/2014] [Indexed: 12/19/2022]
|
20
|
The impact of simvastatin on pulmonary effectors of Pseudomonas aeruginosa infection. PLoS One 2014; 9:e102200. [PMID: 25010049 PMCID: PMC4092124 DOI: 10.1371/journal.pone.0102200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 06/16/2014] [Indexed: 12/22/2022] Open
Abstract
The statin family of cholesterol-lowering drugs is known to have pleiotropic properties which include anti-inflammatory and immunomodulatory effects. Statins exert their pleiotropic effects by altering expression of human immune regulators including pro-inflammatory cytokines. Previously we found that statins modulate virulence phenotypes of the human pathogen Pseudomonas aeruginosa, and sought to investigate if simvastatin could alter the host response to this organism in lung epithelial cells. Simvastatin increased the expression of the P. aeruginosa target genes KLF2, KLF6, IL-8 and CCL20. Furthermore, both simvastatin and P. aeruginosa induced alternative splicing of KLF6. The novel effect of simvastatin on wtKLF6 expression was found to be responsible for induction of the KLF6 regulated genes CCL20 and iNOS. Simvastatin also increased the adhesion of P. aeruginosa to host cells, without altering invasion or cytotoxicity. This study demonstrated that simvastatin had several novel effects on the pulmonary cellular immune response.
Collapse
|
21
|
High glucose induces CCL20 in proximal tubular cells via activation of the KCa3.1 channel. PLoS One 2014; 9:e95173. [PMID: 24733189 PMCID: PMC3986377 DOI: 10.1371/journal.pone.0095173] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/24/2014] [Indexed: 02/05/2023] Open
Abstract
Background Inflammation plays a key role in the development and progression of diabetic nephropathy (DN). KCa3.1, a calcium activated potassium channel protein, is associated with vascular inflammation, atherogenesis, and proliferation of endothelial cells, macrophages, and fibroblasts. We have previously demonstrated that the KCa3.1 channel is activated by TGF-β1 and blockade of KCa3.1 ameliorates renal fibrotic responses in DN through inhibition of the TGF-β1 pathway. The present study aimed to identify the role of KCa3.1 in the inflammatory responses inherent in DN. Methods Human proximal tubular cells (HK2 cells) were exposed to high glucose (HG) in the presence or absence of the KCa3.1 inhibitor TRAM34 for 6 days. The proinflammatory cytokine chemokine (C-C motif) ligand 20 (CCL20) expression was examined by real-time PCR and enzyme-linked immunosorbent assay (ELISA). The activity of nuclear factor-κB (NF-κB) was measured by nuclear extraction and electrophoretic mobility shift assay (EMSA). In vivo, the expression of CCL20, the activity of NF-κB and macrophage infiltration (CD68 positive cells) were examined by real-time PCR and/or immunohistochemistry staining in kidneys from diabetic or KCa3.1-/- mice, and in eNOS-/- diabetic mice treated with the KCa3.1 channel inhibitor TRAM34. Results In vitro data showed that TRAM34 inhibited CCL20 expression and NF-κB activation induced by HG in HK2 cells. Both mRNA and protein levels of CCL20 significantly decreased in kidneys of diabetic KCa3.1-/- mice compared to diabetic wild type mice. Similarly, TRAM34 reduced CCL20 expression and NF-κB activation in diabetic eNOS-/- mice compared to diabetic controls. Blocking the KCa3.1 channel in both animal models led to a reduction in phosphorylated NF-κB. Conclusions Overexpression of CCL20 in human proximal tubular cells is inhibited by blockade of KCa3.1 under diabetic conditions through inhibition of the NF-κB pathway.
Collapse
|
22
|
Duan S, Wang Y, Wang H, Wang S, Ji L, Dai D, Jiang D, Zhang X, Wang Q. A novel PCR-based approach to discover miRNA target genes. Int J Med Sci 2014; 11:1270-4. [PMID: 25317074 PMCID: PMC4196129 DOI: 10.7150/ijms.9343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 09/09/2014] [Indexed: 12/18/2022] Open
Abstract
MiRNAs are potent regulators of gene expression, and most miRNAs have from several to several thousands of gene targets. Validating the numerous gene targets of a given miRNA remains challenging despite the existence of various tools and databases that predict candidate gene-miRNA pairs. In the present study, we present a high-throughput but flexible method that applies a PCR-based application to simulate the binding of miRNAs to their gene targets. Using hsa-miR-377 as an illustrative example, our method was able to identify 13 potential targets of hsa-miR-377. Moreover, our results include 2 genes (SOD2 and PPM1A) that have already been verified as targets of hsa-miR-377. Our method may provide an alternative way of identifying the gene targets of miRNAs for future research.
Collapse
Affiliation(s)
- Shiwei Duan
- 1. Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, ZJ 315000, China
| | - Yunliang Wang
- 2. The Neurology Department of the 148th Hospital of PLA, Zibo, SD 255300, China
| | - Hongwei Wang
- 3. Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Shufei Wang
- 4. Biological Science Division, University of Chicago, Chicago, IL 60637, USA
| | - Lindan Ji
- 1. Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, ZJ 315000, China
| | - Dongjun Dai
- 1. Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, ZJ 315000, China
| | - Danjie Jiang
- 1. Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, ZJ 315000, China
| | - Xiaoxi Zhang
- 2. The Neurology Department of the 148th Hospital of PLA, Zibo, SD 255300, China
| | - Qiang Wang
- 5. Department of Psychiatry, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
23
|
Bechmann LP, Vetter D, Ishida J, Hannivoort RA, Lang UE, Kocabayoglu P, Fiel MI, Muñoz U, Patman GL, Ge F, Yakar S, Li X, Agius L, Lee YM, Zhang W, Hui KY, Televantou D, Schwartz GJ, LeRoith D, Berk PD, Nagai R, Suzuki T, Reeves HL, Friedman SL. Post-transcriptional activation of PPAR alpha by KLF6 in hepatic steatosis. J Hepatol 2013; 58:1000-6. [PMID: 23353867 PMCID: PMC3631429 DOI: 10.1016/j.jhep.2013.01.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/06/2013] [Accepted: 01/08/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Dysregulated glucose homeostasis and lipid accumulation characterize non-alcoholic fatty liver disease (NAFLD), but underlying mechanisms are obscure. We report here that Krüppel-like factor 6 (KLF6), a ubiquitous transcription factor that promotes adipocyte differentiation, also provokes the metabolic abnormalities of NAFLD by post-transcriptionally activating PPARα-signaling. METHODS Mice with either hepatocyte-specific depletion of KLF6 ('ΔHepKlf6') or global KLF6 heterozygosity (Klf6+/-) were fed a high fat diet (HFD) or chow for 8 or 16 weeks. Glucose and insulin tolerance tests were performed to assess insulin sensitivity. Overexpression and knockdown of KLF6 in cultured cells enabled the elucidation of underlying mechanisms. In liver samples from a cohort of 28 NAFLD patients, the expression of KLF6-related target genes was quantified. RESULTS Mice with global- or hepatocyte-depletion of KLF6 have reduced body fat content and improved glucose and insulin tolerance, and are protected from HFD-induced steatosis. In hepatocytes, KLF6 deficiency reduces PPARα-regulated genes (Trb3, Pepck) with diminished PPARα protein but no change in Pparα mRNA, which is explained by the discovery that KLF6 represses miRNA 10b, which leads to induction of PPARα. In NAFLD patients with advanced disease and inflammation, the expression of miRNA 10b is significantly downregulated, while PEPCK mRNA is upregulated; KLF6 mRNA expression also correlates with TRB3 as well as PEPCK gene expression. CONCLUSIONS KLF6 increases PPARα activity, whereas KLF6 loss leads to PPARα repression and attenuation of lipid and glucose abnormalities associated with a high fat diet. The findings establish KLF6 as a novel regulator of hepatic glucose and lipid metabolism in fatty liver.
Collapse
Affiliation(s)
- Lars P. Bechmann
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY
- Department of Gastroenterology and Hepatology; University Hospital Essen, Essen, Germany
| | - Diana Vetter
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY
| | - Junichi Ishida
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rebekka A. Hannivoort
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ursula E. Lang
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY
| | - Peri Kocabayoglu
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY
| | - M. Isabel Fiel
- Lillian and Henry M. Stratton-Hans Popper Department of Pathology; Mount Sinai School of Medicine; New York, NY
| | - Ursula Muñoz
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY
| | - Gillian L. Patman
- The Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Fengxia Ge
- Department of Medicine, Divisions of Digestive & Liver Disease, Columbia University Medical Center, Columbia University College of Physicians & Surgeons, New York, NY
| | - Shoshana Yakar
- Division of Endocrinology, Diabetes and Bone Diseases, Mount Sinai School of Medicine, New York, NY
| | - Xiaosong Li
- Department of Medicine, Division of Endocrinology, Diabetes Research and Training Center, Albert Einstein College of Medicine, New York, NY
| | - Loranne Agius
- The Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Young-Min Lee
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY
| | - Weijia Zhang
- Department of Medicine, Bioinformatics Laboratory, Mount Sinai School of Medicine; New York, NY
| | - Kei Yiu Hui
- The Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Despina Televantou
- The Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Gary J. Schwartz
- Department of Medicine, Division of Endocrinology, Diabetes Research and Training Center, Albert Einstein College of Medicine, New York, NY
| | - Derek LeRoith
- Division of Endocrinology, Diabetes and Bone Diseases, Mount Sinai School of Medicine, New York, NY
| | - Paul D. Berk
- Department of Medicine, Divisions of Digestive & Liver Disease, Columbia University Medical Center, Columbia University College of Physicians & Surgeons, New York, NY
| | - Ryozo Nagai
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toru Suzuki
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Ubiquitous Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Helen L. Reeves
- The Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Scott L. Friedman
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY
| |
Collapse
|
24
|
Narayanan K, Schumacher KM, Tasnim F, Kandasamy K, Schumacher A, Ni M, Gao S, Gopalan B, Zink D, Ying JY. Human embryonic stem cells differentiate into functional renal proximal tubular-like cells. Kidney Int 2013; 83:593-603. [PMID: 23389418 DOI: 10.1038/ki.2012.442] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Renal cells are used in basic research, disease models, tissue engineering, drug screening, and in vitro toxicology. In order to provide a reliable source of human renal cells, we developed a protocol for the differentiation of human embryonic stem cells into renal epithelial cells. The differentiated stem cells expressed markers characteristic of renal proximal tubular cells and their precursors, whereas markers of other renal cell types were not expressed or expressed at low levels. Marker expression patterns of these differentiated stem cells and in vitro cultivated primary human renal proximal tubular cells were comparable. The differentiated stem cells showed morphological and functional characteristics of renal proximal tubular cells, and generated tubular structures in vitro and in vivo. In addition, the differentiated stem cells contributed in organ cultures for the formation of simple epithelia in the kidney cortex. Bioreactor experiments showed that these cells retained their functional characteristics under conditions as applied in bioartificial kidneys. Thus, our results show that human embryonic stem cells can differentiate into renal proximal tubular-like cells. Our approach would provide a source for human renal proximal tubular cells that are not affected by problems associated with immortalized cell lines or primary cells.
Collapse
|