1
|
Rethemeier S, Fritzsche S, Mühlen D, Bucher G, Hunnekuhl VS. Differences in size and number of embryonic type II neuroblast lineages correlate with divergent timing of central complex development between beetle and fly. eLife 2025; 13:RP99717. [PMID: 40326533 PMCID: PMC12055003 DOI: 10.7554/elife.99717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025] Open
Abstract
The insect brain and the timing of its development underwent evolutionary adaptations. However, little is known about the underlying developmental processes. The central complex of the brain is an excellent model to understand neural development and divergence. It is produced in large parts by type II neuroblasts, which produce intermediate progenitors, another type of cycling precursor, to increase their neural progeny. Type II neuroblasts lineages are believed to be conserved among insects, but little is known on their molecular characteristics in insects other than flies. Tribolium castaneum has emerged as a model for brain development and evolution. However, type II neuroblasts have so far not been studied in this beetle. We created a fluorescent enhancer trap marking expression of Tc-fez/earmuff, a key marker for intermediate progenitors. Using combinatorial labeling of further markers, including Tc-pointed, we characterized embryonic type II neuroblast lineages. Intriguingly, we found nine lineages per hemisphere in the Tribolium embryo while Drosophila produces only eight per brain hemisphere. These embryonic lineages are significantly larger in Tribolium than they are in Drosophila and contain more intermediate progenitors. Finally, we mapped these lineages to the domains of head patterning genes. Notably, Tc-otd is absent from all type II neuroblasts and intermediate progenitors, whereas Tc-six3 marks an anterior subset of the type II lineages. Tc-six4 specifically marks the territory where anterior-medial type II neuroblasts differentiate. In conclusion, we identified a conserved pattern of gene expression in holometabolan central complex forming type II neuroblast lineages, and conserved head patterning genes emerged as new candidates for conferring spatial identity to individual lineages. The higher number and greater lineage size of the embryonic type II neuroblasts in the beetle correlate with a previously described embryonic phase of central complex formation. These findings stipulate further research on the link between stem cell activity and temporal and structural differences in central complex development.
Collapse
Affiliation(s)
- Simon Rethemeier
- University of Göttingen, Johann-Friedrich-Blumenbach Institute, GZMB, Department of Evolutionary Developmental GeneticsGöttingenGermany
- University Medical Center Göttingen (UMG)GöttingenGermany
| | - Sonja Fritzsche
- University of Göttingen, Johann-Friedrich-Blumenbach Institute, GZMB, Department of Evolutionary Developmental GeneticsGöttingenGermany
| | - Dominik Mühlen
- University of Göttingen, Johann-Friedrich-Blumenbach Institute, GZMB, Department of Evolutionary Developmental GeneticsGöttingenGermany
| | - Gregor Bucher
- University of Göttingen, Johann-Friedrich-Blumenbach Institute, GZMB, Department of Evolutionary Developmental GeneticsGöttingenGermany
| | - Vera S Hunnekuhl
- University of Göttingen, Johann-Friedrich-Blumenbach Institute, GZMB, Department of Evolutionary Developmental GeneticsGöttingenGermany
| |
Collapse
|
2
|
Wang P, Luo L, Chen J. Her4.3 + radial glial cells maintain the brain vascular network through activation of Wnt signaling. J Biol Chem 2024; 300:107570. [PMID: 39019216 PMCID: PMC11342778 DOI: 10.1016/j.jbc.2024.107570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/19/2024] Open
Abstract
During vascular development, radial glial cells (RGCs) regulate vascular patterning in the trunk and contribute to the early differentiation of the blood-brain barrier. Ablation of RGCs results in excessive sprouting vessels or the absence of bilateral vertebral arteries. However, interactions of RGCs with later brain vascular networks after pattern formation remain unknown. Here, we generated a her4.3 transgenic line to label RGCs and applied the metronidazole/nitroreductase system to ablate her4.3+ RGCs. The ablation of her4.3+ RGCs led to the collapse of the cerebral vascular network, disruption of the blood-brain barrier, and downregulation of Wnt signaling. The inhibition of Wnt signaling resulted in the collapse of cerebral vasculature, similar to that caused by her4.3+ RGC ablation. The defects in the maintenance of brain vasculature resulting from the absence of her4.3+ RGCs were partially rescued by the activation of Wnt signaling or overexpression of Wnt7aa or Wnt7bb. Together, our study suggests that her4.3+ RGCs maintain the cerebral vascular network through Wnt signaling.
Collapse
Affiliation(s)
- Pengcheng Wang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, China; Department of Anaesthesia of Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingying Chen
- Department of Anaesthesia of Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Tang X, Huang Y, Fu W, Wang P, Feng L, Yang J, Zhu H, Huang X, Ming Q, Li P. Digirseophene A promotes recovery in injured developing cerebellum via AMPK/AKT/GSK3β pathway-mediated neural stem cell proliferation. Biomed Pharmacother 2024; 177:117046. [PMID: 38981241 DOI: 10.1016/j.biopha.2024.117046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024] Open
Abstract
Neural stem cells (NSCs) exhibit a remarkable capacity for self-renewal and have the potential to differentiate into various neural lineage cells, which makes them pivotal in the management of neurological disorders. Harnessing the inherent potential of endogenous NSCs for enhancing nerve repair and regeneration represents an optimal approach to addressing diseases of the nervous system. In this study, we explored the potential of a novel benzophenone derivative named Digirseophene A (DGA), which was isolated from the endophytic fungus Corydalis tomentella. Previous experiments have extensively identified and characterized DGA, revealing its unique properties. Our findings demonstrate the remarkable capability of DGA to stimulate neural stem cell proliferation, both in vitro and in vivo. Furthermore, we established a model of radiation-induced cerebellar injury to assess the effects of DGA on the distribution of different cell subpopulations within the damaged cerebellum, thereby suggesting its beneficial role in cerebellar repair. In addition, our observations on a primary NSCs model revealed that DGA significantly increased cellular oxygen consumption, indicating increased energy and metabolic demands. By utilizing various pathway inhibitors in combination with DGA, we successfully demonstrated its ability to counteract the suppressive impacts of AMPK and GSK3β inhibitors on NSC proliferation. Collectively, our research results strongly suggest that DGA, as an innovative compound, exerts its role in activating NSCs and promoting injury repair through the regulation of the AMPK/AKT/GSK3β pathway.
Collapse
Affiliation(s)
- Xiangyu Tang
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Yuting Huang
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Wenying Fu
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Pengbo Wang
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Liyuan Feng
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Jie Yang
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Hongyan Zhu
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Xiuning Huang
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Qianliang Ming
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China.
| | - Peng Li
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China.
| |
Collapse
|
4
|
Michór P, Renardson L, Li S, Boltze J. Neurorestorative Approaches for Ischemic StrokeChallenges, Opportunities, and Recent Advances. Neuroscience 2024; 550:69-78. [PMID: 38763225 DOI: 10.1016/j.neuroscience.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024]
Abstract
Despite recent advances in acute stroke management, most patients experiencing a stroke will suffer from residual brain damage and functional impairment. Addressing those residual deficits would require neurorestoration, i.e., rebuilding brain tissue to repair the structural brain damage caused by stroke. However, there are major pathobiological, anatomical and technological hurdles making neurorestorative approaches remarkably challenging, and true neurorestoration after larger ischemic lesions could not yet be achieved. On the other hand, there has been steady advancement in our understanding of the limits of tissue regeneration in the adult mammalian brain as well as of the fundamental organization of brain tissue growth during embryo- and ontogenesis. This has been paralleled by the development of novel animal models to study stroke, advancement of biomaterials that can be used to support neurorestoration, and in stem cell technologies. This review gives a detailed explanation of the major hurdles so far preventing the achievement of neurorestoration after stroke. It will also describe novel concepts and advancements in biomaterial science, brain organoid culturing, and animal modeling that may enable the investigation of post-stroke neurorestorative approaches in translationally relevant setups. Finally, there will be a review of recent achievements in experimental studies that have the potential to be the starting point of research and development activities that may eventually bring post-stroke neurorestoration within reach.
Collapse
Affiliation(s)
- Paulina Michór
- University of Warwick, School of Life Sciences, Coventry CV4 7AL, United Kingdom
| | - Lydia Renardson
- University of Warwick, Warwick Medical School, Coventry CV4 7AL, United Kingdom
| | - Shen Li
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, Beijing, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Johannes Boltze
- University of Warwick, School of Life Sciences, Coventry CV4 7AL, United Kingdom.
| |
Collapse
|
5
|
Zhang L, Zetter MA, Hernández VS, Hernández-Pérez OR, Jáuregui-Huerta F, Krabichler Q, Grinevich V. Morphological Signatures of Neurogenesis and Neuronal Migration in Hypothalamic Vasopressinergic Magnocellular Nuclei of the Adult Rat. Int J Mol Sci 2024; 25:6988. [PMID: 39000096 PMCID: PMC11241681 DOI: 10.3390/ijms25136988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
The arginine vasopressin (AVP)-magnocellular neurosecretory system (AVPMNS) in the hypothalamus plays a critical role in homeostatic regulation as well as in allostatic motivational behaviors. However, it remains unclear whether adult neurogenesis exists in the AVPMNS. By using immunoreaction against AVP, neurophysin II, glial fibrillar acidic protein (GFAP), cell division marker (Ki67), migrating neuroblast markers (doublecortin, DCX), microglial marker (Ionized calcium binding adaptor molecule 1, Iba1), and 5'-bromo-2'-deoxyuridine (BrdU), we report morphological evidence that low-rate neurogenesis and migration occur in adult AVPMNS in the rat hypothalamus. Tangential AVP/GFAP migration routes and AVP/DCX neuronal chains as well as ascending AVP axonal scaffolds were observed. Chronic water deprivation significantly increased the BrdU+ nuclei within both the supraaoptic (SON) and paraventricular (PVN) nuclei. These findings raise new questions about AVPMNS's potential hormonal role for brain physiological adaptation across the lifespan, with possible involvement in coping with homeostatic adversities.
Collapse
Affiliation(s)
- Limei Zhang
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (M.A.Z.); (V.S.H.); (O.R.H.-P.)
- Section on Molecular Neuroscience, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Mario A. Zetter
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (M.A.Z.); (V.S.H.); (O.R.H.-P.)
- Department of Medicine and Health, University of La Salle, Mexico City 14000, Mexico
| | - Vito S. Hernández
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (M.A.Z.); (V.S.H.); (O.R.H.-P.)
- Section on Molecular Neuroscience, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Oscar R. Hernández-Pérez
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (M.A.Z.); (V.S.H.); (O.R.H.-P.)
| | - Fernando Jáuregui-Huerta
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (M.A.Z.); (V.S.H.); (O.R.H.-P.)
| | - Quirin Krabichler
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 69120 Mannheim, Germany; (Q.K.); (V.G.)
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 69120 Mannheim, Germany; (Q.K.); (V.G.)
| |
Collapse
|
6
|
Cibelli A, Mola MG, Saracino E, Barile B, Abbrescia P, Mogni G, Spray DC, Scemes E, Rossi A, Spennato D, Svelto M, Frigeri A, Benfenati V, Nicchia GP. Aquaporin-4 and transient receptor potential vanilloid 4 balance in early postnatal neurodevelopment. Glia 2024; 72:938-959. [PMID: 38362923 DOI: 10.1002/glia.24512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/17/2024]
Abstract
In the adult brain, the water channel aquaporin-4 (AQP4) is expressed in astrocyte endfoot, in supramolecular assemblies, called "Orthogonal Arrays of Particles" (OAPs) together with the transient receptor potential vanilloid 4 (TRPV4), finely regulating the cell volume. The present study aimed at investigating the contribution of AQP4 and TRPV4 to CNS early postnatal development using WT and AQP4 KO brain and retina and neuronal stem cells (NSCs), as an in vitro model of astrocyte differentiation. Western blot analysis showed that, differently from AQP4 and the glial cell markers, TRPV4 was downregulated during CNS development and NSC differentiation. Blue native/SDS-PAGE revealed that AQP4 progressively organized into OAPs throughout the entire differentiation process. Fluorescence quenching assay indicated that the speed of cell volume changes was time-related to NSC differentiation and functional to their migratory ability. Calcium imaging showed that the amplitude of TRPV4 Ca2+ transient is lower, and the dynamics are changed during differentiation and suppressed in AQP4 KO NSCs. Overall, these findings suggest that early postnatal neurodevelopment is subjected to temporally modulated water and Ca2+ dynamics likely to be those sustaining the biochemical and physiological mechanisms responsible for astrocyte differentiation during brain and retinal development.
Collapse
Affiliation(s)
- Antonio Cibelli
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Maria Grazia Mola
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Emanuela Saracino
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Bologna, Italy
| | - Barbara Barile
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Pasqua Abbrescia
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro-Medical School, Bari, Italy
| | - Guido Mogni
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - David C Spray
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Eliana Scemes
- Department of Cell Biology and Anatomy, NY Medical College, Valhalla, New York, USA
| | - Andrea Rossi
- Genome Engineering and Model Development Lab (GEMD), IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Diletta Spennato
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Bologna, Italy
| | - Maria Svelto
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Frigeri
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro-Medical School, Bari, Italy
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Valentina Benfenati
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Bologna, Italy
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Bologna, Italy
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
7
|
Ni C, Yu L, Vona B, Park D, Wei Y, Schmitz DA, Wei Y, Ding Y, Sakurai M, Ballard E, Liu Y, Kumar A, Xing C, Kim HG, Ekmekci C, Karimiani EG, Imannezhad S, Eghbal F, Badv RS, Schwaibold EMC, Dehghani M, Mehrjardi MYV, Metanat Z, Eslamiyeh H, Khouj E, Alhajj SMN, Chedrawi A, Alves CAPF, Houlden H, Kruer M, Alkuraya FS, Cenik C, Maroofian R, Wu J, Buszczak M. An inappropriate decline in ribosome levels drives a diverse set of neurodevelopmental disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574708. [PMID: 38260472 PMCID: PMC10802443 DOI: 10.1101/2024.01.09.574708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Many neurodevelopmental defects are linked to perturbations in genes involved in housekeeping functions, such as those encoding ribosome biogenesis factors. However, how reductions in ribosome biogenesis can result in tissue and developmental specific defects remains a mystery. Here we describe new allelic variants in the ribosome biogenesis factor AIRIM primarily associated with neurodevelopmental disorders. Using human cerebral organoids in combination with proteomic analysis, single-cell transcriptome analysis across multiple developmental stages, and single organoid translatome analysis, we identify a previously unappreciated mechanism linking changes in ribosome levels and the timing of cell fate specification during early brain development. We find ribosome levels decrease during neuroepithelial differentiation, making differentiating cells particularly vulnerable to perturbations in ribosome biogenesis during this time. Reduced ribosome availability more profoundly impacts the translation of specific transcripts, disrupting both survival and cell fate commitment of transitioning neuroepithelia. Enhancing mTOR activity by both genetic and pharmacologic approaches ameliorates the growth and developmental defects associated with intellectual disability linked variants, identifying potential treatment options for specific brain ribosomopathies. This work reveals the cellular and molecular origins of protein synthesis defect-related disorders of human brain development. Highlights AIRIM variants reduce ribosome levels specifically in neural progenitor cells. Inappropriately low ribosome levels cause a transient delay in radial glia fate commitment.Reduced ribosome levels impair translation of a selected subset of mRNAs.Genetic and pharmacologic activation of mTORC1 suppresses AIRIM-linked phenotypes.
Collapse
|
8
|
Holst CB, Brøchner CB, Vitting‐Seerup K, Møllgård K. The HOPX and BLBP landscape and gliogenic regions in developing human brain. J Anat 2023; 243:23-38. [PMID: 36794762 PMCID: PMC10273337 DOI: 10.1111/joa.13844] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
Outer radial glial cells (oRGs) give rise to neurons and glial cells and contribute to cell migration and expansion in developing neocortex. HOPX has been described as a marker of oRGs and possible actor in glioblastomas. Recent years' evidence points to spatiotemporal differences in brain development which may have implications for the classification of cell types in the central nervous system and understanding of a range of neurological diseases. Using the Human Embryonic/Fetal Biobank, Institute of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark, HOPX and BLBP immunoexpression was investigated in developing frontal, parietal, temporal and occipital human neocortex, other cortical areas and brain stem regions to interrogate oRG and HOPX regional heterogeneity. Furthermore, usage of high-plex spatial profiling (Nanostring GeoMx® DSP) was tested on the same material. HOPX marked oRGs in several human developing brain regions as well as cells in known gliogenic areas but did not completely overlap with BLBP or GFAP. Interestingly, limbic structures (e.g. olfactory bulb, indusium griseum, entorhinal cortex, fimbria) showed more intense HOPX immunoreactivity than adjacent neocortex and in cerebellum and brain stem, HOPX and BLBP seemed to stain different cell populations in cerebellar cortex and corpus pontobulbare. DSP screening of corresponding regions indicated differences in cell type composition, vessel density and presence of apolipoproteins within and across regions and thereby confirming the importance of acknowledging time and place in developmental neuroscience.
Collapse
Affiliation(s)
- Camilla Bjørnbak Holst
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- DCCC Brain Tumor CenterCopenhagen University HospitalCopenhagenDenmark
| | - Christian Beltoft Brøchner
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Pathology, Center of Diagnostic InvestigationCopenhagen University HospitalCopenhagenDenmark
| | | | - Kjeld Møllgård
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
9
|
Akeret K, Weller M, Krayenbühl N. The anatomy of neuroepithelial tumours. Brain 2023:7171408. [PMID: 37201913 PMCID: PMC10393414 DOI: 10.1093/brain/awad138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/20/2023] Open
Abstract
Many neurological conditions conceal specific anatomical patterns. Their study contributes to the understanding of disease biology and to tailored diagnostics and therapy. Neuroepithelial tumours exhibit distinct anatomical phenotypes and spatiotemporal dynamics that differ from those of other brain tumours. Brain metastases display a preference for the cortico-subcortical boundaries of watershed areas and have a predominantly spherical growth. Primary CNS lymphomas localize to the white matter and generally invade along fibre tracts. In neuroepithelial tumours, topographic probability mapping and unsupervised topological clustering have identified an inherent radial anatomy and adherence to ventriculopial configurations of specific hierarchical orders. Spatiotemporal probability and multivariate survival analyses have identified a temporal and prognostic sequence underlying the anatomical phenotypes of neuroepithelial tumours. Gradual neuroepithelial de-differentiation and declining prognosis follow (i) an expansion into higher order radial units; (ii) a subventricular spread; and (iii) the presence of mesenchymal patterns (expansion along white matter tracts, leptomeningeal or perivascular invasion, CSF spread). While different pathophysiological hypotheses have been proposed, the cellular and molecular mechanisms dictating this anatomical behaviour remain largely unknown. Here we adopt an ontogenetic approach towards the understanding of neuroepithelial tumour anatomy. Contemporary perception of histo- and morphogenetic processes during neurodevelopment permit us to conceptualize the architecture of the brain into hierarchically organized radial units. The anatomical phenotypes in neuroepithelial tumours and their temporal and prognostic sequences share remarkable similarities with the ontogenetic organization of the brain and the anatomical specifications that occur during neurodevelopment. This macroscopic coherence is reinforced by cellular and molecular observations that the initiation of various neuroepithelial tumours, their intratumoural hierarchy and tumour progression are associated with the aberrant reactivation of surprisingly normal ontogenetic programs. Generalizable topological phenotypes could provide the basis for an anatomical refinement of the current classification of neuroepithelial tumours. In addition, we have proposed a staging system for adult-type diffuse gliomas that is based on the prognostically critical steps along the sequence of anatomical tumour progression. Considering the parallels in anatomical behaviour between different neuroepithelial tumours, analogous staging systems may be implemented for other neuroepithelial tumour types and subtypes. Both the anatomical stage of a neuroepithelial tumour and the spatial configuration of its hosting radial unit harbour the potential to stratify treatment decisions at diagnosis and during follow-up. More data on specific neuroepithelial tumour types and subtypes are needed to increase the anatomical granularity in their classification and to determine the clinical impact of stage-adapted and anatomically tailored therapy and surveillance.
Collapse
Affiliation(s)
- Kevin Akeret
- Department of Neurosurgery, Clinical Neuroscience Centre, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Centre, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Niklaus Krayenbühl
- Division of Paediatric Neurosurgery, University Children's Hospital, 8032 Zurich, Switzerland
| |
Collapse
|
10
|
Chaqour B. CCN-Hippo YAP signaling in vision and its role in neuronal, glial and vascular cell function and behavior. J Cell Commun Signal 2023:10.1007/s12079-023-00759-6. [PMID: 37191840 DOI: 10.1007/s12079-023-00759-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023] Open
Abstract
The retina is a highly specialized tissue composed of a network of neurons, glia, and vascular and epithelial cells; all working together to coordinate and transduce visual signals to the brain. The retinal extracellular matrix (ECM) shapes the structural environment in the retina but also supplies resident cells with proper chemical and mechanical signals to regulate cell function and behavior and maintain tissue homeostasis. As such, the ECM affects virtually all aspects of retina development, function and pathology. ECM-derived regulatory cues influence intracellular signaling and cell function. Reversibly, changes in intracellular signaling programs result in alteration of the ECM and downstream ECM-mediated signaling network. Our functional studies in vitro, genetic studies in mice, and multi omics analyses have provided evidence that a subset of ECM proteins referred to as cellular communication network (CCN) affects several aspects of retinal neuronal and vascular development and function. Retinal progenitor, glia and vascular cells are major sources of CCN proteins particularly CCN1 and CCN2. We found that expression of the CCN1 and CCN2 genes is dependent on the activity of YAP, the core component of the hippo-YAP signaling pathway. Central to the Hippo pathway is a conserved cascade of inhibitory kinases that regulate the activity of YAP, the final transducer of this pathway. Reversibly, YAP expression and/or activity is dependent on CCN1 and CCN2 downstream signaling, which creates a positive or negative feedforward loop driving developmental processes (e.g., neurogenesis, gliogenesis, angiogenesis, barriergenesis) and, when dysregulated, disease progression in a range of retinal neurovascular disorders. Here we describe mechanistic hints involving the CCN-Hippo-YAP regulatory axis in retina development and function. This regulatory pathway represents an opportunity for targeted therapies in neurovascular and neurodegenerative diseases. The CCN-YAP regulatory loop in development and pathology.
Collapse
Affiliation(s)
- Brahim Chaqour
- Department of Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, 422 Curie Boulevard, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Grebenyuk S, Abdel Fattah AR, Kumar M, Toprakhisar B, Rustandi G, Vananroye A, Salmon I, Verfaillie C, Grillo M, Ranga A. Large-scale perfused tissues via synthetic 3D soft microfluidics. Nat Commun 2023; 14:193. [PMID: 36635264 PMCID: PMC9837048 DOI: 10.1038/s41467-022-35619-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/13/2022] [Indexed: 01/14/2023] Open
Abstract
The vascularization of engineered tissues and organoids has remained a major unresolved challenge in regenerative medicine. While multiple approaches have been developed to vascularize in vitro tissues, it has thus far not been possible to generate sufficiently dense networks of small-scale vessels to perfuse large de novo tissues. Here, we achieve the perfusion of multi-mm3 tissue constructs by generating networks of synthetic capillary-scale 3D vessels. Our 3D soft microfluidic strategy is uniquely enabled by a 3D-printable 2-photon-polymerizable hydrogel formulation, which allows for precise microvessel printing at scales below the diffusion limit of living tissues. We demonstrate that these large-scale engineered tissues are viable, proliferative and exhibit complex morphogenesis during long-term in-vitro culture, while avoiding hypoxia and necrosis. We show by scRNAseq and immunohistochemistry that neural differentiation is significantly accelerated in perfused neural constructs. Additionally, we illustrate the versatility of this platform by demonstrating long-term perfusion of developing neural and liver tissue. This fully synthetic vascularization platform opens the door to the generation of human tissue models at unprecedented scale and complexity.
Collapse
Affiliation(s)
- Sergei Grebenyuk
- Laboratory of Bioengineering and Morphogenesis, Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.
| | - Abdel Rahman Abdel Fattah
- Laboratory of Bioengineering and Morphogenesis, Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Manoj Kumar
- Stem Cell Institute Leuven and Department of Development and Regeneration, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Burak Toprakhisar
- Stem Cell Institute Leuven and Department of Development and Regeneration, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Gregorius Rustandi
- Laboratory of Bioengineering and Morphogenesis, Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Anja Vananroye
- Laboratory of Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| | - Idris Salmon
- Laboratory of Bioengineering and Morphogenesis, Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Catherine Verfaillie
- Stem Cell Institute Leuven and Department of Development and Regeneration, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Mark Grillo
- Grillo Consulting Inc., San Francisco, CA, USA
| | - Adrian Ranga
- Laboratory of Bioengineering and Morphogenesis, Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, Leuven, Belgium.
- Leuven Institute for Single Cell Omics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
12
|
Castillo Ransanz L, Van Altena PFJ, Heine VM, Accardo A. Engineered cell culture microenvironments for mechanobiology studies of brain neural cells. Front Bioeng Biotechnol 2022; 10:1096054. [PMID: 36588937 PMCID: PMC9794772 DOI: 10.3389/fbioe.2022.1096054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
The biomechanical properties of the brain microenvironment, which is composed of different neural cell types, the extracellular matrix, and blood vessels, are critical for normal brain development and neural functioning. Stiffness, viscoelasticity and spatial organization of brain tissue modulate proliferation, migration, differentiation, and cell function. However, the mechanical aspects of the neural microenvironment are largely ignored in current cell culture systems. Considering the high promises of human induced pluripotent stem cell- (iPSC-) based models for disease modelling and new treatment development, and in light of the physiological relevance of neuromechanobiological features, applications of in vitro engineered neuronal microenvironments should be explored thoroughly to develop more representative in vitro brain models. In this context, recently developed biomaterials in combination with micro- and nanofabrication techniques 1) allow investigating how mechanical properties affect neural cell development and functioning; 2) enable optimal cell microenvironment engineering strategies to advance neural cell models; and 3) provide a quantitative tool to assess changes in the neuromechanobiological properties of the brain microenvironment induced by pathology. In this review, we discuss the biological and engineering aspects involved in studying neuromechanobiology within scaffold-free and scaffold-based 2D and 3D iPSC-based brain models and approaches employing primary lineages (neural/glial), cell lines and other stem cells. Finally, we discuss future experimental directions of engineered microenvironments in neuroscience.
Collapse
Affiliation(s)
- Lucía Castillo Ransanz
- Department of Child and Adolescence Psychiatry, Amsterdam Neuroscience, Emma Children’s Hospital, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Pieter F. J. Van Altena
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, Netherlands
| | - Vivi M. Heine
- Department of Child and Adolescence Psychiatry, Amsterdam Neuroscience, Emma Children’s Hospital, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Department of Complex Trait Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
13
|
Ahmad S, Srivastava RK, Singh P, Naik UP, Srivastava AK. Role of Extracellular Vesicles in Glia-Neuron Intercellular Communication. Front Mol Neurosci 2022; 15:844194. [PMID: 35493327 PMCID: PMC9043804 DOI: 10.3389/fnmol.2022.844194] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Cross talk between glia and neurons is crucial for a variety of biological functions, ranging from nervous system development, axonal conduction, synaptic transmission, neural circuit maturation, to homeostasis maintenance. Extracellular vesicles (EVs), which were initially described as cellular debris and were devoid of biological function, are now recognized as key components in cell-cell communication and play a critical role in glia-neuron communication. EVs transport the proteins, lipids, and nucleic acid cargo in intercellular communication, which alters target cells structurally and functionally. A better understanding of the roles of EVs in glia-neuron communication, both in physiological and pathological conditions, can aid in the discovery of novel therapeutic targets and the development of new biomarkers. This review aims to demonstrate that different types of glia and neuronal cells secrete various types of EVs, resulting in specific functions in intercellular communications.
Collapse
Affiliation(s)
- Shahzad Ahmad
- Department of Medical Elementology and Toxicology, Jamia Hamdard University, New Delhi, India
| | - Rohit K. Srivastava
- Department of Pediatric Surgery, Texas Children’s Hospital, Houston, TX, United States
- M.E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Pratibha Singh
- Department of Biochemistry and Cell Biology, Biosciences Research Collaborative, Rice University, Houston, TX, United States
| | - Ulhas P. Naik
- Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Cardeza Foundation for Hematologic Research, Philadelphia, PA, United States
| | - Amit K. Srivastava
- Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Cardeza Foundation for Hematologic Research, Philadelphia, PA, United States
- *Correspondence: Amit K. Srivastava,
| |
Collapse
|
14
|
Li D, Velazquez JJ, Ding J, Hislop J, Ebrahimkhani MR, Bar-Joseph Z. TraSig: inferring cell-cell interactions from pseudotime ordering of scRNA-Seq data. Genome Biol 2022; 23:73. [PMID: 35255944 PMCID: PMC8900372 DOI: 10.1186/s13059-022-02629-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/09/2022] [Indexed: 02/08/2023] Open
Abstract
A major advantage of single cell RNA-sequencing (scRNA-Seq) data is the ability to reconstruct continuous ordering and trajectories for cells. Here we present TraSig, a computational method for improving the inference of cell-cell interactions in scRNA-Seq studies that utilizes the dynamic information to identify significant ligand-receptor pairs with similar trajectories, which in turn are used to score interacting cell clusters. We applied TraSig to several scRNA-Seq datasets and obtained unique predictions that improve upon those identified by prior methods. Functional experiments validate the ability of TraSig to identify novel signaling interactions that impact vascular development in liver organoids.Software https://github.com/doraadong/TraSig .
Collapse
Affiliation(s)
- Dongshunyi Li
- Computational Biology Department, School of Computer Science, Carnegie Mellon Universit, Pittsburgh, 15213, PA, USA
| | - Jeremy J Velazquez
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, 15213, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, 15261, PA, USA
| | - Jun Ding
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montreal, H4A 3J1, Quebec, Canada
| | - Joshua Hislop
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, 15213, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, 15261, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, 15261, PA, USA
| | - Mo R Ebrahimkhani
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, 15213, PA, USA.
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, 15261, PA, USA.
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, 15261, PA, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, 15219, PA, USA.
| | - Ziv Bar-Joseph
- Computational Biology Department, School of Computer Science, Carnegie Mellon Universit, Pittsburgh, 15213, PA, USA
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, 15213, PA, USA
| |
Collapse
|
15
|
Akeret K, Vasella F, Staartjes VE, Velz J, Müller T, Neidert MC, Weller M, Regli L, Serra C, Krayenbühl N. Anatomical phenotyping and staging of brain tumours. Brain 2021; 145:1162-1176. [PMID: 34554211 DOI: 10.1093/brain/awab352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/25/2021] [Accepted: 08/21/2021] [Indexed: 11/14/2022] Open
Abstract
Unlike other tumors, the anatomical extent of brain tumors is not objectified and quantified through staging. Staging systems are based on understanding the anatomical sequence of tumor progression and its relationship to histopathological dedifferentiation and survival. The aim of this study was to describe the spatiotemporal phenotype of the most frequent brain tumor entities, to assess the association of anatomical tumor features with survival probability and to develop a staging system for WHO grade 2 and 3 gliomas and glioblastoma. Anatomical phenotyping was performed on a consecutive cohort of 1000 patients with first diagnosis of a primary or secondary brain tumor. Tumor probability in different topographic, phylogenetic and ontogenetic parcellation units was assessed on preoperative MRI through normalization of the relative tumor prevalence to the relative volume of the respective structure. We analyzed the spatiotemporal tumor dynamics by cross-referencing preoperative against preceding and subsequent MRIs of the respective patient. The association between anatomical phenotype and outcome defined prognostically critical anatomical tumor features at diagnosis. Based on a hypothesized sequence of anatomical tumor progression, we developed a three-level staging system for WHO grade 2 and 3 gliomas and glioblastoma. This staging system was validated internally in the original cohort and externally in an independent cohort of 300 consecutive patients. While primary central nervous system lymphoma showed highest probability along white matter tracts, metastases enriched along terminal arterial flow areas. Neuroepithelial tumors mapped along all sectors of the ventriculocortical axis, while adjacent units were spared, consistent with a transpallial behavior within phylo-ontogenetic radial units. Their topographic pattern correlated with morphogenetic processes of convergence and divergence of radial units during phylo- and ontogenesis. While a ventriculofugal growth dominated in neuroepithelial tumors, a gradual deviation from this neuroepithelial spatiotemporal behavior was found with progressive histopathological dedifferentiation. The proposed three-level staging system for WHO grade 2 and 3 gliomas and glioblastoma correlated with the degree of histological dedifferentiation and proved accurate in terms of survival upon both internal and external validation. In conclusion, this study identified specific spatiotemporal phenotypes in brain tumors through topographic probability and growth pattern assessment. The association of anatomical tumor features with survival defined critical steps in the anatomical sequence of neuroepithelial tumor progression, based on which a staging system for WHO grade 2 and 3 gliomas and glioblastoma was developed and validated.
Collapse
Affiliation(s)
- Kevin Akeret
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Flavio Vasella
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland.,Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Victor E Staartjes
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Julia Velz
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Timothy Müller
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Marian Christoph Neidert
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Luca Regli
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Carlo Serra
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Niklaus Krayenbühl
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland.,Division of Pediatric Neurosurgery, University Children's Hospital, 8032 Zurich, Switzerland
| |
Collapse
|
16
|
An Insight into Pathophysiological Features and Therapeutic Advances on Ependymoma. Cancers (Basel) 2021; 13:cancers13133221. [PMID: 34203272 PMCID: PMC8269186 DOI: 10.3390/cancers13133221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Although biological information and the molecular classification of ependymoma have been studied, the treatment systems for ependymoma are still insufficient. In addition, because the disease occurs infrequently, it is difficult to obtain sufficient data to conduct large-scale or randomized clinical trials. Therefore, this study is intended to emphasize the importance of understanding its pathological characteristics and prognosis as well as developing treatments for ependymoma through multilateral studies. Abstract Glial cells comprise the non-sensory parts of the central nervous system as well as the peripheral nervous system. Glial cells, also known as neuroglia, constitute a significant portion of the mammalian nervous system and can be viewed simply as a matrix of neural cells. Despite being the “Nervenkitt” or “glue of the nerves”, they aptly serve multiple roles, including neuron repair, myelin sheath formation, and cerebrospinal fluid circulation. Ependymal cells are one of four kinds of glial cells that exert distinct functions. Tumorigenesis of a glial cell is termed a glioma, and in the case of an ependymal cell, it is called an ependymoma. Among the various gliomas, an ependymoma in children is one of the more challenging brain tumors to cure. Children are afflicted more severely by ependymal tumors than adults. It has appeared from several surveys that ependymoma comprises approximately six to ten percent of all tumors in children. Presently, the surgical removal of the tumor is considered a standard treatment for ependymomas. It has been conspicuously evident that a combination of irradiation therapy and surgery is much more efficacious in treating ependymomas. The main purpose of this review is to present the importance of both a deep understanding and ongoing research into histopathological features and prognoses of ependymomas to ensure that effective diagnostic methods and treatments can be developed.
Collapse
|
17
|
Li Y, Zhang LN, Chong L, Liu Y, Xi FY, Zhang H, Duan XL. Prenatal ethanol exposure impairs the formation of radial glial fibers and promotes the transformation of GFAPδ‑positive radial glial cells into astrocytes. Mol Med Rep 2021; 23:274. [PMID: 33576465 PMCID: PMC7893684 DOI: 10.3892/mmr.2021.11913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022] Open
Abstract
During embryonic cortical development, radial glial cells (RGCs) are the major source of neurons, and these also serve as a supportive scaffold to guide neuronal migration. Similar to Vimentin, glial fibrillary acidic protein (GFAP) is one of the major intermediate filament proteins present in glial cells. Previous studies confirmed that prenatal ethanol exposure (PEE) significantly affected the levels of GFAP and increased the disassembly of radial glial fibers. GFAPδ is a variant of GFAP that is specifically expressed in RGCs; however, to the best of our knowledge, there are no reports regarding how PEE influences its expression during cortical development. In the present study, the effects of PEE on the expression and distribution of GFAPδ during early cortical development were assessed. It was found that PEE significantly decreased the expression levels of GFAP and GFAPδ. Using double immunostaining, GFAPδ was identified to be specifically expressed in apical and basal RGCs, and was co‑localized with other intermediate filament proteins, such as GFAP, Nestin and Vimentin. Additionally, PEE significantly affected the morphology of radial glial fibers and altered the behavior of RGCs. The loss of GFAPδ accelerated the transformation of RGCs into astrocytes. Using co‑immunostaining with Ki67 or phospho‑histone H3, GFAPδ+ cells were observed to be proliferative or mitotic cells, and ethanol treatment significantly decreased the proliferative or mitotic activities of GFAPδ+ RGCs. Taken together, the results suggested that PEE altered the expression patterns of GFAPδ and impaired the development of radial glial fibers and RGC behavior. The results of the present study provided evidence that GFAPδ may be a promising target to rescue the damage induced by PEE.
Collapse
Affiliation(s)
- Yu Li
- Department of Infectious Diseases, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710068, P.R. China
- Shaanxi Center for Models of Clinical Medicine in International Cooperation of Science and Technology, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710068, P.R. China
| | - Li-Na Zhang
- The Third Department of Neurology, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710068, P.R. China
| | - Li Chong
- The Third Department of Neurology, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710068, P.R. China
| | - Yue Liu
- The Third Department of Neurology, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710068, P.R. China
| | - Feng-Yu Xi
- Department of Clinical Laboratory, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710068, P.R. China
| | - Hong Zhang
- Department of Infectious Diseases, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710068, P.R. China
| | - Xiang-Long Duan
- Shaanxi Center for Models of Clinical Medicine in International Cooperation of Science and Technology, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710068, P.R. China
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital and The Third Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|
18
|
Cabral de Carvalho Corrêa D, Dias Oliveira I, Mascaro Cordeiro B, Silva FA, de Seixas Alves MT, Saba-Silva N, Capellano AM, Dastoli P, Cavalheiro S, Caminada de Toledo SR. Abnormal spindle-like microcephaly-associated (ASPM) gene expression in posterior fossa brain tumors of childhood and adolescence. Childs Nerv Syst 2021; 37:137-145. [PMID: 32591873 DOI: 10.1007/s00381-020-04740-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/11/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE In neurogenesis, ASPM (abnormal spindle-like microcephaly-associated) gene is expressed mainly in the ventricular zone of posterior fossa and is the major determinant in the cerebral cortex. Besides its role in embryonic development, ASPM overexpression promotes tumor growth, including central nervous system (CNS) tumors. This study aims to investigate ASPM expression levels in most frequent posterior fossa brain tumors of childhood and adolescence: medulloblastoma (MB), ependymoma (EPN), and astrocytoma (AS), correlating them with clinicopathological characteristics and tumor solid portion size. METHODS Quantitative reverse transcription (qRT-PCR) is used to quantify ASPM mRNA levels in 80 pre-treatment tumor samples: 28 MB, 22 EPN, and 30 AS. The tumor solid portion size was determined by IOP-GRAACC Diagnostic Imaging Center. We correlated these findings with clinicopathological characteristics and tumor solid portion size. RESULTS Our results demonstrated that ASPM gene was overexpressed in MB (p = 0.007) and EPN (p = 0.0260) samples. ASPM high expression was significantly associated to MB samples from patients with worse overall survival (p = 0.0123) and death due to disease progression (p = 0.0039). Interestingly, two patients with AS progressed toward higher grade showed ASPM overexpression (p = 0.0046). No correlation was found between the tumor solid portion size and ASPM expression levels in MB (p = 0.1154 and r = - 0.4825) and EPN (p = 0.1108 and r = - 0.3495) samples. CONCLUSION Taking in account that ASPM gene has several functions to support cell proliferation, as mitotic defects and premature differentiation, we suggest that its overexpression, presumably, plays a critical role in disease progression of posterior fossa brain tumors of childhood and adolescence.
Collapse
Affiliation(s)
- Débora Cabral de Carvalho Corrêa
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil.,Department of Morphology and Genetics, Division of Genetics, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Indhira Dias Oliveira
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Bruna Mascaro Cordeiro
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Frederico Adolfo Silva
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil.,Department of Imaging Diagnosis, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Maria Teresa de Seixas Alves
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil.,Department of Pathology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Nasjla Saba-Silva
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Andrea Maria Capellano
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Patrícia Dastoli
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Sergio Cavalheiro
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil.,Department of Neurology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Silvia Regina Caminada de Toledo
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil. .,Department of Morphology and Genetics, Division of Genetics, Federal University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
19
|
Chang GQ, Karatayev O, Boorgu DSSK, Leibowitz SF. Third Ventricular Injection of CCL2 in Rat Embryo Stimulates CCL2/CCR2 Neuroimmune System in Neuroepithelial Radial Glia Progenitor Cells: Relation to Sexually Dimorphic, Stimulatory Effects on Peptide Neurons in Lateral Hypothalamus. Neuroscience 2020; 443:188-205. [PMID: 31982472 PMCID: PMC7681774 DOI: 10.1016/j.neuroscience.2020.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 02/06/2023]
Abstract
Clinical and animal studies show maternal alcohol consumption during pregnancy causes in offspring persistent alterations in neuroimmune and neurochemical systems known to increase alcohol drinking and related behaviors. Studies in lateral hypothalamus (LH) demonstrate in adolescent offspring that maternal oral administration of ethanol stimulates the neuropeptide, melanin-concentrating hormone (MCH), together with the inflammatory chemokine C-C motif ligand 2 (CCL2) and its receptor CCR2 which are increased in most MCH neurons. These effects, consistently stronger in females than males, are detected in embryos, not only in LH but hypothalamic neuroepithelium (NEP) along the third ventricle where neurons are born and CCL2 is stimulated within radial glia progenitor cells and their laterally projecting processes that facilitate MCH neuronal migration toward LH. With ethanol's effects similarly produced by maternal peripheral CCL2 administration and blocked by CCR2 antagonist, we tested here using in utero intracerebroventricular (ICV) injections whether CCL2 acts locally within the embryonic NEP. After ICV injection of CCL2 (0.1 µg/µl) on embryonic day 14 (E14) when neurogenesis peaks, we observed in embryos just before birth (E19) a significant increase in endogenous CCL2 within radial glia cells and their processes in NEP. These auto-regulatory effects, evident only in female embryos, were accompanied by increased density of CCL2 and MCH neurons in LH, more strongly in females than males. These results support involvement of embryonic CCL2/CCR2 neuroimmune system in radial glia progenitor cells in mediating sexually dimorphic effects of maternal challenges such as ethanol on LH MCH neurons that colocalize CCL2 and CCR2.
Collapse
|
20
|
Chang GQ, Karatayev O, Boorgu DSSK, Leibowitz SF. CCL2/CCR2 system in neuroepithelial radial glia progenitor cells: involvement in stimulatory, sexually dimorphic effects of maternal ethanol on embryonic development of hypothalamic peptide neurons. J Neuroinflammation 2020; 17:207. [PMID: 32650794 PMCID: PMC7353676 DOI: 10.1186/s12974-020-01875-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/16/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Clinical and animal studies show that alcohol consumption during pregnancy produces lasting behavioral disturbances in offspring, including increased alcohol drinking, which are linked to inflammation in the brain and disturbances in neurochemical systems that promote these behaviors. These include the neuropeptide, melanin-concentrating hormone (MCH), which is mostly expressed in the lateral hypothalamus (LH). Maternal ethanol administration at low-to-moderate doses, while stimulating MCH neurons without affecting apoptosis or gliogenesis, increases in LH the density of neurons expressing the inflammatory chemokine C-C motif ligand 2 (CCL2) and its receptor CCR2 and their colocalization with MCH. These neural effects associated with behavioral changes are reproduced by maternal CCL2 administration, reversed by a CCR2 antagonist, and consistently stronger in females than males. The present study investigates in the embryo the developmental origins of this CCL2/CCR2-mediated stimulatory effect of maternal ethanol exposure on MCH neurons. METHODS Pregnant rats from embryonic day 10 (E10) to E15 during peak neurogenesis were orally administered ethanol at a moderate dose (2 g/kg/day) or peripherally injected with CCL2 or CCR2 antagonist to test this neuroimmune system's role in ethanol's actions. Using real-time quantitative PCR, immunofluorescence histochemistry, in situ hybridization, and confocal microscopy, we examined in embryos at E19 the CCL2/CCR2 system and MCH neurons in relation to radial glia progenitor cells in the hypothalamic neuroepithelium where neurons are born and radial glia processes projecting laterally through the medial hypothalamus that provide scaffolds for neuronal migration into LH. RESULTS We demonstrate that maternal ethanol increases radial glia cell density and their processes while stimulating the CCL2/CCR2 system and these effects are mimicked by maternal administration of CCL2 and blocked by a CCR2 antagonist. While stimulating CCL2 colocalization with radial glia and neurons but not microglia, ethanol increases MCH neuronal number near radial glia cells and making contact along their processes projecting into LH. Further tests identify the CCL2/CCR2 system in NEP as a primary source of ethanol's sexually dimorphic actions. CONCLUSIONS These findings provide new evidence for how an inflammatory chemokine pathway functions within neuroprogenitor cells to mediate ethanol's long-lasting, stimulatory effects on peptide neurons linked to adolescent drinking behavior.
Collapse
Affiliation(s)
- Guo-Qing Chang
- The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Olga Karatayev
- The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | | | | |
Collapse
|
21
|
Abstract
The pervasive and devastating nature of substance use disorders underlies the need for the continued development of novel pharmacotherapies. We now know that glia play a much greater role in neuronal processes than once believed. The various types of glial cells (e.g., astrocytes, microglial, oligodendrocytes) participate in numerous functions that are crucial to healthy central nervous system function. Drugs of abuse have been shown to interact with glia in ways that directly contribute to the pharmacodynamic effects responsible for their abuse potential. Through their effect upon glia, drugs of abuse also alter brain function resulting in behavioral changes associated with substance use disorders. Therefore, drug-induced changes in glia and inflammation within the central nervous system (neuroinflammation) have been investigated to treat various aspects of drug abuse and dependence. This article presents a brief overview of the effects of each of the major classes of addictive drugs on glia. Next, the paper reviews the pre-clinical and clinical studies assessing the effects that glial modulators have on abuse-related behavioral effects, such as pleasure, withdrawal, and motivation. There is a strong body of pre-clinical literature demonstrating the general effectiveness of several glia-modulating drugs in models of reward and relapse. Clinical studies have also yielded promising results, though not as robust. There is still much to disentangle regarding the integration between addictive drugs and glial cells. Improved understanding of the relationship between glia and the pathophysiology of drug abuse should allow for more precise exploration in the development and testing of glial-directed treatments for substance use disorders.
Collapse
Affiliation(s)
- Jermaine D. Jones
- Division on Substance Use Disorders, New York State Psychiatric Institute and Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|
22
|
De Gioia R, Biella F, Citterio G, Rizzo F, Abati E, Nizzardo M, Bresolin N, Comi GP, Corti S. Neural Stem Cell Transplantation for Neurodegenerative Diseases. Int J Mol Sci 2020; 21:E3103. [PMID: 32354178 PMCID: PMC7247151 DOI: 10.3390/ijms21093103] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 01/19/2023] Open
Abstract
Neurodegenerative diseases are disabling and fatal neurological disorders that currently lack effective treatment. Neural stem cell (NSC) transplantation has been studied as a potential therapeutic approach and appears to exert a beneficial effect against neurodegeneration via different mechanisms, such as the production of neurotrophic factors, decreased neuroinflammation, enhanced neuronal plasticity and cell replacement. Thus, NSC transplantation may represent an effective therapeutic strategy. To exploit NSCs' potential, some of their essential biological characteristics must be thoroughly investigated, including the specific markers for NSC subpopulations, to allow profiling and selection. Another key feature is their secretome, which is responsible for the regulation of intercellular communication, neuroprotection, and immunomodulation. In addition, NSCs must properly migrate into the central nervous system (CNS) and integrate into host neuronal circuits, enhancing neuroplasticity. Understanding and modulating these aspects can allow us to further exploit the therapeutic potential of NSCs. Recent progress in gene editing and cellular engineering techniques has opened up the possibility of modifying NSCs to express select candidate molecules to further enhance their therapeutic effects. This review summarizes current knowledge regarding these aspects, promoting the development of stem cell therapies that could be applied safely and effectively in clinical settings.
Collapse
Affiliation(s)
- Roberta De Gioia
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Fabio Biella
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
| | - Gaia Citterio
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
| | - Federica Rizzo
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Via Francesco Sforza 35, 20122 Milan, Italy
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
| | - Elena Abati
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
| | - Monica Nizzardo
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Via Francesco Sforza 35, 20122 Milan, Italy
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
| | - Nereo Bresolin
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Via Francesco Sforza 35, 20122 Milan, Italy
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
| | - Giacomo Pietro Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Diseases Unit, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Stefania Corti
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Via Francesco Sforza 35, 20122 Milan, Italy
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
| |
Collapse
|
23
|
Suter TACS, Jaworski A. Cell migration and axon guidance at the border between central and peripheral nervous system. Science 2020; 365:365/6456/eaaw8231. [PMID: 31467195 DOI: 10.1126/science.aaw8231] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/22/2019] [Indexed: 12/13/2022]
Abstract
The central and peripheral nervous system (CNS and PNS, respectively) are composed of distinct neuronal and glial cell types with specialized functional properties. However, a small number of select cells traverse the CNS-PNS boundary and connect these two major subdivisions of the nervous system. This pattern of segregation and selective connectivity is established during embryonic development, when neurons and glia migrate to their destinations and axons project to their targets. Here, we provide an overview of the cellular and molecular mechanisms that control cell migration and axon guidance at the vertebrate CNS-PNS border. We highlight recent advances on how cell bodies and axons are instructed to either cross or respect this boundary, and present open questions concerning the development and plasticity of the CNS-PNS interface.
Collapse
Affiliation(s)
- Tracey A C S Suter
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA.,Robert J. and Nancy D. Carney Institute for Brain Science, Providence, RI 02912, USA
| | - Alexander Jaworski
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA. .,Robert J. and Nancy D. Carney Institute for Brain Science, Providence, RI 02912, USA
| |
Collapse
|
24
|
Zarei-Kheirabadi M, Vaccaro AR, Rahimi-Movaghar V, Kiani S, Baharvand H. An Overview of Extrinsic and Intrinsic Mechanisms Involved in Astrocyte Development in the Central Nervous System. Stem Cells Dev 2020; 29:266-280. [PMID: 31847709 DOI: 10.1089/scd.2019.0189] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Over the past few decades, our knowledge about the function of the central nervous system (CNS) and astrocytes has improved, and research has confirmed the key roles that astrocytes play in the physiology and pathology of the CNS. Here, we reviewed the intrinsic and extrinsic mechanisms that regulate the development of astrocytes, which are generated from radial glial cells. These regulatory systems modulate various signaling pathways and transcription factors. In this review, four stages of astrocyte development-specification (patterning and switch), migration, proliferation, and maturation, are discussed. In astrocyte patterning, VA1-VA3 domains create the astrocyte subtypes by differential expression of Slit1 and Reelin in the spinal cord. In the brain, patterning creates several astrocyte subtypes by different organizing centers. At the switch step, the janus kinase-signal transducer and activator of transcription pathway governs the transition of neurogenesis to gliogenesis. Bone marrow protein and Notch pathways are also important players of the progliogenic switch. Intrinsic regulation is mediated by DNA methylation transferases, and polycomb group complexes can intrinsically affect the development of astrocytes. In the next stage, these cells proliferate and migrate to their final location. Astrocyte maturation is accomplished through the development of cellular processes, molecular markers, and functions.
Collapse
Affiliation(s)
- Masoumeh Zarei-Kheirabadi
- Department of Brain, Cognitive Sciences and Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Alexander R Vaccaro
- Department of Orthopedics, Rothman Orthopedic Institute, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Kiani
- Department of Brain, Cognitive Sciences and Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
25
|
Chang GQ, Collier AD, Karatayev O, Gulati G, Boorgu DSSK, Leibowitz SF. Moderate Prenatal Ethanol Exposure Stimulates CXCL12/CXCR4 Chemokine System in Radial Glia Progenitor Cells in Hypothalamic Neuroepithelium and Peptide Neurons in Lateral Hypothalamus of the Embryo and Postnatal Offspring. Alcohol Clin Exp Res 2020; 44:866-879. [PMID: 32020622 DOI: 10.1111/acer.14296] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Prenatal exposure to ethanol (EtOH) has lasting effects on neuropeptide and neuroimmune systems in the brain alongside detrimental alcohol-related behaviors. At low-to-moderate doses, prenatal EtOH stimulates neurogenesis in lateral hypothalamus (LH) and increases neurons that express the orexigenic peptides hypocretin/orexin (Hcrt/OX) and melanin-concentrating hormone (MCH), and the proinflammatory chemokine CCL2, which through its receptor CCR2 stimulates cell differentiation and movement. Our recent studies demonstrated that CCL2 and CCR2 colocalize with MCH neurons and are involved in EtOH's stimulatory effect on their development but show no relation to Hcrt/OX. Here, we investigated another chemokine, CXCL12, and its receptor, CXCR4, which promote neurogenesis and neuroprogenitor cell proliferation, to determine if they also exhibit peptide specificity in their response to EtOH exposure. METHODS Pregnant rats were intraorally administered a moderate dose of EtOH (2 g/kg/d) from embryonic day 10 (E10) to E15. Their embryos and postnatal offspring were examined using real-time quantitative PCR and immunofluorescence histochemistry, to determine if EtOH affects CXCL12 and CXCR4 and the colocalization of CXCR4 with Hcrt/OX and MCH neurons in the LH and with radial glia neuroprogenitor cells in the hypothalamic neuroepithelium (NEP). RESULTS Prenatal EtOH strongly stimulated CXCL12 and CXCR4 in LH neurons of embryos and postnatal offspring. This stimulation was significantly stronger in Hcrt/OX than MCH neurons in LH and also occurred in radial glia neuroprogenitor cells dense in the NEP. These effects were sexually dimorphic, consistently stronger in females than males. CONCLUSIONS While showing prenatal EtOH exposure to have a sexually dimorphic, stimulatory effect on CXCL12 and CXCR4 in LH similar to CCL2 and its receptor, these results reveal their distinct relationship to the peptide neurons, with the former closely related to Hcrt/OX and the latter to MCH, and they link EtOH's actions in LH to a stimulatory effect on neuroprogenitor cells in the NEP.
Collapse
Affiliation(s)
- Guo-Qing Chang
- From the, Laboratory of Behavioral Neurobiology, (GQC, ADC, OK, GG, SFL), The Rockefeller University, New York, New York
| | - Adam D Collier
- From the, Laboratory of Behavioral Neurobiology, (GQC, ADC, OK, GG, SFL), The Rockefeller University, New York, New York
| | - Olga Karatayev
- From the, Laboratory of Behavioral Neurobiology, (GQC, ADC, OK, GG, SFL), The Rockefeller University, New York, New York
| | - Gazal Gulati
- From the, Laboratory of Behavioral Neurobiology, (GQC, ADC, OK, GG, SFL), The Rockefeller University, New York, New York
| | | | - Sarah F Leibowitz
- From the, Laboratory of Behavioral Neurobiology, (GQC, ADC, OK, GG, SFL), The Rockefeller University, New York, New York
| |
Collapse
|
26
|
THE MORPHOLOGY OF RADIAL GLIAL SPINAL CORD OF EMBRYOS AND HUMAN FETUSES. WORLD OF MEDICINE AND BIOLOGY 2020. [DOI: 10.26724/2079-8334-2020-2-72-229-234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Langlet F. Targeting Tanycytes: Balance between Efficiency and Specificity. Neuroendocrinology 2020; 110:574-581. [PMID: 31986518 DOI: 10.1159/000505549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/18/2019] [Indexed: 11/19/2022]
Abstract
Tanycytes are peculiar ependymoglial cells lining the bottom and the lateral wall of the third ventricle. For a decade, the utilization of molecular genetic approaches allowed us to make important discoveries about their diverse physiological functions. Here, I review the current methods used to target tanycytes, focusing on their specificity, their efficiency, their limitations, as well as their potential future improvements.
Collapse
Affiliation(s)
- Fanny Langlet
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland,
| |
Collapse
|
28
|
Henriques D, Moreira R, Schwamborn J, Pereira de Almeida L, Mendonça LS. Successes and Hurdles in Stem Cells Application and Production for Brain Transplantation. Front Neurosci 2019; 13:1194. [PMID: 31802998 PMCID: PMC6877657 DOI: 10.3389/fnins.2019.01194] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022] Open
Abstract
Brain regenerative strategies through the transplantation of stem cells hold the potential to promote functional rescue of brain lesions caused either by trauma or neurodegenerative diseases. Most of the positive modulations fostered by stem cells are fueled by bystander effects, namely increase of neurotrophic factors levels and reduction of neuroinflammation. Nevertheless, the ultimate goal of cell therapies is to promote cell replacement. Therefore, the ability of stem cells to migrate and differentiate into neurons that later become integrated into the host neuronal network replacing the lost neurons has also been largely explored. However, as most of the preclinical studies demonstrate, there is a small functional integration of graft-derived neurons into host neuronal circuits. Thus, it is mandatory to better study the whole brain cell therapy approach in order to understand what should be better comprehended concerning graft-derived neuronal and glial cells migration and integration before we can expect these therapies to be ready as a viable solution for brain disorder treatment. Therefore, this review discusses the positive mechanisms triggered by cell transplantation into the brain, the limitations of adult brain plasticity that might interfere with the neuroregeneration process, as well as some strategies tested to overcome some of these limitations. It also considers the efforts that have been made by the regulatory authorities to lead to better standardization of preclinical and clinical studies in this field in order to reduce the heterogeneity of the obtained results.
Collapse
Affiliation(s)
- Daniel Henriques
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ricardo Moreira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Jens Schwamborn
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Liliana S Mendonça
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
29
|
Zhang L, Zhang X, Zhang Y, Xu N, Wang J, Zhu Y, Xia C. Brn4 promotes the differentiation of radial glial cells into neurons by inhibiting CtBP2. Life Sci 2019; 254:116866. [PMID: 31518606 DOI: 10.1016/j.lfs.2019.116866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 10/26/2022]
Abstract
Neural stem cells (NSCs) are pluripotent cells that are capable of differentiating into neurons and considered as the most promising cell source for cell replacement therapy. However, the difficulty in inducing neuronal differentiation and maturation from NSCs is a major challenge for their clinical application. Clarifying the molecular mechanisms underlying the neuronal differentiation of NSCs can provide a basis for expanding their uses. Brain 4 (Brn4) is a member of the POU domain family of transcription factors and can induce the neuronal differentiation of NSCs, but its precise function in NSCs is unclear. To address this question, in this study we isolated and expanded radial glial cells (RGCs), a type of NSC, from the cerebral cortex of 14-day embryonic rats and used lentivirus carrying the human Brn4 gene to overexpress Brn4 in these cells. This induced the differentiation of RGCs into neurons and inhibited the expression of C-terminal binding protein 2 (CtBP2), a transcriptional co-repressor. CtBP2 overexpression in RGCs suppressed their differentiation into neurons, whereas CtBP2 knockdown had the opposite effect. These results indicated that Brn4 promoted the neuronal differentiation of NSCs via inhibition of CtBP2 and is a potential tool for generating neurons in cell replacement therapy of neurodegenerative diseases and brain injury.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Anatomy and Cytoneurobiology Unit, Medical College of Soochow University, Suzhou, Jiangsu 215123, China; Department of Human Anatomy, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Xinhua Zhang
- Department of Human Anatomy, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Ye Zhang
- Department of Anatomy and Cytoneurobiology Unit, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Naijuan Xu
- Department of Human Anatomy, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Jue Wang
- Department of Human Anatomy, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Yuanyuan Zhu
- Department of Human Anatomy, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Chunlin Xia
- Department of Anatomy and Cytoneurobiology Unit, Medical College of Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
30
|
Ghanavatinejad F, Fard Tabrizi ZP, Omidghaemi S, Sharifi E, Møller SG, Jami MS. Protein biomarkers of neural system. J Otol 2019; 14:77-88. [PMID: 31467504 PMCID: PMC6712353 DOI: 10.1016/j.joto.2019.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/14/2019] [Accepted: 03/20/2019] [Indexed: 11/30/2022] Open
Abstract
The utilization of biomarkers for in vivo and in vitro research is growing rapidly. This is mainly due to the enormous potential of biomarkers in evaluating molecular and cellular abnormalities in cell models and in tissue, and evaluating drug responses and the effectiveness of therapeutic intervention strategies. An important way to analyze the development of the human body is to assess molecular markers in embryonic specialized cells, which include the ectoderm, mesoderm, and endoderm. Neuronal development is controlled through the gene networks in the neural crest and neural tube, both components of the ectoderm. The neural crest differentiates into several different tissues including, but not limited to, the peripheral nervous system, enteric nervous system, melanocyte, and the dental pulp. The neural tube eventually converts to the central nervous system. This review provides an overview of the differentiation of the ectoderm to a fully functioning nervous system, focusing on molecular biomarkers that emerge at each stage of the cellular specialization from multipotent stem cells to completely differentiated cells. Particularly, the otic placode is the origin of most of the inner ear cell types such as neurons, sensory hair cells, and supporting cells. During the development, different auditory cell types can be distinguished by the expression of the neurogenin differentiation factor1 (Neuro D1), Brn3a, and transcription factor GATA3. However, the mature auditory neurons express other markers including βIII tubulin, the vesicular glutamate transporter (VGLUT1), the tyrosine receptor kinase B and C (Trk B, C), BDNF, neurotrophin 3 (NT3), Calretinin, etc.
Collapse
Affiliation(s)
- Fatemeh Ghanavatinejad
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Science, Shahrekord, Iran
| | - Zahra Pourteymour Fard Tabrizi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Science, Shahrekord, Iran
| | - Shadi Omidghaemi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Science, Shahrekord, Iran
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Simon Geir Møller
- Department of Biological Sciences, St John's University, New York, NY, USA
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Norway
| | - Mohammad-Saeid Jami
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Science, Shahrekord, Iran
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, CA, 90095, USA
| |
Collapse
|
31
|
Dunn GA, Nigg JT, Sullivan EL. Neuroinflammation as a risk factor for attention deficit hyperactivity disorder. Pharmacol Biochem Behav 2019; 182:22-34. [PMID: 31103523 PMCID: PMC6855401 DOI: 10.1016/j.pbb.2019.05.005] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 01/08/2023]
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is a persistent, and impairing pediatric-onset neurodevelopmental condition. Its high prevalence, and recurrent controversy over its widespread identification and treatment, drive strong interest in its etiology and mechanisms. Emerging evidence for a role for neuroinflammation in ADHD pathophysiology is of great interest. This evidence includes 1) the above-chance comorbidity of ADHD with inflammatory and autoimmune disorders, 2) initial studies indicating an association with ADHD and increased serum cytokines, 3) preliminary evidence from genetic studies demonstrating associations between polymorphisms in genes associated with inflammatory pathways and ADHD, 4) emerging evidence that early life exposure to environmental factors may increase risk for ADHD via an inflammatory mechanism, and 5) mechanistic evidence from animal models of maternal immune activation documenting behavioral and neural outcomes consistent with ADHD. Prenatal exposure to inflammation is associated with changes in offspring brain development including reductions in cortical gray matter volume and the volume of certain cortical areas -parallel to observations associated with ADHD. Alterations in neurotransmitter systems, including the dopaminergic, serotonergic and glutamatergic systems, are observed in ADHD populations. Animal models provide strong evidence that development and function of these neurotransmitters systems are sensitive to exposure to in utero inflammation. In summary, accumulating evidence from human studies and animal models, while still incomplete, support a potential role for neuroinflammation in the pathophysiology of ADHD. Confirmation of this association and the underlying mechanisms have become valuable targets for research. If confirmed, such a picture may be important in opening new intervention routes.
Collapse
Affiliation(s)
| | - Joel T Nigg
- Oregon Health and Science University, United States of America
| | - Elinor L Sullivan
- University of Oregon, United States of America; Oregon Health and Science University, United States of America; Oregon National Primate Research Center, United States of America.
| |
Collapse
|
32
|
Holst CB, Brøchner CB, Vitting-Seerup K, Møllgård K. Astrogliogenesis in human fetal brain: complex spatiotemporal immunoreactivity patterns of GFAP, S100, AQP4 and YKL-40. J Anat 2019; 235:590-615. [PMID: 30901080 DOI: 10.1111/joa.12948] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2019] [Indexed: 12/14/2022] Open
Abstract
The astroglial lineage consists of heterogeneous cells instrumental for normal brain development, function and repair. Unfortunately, this heterogeneity complicates research in the field, which suffers from lack of truly specific and sensitive astroglial markers. Nevertheless, single astroglial markers are often used to describe astrocytes in different settings. We therefore investigated and compared spatiotemporal patterns of immunoreactivity in developing human brain from 12 to 21 weeks post conception and publicly available RNA expression data for four established and potential astroglial markers - GFAP, S100, AQP4 and YKL-40. In the hippocampal region, we also screened for C3, a complement component highly expressed in A1-reactive astrocytes. We found diverging partly overlapping patterns of the established astroglial markers GFAP, S100 and AQP4, confirming that none of these markers can fully describe and discriminate different developmental forms and subpopulations of astrocytes in human developing brain, although AQP4 seems to be the most sensitive and specific marker for the astroglial lineage at midgestation. AQP4 characterizes a brain-wide water transport system in cerebral cortex with regional differences in immunoreactivity at midgestation. AQP4 distinguishes a vast proportion of astrocytes and subpopulations of radial glial cells destined for the astroglial lineage, including astrocytes determined for the future glia limitans and apical truncated radial glial cells in ganglionic eminences, devoid of GFAP and S100. YKL-40 and C3d, previously found in reactive astrocytes, stain different subpopulations of astrocytes/astroglial progenitors in developing hippocampus at midgestation and may characterize specific subpopulations of 'developmental astrocytes'. Our results clearly reflect that lack of pan-astrocytic markers necessitates the consideration of time, region, context and aim when choosing appropriate astroglial markers.
Collapse
Affiliation(s)
- Camilla Bjørnbak Holst
- Faculty of Health and Medical Sciences, Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Copenhagen, Denmark.,Department of Radiation Biology, Department of Oncology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christian Beltoft Brøchner
- Faculty of Health and Medical Sciences, Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kristoffer Vitting-Seerup
- Brain Tumor Biology, Danish Cancer Society Research Centre, Danish Cancer Society, Copenhagen, Denmark
| | - Kjeld Møllgård
- Faculty of Health and Medical Sciences, Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
33
|
Freitas PD, Yandulskaya AS, Monaghan JR. Spinal Cord Regeneration in Amphibians: A Historical Perspective. Dev Neurobiol 2019; 79:437-452. [PMID: 30725532 DOI: 10.1002/dneu.22669] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/11/2022]
Abstract
In some vertebrates, a grave injury to the central nervous system (CNS) results in functional restoration, rather than in permanent incapacitation. Understanding how these animals mount a regenerative response by activating resident CNS stem cell populations is of critical importance in regenerative biology. Amphibians are of a particular interest in the field because the regenerative ability is present throughout life in urodele species, but in anuran species it is lost during development. Studying amphibians, who transition from a regenerative to a nonregenerative state, could give insight into the loss of ability to recover from CNS damage in mammals. Here, we highlight the current knowledge of spinal cord regeneration across vertebrates and identify commonalities and differences in spinal cord regeneration between amphibians.
Collapse
Affiliation(s)
- Polina D Freitas
- Department of Biology, Northeastern University, 360 Huntington Ave., 134 Mugar Hall, Boston, Massachusetts, 02115
| | - Anastasia S Yandulskaya
- Department of Biology, Northeastern University, 360 Huntington Ave., 134 Mugar Hall, Boston, Massachusetts, 02115
| | - James R Monaghan
- Department of Biology, Northeastern University, 360 Huntington Ave., 134 Mugar Hall, Boston, Massachusetts, 02115
| |
Collapse
|
34
|
Sukhorukova EG, Kirik OV, Sufieva DA, Alekseeva OS, Korzhevskii DE. Structural Organization of Astrocytes in the Subgranular Zone of the Rabbit Hippocampal Dentate Fascia. J EVOL BIOCHEM PHYS+ 2019. [DOI: 10.1134/s002209301902008x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Dominguez Gonzalez B, Billion K, Rous S, Pavie B, Lange C, Goodchild R. Excess LINC complexes impair brain morphogenesis in a mouse model of recessive TOR1A disease. Hum Mol Genet 2019; 27:2154-2170. [PMID: 29868845 DOI: 10.1093/hmg/ddy125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/06/2018] [Indexed: 01/08/2023] Open
Abstract
Heterozygosity for the TOR1A-Δgag mutation causes semi-penetrant childhood-onset dystonia (OMIM #128100). More recently, homozygous TOR1A mutations were shown to cause severe neurological dysfunction in infants. However, there is little known about the recessive cases, including whether existing reports define the full spectrum of recessive TOR1A disease. Here we describe abnormal brain morphogenesis in ∼30% of Tor1a-/- mouse embryos while, in contrast, this is not found in Tor1aΔgag/Δgag mice. The abnormal Tor1a-/- brains contain excess neural tissue, as well as proliferative zone cytoarchitectural defects related to radial glial cell polarity and cytoskeletal organization. In cultured cells torsinA effects the linker of nucleoskeleton and cytoskeleton (LINC) complex that couples the nucleus and cytoskeleton. Here we identify that torsinA loss elevates LINC complex levels in the proliferative zone, and that genetic reduction of LINC complexes prevents abnormal brain morphogenesis in Tor1a-/- embryos. These data show that Tor1a affects radial glial cells via a LINC complex mediated mechanism. They also predict human TOR1A disease will include incompletely penetrant defects in embryonic brain morphogenesis in cases where mutations ablate TOR1A function.
Collapse
Affiliation(s)
- Beatriz Dominguez Gonzalez
- VIB & KU Leuven Centre for Brain & Disease Research, Campus Gasthuisberg, 3000 Leuven, Belgium.,Department of Neurosciences, Campus Gasthuisberg, KU Leuven, 3000 Leuven, Belgium
| | - Karolien Billion
- VIB & KU Leuven Centre for Brain & Disease Research, Campus Gasthuisberg, 3000 Leuven, Belgium.,Department of Neurosciences, Campus Gasthuisberg, KU Leuven, 3000 Leuven, Belgium
| | - Stef Rous
- VIB & KU Leuven Centre for Brain & Disease Research, Campus Gasthuisberg, 3000 Leuven, Belgium.,Department of Neurosciences, Campus Gasthuisberg, KU Leuven, 3000 Leuven, Belgium
| | - Benjamin Pavie
- VIB & KU Leuven Centre for Brain & Disease Research, Campus Gasthuisberg, 3000 Leuven, Belgium.,VIB Bio Imaging Core, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Christian Lange
- DFG-Research Center and Cluster of Excellence for Regenerative Therapies (CRTD), Technische Universität Dresden, Fetscherstr. 105, D-01307, Dresden, Germany
| | - Rose Goodchild
- VIB & KU Leuven Centre for Brain & Disease Research, Campus Gasthuisberg, 3000 Leuven, Belgium.,Department of Neurosciences, Campus Gasthuisberg, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
36
|
Abstract
This chapter provides an overview of the early developmental origins of six ocular tissues: the cornea, lens, ciliary body, iris, neural retina, and retina pigment epithelium. Many of these tissue types are concurrently specified and undergo a complex set of morphogenetic movements that facilitate their structural interconnection. Within the context of vertebrate eye organogenesis, we also discuss the genetic hierarchies of transcription factors and signaling pathways that regulate growth, patterning, cell type specification and differentiation.
Collapse
Affiliation(s)
- Joel B Miesfeld
- Department of Cell Biology & Human Anatomy, University of California Davis School of Medicine, Davis, CA, United States
| | - Nadean L Brown
- Department of Cell Biology & Human Anatomy, University of California Davis School of Medicine, Davis, CA, United States.
| |
Collapse
|
37
|
Broix L, Asselin L, Silva CG, Ivanova EL, Tilly P, Gilet JG, Lebrun N, Jagline H, Muraca G, Saillour Y, Drouot N, Reilly ML, Francis F, Benmerah A, Bahi-Buisson N, Belvindrah R, Nguyen L, Godin JD, Chelly J, Hinckelmann MV. Ciliogenesis and cell cycle alterations contribute to KIF2A-related malformations of cortical development. Hum Mol Genet 2019; 27:224-238. [PMID: 29077851 DOI: 10.1093/hmg/ddx384] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/17/2017] [Indexed: 11/13/2022] Open
Abstract
Genetic findings reported by our group and others showed that de novo missense variants in the KIF2A gene underlie malformations of brain development called pachygyria and microcephaly. Though KIF2A is known as member of the Kinesin-13 family involved in the regulation of microtubule end dynamics through its ATP dependent MT-depolymerase activity, how KIF2A variants lead to brain malformations is still largely unknown. Using cellular and in utero electroporation approaches, we show here that KIF2A disease-causing variants disrupts projection neuron positioning and interneuron migration, as well as progenitors proliferation. Interestingly, further dissection of this latter process revealed that ciliogenesis regulation is also altered during progenitors cell cycle. Altogether, our data suggest that deregulation of the coupling between ciliogenesis and cell cycle might contribute to the pathogenesis of KIF2A-related brain malformations. They also raise the issue whether ciliogenesis defects are a hallmark of other brain malformations, such as those related to tubulins and MT-motor proteins variants.
Collapse
Affiliation(s)
- Loïc Broix
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France.,CNRS U7104, Illkirch 67400, France.,INSERM U964, Illkirch 67400, France.,Université de Strasbourg, Illkirch 67400, France.,Institut Cochin, INSERM U1016, CNRS U8104, Paris Descartes University, Paris 75000, France
| | - Laure Asselin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France.,CNRS U7104, Illkirch 67400, France.,INSERM U964, Illkirch 67400, France.,Université de Strasbourg, Illkirch 67400, France
| | - Carla G Silva
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Ekaterina L Ivanova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France.,CNRS U7104, Illkirch 67400, France.,INSERM U964, Illkirch 67400, France.,Université de Strasbourg, Illkirch 67400, France
| | - Peggy Tilly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France.,CNRS U7104, Illkirch 67400, France.,INSERM U964, Illkirch 67400, France.,Université de Strasbourg, Illkirch 67400, France
| | - Johan G Gilet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France.,CNRS U7104, Illkirch 67400, France.,INSERM U964, Illkirch 67400, France.,Université de Strasbourg, Illkirch 67400, France
| | - Nicolas Lebrun
- Institut Cochin, INSERM U1016, CNRS U8104, Paris Descartes University, Paris 75000, France
| | - Hélène Jagline
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France.,CNRS U7104, Illkirch 67400, France.,INSERM U964, Illkirch 67400, France.,Université de Strasbourg, Illkirch 67400, France
| | - Giuseppe Muraca
- Institut Cochin, INSERM U1016, CNRS U8104, Paris Descartes University, Paris 75000, France
| | - Yoann Saillour
- Institut Cochin, INSERM U1016, CNRS U8104, Paris Descartes University, Paris 75000, France
| | - Nathalie Drouot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France.,CNRS U7104, Illkirch 67400, France.,INSERM U964, Illkirch 67400, France.,Université de Strasbourg, Illkirch 67400, France
| | - Madeline Louise Reilly
- Paris Diderot University, Paris 75013, France.,INSERM UMR 1163, Paris 75015, France.,Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris 75015, France
| | - Fiona Francis
- Inserm UMR-S 839, Paris 75005, France.,Sorbonne Université, Université Pierre et Marie Curie, Paris 75000, France.,Institut du Fer à Moulin, Paris 75000, France
| | - Alexandre Benmerah
- INSERM UMR 1163, Paris 75015, France.,Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris 75015, France
| | - Nadia Bahi-Buisson
- Paris Diderot University, Paris 75013, France.,INSERM UMR 1163, Paris 75015, France
| | - Richard Belvindrah
- Inserm UMR-S 839, Paris 75005, France.,Sorbonne Université, Université Pierre et Marie Curie, Paris 75000, France.,Institut du Fer à Moulin, Paris 75000, France
| | - Laurent Nguyen
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Juliette D Godin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France.,CNRS U7104, Illkirch 67400, France.,INSERM U964, Illkirch 67400, France.,Université de Strasbourg, Illkirch 67400, France
| | - Jamel Chelly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France.,CNRS U7104, Illkirch 67400, France.,INSERM U964, Illkirch 67400, France.,Université de Strasbourg, Illkirch 67400, France.,Service de Diagnostic Génétique, Hôpital Civil de Strasbourg, Hôpitaux Universitaires de Strasbourg, Strasbourg 67000, France
| | - Maria-Victoria Hinckelmann
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France.,CNRS U7104, Illkirch 67400, France.,INSERM U964, Illkirch 67400, France.,Université de Strasbourg, Illkirch 67400, France
| |
Collapse
|
38
|
Kelly A, O'Malley A, Redha M, O'Keeffe GW, Barry DS. The distribution of the proteoglycan FORSE-1 in the developing mouse central nervous system. J Anat 2018; 234:216-226. [PMID: 30474148 DOI: 10.1111/joa.12907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2018] [Indexed: 01/30/2023] Open
Abstract
Glycosylation is a major post-translational modification in which a carbohydrate known as a glycan is enzymatically attached to target proteins which regulate protein folding and stability. Glycans are strongly expressed in the developing nervous system where they play multiple roles during development. The importance of these glycan epitopes in neural development is highlighted by a group of conditions known as congenital disorders of glycosylation which lead to psychomotor difficulties, mental retardation, lissencephaly, microencephaly and epilepsy. One of these glycan epitopes, known as Lewis X, is recognised by the FORSE-1 antibody and is regionally expressed in the developing nervous system. In this study, we report the regional and temporal expression patterns of FORSE-1 immunolabelling during the periods of neurogenesis, gliogenesis and axonogenesis in developing mouse nervous system. We demonstrate the localisation of FORSE-1 on subsets of neuroepithelial cells and radial glial cells, and in compartments corresponding to axon tract formation. These spatial, temporal and regional expression patterns are suggestive of roles in the determination of different cell lineages and in the patterning of white matter during development, and help provide insights into the neuroanatomical regions affected by congenital disorders of glycosylation.
Collapse
Affiliation(s)
- Albert Kelly
- Department of Anatomy, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Aisling O'Malley
- Department of Anatomy, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Mohammad Redha
- Department of Anatomy, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Denis S Barry
- Department of Anatomy, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
39
|
Yang Y, Ren J, Sun Y, Xue Y, Zhang Z, Gong A, Wang B, Zhong Z, Cui Z, Xi Z, Yang GY, Sun Q, Bian L. A connexin43/YAP axis regulates astroglial-mesenchymal transition in hemoglobin induced astrocyte activation. Cell Death Differ 2018; 25:1870-1884. [PMID: 29880858 DOI: 10.1038/s41418-018-0137-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 04/12/2018] [Accepted: 05/16/2018] [Indexed: 01/05/2023] Open
Abstract
Reactive astrogliosis is a common response to insults to the central nervous system, but the mechanism remains unknown. In this study, we found the temporal and spatial differential expression of glial fibrillary acidic protein (GFAP) and Vimentin in the intracerebral hemorrhage (ICH) mouse brain, indicating that the de-differentiation and astroglial-mesenchymal transition (AMT) of astrocytes might be an early event in reactive astrogliosis. Further we verified the AMT finding in purified astrocyte cultures exposed to hemoglobin (Hb). Additionally, Connexin 43 (Cx43) downregulation and YAP nuclear translocation were observed in Hb-activated astrocytes. Knocking down Cx43 by siRNA triggered YAP nuclear translocation. Cx43 and YAP were physically associated as determined by immunofluorescence and co-immunoprecipitation. We propose that astrocytes undergo AMT during Hb-induced activation where Cx43 downregulation facilitates YAP nuclear translocation is a novel mechanism involved in this process. Cx43-YAP interaction may represent a potential therapeutic target for modulating astrocyte activation.
Collapse
Affiliation(s)
- Yong Yang
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.,Department of Neurosurgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Jie Ren
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yuhao Sun
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yuan Xue
- Zhenjiang Center for Disease Control and Prevention, Zhenjiang, 212000, China
| | - Zhijian Zhang
- Basic Medical Science Research Center, School of Medicine, Jiangsu University, Zhenjiang, 212000, China
| | - Aihua Gong
- Basic Medical Science Research Center, School of Medicine, Jiangsu University, Zhenjiang, 212000, China
| | - Baofeng Wang
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Zhihong Zhong
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Zhenwen Cui
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Zhiyu Xi
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Qingfang Sun
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China. .,Department of Neurosurgery, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Liuguan Bian
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
40
|
GDNF family receptor α-1 in the catfish: Possible implication to brain dopaminergic activity. Brain Res Bull 2018; 140:270-280. [PMID: 29758254 DOI: 10.1016/j.brainresbull.2018.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/28/2018] [Accepted: 05/08/2018] [Indexed: 02/03/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF)is a potent trophic factor that preferentially binds to GDNF family receptor α-1 (GFRα-1)by regulating dopaminergic (DA-ergic) neuronsin brain. Present study aimed to evaluate the significance of GFRα-1 expression during early brain development in catfish. Initially, the full-length cDNA of GFRα-1 was cloned from adult brain which showed high homology with other vertebrate counterparts. Quantitative PCR analysis of tissue distribution revealed ubiquitous expression of GFRα-1 in the tissues analyzed with high levels in female brain and ovary. Significant high expression was evident in brain at 75 and 100 days post hatch females than the respective age-match males. Expression of GFRα-1 was high in brain during the spawning phase when compared to other reproductive phases. Localization of GFRα-1 revealed its presence in preoptic area-hypothalamus which correlated well with the expression profile in discrete areas of brain in adult catfish. Transient silencing of GFRα-1through siRNA lowered expression levels of GFRα-1, which further down regulated the expression of certain brain-specific genes. Expression of GFRα-1 in brain declined significantly upon treatment with the 1-methyl-1,2,3,6-tetrahydropyridinecausing neurodegeneration which further correlated with catecholamines (CA), L-3,4-dihydroxyphenylalanine, DA and norepinephrine levels. Taken together, GFRα-1 plausibly entrains gonadotropin-releasing hormone and gonadotropin axiseither directly or indirectly, at least by partially targeting CA-ergic activity.
Collapse
|
41
|
Patel S, Patel R, Park MTM, Masellis M, Knight J, Chakravarty MM. Heritability estimates of cortical anatomy: The influence and reliability of different estimation strategies. Neuroimage 2018; 178:78-91. [PMID: 29742386 DOI: 10.1016/j.neuroimage.2018.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 04/23/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022] Open
Abstract
Twin study designs have been previously used to investigate the heritability of neuroanatomical measures, such as regional cortical volumes. Volume can be fractionated into surface area and cortical thickness, where both measures are considered to have independent genetic and environmental bases. Region of interest (ROI) and vertex-wise approaches have been used to calculate heritability of cortical thickness and surface area in twin studies. In our study, we estimate heritability using the Human Connectome Project magnetic resonance imaging dataset composed of healthy young twin and non-twin siblings (mean age of 29, sample size of 757). Both ROI and vertex-wise methods were used to compare regional heritability of cortical thickness and surface area. Heritability estimates were controlled for age, sex, and total ipsilateral surface area or mean cortical thickness. In both approaches, heritability estimates of cortical thickness and surface area were lower when accounting for average ipsilateral cortical thickness and total surface area respectively. When comparing both approaches at a regional level, the vertex-wise approach showed higher surface area and lower cortical thickness heritability estimates compared to the ROI approach. The calcarine fissure had the highest surface area heritability estimate (ROI: 44%, vertex-wise: 50%) and posterior cingulate gyrus had the highest cortical thickness heritability (ROI: 50%, vertex-wise 40%). We also observed that limitations in image processing and variability in spatial averaging errors based on regional size may make obtaining true estimates of cortical thickness and surface area challenging in smaller regions. It is important to identify which approach is best suited to estimate heritability based on the research hypothesis and the size of the regions being investigated.
Collapse
Affiliation(s)
- Sejal Patel
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| | - Raihaan Patel
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Verdun, QC, Canada; Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Min Tae M Park
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Verdun, QC, Canada; Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Mario Masellis
- Division of Neurology, Sunnybrook Health Sciences Centre, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Jo Knight
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Lancaster Medical School and Data Science Institute, Lancaster University, Lancaster, UK
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Verdun, QC, Canada; Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
42
|
Clasadonte J, Prevot V. The special relationship: glia-neuron interactions in the neuroendocrine hypothalamus. Nat Rev Endocrinol 2018; 14:25-44. [PMID: 29076504 DOI: 10.1038/nrendo.2017.124] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Natural fluctuations in physiological conditions require adaptive responses involving rapid and reversible structural and functional changes in the hypothalamic neuroendocrine circuits that control homeostasis. Here, we discuss the data that implicate hypothalamic glia in the control of hypothalamic neuroendocrine circuits, specifically neuron-glia interactions in the regulation of neurosecretion as well as neuronal excitability. Mechanistically, the morphological plasticity displayed by distal processes of astrocytes, pituicytes and tanycytes modifies the geometry and diffusion properties of the extracellular space. These changes alter the relationship between glial cells of the hypothalamus and adjacent neuronal elements, especially at specialized intersections such as synapses and neurohaemal junctions. The structural alterations in turn lead to functional plasticity that alters the release and spread of neurotransmitters, neuromodulators and gliotransmitters, as well as the activity of discrete glial signalling pathways that mediate feedback by peripheral signals to the hypothalamus. An understanding of the contributions of these and other non-neuronal cell types to hypothalamic neuroendocrine function is thus critical both to understand physiological processes such as puberty, the maintenance of bodily homeostasis and ageing and to develop novel therapeutic strategies for dysfunctions of these processes, such as infertility and metabolic disorders.
Collapse
Affiliation(s)
- Jerome Clasadonte
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, U1172, Bâtiment Biserte, 1 Place de Verdun, 59045, Lille, Cedex, France
- University of Lille, FHU 1000 days for Health, School of Medicine, Lille 59000, France
| | - Vincent Prevot
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, U1172, Bâtiment Biserte, 1 Place de Verdun, 59045, Lille, Cedex, France
- University of Lille, FHU 1000 days for Health, School of Medicine, Lille 59000, France
| |
Collapse
|
43
|
Da Fonte DF, Martyniuk CJ, Xing L, Trudeau VL. Secretoneurin A Directly Regulates the Proteome of Goldfish Radial Glial Cells In Vitro. Front Endocrinol (Lausanne) 2018; 9:68. [PMID: 29559953 PMCID: PMC5845582 DOI: 10.3389/fendo.2018.00068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/16/2018] [Indexed: 01/09/2023] Open
Abstract
Radial glial cells (RGCs) are the main macroglia in the teleost brain and have established roles in neurogenesis and neurosteroidogenesis. They are the only brain cell type expressing aromatase B (cyp19a1b), the enzyme that synthesizes estrogens from androgen precursors. There are few studies on the regulation of RGC functions, but our previous investigations demonstrated that dopamine stimulates cyp19a1b expression in goldfish RGCs, while secretoneurin A (SNa) inhibits the expression of this enzyme. Here, we determine the range of proteins and cellular processes responsive to SNa treatments in these steroidogenic cells. The focus here is on SNa, because this peptide is derived from selective processing of secretogranin II in magnocellular cells embedded within the RGC-rich preoptic nucleus. Primary cultures of RGCs were treated (24 h) with 10, 100, or 1,000 nM SNa. By using isobaric tagging for relative and absolute quantitation and a Hybrid Quadrupole Obritrap Mass Spectrometry system, a total of 1,363 unique proteins were identified in RGCs, and 609 proteins were significantly regulated by SNa at one or more concentrations. Proteins that showed differential expression with all three concentrations of SNa included H1 histone, glutamyl-prolyl-tRNA synthetase, Rho GDP dissociation inhibitor γ, vimentin A2, and small nuclear ribonucleoprotein-associated protein. At 10, 100, and 1,000 nM SNa, there were 5, 195, and 489 proteins that were downregulated, respectively, whereas the number of upregulated proteins were 72, 44, and 51, respectively. Subnetwork enrichment analysis of differentially regulated proteins revealed that processes such as actin organization, cytoskeleton organization and biogenesis, apoptosis, mRNA processing, RNA splicing, translation, cell growth, and proliferation are regulated by SNa based on the proteomic response. Moreover, we observed that, at the low concentration of SNa, there was an increase in the abundance of proteins involved in cell growth, proliferation, and migration, whereas higher concentration of SNa appeared to downregulate proteins involved in these processes, indicating a dose-dependent proteome response. At the highest concentration of SNa, proteins linked to the etiology of diseases of the central nervous system (brain injuries, Alzheimer disease, Parkinson's disease, cerebral infraction, brain ischemia) were also differentially regulated. These data implicate SNa in the control of cell proliferation and neurogenesis.
Collapse
Affiliation(s)
| | - Chris J. Martyniuk
- Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Lei Xing
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Vance L. Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Vance L. Trudeau,
| |
Collapse
|
44
|
Zhu Y, Shen J, Sun T, Jiang H, Xu K, Samuthrat T, Xie Y, Weng Y, Li Y, Xie Q, Zhan R. Loss of Shp2 within radial glia is associated with cerebral cortical dysplasia, glial defects of cerebellum and impaired sensory‑motor development in newborn mice. Mol Med Rep 2017; 17:3170-3177. [PMID: 29257282 DOI: 10.3892/mmr.2017.8236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/20/2017] [Indexed: 11/06/2022] Open
Abstract
Radial glia are key neural progenitors involved in the development of the central nervous system. Tyrosine-protein phosphatase non‑receptor type 11 (Shp2) is a widely expressed intracellular enzyme with multiple cellular functions. Previous studies have revealed the critical role of Shp2 in a variety of neural cell types; however, further investigation into the function of Shp2 within radial glia is required. In the present study, a conditional knockout mouse was generated using a human glial fibrillary acidic protein (hGFAP)‑Cre driver, in which the Shp2 genes were deleted within radial glia. Loss of Shp2 within radial glia was associated with developmental retardation, postnatal lethality, reduced brain size and thinner cerebral cortices in newborn mice. Deletion of Shp2 also led to an increase in gliogenesis, a reduction in neural genesis and extracellular signal‑regulated kinase signaling within the cerebral cortex. Furthermore, glial cell defects within the cerebellum of Shp2 mutants were observed, with abnormal granular cell retention and glial cell alignment in the external granular layer. In addition, Shp2 mutants exhibited impaired sensory‑motor development. The results of the present study suggested that Shp2 may have an important role within radial glia, and regulate cerebral cortical and cerebellar development in newborn mice.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Jian Shen
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Tianfu Sun
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Hao Jiang
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Kangli Xu
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Thiti Samuthrat
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Yicheng Xie
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research and Brain Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Yuxiang Weng
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Yongda Li
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Qiangmin Xie
- Zhejiang Respiratory Drugs Research Laboratory of China Food and Drug Administration, Laboratory Animal Center of Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Renya Zhan
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
45
|
Sild M, Ruthazer ES, Booij L. Major depressive disorder and anxiety disorders from the glial perspective: Etiological mechanisms, intervention and monitoring. Neurosci Biobehav Rev 2017; 83:474-488. [DOI: 10.1016/j.neubiorev.2017.09.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/08/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022]
|
46
|
Rapti G, Li C, Shan A, Lu Y, Shaham S. Glia initiate brain assembly through noncanonical Chimaerin-Furin axon guidance in C. elegans. Nat Neurosci 2017; 20:1350-1360. [PMID: 28846083 PMCID: PMC5614858 DOI: 10.1038/nn.4630] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/19/2017] [Indexed: 01/08/2023]
Abstract
Brain assembly is hypothesized to begin when pioneer axons extend over non-neuronal cells, forming tracts guiding follower axons. Yet pioneer-neuron identities, their guidance substrates, and their interactions are not well understood. Here, using time-lapse embryonic imaging, genetics, protein-interaction, and functional studies, we uncover the early events of C. elegans brain assembly. We demonstrate that C. elegans glia are key for assembly initiation, guiding pioneer and follower axons using distinct signals. Pioneer sublateral neurons, with unique growth properties, anatomy, and innervation, cooperate with glia to mediate follower-axon guidance. We further identify a Chimaerin (CHIN-1)- Furin (KPC-1) double-mutant that severely disrupts assembly. CHIN-1 and KPC-1 function noncanonically, in glia and pioneer neurons, for guidance-cue trafficking. We exploit this bottleneck to define roles for glial Netrin and Semaphorin in pioneer- and follower-axon guidance, respectively, and for glial and pioneer-neuron Flamingo (CELSR) in follower-axon navigation. Taken together, our studies reveal previously undescribed glial roles in pioneer-axon guidance, suggesting conserved principles of brain assembly.
Collapse
Affiliation(s)
- Georgia Rapti
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Chang Li
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
- These authors contributed equally to this work
| | - Alan Shan
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
- These authors contributed equally to this work
| | - Yun Lu
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| |
Collapse
|
47
|
Dewan A, Saran RK, Gupta SN, Arya D, Goel R. Intraocular Ependymoma With Blood-Filled Spaces: Neoplasm or a Reactive Process With Ependymal Differentiation-A Dilemma. Int J Surg Pathol 2017; 25:368-373. [PMID: 28193095 DOI: 10.1177/1066896917692098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intraocular glial lesions are rare and include retinal gliosis, hamartomas, and astrocytomas and rarely ependymomas. Ependymomas are slow-growing glial tumors preferentially arising in the central nervous system (CNS), occasionally presenting at sites outside the CNS, with only 2 cases of primary retinal ependymoma reported till date. We report herein the third such case of a 20-year-old male who presented with a painful blind eye. The enucleated specimen showed presence of a glial tumor with cells arranged in sheets as well as few true rosettes and pseudo-rosettes and an immunohistochemical profile similar to a classical ependymoma at usual sites in the CNS. Additionally, the presence of blood-filled spaces and few proliferating blood vessels made it a diagnostic challenge. All retinal glial lesions are positive for GFAP and S100. Therefore, immunostaining for EMA as well as the MIB-1-labeling index maybe vital in differentiating ependymomas from other intraocular glial lesions.
Collapse
Affiliation(s)
- Aditi Dewan
- 1 Govind Ballabh Pant Institute of Post Graduate Medical Education and Research, New Delhi, India
| | - Ravindra Kumar Saran
- 1 Govind Ballabh Pant Institute of Post Graduate Medical Education and Research, New Delhi, India
| | | | | | - Ruchi Goel
- 2 Maulana Azad Medical College, New Delhi, India
| |
Collapse
|
48
|
Xing L, Gutierrez-Villagomez JM, Da Fonte DF, Venables MJ, Trudeau VL. Dehydroabietic acid cytotoxicity in goldfish radial glial cells in vitro. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 180:78-83. [PMID: 27658224 DOI: 10.1016/j.aquatox.2016.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/08/2016] [Accepted: 09/11/2016] [Indexed: 06/06/2023]
Abstract
Dehydroabietic acid (DHAA) is a resin acid present in aquatic environments shown to induce cellular and molecular damage in aquatic animals. In this study, the cytotoxicity of DHAA on primary cultured goldfish radial glial cells (RGCs), an important component of the central nervous system, was evaluated. Here, it is reported that a concentration of 20mg/L DHAA affected cellular morphology and expression of genes involved in RGC steroidogenesis and metabolism. Higher concentration exposures of DHAA (40mg/L) lead to RGC death based on a lactate dehydrogenase leakage assay. Together, these data have implications in understanding the effects of DHAA on an integral central nervous system cell type important for neurogenesis, steroidogenesis and structural support. Due to the continuous presence of DHAA into water systems, results from this study provide indications as to the potential impacts of DHAA and demonstrate the importance of this class of chemicals on aquatic organisms.
Collapse
Affiliation(s)
- Lei Xing
- Department of Biology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | | | - Dillon F Da Fonte
- Department of Biology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Maddie J Venables
- Department of Biology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.
| |
Collapse
|
49
|
Liu L, Zhang Q, Cai Y, Sun D, He X, Wang L, Yu D, Li X, Xiong X, Xu H, Yang Q, Fan X. Resveratrol counteracts lipopolysaccharide-induced depressive-like behaviors via enhanced hippocampal neurogenesis. Oncotarget 2016; 7:56045-56059. [PMID: 27517628 PMCID: PMC5302895 DOI: 10.18632/oncotarget.11178] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/20/2016] [Indexed: 11/25/2022] Open
Abstract
Radial glial-like cells (RGLs) in the adult dentate gyrus (DG) function as progenitor cells for adult hippocampal neurogenesis, a process involved in the stress-related pathophysiology and treatment efficiency of depression. Resveratrol (RSV) has been demonstrated to be a potent activator of neurogenesis. The present study investigated whether chronic RSV treatment has antidepressant potential in relation to hippocampal neurogenesis. Mice received two weeks of RSV (20 mg/kg) or dimethylsulfoxide (DMSO) treatment, followed by lipopolysaccharide (LPS; 1 mg/kg) or saline injections for 5 days. We found that RSV treatment abrogated the increased immobility in the forced swimming test and tail suspension test induced by LPS. Immunohistochemical staining revealed that RSV treatment reversed the increase in microglial activation and the inhibition in DG neurogenesis. RSV treatment also attenuated LPS-induced defects in the expanding of RGLs through promoting symmetric division. In addition, RSV ameliorated LPS-induced NF-κB activation in the hippocampus coincides with the up-regulation levels of Sirt1 and Hes1. Taken together, these data indicated that RSV-induced Sirt1 activation counteracts LPS-induced depression-like behaviors via a neurogenic mechanism. A new model to understand the role of RSV in treating depression may result from these findings.
Collapse
Affiliation(s)
- Liang Liu
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, China
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qin Zhang
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Yulong Cai
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Dayu Sun
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, China
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xie He
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Lian Wang
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Dan Yu
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Xin Li
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Xiaoyi Xiong
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Haiwei Xu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| | - Qingwu Yang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xiaotang Fan
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, China
| |
Collapse
|
50
|
Abstract
AbstractThree areas in the brain continuously generate new neurons throughout life: the subventricular zone lining the lateral ventricles, the dentate gyrus in the hippocampus and the median eminence in the hypothalamus. These areas harbour neural stem cells, which contribute to neural repair by generating daughter cells that then become functional neurons or glia. Impaired neurogenesis leads to detrimental consequences, such as depression, decline of cognitive abilities and obesity. Adult neurogenesis is a versatile process that can be modulated either positively or negatively by many effectors, external or endogenous. Diet can modify neurogenesis both ways, either directly by ways of food-borne molecules, or possibly by the modifications induced on gut microbiota composition. It is therefore critical to define dietary strategies optimal for the maintenance of the stem cell pools.
Collapse
|