1
|
Lin Q, Takebayashi K, Torigoe N, Liu B, Namula Z, Hirata M, Tanihara F, Nagahara M, Otoi T. Genome editing of porcine zygotes via lipofection of two guide RNAs using a CRISPR/Cas9 system. J Reprod Dev 2024; 70:356-361. [PMID: 39218670 PMCID: PMC11658923 DOI: 10.1262/jrd.2024-054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
CRISPR/Cas9-based multiplex genome editing via electroporation is relatively efficient; however, lipofection is versatile because of its ease of use and low cost. Here, we aimed to determine the efficiency of lipofection in CRISPR/Cas9-based multiplex genome editing using growth hormone receptor (GHR) and glycoprotein alpha-galactosyltransferase 1 (GGTA1)-targeting guide RNAs (gRNAs) in pig zygotes. Zona pellucida-free zygotes were collected 10 h after in vitro fertilization and incubated with Cas9, gRNAs, and Lipofectamine 2000 (LP2000) for 5 h. In Experiment 1, we evaluated the mutation efficiency of gRNAs targeting either GHR or GGTA1 in zygotes transfected using LP2000 and cultured in 4-well plates. In Experiment 2, we examined the effects of the culture method on the development, mutation rate, and mutation efficiency of zygotes with simultaneously double-edited GHR and GGTA1, cultured using 4-well (group culture) and 25-well plates (individual culture). In Experiment 3, we assessed the effect of additional GHR-targeted lipofection before and after simultaneous double gRNA-targeted lipofection on the mutation efficiency of edited embryos cultured in 25-well plates. No significant differences in mutation rates were observed between the zygotes edited with either gRNA. Moreover, the formation rate of blastocysts derived from GHR and GGTA1 double-edited zygotes was significantly increased in the 25-well plate culture compared to that in the 4-well plate culture. However, mutations were only observed in GGTA1 when zygotes were transfected with both gRNAs, irrespective of the culture method used. GHR mutations were detected only in blastocysts derived from zygotes subjected to GHR-targeted lipofection before simultaneous double gRNA-targeted lipofection. Overall, our results suggest that additional lipofection before simultaneous double gRNA-targeted lipofection induces additional mutations in the zygotes.
Collapse
Affiliation(s)
- Qingyi Lin
- Bio-Innovation Research Center, Tokushima University, Tokushima 779-3233, Japan
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 779-3233, Japan
| | - Koki Takebayashi
- Bio-Innovation Research Center, Tokushima University, Tokushima 779-3233, Japan
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 779-3233, Japan
| | - Nanaka Torigoe
- Bio-Innovation Research Center, Tokushima University, Tokushima 779-3233, Japan
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 779-3233, Japan
| | - Bin Liu
- Bio-Innovation Research Center, Tokushima University, Tokushima 779-3233, Japan
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 779-3233, Japan
| | - Zhao Namula
- Bio-Innovation Research Center, Tokushima University, Tokushima 779-3233, Japan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524091, China
| | - Maki Hirata
- Bio-Innovation Research Center, Tokushima University, Tokushima 779-3233, Japan
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 779-3233, Japan
| | - Fuminori Tanihara
- Center for Development of Advanced Medical Technology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Megumi Nagahara
- Bio-Innovation Research Center, Tokushima University, Tokushima 779-3233, Japan
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 779-3233, Japan
| | - Takeshige Otoi
- Bio-Innovation Research Center, Tokushima University, Tokushima 779-3233, Japan
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 779-3233, Japan
| |
Collapse
|
2
|
Briski O, La Motta GE, Ratner LD, Allegroni FA, Pillado S, Álvarez G, Gutierrez B, Tarragona L, Zaccagnini A, Acerbo M, Ciampi C, Fernández-Martin R, Salamone DF. Comparison of ICSI, IVF, and in vivo derived embryos to produce CRISPR-Cas9 gene-edited pigs for xenotransplantation. Theriogenology 2024; 220:43-55. [PMID: 38471390 DOI: 10.1016/j.theriogenology.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
Genome editing in pigs for xenotransplantation has seen significant advances in recent years. This study compared three methodologies to generate gene-edited embryos, including co-injection of sperm together with the CRISPR-Cas9 system into oocytes, named ICSI-MGE (mediated gene editing); microinjection of CRISPR-Cas9 components into oocytes followed by in vitro fertilization (IVF), and microinjection of in vivo fertilized zygotes with the CRISPR-Cas9 system. Our goal was to knock-out (KO) porcine genes involved in the biosynthesis of xenoantigens responsible for the hyperacute rejection of interspecific xenografts, namely GGTA1, CMAH, and β4GalNT2. Additionally, we attempted to KO the growth hormone receptor (GHR) gene with the aim of limiting the growth of porcine organs to a size that is physiologically suitable for human transplantation. Embryo development, pregnancy, and gene editing rates were evaluated. We found an efficient mutation of the GGTA1 gene following ICSI-MGE, comparable to the results obtained through the microinjection of oocytes followed by IVF. ICSI-MGE also showed higher rates of biallelic mutations compared to the other techniques. Five healthy piglets were born from in vivo-derived embryos, all of them exhibiting biallelic mutations in the GGTA1 gene, with three displaying mutations in the GHR gene. No mutations were observed in the CMAH and β4GalNT2 genes. In conclusion, in vitro methodologies showed high rates of gene-edited embryos. Specifically, ICSI-MGE proved to be an efficient technique for obtaining homozygous biallelic mutated embryos. Lastly, only live births were obtained from in vivo-derived embryos showing efficient multiple gene editing for GGTA1 and GHR.
Collapse
Affiliation(s)
- Olinda Briski
- CONICET-Universidad de Buenos Aires - Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina; Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Gastón Emilio La Motta
- CONICET-Universidad de Buenos Aires - Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| | - Laura Daniela Ratner
- CONICET-Universidad de Buenos Aires - Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina; Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Federico Andrés Allegroni
- Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Santiago Pillado
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Guadalupe Álvarez
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Betiana Gutierrez
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Lisa Tarragona
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Andrea Zaccagnini
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Marcelo Acerbo
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Carla Ciampi
- CONICET-Universidad de Buenos Aires - Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina; Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Rafael Fernández-Martin
- CONICET-Universidad de Buenos Aires - Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina; Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina.
| | - Daniel Felipe Salamone
- CONICET-Universidad de Buenos Aires - Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina; Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina.
| |
Collapse
|
3
|
Nasseri S, Parsa S, Vahabzadeh Z, Baban B, Khademerfan MB, Nikkhoo B, Rastegar Khosravi M, Bahrami S, Fathi F. CRISPR/Cas9-Induced Fam83h Knock-out Leads to Impaired Wnt/β-Catenin Pathway and Altered Expression of Tooth Mineralization Genes in Mice. IRANIAN JOURNAL OF BIOTECHNOLOGY 2023; 21:e3673. [PMID: 38269199 PMCID: PMC10804060 DOI: 10.30498/ijb.2023.391902.3673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/19/2023] [Indexed: 01/26/2024]
Abstract
Background Dental enamel formation is a complex process that is regulated by various genes. One such gene, Family With Sequence Similarity 83 Member H (Fam83h), has been identified as an essential factor for dental enamel formation. Additionally, Fam83h has been found to be potentially linked to the Wnt/β-catenin pathway. Objectives This study aimed to investigate the effects of the Fam83h knockout gene on mineralization and formation of teeth, along with mediators of the Wnt/β-catenin pathway as a development aspect in mice. Materials and Methods To confirm the Fam83h-KnockOut mice, both Sanger sequencing and Western blot methods were used. then used qPCR to measure the expression levels of genes related to tooth mineralization and formation of dental root, including Fam20a, Dspp, Dmp1, Enam, Ambn, Sppl2a, Mmp20, and Wnt/β-catenin pathway mediators, in both the Fam83h-Knockout and wild-type mice at 5, 11 and 18 days of age. also the expression level of Fgf10 and mediators of the Wnt/β-catenin pathway was measured in the skin of both Knockout and wild-type mice using qPCR. A histological assessment was then performed to further investigate the results. Results A significant reduction in the expression levels of Ambn, Mmp20, Dspp, and Fgf10 in the dental root of Fam83h-Knockout mice compared to their wild-type counterparts was demonstrated by our results, indicating potential disruptions in tooth development. Significant down-regulation of CK1a, CK1e, and β-catenin in the dental root of Fam83h-Knockout mice was associated with a reduction in mineralization and formation-related gene. Additionally, the skin analysis of Fam83h-Knockout mice revealed reduced levels of Fgf10, CK1a, CK1e, and β-catenin. Further histological assessment confirmed that the concurrent reduction of Fgf10 expression level and Wnt/β-catenin genes were associated with alterations in hair follicle maturation. Conclusions The concurrent reduction in the expression level of both Wnt/β-catenin mediators and mineralization-related genes, resulting in the disruption of dental mineralization and formation, was caused by the deficiency of Fam83h. Our findings suggest a cumulative effect and multi-factorial interplay between Fam83h, Wnt/Β-Catenin signaling, and dental mineralization-related genes subsequently, during the dental formation process.
Collapse
Affiliation(s)
- Sherko Nasseri
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Molecular Medicine and Medical biotechnology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sara Parsa
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Zakaria Vahabzadeh
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia
| | - Mohammad Bagher Khademerfan
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Molecular Medicine and Medical biotechnology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Bahram Nikkhoo
- Department of Pathology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Rastegar Khosravi
- Department of Endodontics, Faculty of Dentistry, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Saman Bahrami
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Fardin Fathi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
4
|
Phan HTL, Kim K, Lee H, Seong JK. Progress in and Prospects of Genome Editing Tools for Human Disease Model Development and Therapeutic Applications. Genes (Basel) 2023; 14:483. [PMID: 36833410 PMCID: PMC9957140 DOI: 10.3390/genes14020483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Programmable nucleases, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas, are widely accepted because of their diversity and enormous potential for targeted genomic modifications in eukaryotes and other animals. Moreover, rapid advances in genome editing tools have accelerated the ability to produce various genetically modified animal models for studying human diseases. Given the advances in gene editing tools, these animal models are gradually evolving toward mimicking human diseases through the introduction of human pathogenic mutations in their genome rather than the conventional gene knockout. In the present review, we summarize the current progress in and discuss the prospects for developing mouse models of human diseases and their therapeutic applications based on advances in the study of programmable nucleases.
Collapse
Affiliation(s)
- Hong Thi Lam Phan
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Kyoungmi Kim
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Ho Lee
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea
- Laboratory of Developmental Biology and Genomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program for Bioinformatics, Program for Cancer Biology, BIO-MAX/N-Bio Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
CRISPR-Cas9 Technology for the Creation of Biological Avatars Capable of Modeling and Treating Pathologies: From Discovery to the Latest Improvements. Cells 2022; 11:cells11223615. [PMID: 36429042 PMCID: PMC9688409 DOI: 10.3390/cells11223615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
This is a spectacular moment for genetics to evolve in genome editing, which encompasses the precise alteration of the cellular DNA sequences within various species. One of the most fascinating genome-editing technologies currently available is Clustered Regularly Interspaced Palindromic Repeats (CRISPR) and its associated protein 9 (CRISPR-Cas9), which have integrated deeply into the research field within a short period due to its effectiveness. It became a standard tool utilized in a broad spectrum of biological and therapeutic applications. Furthermore, reliable disease models are required to improve the quality of healthcare. CRISPR-Cas9 has the potential to diversify our knowledge in genetics by generating cellular models, which can mimic various human diseases to better understand the disease consequences and develop new treatments. Precision in genome editing offered by CRISPR-Cas9 is now paving the way for gene therapy to expand in clinical trials to treat several genetic diseases in a wide range of species. This review article will discuss genome-editing tools: CRISPR-Cas9, Zinc Finger Nucleases (ZFNs), and Transcription Activator-Like Effector Nucleases (TALENs). It will also encompass the importance of CRISPR-Cas9 technology in generating cellular disease models for novel therapeutics, its applications in gene therapy, and challenges with novel strategies to enhance its specificity.
Collapse
|
6
|
Shojaei Baghini S, Gardanova ZR, Abadi SAH, Zaman BA, İlhan A, Shomali N, Adili A, Moghaddar R, Yaseri AF. CRISPR/Cas9 application in cancer therapy: a pioneering genome editing tool. Cell Mol Biol Lett 2022; 27:35. [PMID: 35508982 PMCID: PMC9066929 DOI: 10.1186/s11658-022-00336-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/13/2022] [Indexed: 12/20/2022] Open
Abstract
The progress of genetic engineering in the 1970s brought about a paradigm shift in genome editing technology. The clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) system is a flexible means to target and modify particular DNA sequences in the genome. Several applications of CRISPR/Cas9 are presently being studied in cancer biology and oncology to provide vigorous site-specific gene editing to enhance its biological and clinical uses. CRISPR's flexibility and ease of use have enabled the prompt achievement of almost any preferred alteration with greater efficiency and lower cost than preceding modalities. Also, CRISPR/Cas9 technology has recently been applied to improve the safety and efficacy of chimeric antigen receptor (CAR)-T cell therapies and defeat tumor cell resistance to conventional treatments such as chemotherapy and radiotherapy. The current review summarizes the application of CRISPR/Cas9 in cancer therapy. We also discuss the present obstacles and contemplate future possibilities in this context.
Collapse
Affiliation(s)
- Sadegh Shojaei Baghini
- Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Zhanna R. Gardanova
- Department of Psychotherapy, Pirogov Russian National Research Medical University, 1 Ostrovityanova St., 117997 Moscow, Russia
| | - Saeme Azizi Hassan Abadi
- Department of Nursery and Midwifery, Faculty of Laboratory Science, Islamic Azad University of Chalous, Mazandaran, Iran
| | - Burhan Abdullah Zaman
- Basic Sciences Department, College of Pharmacy, University of Duhok, Kurdistan Region, Iraq
| | - Ahmet İlhan
- Department of Medical Biochemistry, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Navid Shomali
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Adili
- Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
- Senior Adult Oncology Department, Moffitt Cancer Center, University of South Florida, Tampa, USA
| | - Roozbeh Moghaddar
- Department of Pediatric Hematology and Oncology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | |
Collapse
|
7
|
Najafi S, Tan SC, Aghamiri S, Raee P, Ebrahimi Z, Jahromi ZK, Rahmati Y, Sadri Nahand J, Piroozmand A, Jajarmi V, Mirzaei H. Therapeutic potentials of CRISPR-Cas genome editing technology in human viral infections. Biomed Pharmacother 2022; 148:112743. [PMID: 35228065 PMCID: PMC8872819 DOI: 10.1016/j.biopha.2022.112743] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 11/25/2022] Open
Abstract
Viral infections are a common cause of morbidity worldwide. The emergence of Coronavirus Disease 2019 (COVID-19) has led to more attention to viral infections and finding novel therapeutics. The CRISPR-Cas9 system has been recently proposed as a potential therapeutic tool for the treatment of viral diseases. Here, we review the research progress in the use of CRISPR-Cas technology for treating viral infections, as well as the strategies for improving the delivery of this gene-editing tool in vivo. Key challenges that hinder the widespread clinical application of CRISPR-Cas9 technology are also discussed, and several possible directions for future research are proposed.
Collapse
Affiliation(s)
- Sajad Najafi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pourya Raee
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Ebrahimi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Kargar Jahromi
- Central Research Laboratory, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Yazdan Rahmati
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Piroozmand
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Vahid Jajarmi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Correspondence to: Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19395-4818, Iran
| | - Hamed Mirzaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran,Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran,Corresponding author at: Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
8
|
Li X, Yue Y, Zhang Y, Liao Y, Wang Q, Bian Y, Na J, He A. Continuous live imaging reveals a subtle pathological alteration with cell behaviors in congenital heart malformation. FUNDAMENTAL RESEARCH 2022; 2:14-22. [PMID: 38933910 PMCID: PMC11197809 DOI: 10.1016/j.fmre.2021.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
To form fully functional four-chambered structure, mammalian heart development undergoes a transient finger-shaped trabeculae, crucial for efficient contraction and exchange for gas and nutrient. Although its developmental origin and direct relevance to congenital heart disease has been studied extensively, the time-resolved cellular mechanism underlying hypotrabeculation remains elusive. Here, we employed in toto live imaging and reconstructed the holistic cell lineages and cellular behavior landscape of control and hypotrabeculed hearts of mouse embryos from E9.5 for up to 24 h. Compared to control, hypotrabeculation in ErbB2 mutants arose mainly through dual mechanisms: both reduced proliferation of trabecular cardiomyocytes from early cell fate segregation and markedly impaired oriented cell division and migration. Further examination of mosaic mutant hearts confirmed alterations in cellular behaviors in a cell autonomous manner. Thus, our work offers a framework for continuous live imaging and digital cell lineage analysis to better understand subtle pathological alterations in congenital heart disease.
Collapse
Affiliation(s)
- Xin Li
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yanzhu Yue
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Youdong Zhang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuanhui Liao
- School of Software and Microelectronics, Peking University, Beijing 100871, China
| | - Qianhao Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yunkun Bian
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jie Na
- Centre for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Aibin He
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Lin H, Li G, Peng X, Deng A, Ye L, Shi L, Wang T, He J. The Use of CRISPR/Cas9 as a Tool to Study Human Infectious Viruses. Front Cell Infect Microbiol 2021; 11:590989. [PMID: 34513721 PMCID: PMC8430244 DOI: 10.3389/fcimb.2021.590989] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) systems are a set of versatile gene-editing toolkit that perform diverse revolutionary functions in various fields of application such as agricultural practices, food industry, biotechnology, biomedicine, and clinical research. Specially, as a novel antiviral method of choice, CRISPR/Cas9 system has been extensively and effectively exploited to fight against human infectious viruses. Infectious diseases including human immunodeficiency virus (HIV), hepatitis B virus (HBV), human papillomavirus (HPV), and other viruses are still global threats with persistent potential to probably cause pandemics. To facilitate virus removals, the CRISPR/Cas9 system has already been customized to confer new antiviral capabilities into host animals either by modifying host genome or by directly targeting viral inherent factors in the form of DNA. Although several limitations and difficulties still need to be conquered, this technology holds great promises in the treatment of human viral infectious diseases. In this review, we will first present a brief biological feature of CRISPR/Cas9 systems, which includes a description of CRISPR/Cas9 structure and composition; thereafter, we will focus on the investigations and applications that employ CRISPR/Cas9 system to combat several human infectious viruses and discuss challenges and future perspectives of using this new platform in the preclinical and clinical settings as an antiviral strategy.
Collapse
Affiliation(s)
- Huafeng Lin
- Changsha Hospital for Maternal and Child Health Care of Hunan Normal University, Changsha, China.,Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Gang Li
- Institute of Biomedicine and Department of Cell Biology, Jinan University, Guangzhou, China
| | - Xiangwen Peng
- Changsha Hospital for Maternal and Child Health Care of Hunan Normal University, Changsha, China
| | - Aimin Deng
- Changsha Hospital for Maternal and Child Health Care of Hunan Normal University, Changsha, China
| | - Lei Ye
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Tuanmei Wang
- Changsha Hospital for Maternal and Child Health Care of Hunan Normal University, Changsha, China
| | - Jun He
- Changsha Hospital for Maternal and Child Health Care of Hunan Normal University, Changsha, China
| |
Collapse
|
10
|
In vivo enrichment of busulfan-resistant germ cells for efficient production of transgenic avian models. Sci Rep 2021; 11:9127. [PMID: 33911174 PMCID: PMC8080772 DOI: 10.1038/s41598-021-88706-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/16/2021] [Indexed: 01/01/2023] Open
Abstract
Most transgenic animals are generated using a genome-modified stem cell system and genome modification directly in embryos. Although this system is well-established in the development of transgenic animals, donor cell-derived transgenic animal production is inefficient in some cases. Especially in avian models such as chickens, the efficiency of transgenic animal production through primordial germ cells (PGCs) is highly variable compared with embryonic manipulation of mammalian species. Because germ cell and germline-competent stem cell-mediated systems that contain the transgene are enriched only at the upstream level during cell cultivation, the efficiency of transgenic animal production is unreliable. Therefore, we developed an in vivo selection model to enhance the efficiency of transgenic chicken production using microsomal glutathione-S-transferase II (MGSTII)-overexpressing PGCs that are resistant to the alkylating agent busulfan, which induces germ cell-specific cytotoxicity. Under in vitro conditions, MGSTII-tg PGCs were resistant to 1 μM busulfan, which was highly toxic to wild-type PGCs. In germline chimeric roosters, transgene-expressing germ cells were dominantly colonized in the recipient testes after busulfan exposure compared with non-treated germline chimera. In validation of germline transmission, donor PGC-derived progeny production efficiency was 94.68%, and the transgene production rate of heterozygous transgenic chickens was significantly increased in chickens that received 40 mg/kg busulfan (80.33–95.23%) compared with that of non-treated germline chimeras (51.18%). This system is expected to significantly improve the efficiency of generating transgenic chickens and other animal species by increasing the distribution of donor cells in adult testes.
Collapse
|
11
|
Abstract
Genetically modified animals, especially rodents, are widely used in biomedical research. However, non-rodent models are required for efficient translational medicine and preclinical studies. Owing to the similarity in the physiological traits of pigs and humans, genetically modified pigs may be a valuable resource for biomedical research. Somatic cell nuclear transfer (SCNT) using genetically modified somatic cells has been the primary method for the generation of genetically modified pigs. However, site-specific gene modification in porcine cells is inefficient and requires laborious and time-consuming processes. Recent improvements in gene-editing systems, such as zinc finger nucleases, transcription activator-like effector nucleases, and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (CRISPR/Cas) system, represent major advances. The efficient introduction of site-specific modifications into cells via gene editors dramatically reduces the effort and time required to generate genetically modified pigs. Furthermore, gene editors enable direct gene modification during embryogenesis, bypassing the SCNT procedure. The application of gene editors has progressively expanded, and a range of strategies is now available for porcine gene engineering. This review provides an overview of approaches for the generation of genetically modified pigs using gene editors, and highlights the current trends, as well as the limitations, of gene editing in pigs.
Collapse
Affiliation(s)
- Fuminori Tanihara
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan.,Center for Development of Advanced Medical Technology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Maki Hirata
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| | - Takeshige Otoi
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| |
Collapse
|
12
|
Li H, Yu H, Du S, Li Q. CRISPR/Cas9 Mediated High Efficiency Knockout of Myosin Essential Light Chain Gene in the Pacific Oyster (Crassostrea Gigas). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:215-224. [PMID: 33715060 DOI: 10.1007/s10126-020-10016-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Pacific oyster (Crassostrea gigas) is one of the most widely cultivated shellfish species in the world. Because of its economic value and complex life cycle involving drastic changes from a free-swimming larva to a sessile juvenile, C. gigas has been used as a model for developmental, environmental, and aquaculture research. However, due to the lack of genetic tools for functional analysis, gene functions associated with biological or economic traits cannot be easily determined. Here, we reported a successful application of CRISPR/Cas9 technology for knockout of myosin essential light chain gene (CgMELC) in C. gigas. C. gigas embryos injected with sgRNAs/Cas9 contained extensive indel mutations at the target sites. The mutant larvae showed defective musculature and reduced motility. In addition, knockout of CgMELC disrupted the expression and patterning of myosin heavy chain positive myofibers in larvae. Together, these data indicate that CgMELC is involved in larval muscle contraction and myogenesis in oyster larvae.
Collapse
Affiliation(s)
- Huijuan Li
- Key Laboratory of Mariculture, (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, (Ocean University of China), Ministry of Education, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Qi Li
- Key Laboratory of Mariculture, (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
13
|
One-Step Generation of Multiple Gene-Edited Pigs by Electroporation of the CRISPR/Cas9 System into Zygotes to Reduce Xenoantigen Biosynthesis. Int J Mol Sci 2021; 22:ijms22052249. [PMID: 33668187 PMCID: PMC7956194 DOI: 10.3390/ijms22052249] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 02/08/2023] Open
Abstract
Xenoantigens cause hyperacute rejection and limit the success of interspecific xenografts. Therefore, genes involved in xenoantigen biosynthesis, such as GGTA1, CMAH, and B4GALNT2, are key targets to improve the outcomes of xenotransplantation. In this study, we introduced a CRISPR/Cas9 system simultaneously targeting GGTA1, CMAH, and B4GALNT2 into in vitro-fertilized zygotes using electroporation for the one-step generation of multiple gene-edited pigs without xenoantigens. First, we optimized the combination of guide RNAs (gRNAs) targeting GGTA1 and CMAH with respect to gene editing efficiency in zygotes, and transferred electroporated embryos with the optimized gRNAs and Cas9 into recipient gilts. Next, we optimized the Cas9 protein concentration with respect to the gene editing efficiency when GGTA1, CMAH, and B4GALNT2 were targeted simultaneously, and generated gene-edited pigs using the optimized conditions. We achieved the one-step generation of GGTA1/CMAH double-edited pigs and GGTA1/CMAH/B4GALNT2 triple-edited pigs. Immunohistological analyses demonstrated the downregulation of xenoantigens; however, these multiple gene-edited pigs were genetic mosaics that failed to knock out some xenoantigens. Although mosaicism should be resolved, the electroporation technique could become a primary method for the one-step generation of multiple gene modifications in pigs aimed at improving pig-to-human xenotransplantation.
Collapse
|
14
|
Singh M, Singh SP, Yadav D, Agarwal M, Agarwal S, Agarwal V, Swargiary G, Srivastava S, Tyagi S, Kaur R, Mani S. Targeted Delivery for Neurodegenerative Disorders Using Gene Therapy Vectors: Gene Next Therapeutic Goals. Curr Gene Ther 2021; 21:23-42. [PMID: 32811395 DOI: 10.2174/1566523220999200817164907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 11/22/2022]
Abstract
The technique of gene therapy, ever since its advent nearly fifty years ago, has been utilized by scientists as a potential treatment option for various disorders. This review discusses some of the major neurodegenerative diseases (NDDs) like Alzheimer's disease (AD), Parkinson's Disease (PD), Motor neuron diseases (MND), Spinal Muscular Atrophy (SMA), Huntington's Disease (HD), Multiple Sclerosis (MS), etc. and their underlying genetic mechanisms along with the role that gene therapy can play in combating them. The pathogenesis and the molecular mechanisms specifying the altered gene expression of each of these NDDs have also been discussed in elaboration. The use of gene therapy vectors can prove to be an effective tool in the field of curative modern medicine for the generations to come. Therefore, consistent efforts and progressive research towards its implementation can provide us with powerful treatment options for disease conditions that have so far been considered as incurable.
Collapse
Affiliation(s)
- Manisha Singh
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U.P, India
| | - Surinder P Singh
- Bhartiya Nirdeshak Dravya Division, CSIR-National Physical Laboratory, New Delhi, India
| | - Deepshikha Yadav
- Bhartiya Nirdeshak Dravya Division, CSIR-National Physical Laboratory, New Delhi, India
| | - Mugdha Agarwal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U.P., India
| | - Shriya Agarwal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U.P., India
| | - Vinayak Agarwal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U.P., India
| | - Geeta Swargiary
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U.P., India
| | - Sahil Srivastava
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U.P., India
| | - Sakshi Tyagi
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U.P., India
| | - Ramneek Kaur
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Shalini Mani
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U.P., India
| |
Collapse
|
15
|
Cholesterol 25-hydroxylase protects against experimental colitis in mice by modulating epithelial gut barrier function. Sci Rep 2020; 10:14246. [PMID: 32859970 PMCID: PMC7455728 DOI: 10.1038/s41598-020-71198-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/20/2020] [Indexed: 02/05/2023] Open
Abstract
Cholesterol 25-hydroxylase (CH25H) encodes the enzyme that converts cholesterol to 25-hydroxycholesterol (25-HC). 25-HC has been demonstrated to be involved in the pathogenesis of inflammatory bowel disease. However, the role of CH25H in experimental colitis remains unknown. Dextran sulfate sodium (DSS)-induced colitis was monitored in wild type and Ch25h−/− mice in 8-week-old male for 7 days by assessment of body weight, histology, inflammatory cellular infiltration, and colon length. The function of CH25H was investigated using loss-of-function and gain-of-function such as Ch25h-deficient mice, supplementation with exogenous 25-HC and treatment of 25-HC into Caco2 and HCT116 colonic epithelial cells. Ch25h−/− mice with DSS-induced colitis exhibited aggravated injury, including higher clinical colitis scores, severe injury of the epithelial barrier, lower tight junction protein levels and higher levels of IL-6. Supplementation with exogenous 25-HC ameliorated disease symptoms and reduced the extent of damage in DSS-induced colitis, which was characterized by lower colon damage, higher tight junction protein expression, significantly decreased local and systemic production of pro-inflammatory cytokines IL-6. In Caco2 and HCT116 cells, 25-HC induced tight junction genes expression in colon cancer epithelial cells. These effects of CH25H were obtained by promoting ATF3 expression. Taken together, our findings reveal a protective role for 25-HC in DSS-induced colitis and the ability of CH25H to maintain epithelial gut barrier function through ATF3 expression. Supplementation with exogenous 25-HC ameliorates disease symptoms, which provides a new therapeutic strategy for ulcerative colitis.
Collapse
|
16
|
Hirata M, Wittayarat M, Namula Z, Le QA, Lin Q, Nguyen NT, Takebayashi K, Sato Y, Tanihara F, Otoi T. Evaluation of multiple gene targeting in porcine embryos by the CRISPR/Cas9 system using electroporation. Mol Biol Rep 2020; 47:5073-5079. [PMID: 32519310 DOI: 10.1007/s11033-020-05576-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022]
Abstract
The CRISPR/Cas9 system now allows for unprecedented possibilities of genome editing. However, there are some limitations, including achieving efficient one-step multiple genome targeting to save costs, time, and ensure high quality. In the present study, we investigated the efficiency of one-step multiple gene modification by electroporation in porcine zygotes using pooled guide RNAs (gRNAs) targeting CMAH, GHR, GGTA1, and PDX1. We first selected the best-performing gRNA from three different designs for each gene based on the effect on embryo development and mutation efficiency. The three gRNAs showed equivalent effects on the rates of blastocyst formation in each targeted gene; however, gRNAs CMAH #2, GHR #3, GGTA1 #3, and PDX1 #3 showed the highest biallelic mutation rate, although the total mutation rate of PDX1 #3 was significantly lower than that of PDX1 #1. Therefore, CMAH #2, GHR #3, GGTA1 #3, and PDX1 #1 were used as a mixture in electroporation to further clarify whether multiple genes can be targeted simultaneously. Individual sequencing of 43 blastocysts at the target sites of each gene showed mutations in one and two target genes in twenty-four (55.8%) and nine (20.9%) blastocysts, respectively. No mutation was detected in any target gene in ten (23.3%) blastocysts and no blastocysts had a mutation in three or more target genes. These results indicate that electroporation could effectively deliver multiple gRNAs and Cas9 protein into porcine zygotes to target multiple genes in a one-step process. However, the technique requires further development to increase the success rate of multiple gene modification.
Collapse
Affiliation(s)
- Maki Hirata
- Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| | - Manita Wittayarat
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla, Thailand
| | - Zhao Namula
- Faculty of Veterinary Science, Guangdong Ocean University, Zhanjiang, China
| | - Quynh Anh Le
- Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| | - Qingyi Lin
- Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| | - Nhien Thi Nguyen
- Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| | - Koki Takebayashi
- Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| | - Yoko Sato
- School of Biological Science, Tokai University, Sapporo, Japan
| | - Fuminori Tanihara
- Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan.
| | - Takeshige Otoi
- Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| |
Collapse
|
17
|
Araldi RP, Khalil C, Grignet PH, Teixeira MR, de Melo TC, Módolo DG, Fernandes LGV, Ruiz J, de Souza EB. Medical applications of clustered regularly interspaced short palindromic repeats (CRISPR/Cas) tool: A comprehensive overview. Gene 2020; 745:144636. [PMID: 32244056 DOI: 10.1016/j.gene.2020.144636] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/01/2020] [Accepted: 03/30/2020] [Indexed: 12/22/2022]
Abstract
Since the discovery of the double helix and the introduction of genetic engineering, the possibility to develop new strategies to manipulate the genome has fascinated scientists around the world. Currently scientists have the knowledge andabilitytoedit the genomes. Several methodologies of gene editing have been established, all of them working like "scissor", creating double strand breaks at specific spots. The introduction of a new technology, which was adapted from the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas bacterial immune system, has revolutionized the genetic therapy field, as it allows a much more precise editing of gene than the previously described tools and, therefore, to prevent and treat disease in humans. This review aims to revisit the genome editing history that led to the rediscovery of the CRISPR/Cas technology and to explore the technical aspects, applications and perspectives of this fascinating, powerful, precise, simpler and cheaper technology in different fields.
Collapse
Affiliation(s)
- Rodrigo Pinheiro Araldi
- Genetic Bases of Thyroid Tumors Laboratory, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil; Programa de Pós-graduação em Biociências, Universidade Federal da Integração Latino-Americana (UNILA), Foz do Iguaçu, PR, Brazil.
| | - Charbel Khalil
- Reviva Research and Application Center- Lebanese University, Middle East Institute of Health University Hospital, Beirut, Lebanon
| | - Pedro Henrique Grignet
- Instituto Latino-Americano de Ciências da Vida e da Natureza (ILACVN), Universidade Federal da Integração Latino-Americana (UNILA), Foz do Iguaçu, PR, Brazil
| | - Michelli Ramires Teixeira
- Instituto Latino-Americano de Ciências da Vida e da Natureza (ILACVN), Universidade Federal da Integração Latino-Americana (UNILA), Foz do Iguaçu, PR, Brazil
| | - Thatiana Correa de Melo
- Instituto Latino-Americano de Ciências da Vida e da Natureza (ILACVN), Universidade Federal da Integração Latino-Americana (UNILA), Foz do Iguaçu, PR, Brazil
| | | | | | - Jorge Ruiz
- Programa de Pós-graduação em Biociências, Universidade Federal da Integração Latino-Americana (UNILA), Foz do Iguaçu, PR, Brazil; Instituto Latino-Americano de Ciências da Vida e da Natureza (ILACVN), Universidade Federal da Integração Latino-Americana (UNILA), Foz do Iguaçu, PR, Brazil
| | - Edislane Barreiros de Souza
- Laboratory of Genetics, Molecular Biology and Mutagenesis, Faculdade de Ciências e Letras de Assis, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Assis, SP, Brazil
| |
Collapse
|
18
|
Rong Y, Ji SY, Zhu YZ, Wu YW, Shen L, Fan HY. ZAR1 and ZAR2 are required for oocyte meiotic maturation by regulating the maternal transcriptome and mRNA translational activation. Nucleic Acids Res 2020; 47:11387-11402. [PMID: 31598710 PMCID: PMC6868374 DOI: 10.1093/nar/gkz863] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/20/2019] [Accepted: 10/05/2019] [Indexed: 01/01/2023] Open
Abstract
Zar1 was one of the earliest mammalian maternal-effect genes to be identified. Embryos derived from Zar1-null female mice are blocked before zygotic genome activation; however, the underlying mechanism remains unclear. By knocking out Zar1 and its homolog Zar2 in mice, we revealed a novel function of these genes in oocyte meiotic maturation. Zar1/2-deleted oocytes displayed delayed meiotic resumption and polar body-1 emission and a higher incidence of abnormal meiotic spindle formation and chromosome aneuploidy. The grown oocytes of Zar1/2-null mice contained decreased levels of many maternal mRNAs and displayed a reduced level of protein synthesis. Key maturation-associated changes failed to occur in the Zar1/2-null oocytes, including the translational activation of maternal mRNAs encoding the cell-cycle proteins cyclin B1 and WEE2, as well as maternal-to-zygotic transition (MZT) licensing factor BTG4. Consequently, maternal mRNA decay was impaired and MZT was abolished. ZAR1/2 bound mRNAs to regulate the translational activity of their 3′-UTRs and interacted with other oocyte proteins, including mRNA-stabilizing protein MSY2 and cytoplasmic lattice components. These results countered the traditional view that ZAR1 only functions after fertilization and highlight a previously unrecognized role of ZAR1/2 in regulating the maternal transcriptome and translational activation in maturing oocytes.
Collapse
Affiliation(s)
- Yan Rong
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Shu-Yan Ji
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ye-Zhang Zhu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yun-Wen Wu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Li Shen
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Heng-Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
19
|
Li Z, Zhang M, Zheng S, Song Y, Cheng X, Yu D, Du L, Ren L, Han H, Zhao Y. Genetic removal of the CH1 exon leads to the production of hypofunctional heavy chain-only IgG2a in rats. Transgenic Res 2020; 29:199-213. [PMID: 32078126 DOI: 10.1007/s11248-020-00189-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/04/2020] [Indexed: 12/01/2022]
Abstract
Despite great values in many applications, heavy chain-only antibodies (HcAbs) are naturally only produced in camelids and sharks, which are not easy to access and handle. Production of the type of antibodies in small laboratory animals would remarkably facilitate their applications. We previously reported a mouse line in which the CH1 exon of mouse γ1 was deleted that could express heavy chain-only IgG1 antibodies. However, these mice showed an extremely weak IgG1 response to specific antigens when immunized, and we could only achieve single VH domains with low affinity to antigens using these mice. One possibility is that the mouse germline VH repertoire was not sufficient to support the expression of functional heavy chain-only antibodies. In this study, we report the generation of a rat line in which the CH1 exon of the γ2a gene was removed and the γ1 and γ2b genes were silenced. Although the genetically modified rats expressed heavy chain-only IgG2a, they also exhibited a very weak IgG2a response to antigen immunization. Panning of a phage library constructed using IgG2a VH segments amplified from immunized rats identified antigen-specific single VH antibodies, which also exhibited much lower affinity than that of commercial mAbs. Together with our previous report, this study suggests that the simple genetic removal of the CH1 exon does not guarantee the successful expression of functional heavy chain-only antibodies.
Collapse
Affiliation(s)
- Zhenrong Li
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Ming Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Shunan Zheng
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yu Song
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xueqian Cheng
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Di Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lijuan Du
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Liming Ren
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Haitang Han
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Science, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
20
|
Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther 2020; 5:1. [PMID: 32296011 PMCID: PMC6946647 DOI: 10.1038/s41392-019-0089-y] [Citation(s) in RCA: 1063] [Impact Index Per Article: 212.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 09/21/2019] [Accepted: 09/21/2019] [Indexed: 02/06/2023] Open
Abstract
Based on engineered or bacterial nucleases, the development of genome editing technologies has opened up the possibility of directly targeting and modifying genomic sequences in almost all eukaryotic cells. Genome editing has extended our ability to elucidate the contribution of genetics to disease by promoting the creation of more accurate cellular and animal models of pathological processes and has begun to show extraordinary potential in a variety of fields, ranging from basic research to applied biotechnology and biomedical research. Recent progress in developing programmable nucleases, such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas-associated nucleases, has greatly expedited the progress of gene editing from concept to clinical practice. Here, we review recent advances of the three major genome editing technologies (ZFNs, TALENs, and CRISPR/Cas9) and discuss the applications of their derivative reagents as gene editing tools in various human diseases and potential future therapies, focusing on eukaryotic cells and animal models. Finally, we provide an overview of the clinical trials applying genome editing platforms for disease treatment and some of the challenges in the implementation of this technology.
Collapse
Affiliation(s)
- Hongyi Li
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Yang Yang
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P. R. China
| | - Mengyuan Huang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P. R. China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA.
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, P. R. China.
| |
Collapse
|
21
|
Srivastava A, Swarup V, Kumar V, Faruq M, Singh H, Singh I. CRISPR/Cas9 technology in neurological disorders: An update for clinicians. ANNALS OF MOVEMENT DISORDERS 2020. [DOI: 10.4103/aomd.aomd_39_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
22
|
Bruyneel AAN, Colas AR, Karakikes I, Mercola M. AlleleProfileR: A versatile tool to identify and profile sequence variants in edited genomes. PLoS One 2019; 14:e0226694. [PMID: 31877162 PMCID: PMC6932767 DOI: 10.1371/journal.pone.0226694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022] Open
Abstract
Gene editing strategies, such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR/Cas9), are revolutionizing biology. However, quantitative and sensitive detection of targeted mutations are required to evaluate and quantify the genome editing outcomes. Here we present AlleleProfileR, a new analysis tool, written in a combination of R and C++, with the ability to batch process the sequence analysis of large and complex genome editing experiments, including the recently developed base editing technologies.
Collapse
Affiliation(s)
- Arne A. N. Bruyneel
- Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA United States of America
- Department of Medicine, Division of Cardiovascular Medicine, Stanford School of Medicine, Stanford, CA, United States of America
- * E-mail:
| | - Alexandre R. Colas
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States of America
| | - Ioannis Karakikes
- Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA United States of America
- Department of Cardiothoracic Surgery, Stanford School of Medicine, Stanford, CA, United States of America
| | - Mark Mercola
- Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA United States of America
- Department of Medicine, Division of Cardiovascular Medicine, Stanford School of Medicine, Stanford, CA, United States of America
| |
Collapse
|
23
|
Goldstein JM, Valido A, Lewandowski JP, Walker RG, Mills MJ, Messemer KA, Besseling P, Lee KH, Wattrus SJ, Cho M, Lee RT, Wagers AJ. Variation in zygotic CRISPR/Cas9 gene editing outcomes generates novel reporter and deletion alleles at the Gdf11 locus. Sci Rep 2019; 9:18613. [PMID: 31819086 PMCID: PMC6901511 DOI: 10.1038/s41598-019-54766-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/19/2019] [Indexed: 01/20/2023] Open
Abstract
Recent advances in CRISPR/Cas gene editing technology have significantly expanded the possibilities and accelerated the pace of creating genetically engineered animal models. However, CRISPR/Cas-based strategies designed to precisely edit the genome can often yield unintended outcomes. Here, we report the use of zygotic CRISPR/Cas9 injections to generate a knock-in GFP reporter mouse at the Gdf11 locus. Phenotypic and genomic characterization of founder animals from these injections revealed a subset that contained the correct targeting event and exhibited GFP expression that, within the hematopoietic system, was restricted predominantly to lymphoid cells. Yet, in another subset of founder mice, we detected aberrant integration events at the target site that dramatically and inaccurately shifted hematopoietic GFP expression from the lymphoid to the myeloid lineage. Additionally, we recovered multiple Gdf11 deletion alleles that modified the C-terminus of the GDF11 protein. When bred to homozygosity, most of these alleles recapitulated skeletal phenotypes reported previously for Gdf11 knockout mice, suggesting that these represent null alleles. However, we also recovered one Gdf11 deletion allele that encodes a novel GDF11 variant protein ("GDF11-WE") predicted to contain two additional amino acids (tryptophan (W) and glutamic acid (E)) at the C-terminus of the mature ligand. Unlike the other Gdf11 deletion alleles recovered in this study, homozygosity for the Gdf11WE allele did not phenocopy Gdf11 knockout skeletal phenotypes. Further investigation using in vivo and in vitro approaches demonstrated that GDF11-WE retains substantial physiological function, indicating that GDF11 can tolerate at least some modifications of its C-terminus and providing unexpected insights into its biochemical activities. Altogether, our study confirms that one-step zygotic injections of CRISPR/Cas gene editing complexes provide a quick and powerful tool to generate gene-modified mouse models. Moreover, our findings underscore the critical importance of thorough characterization and validation of any modified alleles generated by CRISPR, as unintended on-target effects that fail to be detected by simple PCR screening can produce substantially altered phenotypic readouts.
Collapse
Affiliation(s)
- Jill M Goldstein
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, 02215, USA
| | - Austin Valido
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Jordan P Lewandowski
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Ryan G Walker
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Melanie J Mills
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Kathleen A Messemer
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, 02215, USA
| | - Paul Besseling
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Kyu Ha Lee
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Samuel J Wattrus
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Miook Cho
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, 02215, USA
| | - Richard T Lee
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
- Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, 02215, USA.
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, 02215, USA.
| |
Collapse
|
24
|
Owens DDG, Caulder A, Frontera V, Harman JR, Allan AJ, Bucakci A, Greder L, Codner GF, Hublitz P, McHugh PJ, Teboul L, de Bruijn MFTR. Microhomologies are prevalent at Cas9-induced larger deletions. Nucleic Acids Res 2019; 47:7402-7417. [PMID: 31127293 PMCID: PMC6698657 DOI: 10.1093/nar/gkz459] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 11/18/2022] Open
Abstract
The CRISPR system is widely used in genome editing for biomedical research. Here, using either dual paired Cas9D10A nickases or paired Cas9 nuclease we characterize unintended larger deletions at on-target sites that frequently evade common genotyping practices. We found that unintended larger deletions are prevalent at multiple distinct loci on different chromosomes, in cultured cells and mouse embryos alike. We observed a high frequency of microhomologies at larger deletion breakpoint junctions, suggesting the involvement of microhomology-mediated end joining in their generation. In populations of edited cells, the distribution of larger deletion sizes is dependent on proximity to sgRNAs and cannot be predicted by microhomology sequences alone.
Collapse
Affiliation(s)
- Dominic D G Owens
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Adam Caulder
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Vincent Frontera
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Joe R Harman
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Alasdair J Allan
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Akin Bucakci
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Lucas Greder
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Gemma F Codner
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Philip Hublitz
- WIMM Genome Engineering Facility, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Peter J McHugh
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Lydia Teboul
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Marella F T R de Bruijn
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
25
|
Gawenis LR, Hodges CA, McHugh DR, Valerio DM, Miron A, Cotton CU, Liu J, Walker NM, Strubberg AM, Gillen AE, Mutolo MJ, Kotzamanis G, Bosch J, Harris A, Drumm ML, Clarke LL. A BAC Transgene Expressing Human CFTR under Control of Its Regulatory Elements Rescues Cftr Knockout Mice. Sci Rep 2019; 9:11828. [PMID: 31413336 PMCID: PMC6694137 DOI: 10.1038/s41598-019-48105-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/30/2019] [Indexed: 01/25/2023] Open
Abstract
Small-molecule modulators of cystic fibrosis transmembrane conductance regulator (CFTR) biology show promise in the treatment of cystic fibrosis (CF). A Cftr knockout (Cftr KO) mouse expressing mutants of human CFTR would advance in vivo testing of new modulators. A bacterial artificial chromosome (BAC) carrying the complete hCFTR gene including regulatory elements within 40.1 kb of DNA 5' and 25 kb of DNA 3' to the gene was used to generate founder mice expressing hCFTR. Whole genome sequencing indicated a single integration site on mouse chromosome 8 (8qB2) with ~6 gene copies. hCFTR+ offspring were bred to murine Cftr KO mice, producing hCFTR+/mCftr- (H+/m-) mice, which had normal survival, growth and goblet cell function as compared to wild-type (WT) mice. Expression studies showed hCFTR protein and transcripts in tissues typically expressing mCftr. Functionally, nasal potential difference and large intestinal short-circuit (Isc) responses to cAMP stimulation were similar in magnitude to WT mice, whereas small intestinal cAMP ΔIsc responses were reduced. A BAC transgenic mouse with functional hCFTR under control of its regulatory elements has been developed to enable the generation of mouse models of hCFTR mutations by gene editing for in vivo testing of new CF therapies.
Collapse
Affiliation(s)
- Lara R Gawenis
- Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Dr, Columbia, Missouri, 65211-3300, USA
- Department of Biomedical Sciences, University of Missouri, E102 Veterinary Medicine Bldg., Columbia, Missouri, 65211, USA
| | - Craig A Hodges
- Departments of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Departments of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Daniel R McHugh
- Departments of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Dana M Valerio
- Departments of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Alexander Miron
- Departments of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Calvin U Cotton
- Departments of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Departments of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Jinghua Liu
- Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Dr, Columbia, Missouri, 65211-3300, USA
| | - Nancy M Walker
- Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Dr, Columbia, Missouri, 65211-3300, USA
| | - Ashlee M Strubberg
- Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Dr, Columbia, Missouri, 65211-3300, USA
- Department of Biomedical Sciences, University of Missouri, E102 Veterinary Medicine Bldg., Columbia, Missouri, 65211, USA
| | - Austin E Gillen
- Human Molecular Genetics Program, Lurie Children's Research Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60614, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA
| | - Michael J Mutolo
- Human Molecular Genetics Program, Lurie Children's Research Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60614, USA
| | - George Kotzamanis
- Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
| | - Jürgen Bosch
- Departments of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- InterRayBio, LLC, Baltimore, MD, USA
| | - Ann Harris
- Departments of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Mitchell L Drumm
- Departments of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Departments of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Lane L Clarke
- Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Dr, Columbia, Missouri, 65211-3300, USA.
- Department of Biomedical Sciences, University of Missouri, E102 Veterinary Medicine Bldg., Columbia, Missouri, 65211, USA.
| |
Collapse
|
26
|
Han D, Wang M, Yu Z, Yin L, Liu C, Wang J, Liu Y, Jiang S, Ren Z, Yin J. FGF5 promotes osteosarcoma cells proliferation via activating MAPK signaling pathway. Cancer Manag Res 2019; 11:6457-6466. [PMID: 31372048 PMCID: PMC6628182 DOI: 10.2147/cmar.s200234] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/12/2019] [Indexed: 11/23/2022] Open
Abstract
Objective: This study aimed to investigate the role of fibroblast growth factor-5 (FGF5) in osteosarcoma (OS) and explore the potential mechanisms. Methods: OS gene expression data was downloaded from the Gene Expression Omnibus (GEO; GSE12865) and analyzed by R software. OS tissues and cell lines were collected. The expression level of FGF5 in tumor tissues and cell lines was detected using qRT-PCR. Knockout of FGF5 was performed using CRISPR/Cas9 system. The effects of FGF5 knockout on OS cell proliferation and tumor growth were determined through cell counting kit-8 assay and xenograft nude mice, respectively. Additionally, recombinant FGF5 (rFGF5) was added into OS cell and the effects of rFGF5 on the proliferation and apoptosis of OS cell lines were assayed. Furthermore, the protein expression levels of mitogen-activated protein kinase (MAPK) signaling pathway were detected through Western blot. Results: FGF5 was significantly upregulated in OS tissues and cells, and closely associated with poor differentiation, larger tumor size, lymph node metastasis, and advanced TNM stage. FGF5 knockout could inhibit proliferation of OS cells and tumor growth in nude mouse model. Addition of exogenous rFGF5 promoted OS cell proliferation while inhibited OS cell apoptosis. The expression levels of MAPK signaling pathway proteins in FGF5 knockout group were significantly lower than that in control when there was no rFGF5. Additionally, their expression level in rFGF5 addition group was higher than that in without rFGF5 group. Conclusion: We demonstrated for the first time that FGF5 was overexpressed in OS cell lines and clinical tissue samples and promotes OS cell proliferation by activating MAPK signaling pathway, which indicated that FGF5 was a potential therapeutic target for OS.
Collapse
Affiliation(s)
- Dunxin Han
- Department of Spine Surgery, 970 Hospital of the PLA Joint Logistic Support Force, Yantai, Shandong, People's Republic of China
| | - Mingming Wang
- Department of Clinical Laboratory, Qingdao Women and Children's Hospital, Qingdao, People's Republic of China
| | - Zhongkai Yu
- Department of Emergency, Liaocheng People's Hospital, Liaocheng, Shandong, People's Republic of China
| | - Long Yin
- Department of Spine Surgery, 970 Hospital of the PLA Joint Logistic Support Force, Yantai, Shandong, People's Republic of China
| | - Changli Liu
- Department of Spine Surgery, 970 Hospital of the PLA Joint Logistic Support Force, Yantai, Shandong, People's Republic of China
| | - Jianmin Wang
- Department of Spine Surgery, 970 Hospital of the PLA Joint Logistic Support Force, Yantai, Shandong, People's Republic of China
| | - Yongjun Liu
- Department of Spine Surgery, 970 Hospital of the PLA Joint Logistic Support Force, Yantai, Shandong, People's Republic of China
| | - Shengyang Jiang
- Department of Spine Surgery, 970 Hospital of the PLA Joint Logistic Support Force, Yantai, Shandong, People's Republic of China
| | - Zhongwu Ren
- Department of Spine Surgery, 970 Hospital of the PLA Joint Logistic Support Force, Yantai, Shandong, People's Republic of China
| | - Jun Yin
- Department of Orthopedics, First People's Hospital of Yancheng, Yancheng, Jiangsu, People's Republic of China
| |
Collapse
|
27
|
Li Q, Qin Z, Wang Q, Xu T, Yang Y, He Z. Applications of Genome Editing Technology in Animal Disease Modeling and Gene Therapy. Comput Struct Biotechnol J 2019; 17:689-698. [PMID: 31303973 PMCID: PMC6603303 DOI: 10.1016/j.csbj.2019.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 02/05/2023] Open
Abstract
Genome editing technology is a technique for targeted genetic modifications, enabling the knockout and addition of specific DNA fragments. This technology has been widely used in various types of biomedical research, clinics and agriculture. In terms of disease research, constructing appropriate animal models is necessary. Combining reproductive technology with genome editing, many animal disease models have been generated for basic and clinical research. In addition, precisely targeted modifications allow genome editing to flourish in the field of gene therapy. Many mutations refractory to traditional gene therapy could be permanently corrected at the DNA level. Thus, genome editing is undoubtedly a promising technology for gene therapy. In this review, we mainly introduce the applications of genome editing in constructing animal disease models and gene therapies, as well as its future prospects and challenges.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Zhou Qin
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Qingnan Wang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Ting Xu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Yang Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Zhiyao He
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| |
Collapse
|
28
|
González-Romero E, Martínez-Valiente C, García-Ruiz C, Vázquez-Manrique RP, Cervera J, Sanjuan-Pla A. CRISPR to fix bad blood: a new tool in basic and clinical hematology. Haematologica 2019; 104:881-893. [PMID: 30923099 PMCID: PMC6518885 DOI: 10.3324/haematol.2018.211359] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/19/2019] [Indexed: 12/13/2022] Open
Abstract
Advances in genome engineering in the last decade, particularly in the development of programmable nucleases, have made it possible to edit the genomes of most cell types precisely and efficiently. Chief among these advances, the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system is a novel, versatile and easy-to-use tool to edit genomes irrespective of their complexity, with multiple and broad applications in biomedicine. In this review, we focus on the use of CRISPR/Cas9 genome editing in the context of hematologic diseases and appraise the major achievements and challenges in this rapidly moving field to gain a clearer perspective on the potential of this technology to move from the laboratory to the clinic. Accordingly, we discuss data from studies editing hematopoietic cells to understand and model blood diseases, and to develop novel therapies for hematologic malignancies. We provide an overview of the applications of gene editing in experimental, preclinical and clinical hematology including interrogation of gene function, target identification and drug discovery and chimeric antigen receptor T-cell engineering. We also highlight current limitations of CRISPR/Cas9 and the possible strategies to overcome them. Finally, we consider what advances in CRISPR/Cas9 are needed to move the hematology field forward.
Collapse
Affiliation(s)
| | | | | | - Rafael P Vázquez-Manrique
- Grupo de Investigación en Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe, Valencia
- CIBER de Enfermedades Raras, Madrid
| | - José Cervera
- Hematology Department, Hospital Universitari i Politècnic La Fe, Valencia
- CIBER de Oncología, Madrid, Spain
| | | |
Collapse
|
29
|
Patel S, Athirasala A, Menezes PP, Ashwanikumar N, Zou T, Sahay G, Bertassoni LE. Messenger RNA Delivery for Tissue Engineering and Regenerative Medicine Applications. Tissue Eng Part A 2019; 25:91-112. [PMID: 29661055 PMCID: PMC6352544 DOI: 10.1089/ten.tea.2017.0444] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/09/2018] [Indexed: 12/25/2022] Open
Abstract
The ability to control cellular processes and precisely direct cellular reprogramming has revolutionized regenerative medicine. Recent advances in in vitro transcribed (IVT) mRNA technology with chemical modifications have led to development of methods that control spatiotemporal gene expression. Additionally, there is a current thrust toward the development of safe, integration-free approaches to gene therapy for translational purposes. In this review, we describe strategies of synthetic IVT mRNA modifications and nonviral technologies for intracellular delivery. We provide insights into the current tissue engineering approaches that use a hydrogel scaffold with genetic material. Furthermore, we discuss the transformative potential of novel mRNA formulations that when embedded in hydrogels can trigger controlled genetic manipulation to regenerate tissues and organs in vitro and in vivo. The role of mRNA delivery in vascularization, cytoprotection, and Cas9-mediated xenotransplantation is additionally highlighted. Harmonizing mRNA delivery vehicle interactions with polymeric scaffolds can be used to present genetic cues that lead to precise command over cellular reprogramming, differentiation, and secretome activity of stem cells-an ultimate goal for tissue engineering.
Collapse
Affiliation(s)
- Siddharth Patel
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, Oregon State University, Portland, Oregon
| | - Avathamsa Athirasala
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
| | - Paula P. Menezes
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
- Postgraduate Program in Health Sciences, Department of Pharmacy, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - N. Ashwanikumar
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, Oregon State University, Portland, Oregon
| | - Ting Zou
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, Oregon State University, Portland, Oregon
- Department of Biomedical Engineering, Collaborative Life Science Building, Oregon Health and Science University, Portland, Oregon
| | - Luiz E. Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
- Department of Biomedical Engineering, Collaborative Life Science Building, Oregon Health and Science University, Portland, Oregon
- Center for Regenerative Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
30
|
Sha QQ, Yu JL, Guo JX, Dai XX, Jiang JC, Zhang YL, Yu C, Ji SY, Jiang Y, Zhang SY, Shen L, Ou XH, Fan HY. CNOT6L couples the selective degradation of maternal transcripts to meiotic cell cycle progression in mouse oocyte. EMBO J 2018; 37:embj.201899333. [PMID: 30478191 DOI: 10.15252/embj.201899333] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 09/09/2018] [Accepted: 10/10/2018] [Indexed: 12/12/2022] Open
Abstract
Meiotic resumption-coupled degradation of maternal transcripts occurs during oocyte maturation in the absence of mRNA transcription. The CCR4-NOT complex has been identified as the main eukaryotic mRNA deadenylase. In vivo functional and mechanistic information regarding its multiple subunits remains insufficient. Cnot6l, one of four genes encoding CCR4-NOT catalytic subunits, is preferentially expressed in mouse oocytes. Genetic deletion of Cnot6l impaired deadenylation and degradation of a subset of maternal mRNAs during oocyte maturation. Overtranslation of these undegraded mRNAs caused microtubule-chromosome organization defects, which led to activation of spindle assembly checkpoint and meiotic cell cycle arrest at prometaphase. Consequently, Cnot6l -/- female mice were severely subfertile. The function of CNOT6L in maturing oocytes is mediated by RNA-binding protein ZFP36L2, not maternal-to-zygotic transition licensing factor BTG4, which interacts with catalytic subunits CNOT7 and CNOT8 of CCR4-NOT Thus, recruitment of different adaptors by different catalytic subunits ensures stage-specific degradation of maternal mRNAs by CCR4-NOT This study provides the first direct genetic evidence that CCR4-NOT-dependent and particularly CNOT6L-dependent decay of selective maternal mRNAs is a prerequisite for meiotic maturation of oocytes.
Collapse
Affiliation(s)
- Qian-Qian Sha
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jia-Li Yu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jing-Xin Guo
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xing-Xing Dai
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jun-Chao Jiang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yin-Li Zhang
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chao Yu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Shu-Yan Ji
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yu Jiang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Song-Ying Zhang
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Li Shen
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xiang-Hong Ou
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Heng-Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China .,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
|
32
|
Vilarino M, Suchy FP, Rashid ST, Lindsay H, Reyes J, McNabb BR, van der Meulen T, Huising MO, Nakauchi H, Ross PJ. Mosaicism diminishes the value of pre-implantation embryo biopsies for detecting CRISPR/Cas9 induced mutations in sheep. Transgenic Res 2018; 27:525-537. [PMID: 30284144 DOI: 10.1007/s11248-018-0094-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/31/2018] [Indexed: 12/20/2022]
Abstract
The production of knock-out (KO) livestock models is both expensive and time consuming due to their long gestational interval and low number of offspring. One alternative to increase efficiency is performing a genetic screening to select pre-implantation embryos that have incorporated the desired mutation. Here we report the use of sheep embryo biopsies for detecting CRISPR/Cas9-induced mutations targeting the gene PDX1 prior to embryo transfer. PDX1 is a critical gene for pancreas development and the target gene required for the creation of pancreatogenesis-disabled sheep. We evaluated the viability of biopsied embryos in vitro and in vivo, and we determined the mutation efficiency using PCR combined with gel electrophoresis and digital droplet PCR (ddPCR). Next, we determined the presence of mosaicism in ~ 50% of the recovered fetuses employing a clonal sequencing methodology. While the use of biopsies did not compromise embryo viability, the presence of mosaicism diminished the diagnostic value of the technique. If mosaicism could be overcome, pre-implantation embryo biopsies for mutation screening represents a powerful approach that will streamline the creation of KO animals.
Collapse
Affiliation(s)
- Marcela Vilarino
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA, USA
| | - Fabian Patrik Suchy
- School of Medicine, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Sheikh Tamir Rashid
- Centre for Stem Cells and Regenerative Medicine and Institute for Liver Studies, King's College, London, UK
| | - Helen Lindsay
- Institute of Molecular Life Sciences, University of Zürich, Zurich, Switzerland.,SIB Swiss Institute of Bioinformatics, University of Zürich, Zurich, Switzerland
| | - Juan Reyes
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA, USA
| | - Bret Roberts McNabb
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Talitha van der Meulen
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California Davis, Davis, CA, USA
| | - Mark O Huising
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California Davis, Davis, CA, USA
| | - Hiromitsu Nakauchi
- School of Medicine, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA.
| | - Pablo Juan Ross
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA, USA.
| |
Collapse
|
33
|
Generation of isogenic single and multiplex gene knockout mice by base editing-induced STOP. Sci Bull (Beijing) 2018; 63:1101-1107. [PMID: 36658989 DOI: 10.1016/j.scib.2018.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 01/21/2023]
Abstract
Although CRISPR/Cas9 has been widely used to generate knockout mice, two major limitations remain: the founders usually carry a mixture of genotypes, and mosaicism harboring multiple genotypes. Therefore, it takes a long time to get homozygous mutants. Recently developed base editing (BE) system, which introduces C-to-T conversion without double strand DNA cleavage, has been used to introduce artificial stop codons (i-STOP) to prematurely terminate translation, providing a cleaner strategy for genome engineering. Using this strategy, we generated CD160 KO and VISTA/CD160 double KO mice by microinjection of a single sgRNA targeting CD160 and a mixture of sgRNAs targeting VISTA and CD160, respectively. The BE system induced STOP efficiently in mouse embryos and consequently in founder mice without detectable off-target. Most interestingly, the majority of the mutants harbor same genetic modifications, indicating we generated isogenic single and multiplex gene mutant mice by BE-induced STOP. We also obtained homozygous mutant mouse in F1 mice, demonstrating the accelerated strategy in generating animal models.
Collapse
|
34
|
Application of CRISPR/Cas9 technologies combined with iPSCs in the study and treatment of retinal degenerative diseases. Hum Genet 2018; 137:679-688. [DOI: 10.1007/s00439-018-1933-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/01/2018] [Indexed: 12/27/2022]
|
35
|
Zhang D, Xie D, Lin X, Ma L, Chen J, Zhang D, Wang Y, Duo S, Feng Y, Zheng C, Jiang B, Ning Y, Han C. The transcription factor SOX30 is a key regulator of mouse spermiogenesis. Development 2018; 145:145/11/dev164723. [PMID: 29848638 DOI: 10.1242/dev.164723] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/30/2018] [Indexed: 01/01/2023]
Abstract
The postmeiotic development of male germ cells, also known as spermiogenesis, features the coordinated expression of a large number of spermatid-specific genes. However, only a limited number of key transcription factors have been identified and the underlying regulatory mechanisms remain largely unknown. Here, we report that SOX30, the most-divergent member of the Sry-related high-motility group box (SOX) family of transcription factors, is essential for mouse spermiogenesis. The SOX30 protein was predominantly expressed in spermatids, while its transcription was regulated by retinoic acid and by MYBL1 before and during meiosis. Sox30 knockout mice arrested spermiogenesis at step 3 round spermatids, which underwent apoptosis and abnormal chromocenter formation. We also determined that SOX30 regulated the expression of hundreds of spermatid-specific protein-coding and long non-coding RNA genes. SOX30 bound to the proximal promoter of its own gene and activated its transcription. These results reveal SOX30 as a novel key regulator of spermiogenesis that regulates its own transcription to enforce and activate this meiotic regulatory pathway.
Collapse
Affiliation(s)
- Daoqin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Xie
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiwen Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Longfei Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Daoqi Zhang
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yang Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuguang Duo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanmin Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunwei Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Binjie Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Ning
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
36
|
Affiliation(s)
- Andrea Ventura
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lukas E. Dow
- Department of Medicine, Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
37
|
Martinez-Lage M, Torres-Ruiz R, Rodriguez-Perales S. CRISPR/Cas9 Technology: Applications and Human Disease Modeling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 152:23-48. [PMID: 29150003 DOI: 10.1016/bs.pmbts.2017.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The CRISPR/Cas9 system development has revolutionized the field of genome engineering through the efficient creation of targeted breaks in the DNA of almost any organism and cell type, opening an avenue for a wide range of applications in biomedical research and medicine. Apart from gene edition through knock-in or knock-out approaches, CRISPR/Cas9 technology has been used for many other purposes, including regulation of endogenous gene expression, epigenome editing, live-cell imaging of chromosomal loci, edition of RNA and high-throughput screening. With all those technological improvements, CRISPR/Cas9 system has broadened the number of alternatives for studying gene function and the generation of more accurate disease models. Although many mechanistic questions remain to be answered and several challenges have yet to be addressed, the use of CRISPR/Cas9-based genome engineering technologies will increase our knowledge of disease processes and their treatment in the near future.
Collapse
Affiliation(s)
- Marta Martinez-Lage
- Molecular Cytogenetics and Genome Engineering Group, Centro Nacional Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Raúl Torres-Ruiz
- Molecular Cytogenetics and Genome Engineering Group, Centro Nacional Investigaciones Oncológicas (CNIO), Madrid, Spain.
| | - Sandra Rodriguez-Perales
- Molecular Cytogenetics and Genome Engineering Group, Centro Nacional Investigaciones Oncológicas (CNIO), Madrid, Spain.
| |
Collapse
|
38
|
Li WR, Liu CX, Zhang XM, Chen L, Peng XR, He SG, Lin JP, Han B, Wang LQ, Huang JC, Liu MJ. CRISPR/Cas9-mediated loss of FGF5 function increases wool staple length in sheep. FEBS J 2017. [PMID: 28631368 DOI: 10.1111/febs.14144] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fibroblast growth factor 5 (FGF5) regulates hair length in humans and a variety of other animals. To investigate whether FGF5 has similar effects in sheep, we used clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated 9 (Cas9) to generate loss-of-function mutations with the FGF5 gene in Chinese Merino sheep. A total of 16 lambs were identified with genetic mutations within the targeting locus: 13 lambs had biallelic modifications and three lambs had monoallelic modifications. Characterization of the modifications revealed that 13 were frameshift mutations that led to premature termination, whereas the other three were in-frame deletions. Thus, CRISPR/Cas9 efficiently generated loss-of-function mutations in the sheep FGF5 gene. We then investigated the effect of loss of FGF5 function on wool traits in 12 lambs and found that wool staple length and stretched length of genetically modified (GM) yearling sheep were significantly longer compared with that of wild-type (WT) control animals. The greasy fleece weight of GM yearling sheep was also significantly greater compared with that of WT sheep. Moreover, the mean fiber diameter in GM sheep showed no significant difference compared with WT sheep, suggesting that the increase in greasy fleece weight was likely attributed to the increase in wool length. The results of this study suggest that CRISPR/Cas9-mediated loss of FGF5 activity could promote wool growth and, consequently, increase wool length and yield.
Collapse
Affiliation(s)
- Wen-Rong Li
- College of Life Science and Technology, Xinjiang University, Urumqi, China.,Key Laboratory of Genetics, Breeding & Reproduction of Grass-Feeding Livestock, Ministry of Agriculture, Urumqi, China.,Key Laboratory of Animal Biotechnology of Xinjiang Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, China
| | - Chen-Xi Liu
- Key Laboratory of Genetics, Breeding & Reproduction of Grass-Feeding Livestock, Ministry of Agriculture, Urumqi, China.,Key Laboratory of Animal Biotechnology of Xinjiang Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, China
| | - Xue-Mei Zhang
- Key Laboratory of Genetics, Breeding & Reproduction of Grass-Feeding Livestock, Ministry of Agriculture, Urumqi, China.,Key Laboratory of Animal Biotechnology of Xinjiang Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, China
| | - Lei Chen
- Key Laboratory of Genetics, Breeding & Reproduction of Grass-Feeding Livestock, Ministry of Agriculture, Urumqi, China.,Key Laboratory of Animal Biotechnology of Xinjiang Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, China
| | - Xin-Rong Peng
- Key Laboratory of Genetics, Breeding & Reproduction of Grass-Feeding Livestock, Ministry of Agriculture, Urumqi, China.,Key Laboratory of Animal Biotechnology of Xinjiang Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, China
| | - San-Gang He
- Key Laboratory of Genetics, Breeding & Reproduction of Grass-Feeding Livestock, Ministry of Agriculture, Urumqi, China.,Key Laboratory of Animal Biotechnology of Xinjiang Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, China
| | - Jia-Peng Lin
- Key Laboratory of Genetics, Breeding & Reproduction of Grass-Feeding Livestock, Ministry of Agriculture, Urumqi, China.,Key Laboratory of Animal Biotechnology of Xinjiang Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, China
| | - Bin Han
- Key Laboratory of Genetics, Breeding & Reproduction of Grass-Feeding Livestock, Ministry of Agriculture, Urumqi, China.,Key Laboratory of Animal Biotechnology of Xinjiang Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, China
| | - Li-Qin Wang
- Key Laboratory of Genetics, Breeding & Reproduction of Grass-Feeding Livestock, Ministry of Agriculture, Urumqi, China.,Key Laboratory of Animal Biotechnology of Xinjiang Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, China
| | - Jun-Cheng Huang
- Key Laboratory of Genetics, Breeding & Reproduction of Grass-Feeding Livestock, Ministry of Agriculture, Urumqi, China.,Key Laboratory of Animal Biotechnology of Xinjiang Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, China
| | - Ming-Jun Liu
- Key Laboratory of Genetics, Breeding & Reproduction of Grass-Feeding Livestock, Ministry of Agriculture, Urumqi, China.,Key Laboratory of Animal Biotechnology of Xinjiang Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, China
| |
Collapse
|
39
|
Application of the gene editing tool, CRISPR-Cas9, for treating neurodegenerative diseases. Neurochem Int 2017; 112:187-196. [PMID: 28732771 DOI: 10.1016/j.neuint.2017.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/12/2017] [Accepted: 07/16/2017] [Indexed: 12/26/2022]
Abstract
Increased accumulation of transcribed protein from the damaged DNA and reduced DNA repair capability contributes to numerous neurological diseases for which effective treatments are lacking. Gene editing techniques provide new hope for replacing defective genes and DNA associated with neurological diseases. With advancements in using such editing tools as zinc finger nucleases (ZFNs), meganucleases, and transcription activator-like effector nucleases (TALENs), etc., scientists are able to design DNA-binding proteins, which can make precise double-strand breaks (DSBs) at the target DNA. Recent developments with the CRISPR-Cas9 gene-editing technology has proven to be more precise and efficient when compared to most other gene-editing techniques. Two methods, non-homologous end joining (NHEJ) and homology-direct repair (HDR), are used in CRISPR-Cas9 system to efficiently excise the defective genes and incorporate exogenous DNA at the target site. In this review article, we provide an overview of the CRISPR-Cas9 methodology, including its molecular mechanism, with a focus on how in this gene-editing tool can be used to counteract certain genetic defects associated with neurological diseases. Detailed understanding of this new tool could help researchers design specific gene editing strategies to repair genetic disorders in selective neurological diseases.
Collapse
|
40
|
D'Agostino Y, D'Aniello S. Molecular basis, applications and challenges of CRISPR/Cas9: a continuously evolving tool for genome editing. Brief Funct Genomics 2017; 16:211-216. [PMID: 28057617 DOI: 10.1093/bfgp/elw038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) system is a recently discovered tool for genome editing that has quickly revolutionized the ability to generate site-specific mutations in a wide range of animal models, including nonhuman primates. Indeed, a significant number of scientific reports describing single or multiplex guide RNA microinjection, double-nicking strategies, site-specific knock-in and conditional knock-out have been published in less than three years. However, despite the great potential of this new technology, there are some limitations because of the presence of off-target genomic sites, which must be taken into consideration. To address this issue, various research teams have tried to improve the efficiency of the system through enzymatic modifications of the Cas9 protein or by the introduction of alternative strategies. Although several review articles are available that singly describe the molecular mechanism(s), applications and challenges of each of these strategies, a concise compilation of approaches is lacking. In the current review, we describe and evaluate most CRISPR/Cas9 approaches available at present, describing both mechanism of action, in addition to advantages or disadvantages. The primary goal of this work is to serve as a guide for not skilled researchers, facilitating the selection of the best strategy to target their gene of interest and allowing optimization of particular applications to the specific aims of the study. The present article also offers a unique perspective, focusing on the fact that CRISPR technology is opening a new genomic era, providing the means to manipulate specific genes in a targeted manner in all animal models, an endeavor previously considered to be difficult.
Collapse
|
41
|
Eppig JT. Mouse Genome Informatics (MGI) Resource: Genetic, Genomic, and Biological Knowledgebase for the Laboratory Mouse. ILAR J 2017; 58:17-41. [PMID: 28838066 PMCID: PMC5886341 DOI: 10.1093/ilar/ilx013] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 03/14/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022] Open
Abstract
The Mouse Genome Informatics (MGI) Resource supports basic, translational, and computational research by providing high-quality, integrated data on the genetics, genomics, and biology of the laboratory mouse. MGI serves a strategic role for the scientific community in facilitating biomedical, experimental, and computational studies investigating the genetics and processes of diseases and enabling the development and testing of new disease models and therapeutic interventions. This review describes the nexus of the body of growing genetic and biological data and the advances in computer technology in the late 1980s, including the World Wide Web, that together launched the beginnings of MGI. MGI develops and maintains a gold-standard resource that reflects the current state of knowledge, provides semantic and contextual data integration that fosters hypothesis testing, continually develops new and improved tools for searching and analysis, and partners with the scientific community to assure research data needs are met. Here we describe one slice of MGI relating to the development of community-wide large-scale mutagenesis and phenotyping projects and introduce ways to access and use these MGI data. References and links to additional MGI aspects are provided.
Collapse
Affiliation(s)
- Janan T. Eppig
- Janan T. Eppig, PhD, is Professor Emeritus at The Jackson Laboratory in Bar Harbor, Maine
| |
Collapse
|
42
|
Hu X, Shen B, Liao S, Ning Y, Ma L, Chen J, Lin X, Zhang D, Li Z, Zheng C, Feng Y, Huang X, Han C. Gene knockout of Zmym3 in mice arrests spermatogenesis at meiotic metaphase with defects in spindle assembly checkpoint. Cell Death Dis 2017; 8:e2910. [PMID: 28661483 PMCID: PMC5520888 DOI: 10.1038/cddis.2017.228] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 01/06/2023]
Abstract
ZMYM3, a member of the MYM-type zinc finger protein family and a component of a LSD1-containing transcription repressor complex, is predominantly expressed in the mouse brain and testis. Here, we show that ZMYM3 in the mouse testis is expressed in somatic cells and germ cells until pachytene spermatocytes. Knockout (KO) of Zmym3 in mice using the CRISPR-Cas9 system resulted in adult male infertility. Spermatogenesis of the KO mice was arrested at the metaphase of the first meiotic division (MI). ZMYM3 co-immunoprecipitated with LSD1 in spermatogonial stem cells, but its KO did not change the levels of LSD1 or H3K4me1/2 or H3K9me2. However, Zmym3 KO resulted in elevated numbers of apoptotic germ cells and of MI spermatocytes that are positive for BUB3, which is a key player in spindle assembly checkpoint. Zmym3 KO also resulted in up-regulated expression of meiotic genes in spermatogonia. These results show that ZMYM3 has an essential role in metaphase to anaphase transition during mouse spermatogenesis by regulating the expression of diverse families of genes.
Collapse
Affiliation(s)
- Xiangjing Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Shangying Liao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Ning
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longfei Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Xiwen Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Daoqin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunwei Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanmin Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Xingxu Huang
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
43
|
Application of CRISPR-Cas9 in eye disease. Exp Eye Res 2017; 161:116-123. [PMID: 28619505 DOI: 10.1016/j.exer.2017.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/08/2017] [Accepted: 06/09/2017] [Indexed: 02/06/2023]
Abstract
The system of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated nuclease (Cas)9 is an effective instrument for revising the genome with great accuracy. This system has been widely employed to generate mutants in genomes from plants to human cells. Rapid improvements in Cas9 specificity in eukaryotic cells have opened great potential for the use of this technology as a therapeutic. Herein, we summarize the recent advancements of CRISPR-Cas9 use in research on human cells and animal models, and outline a basic and clinical pipeline for CRISPR-Cas9-based treatments of genetic eye diseases.
Collapse
|
44
|
Wang M, Huang YP, Wu H, Song K, Wan C, Chi AN, Xiao YM, Zhao XY. Mitochondrial complex I deficiency leads to the retardation of early embryonic development in Ndufs4 knockout mice. PeerJ 2017; 5:e3339. [PMID: 28533980 PMCID: PMC5438584 DOI: 10.7717/peerj.3339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/20/2017] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The NDUFS4 gene encodes an 18-kD subunit of mitochondria complex I, and mutations in this gene lead to the development of a severe neurodegenerative disease called Leigh syndrome (LS) in humans. To investigate the disease phenotypes and molecular mechanisms of Leigh syndrome, the Ndufs4 knockout (KO) mouse has been widely used as a novel animal model. Because the homozygotes cannot survive beyond child-bearing age, whether Ndufs4 and mitochondrial complex I influence early embryonic development remains unknown. In our study, we attempted to investigate embryonic development in Ndufs4 KO mice, which can be regarded as a Leigh disease model and were created through the CRISPR (clustered regularly interspaced short palindromic repeat) and Cas9 (CRISPR associated)-mediated genome editing system. METHODS We first designed a single guide RNA (sgRNA) targeting exon 2 of Ndufs4 to delete the NDUFS4 protein in mouse embryos to mimic Leigh syndrome. Then, we described the phenotypes of our mouse model by forced swimming and the open-field test as well as by assessing other behavioral characteristics. Intracytoplasmic sperm injection (ICSI) was performed to obtain KO embryos to test the influence of NDUFS4 deletion on early embryonic development. RESULTS In this study, we first generated Ndufs4 KO mice with physical and behavioral phenotypes similar to Leigh syndrome using the CRISPR/Cas9 system. The low developmental rate of KO embryos that were derived from knockout gametes indicated that the absence of NDUFS4 impaired the development of preimplantation embryos. DISCUSSION In this paper, we first obtained Ndufs4 KO mice that could mimic Leigh syndrome using the CRISPR/Cas9 system. Then, we identified the role of NDUFS4 in early embryonic development, shedding light on its roles in the respiratory chain and fertility. Our model provides a useful tool with which to investigate the function of Ndufs4. Although the pathological mechanisms of the disease need to be discovered, it helps to understand the pathogenesis of NDUFS4 deficiency in mice and its effects on human diseases.
Collapse
Affiliation(s)
- Mei Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ya-Ping Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Han Wu
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ke Song
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Cong Wan
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - A-Ni Chi
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ya-Mei Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
| | - Xiao-Yang Zhao
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
45
|
CRISPR/Cas9-mediated somatic and germline gene correction to restore hemostasis in hemophilia B mice. Hum Genet 2017; 136:875-883. [DOI: 10.1007/s00439-017-1801-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/14/2017] [Indexed: 12/12/2022]
|
46
|
Higashijima Y, Hirano S, Nangaku M, Nureki O. Applications of the CRISPR-Cas9 system in kidney research. Kidney Int 2017; 92:324-335. [PMID: 28433382 DOI: 10.1016/j.kint.2017.01.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/26/2016] [Accepted: 01/09/2017] [Indexed: 12/26/2022]
Abstract
The recently discovered clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein 9 (Cas9) is an RNA-guided DNA nuclease, and has been harnessed for the development of simple, efficient, and relatively inexpensive technologies to precisely manipulate the genomic information in virtually all cell types and organisms. The CRIPSR-Cas9 systems have already been effectively used to disrupt multiple genes simultaneously, create conditional alleles, and generate reporter proteins, even in vivo. The ability of Cas9 to target a specific genomic region has also been exploited for various applications, such as transcriptional regulation, epigenetic control, and chromosome labeling. Here we first describe the molecular mechanism of the RNA-guided DNA targeting by the CRISPR-Cas9 system and then outline the current applications of this system as a genome-editing tool in mice and other species, to better model and study human diseases. We also discuss the practical and potential uses of the CRISPR-Cas9 system in kidney research and highlight the further applications of this technology beyond genome editing. Undoubtedly, the CRISPR-Cas9 system holds enormous potential for revolutionizing and accelerating kidney research and therapeutic applications in the future.
Collapse
Affiliation(s)
- Yoshiki Higashijima
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Isotope Science Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Seiichi Hirano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
47
|
Spira A, Yurgelun MB, Alexandrov L, Rao A, Bejar R, Polyak K, Giannakis M, Shilatifard A, Finn OJ, Dhodapkar M, Kay NE, Braggio E, Vilar E, Mazzilli SA, Rebbeck TR, Garber JE, Velculescu VE, Disis ML, Wallace DC, Lippman SM. Precancer Atlas to Drive Precision Prevention Trials. Cancer Res 2017; 77:1510-1541. [PMID: 28373404 PMCID: PMC6681830 DOI: 10.1158/0008-5472.can-16-2346] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 02/07/2023]
Abstract
Cancer development is a complex process driven by inherited and acquired molecular and cellular alterations. Prevention is the holy grail of cancer elimination, but making this a reality will take a fundamental rethinking and deep understanding of premalignant biology. In this Perspective, we propose a national concerted effort to create a Precancer Atlas (PCA), integrating multi-omics and immunity - basic tenets of the neoplastic process. The biology of neoplasia caused by germline mutations has led to paradigm-changing precision prevention efforts, including: tumor testing for mismatch repair (MMR) deficiency in Lynch syndrome establishing a new paradigm, combinatorial chemoprevention efficacy in familial adenomatous polyposis (FAP), signal of benefit from imaging-based early detection research in high-germline risk for pancreatic neoplasia, elucidating early ontogeny in BRCA1-mutation carriers leading to an international breast cancer prevention trial, and insights into the intricate germline-somatic-immunity interaction landscape. Emerging genetic and pharmacologic (metformin) disruption of mitochondrial (mt) respiration increased autophagy to prevent cancer in a Li-Fraumeni mouse model (biology reproduced in clinical pilot) and revealed profound influences of subtle changes in mt DNA background variation on obesity, aging, and cancer risk. The elaborate communication between the immune system and neoplasia includes an increasingly complex cellular microenvironment and dynamic interactions between host genetics, environmental factors, and microbes in shaping the immune response. Cancer vaccines are in early murine and clinical precancer studies, building on the recent successes of immunotherapy and HPV vaccine immune prevention. Molecular monitoring in Barrett's esophagus to avoid overdiagnosis/treatment highlights an important PCA theme. Next generation sequencing (NGS) discovered age-related clonal hematopoiesis of indeterminate potential (CHIP). Ultra-deep NGS reports over the past year have redefined the premalignant landscape remarkably identifying tiny clones in the blood of up to 95% of women in their 50s, suggesting that potentially premalignant clones are ubiquitous. Similar data from eyelid skin and peritoneal and uterine lavage fluid provide unprecedented opportunities to dissect the earliest phases of stem/progenitor clonal (and microenvironment) evolution/diversity with new single-cell and liquid biopsy technologies. Cancer mutational signatures reflect exogenous or endogenous processes imprinted over time in precursors. Accelerating the prevention of cancer will require a large-scale, longitudinal effort, leveraging diverse disciplines (from genetics, biochemistry, and immunology to mathematics, computational biology, and engineering), initiatives, technologies, and models in developing an integrated multi-omics and immunity PCA - an immense national resource to interrogate, target, and intercept events that drive oncogenesis. Cancer Res; 77(7); 1510-41. ©2017 AACR.
Collapse
Affiliation(s)
- Avrum Spira
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Pathology and Bioinformatics, Boston University School of Medicine, Boston, Massachusetts
| | - Matthew B Yurgelun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ludmil Alexandrov
- Theoretical Division, Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Rafael Bejar
- Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Olivera J Finn
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Madhav Dhodapkar
- Department of Hematology and Immunology, Yale Cancer Center, New Haven, Connecticut
| | - Neil E Kay
- Department of Hematology, Mayo Clinic Hospital, Rochester, Minnesota
| | - Esteban Braggio
- Department of Hematology, Mayo Clinic Hospital, Phoenix, Arizona
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sarah A Mazzilli
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Pathology and Bioinformatics, Boston University School of Medicine, Boston, Massachusetts
| | - Timothy R Rebbeck
- Division of Hematology and Oncology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Judy E Garber
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Victor E Velculescu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
- Department of Pathology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Mary L Disis
- Department of Medicine, Center for Translational Medicine in Women's Health, University of Washington, Seattle, Washington
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Scott M Lippman
- Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, California.
| |
Collapse
|
48
|
Tang L, Zeng Y, Du H, Gong M, Peng J, Zhang B, Lei M, Zhao F, Wang W, Li X, Liu J. CRISPR/Cas9-mediated gene editing in human zygotes using Cas9 protein. Mol Genet Genomics 2017; 292:525-533. [PMID: 28251317 DOI: 10.1007/s00438-017-1299-z] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/10/2017] [Indexed: 12/19/2022]
Abstract
Previous works using human tripronuclear zygotes suggested that the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system could be a tool in correcting disease-causing mutations. However, whether this system was applicable in normal human (dual pronuclear, 2PN) zygotes was unclear. Here we demonstrate that CRISPR/Cas9 is also effective as a gene-editing tool in human 2PN zygotes. By injection of Cas9 protein complexed with the appropriate sgRNAs and homology donors into one-cell human embryos, we demonstrated efficient homologous recombination-mediated correction of point mutations in HBB and G6PD. However, our results also reveal limitations of this correction procedure and highlight the need for further research.
Collapse
Affiliation(s)
- Lichun Tang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China. 1212qq-@163.com
- National Center for Protein Sciences Beijing, Life Sciences Park, Beijing, 102206, China. 1212qq-@163.com
| | - Yanting Zeng
- Center for Reproductive Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Hongzi Du
- Center for Reproductive Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Mengmeng Gong
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | - Jin Peng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | - Buxi Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | - Ming Lei
- Center for Reproductive Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Fang Zhao
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Guangxi, 530021, China
| | - Weihua Wang
- Houston Fertility Institute, Houston, TX, 77063, USA
| | - Xiaowei Li
- Department of Cardiology, Bayi Hospital Affiliated Nanjing University of Chineses Medicine, Nanjing, 210002, China.
| | - Jianqiao Liu
- Center for Reproductive Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
49
|
Valletta S, Dolatshad H, Bartenstein M, Yip BH, Bello E, Gordon S, Yu Y, Shaw J, Roy S, Scifo L, Schuh A, Pellagatti A, Fulga TA, Verma A, Boultwood J. ASXL1 mutation correction by CRISPR/Cas9 restores gene function in leukemia cells and increases survival in mouse xenografts. Oncotarget 2016; 6:44061-71. [PMID: 26623729 PMCID: PMC4792541 DOI: 10.18632/oncotarget.6392] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/08/2015] [Indexed: 12/03/2022] Open
Abstract
Recurrent somatic mutations of the epigenetic modifier and tumor suppressor ASXL1 are common in myeloid malignancies, including chronic myeloid leukemia (CML), and are associated with poor clinical outcome. CRISPR/Cas9 has recently emerged as a powerful and versatile genome editing tool for genome engineering in various species. We have used the CRISPR/Cas9 system to correct the ASXL1 homozygous nonsense mutation present in the CML cell line KBM5, which lacks ASXL1 protein expression. CRISPR/Cas9-mediated ASXL1 homozygous correction resulted in protein re-expression with restored normal function, including down-regulation of Polycomb repressive complex 2 target genes. Significantly reduced cell growth and increased myeloid differentiation were observed in ASXL1 mutation-corrected cells, providing new insights into the role of ASXL1 in human myeloid cell differentiation. Mice xenografted with mutation-corrected KBM5 cells showed significantly longer survival than uncorrected xenografts. These results show that the sole correction of a driver mutation in leukemia cells increases survival in vivo in mice. This study provides proof-of-concept for driver gene mutation correction via CRISPR/Cas9 technology in human leukemia cells and presents a strategy to illuminate the impact of oncogenic mutations on cellular function and survival.
Collapse
Affiliation(s)
- Simona Valletta
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford University Hospital, Oxford, UK
| | - Hamid Dolatshad
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford University Hospital, Oxford, UK
| | | | - Bon Ham Yip
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford University Hospital, Oxford, UK
| | - Erica Bello
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford University Hospital, Oxford, UK
| | | | - Yiting Yu
- Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jacqueline Shaw
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford University Hospital, Oxford, UK
| | - Swagata Roy
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford University Hospital, Oxford, UK
| | - Laura Scifo
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford University Hospital, Oxford, UK
| | - Anna Schuh
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Andrea Pellagatti
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford University Hospital, Oxford, UK
| | - Tudor A Fulga
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Amit Verma
- Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jacqueline Boultwood
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford University Hospital, Oxford, UK
| |
Collapse
|
50
|
Zhang T, Yin Y, Liu H, Du W, Ren C, Wang L, Lu H, Zhang Z. Generation of VDR Knock-Out Mice via Zygote Injection of CRISPR/Cas9 System. PLoS One 2016; 11:e0163551. [PMID: 27685656 PMCID: PMC5042489 DOI: 10.1371/journal.pone.0163551] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 09/11/2016] [Indexed: 12/26/2022] Open
Abstract
CRISPR/Cas9 system has become a new versatile technology for genome engineering in various species. To achieve targeted modifications at the same site in both human and mice genomes by a CRISPR/Cas9 nuclease, we designed two target sites in conserved regions of vitamin D receptor (VDR) gene, which cover more than 17 kb of chromosome region depending on the species. We first validated the efficacy of single sgRNA mediated gene specific modifications were 36% and 31% in HEK293T cells. Concurrently, targeted of the intervening genomic segments deletions were generated in chromosomes when two sgRNAs worked simultaneously. The large genomic DNA segments up to 23.4 Kb could be precisely deleted in human chromosomes. Subsequently, Cas9 mRNA and sgRNAs targeting VDRT1 and VDRT2 were co-microinjected into one-cell-stage embryos of C57BL/6 mice. Verified by T7E1 assay and DNA sequencing analysis, 12 mice showed VDR targeted disruption and 8 of which were biallelic knock-out, which demonstrated obvious phenotype of hair thinning. Furthermore, expression changes of Vitamin D metabolism genes in VDR-/-mice were detected. These results indicated that CRISPR/Cas9 mediated knock-out of VDR diminished its gene function in vivo. The off-target effects of CRISPR/Cas9 in VDR-/- founder mice were analyzed. Our results showed that CRISPR/Cas9 system could be employed to target the same sites in different species, when sgRNAs are designed within conserved regions, and therefore will be critically important and applicable for human disease model.
Collapse
Affiliation(s)
- Tao Zhang
- College of Animal Science & Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- School of Bioscience and Engineering, Shaanxi SCI-TECH University, Hanzhong, Shaanxi, People's Republic of China
| | - Yajun Yin
- School of Bioscience and Engineering, Shaanxi SCI-TECH University, Hanzhong, Shaanxi, People's Republic of China
| | - Huan Liu
- School of Bioscience and Engineering, Shaanxi SCI-TECH University, Hanzhong, Shaanxi, People's Republic of China
| | - Weili Du
- School of Bioscience and Engineering, Shaanxi SCI-TECH University, Hanzhong, Shaanxi, People's Republic of China
| | - Chonghua Ren
- College of Animal Science & Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Ling Wang
- School of Bioscience and Engineering, Shaanxi SCI-TECH University, Hanzhong, Shaanxi, People's Republic of China
| | - Hongzhao Lu
- School of Bioscience and Engineering, Shaanxi SCI-TECH University, Hanzhong, Shaanxi, People's Republic of China
| | - Zhiying Zhang
- College of Animal Science & Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- * E-mail:
| |
Collapse
|