1
|
Luo Y, Bähler J, Huang Y. The Insertion Domain of Mti2 Facilitates the Association of Mitochondrial Initiation Factors with Mitoribosomes in Schizosaccharomyces pombe. Biomolecules 2025; 15:695. [PMID: 40427588 PMCID: PMC12109253 DOI: 10.3390/biom15050695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 05/03/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Translation initiation in mitochondria involves unique mechanisms distinct from those in the cytosol or in bacteria. The Schizosaccharomyces pombe mitochondrial translation initiation factor 2 (Mti2) is the ortholog of human MTIF2, which plays a vital role in synthesizing proteins in mitochondria. Here, we investigate the insertion domain of Mti2, which stabilizes its interaction with the ribosome and is crucial for efficient translation initiation. Our results show that the insertion domain is critical for the proper folding and function of Mti2. The absence of the insertion domain disrupts cell growth and affects the expression of genes encoded by mitochondrial DNA. Additionally, we show that Mti2 physically interacts with the small subunits of mitoribosomes (mtSSU), and deletion of the insertion domain dissociates mitochondrial initiation factors from the mitoribosome, reducing the efficiency of mitochondrial translation. Altogether, these findings highlight the conserved role of the insertion domain in facilitating translation initiation in fission yeast and thus reveal shared principles of mitochondrial translation initiation in both fission yeast and humans.
Collapse
Affiliation(s)
- Ying Luo
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China;
- Institute of Healthy Ageing, Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK
| | - Jürg Bähler
- Institute of Healthy Ageing, Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China;
| |
Collapse
|
2
|
Brischigliaro M, Ahn A, Hong S, Fontanesi F, Barrientos A. Emerging mechanisms of human mitochondrial translation regulation. Trends Biochem Sci 2025:S0968-0004(25)00056-8. [PMID: 40221217 DOI: 10.1016/j.tibs.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/03/2025] [Accepted: 03/14/2025] [Indexed: 04/14/2025]
Abstract
Mitochondrial translation regulation enables precise control over the synthesis of hydrophobic proteins encoded by the organellar genome, orchestrating their membrane insertion, accumulation, and assembly into oxidative phosphorylation (OXPHOS) complexes. Recent research highlights regulation across all translation stages (initiation, elongation, termination, and recycling) through a complex interplay of mRNA structures, specialized translation factors, and unique regulatory mechanisms that adjust protein levels for stoichiometric assembly. Key discoveries include mRNA-programmed ribosomal pausing, frameshifting, and termination-dependent re-initiation, which fine-tune protein synthesis and promote translation of overlapping open reading frames (ORFs) in bicistronic transcripts. In this review, we examine these advances, which are significantly enhancing our understanding of mitochondrial gene expression.
Collapse
Affiliation(s)
- Michele Brischigliaro
- Department of Neurology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB # 7094A, Miami, FL 33136, USA
| | - Ahram Ahn
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB #7094B, Miami, FL 33136, USA
| | - Seungwoo Hong
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB #7094B, Miami, FL 33136, USA
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB #7094B, Miami, FL 33136, USA.
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB # 7094A, Miami, FL 33136, USA; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB #7094B, Miami, FL 33136, USA; The Miami Veterans Affairs (VA) Medical System, 1201 NW 16th Street, Miami, FL 33125, USA.
| |
Collapse
|
3
|
Wu H, Zhou M, Ye X, Chen H, Lin H, Wang L, Nie X, Zhang L. Compound heterozygous variants of the NARS2 gene in siblings with refractory seizures: two case report and literature review. Front Pediatr 2025; 13:1571426. [PMID: 40264468 PMCID: PMC12011721 DOI: 10.3389/fped.2025.1571426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025] Open
Abstract
Background Biallelic variants in NARS2 that encodes the mitochondrial asparaginyl-tRNA synthetase are associated with a wide spectrum of clinical phenotypes. Herein, we report on two siblings carrying the same compound heterozygous missense variants in NARS2, to improve the understanding of the phenotypic heterogeneity of NARS2 variants. Case presentation The two probands, a 3-year-old female (Patient 1) and a 16-month-old male (Patient 2), were clinically suspected of Combined oxidative phosphorylation deficiency 24 (COXPD24). Both presented with neurological manifestations, including refractory epilepsy, developmental delay and motor developmental regression, within the first year of life, accompanied by symmetrical brain lesions identified on magnetic resonance imaging (MRI). To elucidate the underlying genetic etiology, whole-exome sequencing (WES) was performed, followed by Sanger sequencing validation in the patients and their non-consanguineous parents. Genetic analysis revealed that both probands harbored identical compound heterozygous variants in the NARS2 gene: c.1253G>A (p.Arg418His) and c.1163C>T (p.Thr388Met). Notably, the c.1163C>T (p.Thr388Met) variant in NARS2 represents a novel finding, further expanding the genetic spectrum associated with this disorder. Conclusions Our findings expand the mutational spectrum of NARS2 and highlight the associated phenotypic heterogeneity, underscoring the critical role of NARS2 in epilepsy and neurodevelopmental processes. For pediatric patients with refractory epilepsy, early genetic testing is essential to improve diagnostic accuracy, refine prognostic stratification, and guide personalized treatment strategies. Additionally, mitochondrial drug cocktail therapy may be beneficial for epilepsy caused by NARS2 mutations.
Collapse
Affiliation(s)
- Heyan Wu
- Pediatric Intensive Care Unit, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Min Zhou
- Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xiaoting Ye
- Pediatric Intensive Care Unit, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Huabao Chen
- Pediatric Intensive Care Unit, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Hongxin Lin
- Pediatric Intensive Care Unit, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Li Wang
- Pediatric Intensive Care Unit, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xing Nie
- Pediatric Intensive Care Unit, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Lidan Zhang
- Pediatric Intensive Care Unit, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
4
|
Stein Q, Mascarenhas R, Punj S, Westemeyer M, Hendricks E, Pitman T, Hager M, Al Haj Baddar N, Connors K, Bacher A, Larson R, Zec L, Stoddard J. Role of Comprehensive Renal Genetic Testing in Diagnosing a RMND-1 Mitochondrial Disease in Two Adult Cases Exhibiting Variable Disease Phenotypes. Clin Case Rep 2025; 13:e70421. [PMID: 40236310 PMCID: PMC11997368 DOI: 10.1002/ccr3.70421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/10/2025] [Accepted: 04/02/2025] [Indexed: 04/17/2025] Open
Abstract
RMND1-related mitochondrial disease is a rare genetic condition that affects multiple organs, including the kidneys. We describe two adult patients whose diagnosis, initiated in childhood, was established through renal gene panel testing, emphasizing the value of genetic testing in uncovering kidney-related conditions that have a high degree of clinical heterogeneity.
Collapse
|
5
|
van de Streek M, Ali AT, El-Sayed Moustafa JS, Glastonbury CA, Spector TD, Valdes AM, Staff JF, Morton J, Hodgkinson A, Bell JT, Small KS. Quantification of heavy metal exposure in a British population cohort links total mercury levels in plasma with skin tissue-specific changes in mitochondrial-related gene expression. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178427. [PMID: 39818154 DOI: 10.1016/j.scitotenv.2025.178427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/20/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025]
Abstract
Heavy metals in our direct environment have profound effects on human health and while some are essential for life, others can be toxic. In vivo studies often focus on clinical features caused by overexposure to, or by deprivation of a heavy metal. However, to understand the cellular impact of heavy metals on health, studies in healthy volunteers before symptom onset are needed. Here, we explored the impact of mercury, lead and selenium in over 800 British female twins on multi-tissue gene expression levels as an intermediate phenotype. Total mercury, lead and selenium concentrations were determined in plasma as a proxy for heavy metal exposure. We identified significant associations between total mercury levels measured in plasma, that fall within normal ranges, and expression of 873 genes within skin tissue, including PUSL1, SAMD10, ERCC1, MRPL17, NDUFB8, SELENOH, SEC31A, and KAT7P1. Functional analysis of genes associated with total mercury levels in plasma show a strong link to the mitochondrial oxidative phosphorylation pathway (p-value = 3.02 × 10-10). Analysis of mitochondrial-specific gene expression supported involvement of genes of oxidative phosphorylation complexes (MT-ND4L, and MT-ND5), which are encoded in mitochondrial DNA. These results suggest that mercury is likely detrimental to the energy metabolism of mitochondria. We also tested for associations between total mercury levels in plasma and gene expression in adipose and whole blood samples, but did not identify significant associations in these tissues, nor with lead or selenium in any tissue. Our results demonstrate that subtoxic mercury exposure leaves a clear molecular signature. It also underscores the necessity of conducting tissue-specific association studies to accurately capture the molecular impact of environmental exposures, as only relevant tissues will manifest a response to environmental exposures.
Collapse
Affiliation(s)
- Marcel van de Streek
- Department of Twin Research and Genetic Epidemiology, King's College London, 3-4th Floor South Wing Block D, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK.
| | - Aminah Tasnim Ali
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, SE1 9RT, UK
| | - Julia S El-Sayed Moustafa
- Department of Twin Research and Genetic Epidemiology, King's College London, 3-4th Floor South Wing Block D, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK
| | - Craig A Glastonbury
- Department of Twin Research and Genetic Epidemiology, King's College London, 3-4th Floor South Wing Block D, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK; Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, 3-4th Floor South Wing Block D, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK
| | - Ana M Valdes
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Queen's Medical Centre Derby Road, Nottingham NG7 7UH, UK
| | - James F Staff
- Health and Safety Science and Research Centre, Buxton, Derbyshire, SK17 9JN, UK
| | - Jackie Morton
- Health and Safety Science and Research Centre, Buxton, Derbyshire, SK17 9JN, UK
| | - Alan Hodgkinson
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, SE1 9RT, UK
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, 3-4th Floor South Wing Block D, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK
| | - Kerrin S Small
- Department of Twin Research and Genetic Epidemiology, King's College London, 3-4th Floor South Wing Block D, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK.
| |
Collapse
|
6
|
Yuan J, Xie BM, Ji YM, Bao HJ, Wang JL, Cheng JC, Huang XC, Zhao Y, Chen S. piR-26441 inhibits mitochondrial oxidative phosphorylation and tumorigenesis in ovarian cancer through m6A modification by interacting with YTHDC1. Cell Death Dis 2025; 16:25. [PMID: 39827178 PMCID: PMC11742951 DOI: 10.1038/s41419-025-07340-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025]
Abstract
Ovarian cancer (OC) is a heterogeneous cancer. In contrast to other tumor cells, which rely primarily on aerobic glycolysis (Warburg effect) as their energy source, oxidative phosphorylation (OXPHOS) is also one of its major metabolic modes. Piwi-interacting RNAs (piRNAs) play a regulatory function in various biological processes in tumor cells. However, the role and mechanisms of piRNAs in OC and mitochondrial OXPHOS remain to be elucidated. Here, we found that piR-26441 was aberrantly downregulated in OC, and its overexpression suppressed the malignant features of OC cells and tumor growth in a xenograft model. Moreover, overexpression of piR-26441 significantly reduced mitochondrial OXPHOS levels in OC cells. Furthermore, piR-26441 directly binds to and upregulates the expression of YTHDC1 in OC cells. piR-26441 also increased m6A levels, thereby interacting with YTHDC1 to destabilize the mRNA of TSFM. The resultant TSFM loss reduced mitochondrial complex I activity and mitochondrial OXPHOS, leading to mitochondrial dysfunction in OC cells, increased reactive oxygen species levels, and thus, DNA damage and apoptosis in OC cells, thereby inhibiting OC progression. Additionally, ago-piR-26441 suppressed tumor growth and mitochondrial metabolism in the patient-derived organoid model. Altogether, piR-26441 could inhibit OC cell growth via the YTHDC1/TSFM signaling axis, underscoring its significant importance in the context of OC, as well as offering potential as a therapeutic target.
Collapse
Affiliation(s)
- Jing Yuan
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office; Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bu-Min Xie
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office; Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yu-Meng Ji
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office; Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hai-Juan Bao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office; Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jie-Lin Wang
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office; Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jia-Chen Cheng
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office; Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiang-Chun Huang
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office; Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yang Zhao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office; Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shuo Chen
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office; Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Bae HR, Shin SK, Lee JY, Choi SS, Kwon EY. Chronological Dynamics of Neuroinflammatory Responses in a High-Fat Diet Mouse Model. Int J Mol Sci 2024; 25:12834. [PMID: 39684545 DOI: 10.3390/ijms252312834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Obesity is known to affect various tissues and contribute to conditions such as neuroinflammation. However, the specific mechanisms and time-dependent progression of these effects across different tissues remain unclear. In this study, we monitored gene expression at intervals to examine the effects of a high-fat diet (HFD) on brain, liver, adipose, and muscle tissues in male C57/BJ mice, with a particular focus on neuroinflammation. Early inflammatory responses exhibit a progression that starts in the liver, extends to adipose tissue, and subsequently involves muscle and brain tissues. Although the brain did not show significant gene expression of inflammatory responses, mechanisms leading to neuroinflammation increased after 24 weeks, possibly through systemic chronic inflammation (SCI). Notably, mitochondrial complex I activity serves as a biomarker to indicate the inflammatory transition from the liver to adipose and other tissues caused by SCI. These similar gene expression dynamics were also observed in the hippocampus of Alzheimer's patients and in an Alzheimer's mouse model treated with a HFD. These results suggest that initially, the brain suppresses inflammatory responses, including interferon-gamma (IFN-γ), more than other tissues in response to a HFD. However, at the onset of SCI, the brain eventually exhibits inflammatory dynamics similar to those of other tissues. This underscores the significance of our findings, indicating that the early kinetics of chronic IFN-γ response and mitochondrial complex I activity inhibition serve as crucial biomarkers, emerging early in various conditions, including obesity and aging.
Collapse
Affiliation(s)
- Heekyong R Bae
- Department of Food Science and Nutrition, Kyungpook National University, Daegu 41566, Republic of Korea
- Center for Food and Nutritional Genomics, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Su-Kyung Shin
- Department of Food Science and Nutrition, Kyungpook National University, Daegu 41566, Republic of Korea
- Center for Food and Nutritional Genomics, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji-Yoon Lee
- Department of Food Science and Nutrition, Kyungpook National University, Daegu 41566, Republic of Korea
- Center for Food and Nutritional Genomics, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seong-Su Choi
- Department of Food Science and Nutrition, Kyungpook National University, Daegu 41566, Republic of Korea
- Center for Food and Nutritional Genomics, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eun-Young Kwon
- Department of Food Science and Nutrition, Kyungpook National University, Daegu 41566, Republic of Korea
- Center for Food and Nutritional Genomics, Kyungpook National University, Daegu 41566, Republic of Korea
- Center for Beautiful Aging, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
8
|
Zhang M, Hogstrand C, Pontrelli P, Malik AN. Co-regulation and synteny of GFM2 and NSA2 links ribosomal function in mitochondria and the cytosol with chronic kidney disease. Mol Med 2024; 30:176. [PMID: 39396937 PMCID: PMC11476648 DOI: 10.1186/s10020-024-00930-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/08/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND We previously reported aberrant expression of the cytosolic ribosomal biogenesis factor Nop-7-associated 2 (NSA2) in diabetic nephropathy, the latter also known to involve mitochondrial dysfunction, however the connections between NSA2, mitochondria and renal disease were unclear. In the current paper, we show that NSA2 expression is co-regulated with the GTP-dependent ribosome recycling factor mitochondrial 2 (GFM2) and provide a molecular link between cytosolic and mitochondrial ribosomal biogenesis with mitochondrial dysfunction in chronic kidney disease (CKD). METHODS Human renal tubular cells (HK-2) were cultured (+/- zinc, or 5mM/20mM glucose). mRNA levels were quantified using real-time qPCR. Transcriptomics data were retrieved and analysed from Nakagawa chronic kidney disease (CKD) Dataset (GSE66494) and Kidney Precision Medicine Project (KPMP) ( https://atlas.kpmp.org/ ). Protein levels were determined by immunofluorescence and Western blotting. Cellular respiration was measured using Agilent Seahorse XF Analyzer. Data were analysed using one-way ANOVA, Students' t-test and Pearson correlation. RESULTS The NSA2 gene, on human chromosome 5q13 was next to GFM2. The two genes were syntenic on opposite strands and orientation in multiple species. Their common 381 bp 5' region contained multiple transcription factor binding sites (TFBS) including the zinc-responsive transcription factor MTF1. NSA2 and GFM2 mRNAs showed a dose-dependent increase to zinc in-vitro and were highly expressed in proximal tubular cells in renal biopsies. CKD patients showed higher renal NSA2/GFM2 expression. In HK-2 cells, hyperglycaemia led to increased expression of both genes. The total cellular protein content remained unchanged, but GFM2 upregulation resulted in increased levels of several mitochondrial oxidative phosphorylation (OXPHOS) subunits. Furthermore, increased GFM2 expression, via transient transfection or hyperglycemia, correlated with decrease cellular respiration. CONCLUSION The highly conserved synteny of NSA2 and GFM2, their shared 5' region, and co-expression in-vitro and in CKD, shows they are co-regulated. Increased GFM2 affects mitochondrial function with a disconnect between an increase in certain mitochondrial respiratory proteins but a decrease in cellular respiration. These data link the regulation of 2 highly conserved genes, NSA2 and GFM2, connected to ribosomes in two different cellular compartments, cytosol and mitochondria, to kidney disease and shows that their dysregulation may be involved in mitochondrial dysfunction.
Collapse
Affiliation(s)
- Minjie Zhang
- Diabetes & Obesity, School of Cardiovascular Medicine and Metabolic Sciences, King's College London, London, SE1 1UL, UK
| | - Christer Hogstrand
- Analytical, Environmental and Forensic Sciences, School of Cancer and Pharmaceutical Sciences, King's College London, London, SE1 8NH, UK
| | - Paola Pontrelli
- Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari Aldo Moro, Bari, Italy
| | - Afshan N Malik
- Diabetes & Obesity, School of Cardiovascular Medicine and Metabolic Sciences, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
9
|
Liu L, Shao M, Huang Y, Qian P, Huang H. Unraveling the roles and mechanisms of mitochondrial translation in normal and malignant hematopoiesis. J Hematol Oncol 2024; 17:95. [PMID: 39396039 PMCID: PMC11470598 DOI: 10.1186/s13045-024-01615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/30/2024] [Indexed: 10/14/2024] Open
Abstract
Due to spatial and genomic independence, mitochondria possess a translational mechanism distinct from that of cytoplasmic translation. Several regulators participate in the modulation of mitochondrial translation. Mitochondrial translation is coordinated with cytoplasmic translation through stress responses. Importantly, the inhibition of mitochondrial translation leads to the inhibition of cytoplasmic translation and metabolic disruption. Therefore, defects in mitochondrial translation are closely related to the functions of hematopoietic cells and various immune cells. Finally, the inhibition of mitochondrial translation is a potential therapeutic target for treating multiple hematologic malignancies. Collectively, more in-depth insights into mitochondrial translation not only facilitate our understanding of its functions in hematopoiesis, but also provide a basis for the discovery of new treatments for hematological malignancies and the modulation of immune cell function.
Collapse
Affiliation(s)
- Lianxuan Liu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Institute of Hematology Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Mi Shao
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Institute of Hematology Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Yue Huang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Institute of Hematology Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Pengxu Qian
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Institute of Hematology Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
| | - He Huang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Institute of Hematology Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Cicchinelli M, Primiano G, Servidei S, Ardito M, Percio A, Urbani A, Iavarone F. Resolving Phenotypic Variability in Mitochondrial Diseases: Preliminary Findings of a Proteomic Approach. Int J Mol Sci 2024; 25:10731. [PMID: 39409059 PMCID: PMC11477128 DOI: 10.3390/ijms251910731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/20/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
The introduction of new sequencing approaches into clinical practice has radically changed the diagnostic approach to mitochondrial diseases, significantly improving the molecular definition rate in this group of neurogenetic disorders. At the same time, there have been no equal successes in the area of in-depth understanding of disease mechanisms and few innovative therapeutic approaches have been proposed recently. In this regard, the identification of the molecular basis of phenotypic variability in primary mitochondrial disorders represents a key aspect for deciphering disease mechanisms with important therapeutic implications. In this study, we present data from proteomic investigations in two subjects affected by mitochondrial disease characterized by a different clinical severity and associated with the same variant in the TWNK gene, encoding the mitochondrial DNA and RNA helicase with a specific role in the mtDNA replisome. Heterozygous pathogenic variants in this gene are associated with progressive external ophthalmoplegia and ptosis, usually with adult onset. The overall results suggest an imbalance in glucose metabolism and ROS production/regulation, with possible consequences on the phenotypic manifestations of the enrolled subjects. Although the data will need to be validated in a large cohort, proteomic investigations have proven to be a valid approach for a deep understanding of these neurometabolic disorders.
Collapse
Affiliation(s)
- Michela Cicchinelli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.C.); (A.P.); (A.U.); (F.I.)
| | - Guido Primiano
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (S.S.); (M.A.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy
| | - Serenella Servidei
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (S.S.); (M.A.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy
| | - Michelangelo Ardito
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (S.S.); (M.A.)
| | - Anna Percio
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.C.); (A.P.); (A.U.); (F.I.)
| | - Andrea Urbani
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.C.); (A.P.); (A.U.); (F.I.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy
| | - Federica Iavarone
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.C.); (A.P.); (A.U.); (F.I.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy
| |
Collapse
|
11
|
Brischigliaro M, Sierra‐Magro A, Ahn A, Barrientos A. Mitochondrial ribosome biogenesis and redox sensing. FEBS Open Bio 2024; 14:1640-1655. [PMID: 38849194 PMCID: PMC11452305 DOI: 10.1002/2211-5463.13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/06/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
Mitoribosome biogenesis is a complex process involving RNA elements encoded in the mitochondrial genome and mitoribosomal proteins typically encoded in the nuclear genome. This process is orchestrated by extra-ribosomal proteins, nucleus-encoded assembly factors, which play roles across all assembly stages to coordinate ribosomal RNA processing and maturation with the sequential association of ribosomal proteins. Both biochemical studies and recent cryo-EM structures of mammalian mitoribosomes have provided insights into their assembly process. In this article, we will briefly outline the current understanding of mammalian mitoribosome biogenesis pathways and the factors involved. Special attention is devoted to the recent identification of iron-sulfur clusters as structural components of the mitoribosome and a small subunit assembly factor, the existence of redox-sensitive cysteines in mitoribosome proteins and assembly factors, and the role they may play as redox sensor units to regulate mitochondrial translation under stress.
Collapse
Affiliation(s)
| | - Ana Sierra‐Magro
- Department of NeurologyUniversity of Miami Miller School of MedicineFLUSA
| | - Ahram Ahn
- Department of Biochemistry and Molecular BiologyUniversity of Miami Miller School of MedicineFLUSA
| | - Antoni Barrientos
- Department of NeurologyUniversity of Miami Miller School of MedicineFLUSA
- Department of Biochemistry and Molecular BiologyUniversity of Miami Miller School of MedicineFLUSA
- Bruce W. Carter Department of Veterans Affairs VA Medical CenterMiamiFLUSA
| |
Collapse
|
12
|
Pelayo G, Paiva Coelho M, Correia J, Bandeira A, Nogueira C, Vilarinho L, Martins E. Phenotyping mitochondrial glutamyl-tRNA synthetase deficiency (EARS2): A case series and systematic literature review. Neurobiol Dis 2024; 200:106644. [PMID: 39173847 DOI: 10.1016/j.nbd.2024.106644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/26/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024] Open
Abstract
Mitochondrial glutamyl-aminoacyl tRNA synthetase deficiency, stemming from biallelic mutations in the EARS2 gene, was first described in 2012. With <50 cases reported globally, this condition exhibits a distinct phenotype of neonatal or childhood-onset, often referred to as leukoencephalopathy with thalamus and brainstem involvement and high lactate (LTBL). It has also been one of the few reversible mitochondrial disorders described. The natural history of these patients is poorly documented, ranging from clinical and radiological improvement to early death. Herein, we detail three cases from our centre, including follow-up on the Portuguese patient reported by Steenweg et al., These cases illustrate the phenotypic spectrum: i) rapidly progressive neonatal presentation with lactic acidemia and corpus callosum agenesis, leading to early death; ii) early onset with a severe, slowly progressive course; iii) early onset with a milder phenotype, showing some improvement and mild neurological symptoms. Additionally, we conducted a systematic literature review on cases of EARS2-deficient patients, focusing on clinical manifestations, laboratory findings, radiological aspects, and disease progression over time, along with respective data analysis. "Patients with EARS2 deficiency typically present within the first year of life with a well-defined neurometabolic disorder picture, often including hypotonia and/or spasticity, along with neurodevelopmental delay or regression. There are no pathognomonic features specific to EARS2 deficiency, and no genotype-phenotype correlation has been identified." Comparing to initial characterization by Steenweg et al., this analysis reveals an expanded disease spectrum. We propose a novel strategy for clustering phenotypes into severe, moderate, or mild disease based on initial presentation, seemingly correlating with disease progression. The paucity of data on the disease's natural history highlights the need for a multicentric approach to enhance understanding and management. TAKE-HOME MESSAGE: Analysis of all cases published with EARS2 deficiency allows for establish disease spectrum and a novel strategy for clustering phenotypes which correlate to disease progression.
Collapse
Affiliation(s)
- Gonçalo Pelayo
- Reference Centre for Metabolic Disorders, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Margarida Paiva Coelho
- Reference Centre for Metabolic Disorders, Centro Hospitalar Universitário de Santo António, Porto, Portugal.
| | - Joana Correia
- Reference Centre for Metabolic Disorders, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Anabela Bandeira
- Reference Centre for Metabolic Disorders, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Célia Nogueira
- Newborn Screening, Metabolism and Genetics Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Lisboa, Portugal
| | - Laura Vilarinho
- Newborn Screening, Metabolism and Genetics Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Lisboa, Portugal
| | - Esmeralda Martins
- Reference Centre for Metabolic Disorders, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| |
Collapse
|
13
|
Guo W, Russo S, Tuorto F. Lost in translation: How neurons cope with tRNA decoding. Bioessays 2024; 46:e2400107. [PMID: 38990077 DOI: 10.1002/bies.202400107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
Post-transcriptional tRNA modifications contribute to the decoding efficiency of tRNAs by supporting codon recognition and tRNA stability. Recent work shows that the molecular and cellular functions of tRNA modifications and tRNA-modifying-enzymes are linked to brain development and neurological disorders. Lack of these modifications affects codon recognition and decoding rate, promoting protein aggregation and translational stress response pathways with toxic consequences to the cell. In this review, we discuss the peculiarity of local translation in neurons, suggesting a role for fine-tuning of translation performed by tRNA modifications. We provide several examples of tRNA modifications involved in physiology and pathology of the nervous system, highlighting their effects on protein translation and discussing underlying mechanisms, like the unfolded protein response (UPR), ribosome quality control (RQC), and no-go mRNA decay (NGD), which could affect neuronal functions. We aim to deepen the understanding of the roles of tRNA modifications and the coordination of these modifications with the protein translation machinery in the nervous system.
Collapse
Affiliation(s)
- Wei Guo
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Stefano Russo
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Francesca Tuorto
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
14
|
Box JM, Higgins ME, Stuart RA. Importance of conserved hydrophobic pocket region in yeast mitoribosomal mL44 protein for mitotranslation and transcript preference. J Biol Chem 2024; 300:107519. [PMID: 38950860 PMCID: PMC11345376 DOI: 10.1016/j.jbc.2024.107519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
The mitochondrial ribosome (mitoribosome) is responsible for the synthesis of key oxidative phosphorylation subunits encoded by the mitochondrial genome. Defects in mitoribosomal function therefore can have serious consequences for the bioenergetic capacity of the cell. Mutation of the conserved mitoribosomal mL44 protein has been directly linked to childhood cardiomyopathy and progressive neurophysiology issues. To further explore the functional significance of the mL44 protein in supporting mitochondrial protein synthesis, we have performed a mutagenesis study of the yeast mL44 homolog, the MrpL3/mL44 protein. We specifically investigated the conserved hydrophobic pocket region of the MrpL3/mL44 protein, where the known disease-related residue in the human mL44 protein (L156R) is located. While our findings identify a number of residues in this region critical for MrpL3/mL44's ability to support the assembly of translationally active mitoribosomes, the introduction of the disease-related mutation into the equivalent position in the yeast protein (residue A186) was found to not have a major impact on function. The human and yeast mL44 proteins share many similarities in sequence and structure; however results presented here indicate that these two proteins have diverged somewhat in evolution. Finally, we observed that mutation of the MrpL3/mL44 does not impact the translation of all mitochondrial encoded proteins equally, suggesting the mitochondrial translation system may exhibit a transcript hierarchy and prioritization.
Collapse
Affiliation(s)
- Jodie M Box
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Margo E Higgins
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Rosemary A Stuart
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA.
| |
Collapse
|
15
|
Toshima T, Yagi M, Do Y, Hirai H, Kunisaki Y, Kang D, Uchiumi T. Mitochondrial translation failure represses cholesterol gene expression via Pyk2-Gsk3β-Srebp2 axis. Life Sci Alliance 2024; 7:e202302423. [PMID: 38719751 PMCID: PMC11079605 DOI: 10.26508/lsa.202302423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Neurodegenerative diseases and other age-related disorders are closely associated with mitochondrial dysfunction. We previously showed that mice with neuron-specific deficiency of mitochondrial translation exhibit leukoencephalopathy because of demyelination. Reduced cholesterol metabolism has been associated with demyelinating diseases of the brain such as Alzheimer's disease. However, the molecular mechanisms involved and relevance to the pathogenesis remained unknown. In this study, we show that inhibition of mitochondrial translation significantly reduced expression of the cholesterol synthase genes and degraded their sterol-regulated transcription factor, sterol regulatory element-binding protein 2 (Srebp2). Furthermore, the phosphorylation of Pyk2 and Gsk3β was increased in the white matter of p32cKO mice. We observed that Pyk2 inhibitors reduced the phosphorylation of Gsk3β and that GSK3β inhibitors suppressed degradation of the transcription factor Srebp2. The Pyk2-Gsk3β axis is involved in the ubiquitination of Srebp2 and reduced expression of cholesterol gene. These results suggest that inhibition of mitochondrial translation may be a causative mechanism of neurodegenerative diseases of aging. Improving the mitochondrial translation or effectiveness of Gsk3β inhibitors is a potential therapeutic strategy for leukoencephalopathy.
Collapse
Affiliation(s)
- Takahiro Toshima
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yura Do
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
| | - Haruka Hirai
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuya Kunisaki
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
- Kashiigaoka Rehabilitation Hospital, Fukuoka, Japan
- Department of Medical Laboratory Science, Faculty of Health Sciences, Junshin Gakuen University, Fukuoka, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
16
|
Gokalp S, Inci A, Kilic A, Ozsaydi E, Altun AN, Demir F, Ergin FB, Ozbek MN, Okur I, Ezgu F, Tumer L. A very rare presentation of mitochondrial elongation factor Tu deficiency- TUFM mutation and literature review. J Pediatr Endocrinol Metab 2024; 37:571-574. [PMID: 38630895 DOI: 10.1515/jpem-2023-0569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
OBJECTIVES The mitochondrial elongation factor Tu (EF-Tu), encoded by the TUFM gene, is a GTPase, which is part of the mitochondrial protein translation mechanism. If it is activated, it delivers the aminoacyl-tRNAs to the mitochondrial ribosome. Here, a patient was described with a homozygous missense variant in the TUFM [c.1016G>A (p.Arg339Gln)] gene. To date, only six patients have been reported with bi-allelic pathogenic variants in TUFM, leading to combined oxidative phosphorylation deficiency 4 (COXPD4) characterized by severe early-onset lactic acidosis, encephalopathy, and cardiomyopathy. CASE PRESENTATION The patient presented here had the phenotypic features of TUFM-related disease, lactic acidosis, hypotonia, liver dysfunction, optic atrophy, and mild encephalopathy. CONCLUSIONS We aimed to expand the clinical spectrum of pathogenic variants of TUFM.
Collapse
Affiliation(s)
- Sabire Gokalp
- Department of Pediatric Metabolic Disorders, Gazi University Faculty of Medicine, Ankara, Türkiye
| | - Asli Inci
- Department of Pediatric Metabolic Disorders, Gazi University Faculty of Medicine, Ankara, Türkiye
| | - Ayse Kilic
- Department of Pediatric Metabolic Disorders, Gazi University Faculty of Medicine, Ankara, Türkiye
| | - Ekin Ozsaydi
- Department of Pediatric Metabolic Disorders, Gazi University Faculty of Medicine, Ankara, Türkiye
| | - Ayse Nur Altun
- Department of Pediatric Metabolic Disorders, Gazi University Faculty of Medicine, Ankara, Türkiye
| | - Fevzi Demir
- Department of Pediatric Metabolic Disorders, Gazi University Faculty of Medicine, Ankara, Türkiye
| | - Filiz Basak Ergin
- Department of Pediatric Metabolic Disorders, Gazi University Faculty of Medicine, Ankara, Türkiye
| | - Mehmet Nuri Ozbek
- Department of Pediatrics, Dicle University Faculty of Medicine, Diyarbakır, Türkiye
| | - Ilyas Okur
- Department of Pediatric Metabolic Disorders, Gazi University Faculty of Medicine, Ankara, Türkiye
| | - Fatih Ezgu
- Department of Pediatric Metabolic Disorders, Gazi University Faculty of Medicine, Ankara, Türkiye
| | - Leyla Tumer
- Department of Pediatric Metabolic Disorders, Gazi University Faculty of Medicine, Ankara, Türkiye
| |
Collapse
|
17
|
Antolínez-Fernández Á, Esteban-Ramos P, Fernández-Moreno MÁ, Clemente P. Molecular pathways in mitochondrial disorders due to a defective mitochondrial protein synthesis. Front Cell Dev Biol 2024; 12:1410245. [PMID: 38855161 PMCID: PMC11157125 DOI: 10.3389/fcell.2024.1410245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Mitochondria play a central role in cellular metabolism producing the necessary ATP through oxidative phosphorylation. As a remnant of their prokaryotic past, mitochondria contain their own genome, which encodes 13 subunits of the oxidative phosphorylation system, as well as the tRNAs and rRNAs necessary for their translation in the organelle. Mitochondrial protein synthesis depends on the import of a vast array of nuclear-encoded proteins including the mitochondrial ribosome protein components, translation factors, aminoacyl-tRNA synthetases or assembly factors among others. Cryo-EM studies have improved our understanding of the composition of the mitochondrial ribosome and the factors required for mitochondrial protein synthesis and the advances in next-generation sequencing techniques have allowed for the identification of a growing number of genes involved in mitochondrial pathologies with a defective translation. These disorders are often multisystemic, affecting those tissues with a higher energy demand, and often present with neurodegenerative phenotypes. In this article, we review the known proteins required for mitochondrial translation, the disorders that derive from a defective mitochondrial protein synthesis and the animal models that have been established for their study.
Collapse
Affiliation(s)
- Álvaro Antolínez-Fernández
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Paula Esteban-Ramos
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel Ángel Fernández-Moreno
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Paula Clemente
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
18
|
Dorogova NV, Fedorova SA, Bolobolova EU, Baricheva EM. The misregulation of mitochondria-associated genes caused by GAGA-factor lack promotes autophagic germ cell death in Drosophila testes. Genetica 2023; 151:349-355. [PMID: 37819589 DOI: 10.1007/s10709-023-00197-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/01/2023] [Indexed: 10/13/2023]
Abstract
The Drosophila GAGA-factor encoded by the Trithorax-like (Trl) gene is DNA-binding protein with unusually wide range of applications in diverse cell contexts. In Drosophila spermatogenesis, reduced GAGA expression caused by Trl mutations induces mass autophagy leading to germ cell death. In this work, we investigated the contribution of mitochondrial abnormalities to autophagic germ cell death in Trl gene mutants. Using a cytological approach, in combination with an analysis of high-throughput RNA sequencing (RNA-seq) data, we demonstrated that the GAGA deficiency led to considerable defects in mitochondrial ultrastructure, by causing misregulation of GAGA target genes encoding essential components of mitochondrial molecular machinery. Mitochondrial anomalies induced excessive production of reactive oxygen species and their release into the cytoplasm, thereby provoking oxidative stress. Changes in transcription levels of some GAGA-independent genes in the Trl mutants indicated that testis cells experience ATP deficiency and metabolic aberrations, that may trigger extensive autophagy progressing to cell death.
Collapse
Affiliation(s)
- Natalia V Dorogova
- Department of Cell Biology, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russian Federation.
| | - Svetlana A Fedorova
- Department of Cell Biology, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russian Federation
| | - Elena U Bolobolova
- Department of Cell Biology, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russian Federation
| | - Elina M Baricheva
- Department of Cell Biology, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russian Federation
| |
Collapse
|
19
|
Abd Alla J, Langer A, Wolf S, Fu X, Rageh MA, Quitterer U. BBLN triggers CAMK2D pathology in mice under cardiac pressure overload and potentially in unrepaired hearts with tetralogy of Fallot. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1044-1059. [PMID: 38666071 PMCID: PMC11041739 DOI: 10.1038/s44161-023-00351-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/21/2023] [Indexed: 04/28/2024]
Abstract
Tetralogy of Fallot (TOF) is one of the most prevalent congenital heart defects, with adverse cardiac remodeling and long-term cardiac complications. Here, searching for pathomechanisms, we find upregulated bublin coiled-coil protein (BBLN) in heart specimens of TOF patients with cyanosis, which positively correlates with cardiac remodeling pathways. Human BBLN, a protein with largely unknown function, promoted heart failure features, with increased mortality when overexpressed in mice, in a protein dosage-dependent manner. BBLN enhanced cardiac inflammation, fibrosis and necroptosis by calcium/calmodulin-dependent protein kinase II delta (CAMK2D) activation, whereas a BBLN mutant with impaired CAMK2D binding was inert. Downregulation of CAMK2D by an interfering RNA retarded BBLN-induced symptoms of heart failure. Endogenous BBLN was induced by hypoxia as a major TOF feature in human patients and by chronic pressure overload in mice, and its downregulation decreased CAMK2D hyperactivity, necroptosis and cardiovascular dysfunction. Thus, BBLN promotes CAMK2D-induced pathways to pathological cardiac remodeling, which are triggered by hypoxia in TOF.
Collapse
Affiliation(s)
- Joshua Abd Alla
- Molecular Pharmacology, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Andreas Langer
- Molecular Pharmacology, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Stefan Wolf
- Molecular Pharmacology, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Xuebin Fu
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Department of Cardiovascular–Thoracic Surgery, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL USA
| | - Mohamed Abdelfattah Rageh
- Ain Shams University Hospitals, Cairo, Egypt
- Present Address: Dalhousie University of Canada, Halifax, Nova Scotia Canada
| | - Ursula Quitterer
- Molecular Pharmacology, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
- Department of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Brogli R, Cristodero M, Schneider A, Polacek N. A ribosome-bound tRNA half stimulates mitochondrial translation during stress recovery in Trypanosoma brucei. Cell Rep 2023; 42:113112. [PMID: 37703180 DOI: 10.1016/j.celrep.2023.113112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/07/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023] Open
Abstract
The protozoan parasite Trypanosoma brucei and its disease-causing relatives are among the few organisms that barely regulate the transcription of protein-coding genes. Yet, alterations in its gene expression are essential to survive in different host environments. Recently, tRNA-derived RNAs have been implicated as regulators of many cellular processes within and beyond translation. Previously, we identified the tRNAThr-3'-half (AGU) as a ribosome-associated non-coding RNA able to enhance global translation. Here we report that the tRNAThr-3'-half is generated upon starvation inside the mitochondria. The tRNAThr-3'-half associates with mitochondrial ribosomes and stimulates translation during stress recovery, positively affecting mitochondrial activity and, consequently, cellular energy production capacity. Our results describe an organelle ribosome-associated ncRNA involved in translation regulation to boost the central hub of energy metabolism as an immediate stress recovery response.
Collapse
Affiliation(s)
- Rebecca Brogli
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland; Graduate School for Cellular and Biochemical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Marina Cristodero
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland.
| | - André Schneider
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Norbert Polacek
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
21
|
de Smalen LM, Börsch A, Leuchtmann AB, Gill JF, Ritz D, Zavolan M, Handschin C. Impaired age-associated mitochondrial translation is mitigated by exercise and PGC-1α. Proc Natl Acad Sci U S A 2023; 120:e2302360120. [PMID: 37639610 PMCID: PMC10483666 DOI: 10.1073/pnas.2302360120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
Sarcopenia, the age-related loss of skeletal muscle mass and function, can dramatically impinge on quality of life and mortality. While mitochondrial dysfunction and imbalanced proteostasis are recognized as hallmarks of sarcopenia, the regulatory and functional link between these processes is underappreciated and unresolved. We therefore investigated how mitochondrial proteostasis, a crucial process that coordinates the expression of nuclear- and mitochondrial-encoded mitochondrial proteins with supercomplex formation and respiratory activity, is affected in skeletal muscle aging. Intriguingly, a robust mitochondrial translation impairment was observed in sarcopenic muscle, which is regulated by the peroxisome proliferator-activated receptor γ coactivator 1 α (PGC-1α) with the estrogen-related receptor α (ERRα). Exercise, a potent inducer of PGC-1α activity, rectifies age-related reduction in mitochondrial translation, in conjunction with quality control pathways. These results highlight the importance of mitochondrial proteostasis in muscle aging, and elucidate regulatory interactions that underlie the powerful benefits of physical activity in this context.
Collapse
Affiliation(s)
| | | | | | | | - Danilo Ritz
- Biozentrum, University of Basel, BaselCH-4056, Switzerland
| | | | | |
Collapse
|
22
|
Avolio R, Agliarulo I, Criscuolo D, Sarnataro D, Auriemma M, De Lella S, Pennacchio S, Calice G, Ng MY, Giorgi C, Pinton P, Cooperman BS, Landriscina M, Esposito F, Matassa DS. Cytosolic and mitochondrial translation elongation are coordinated through the molecular chaperone TRAP1 for the synthesis and import of mitochondrial proteins. Genome Res 2023; 33:1242-1257. [PMID: 37487647 PMCID: PMC10547376 DOI: 10.1101/gr.277755.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
A complex interplay between mRNA translation and cellular respiration has been recently unveiled, but its regulation in humans is poorly characterized in either health or disease. Cancer cells radically reshape both biosynthetic and bioenergetic pathways to sustain their aberrant growth rates. In this regard, we have shown that the molecular chaperone TRAP1 not only regulates the activity of respiratory complexes, behaving alternatively as an oncogene or a tumor suppressor, but also plays a concomitant moonlighting function in mRNA translation regulation. Herein, we identify the molecular mechanisms involved, showing that TRAP1 (1) binds both mitochondrial and cytosolic ribosomes, as well as translation elongation factors; (2) slows down translation elongation rate; and (3) favors localized translation in the proximity of mitochondria. We also provide evidence that TRAP1 is coexpressed in human tissues with the mitochondrial translational machinery, which is responsible for the synthesis of respiratory complex proteins. Altogether, our results show an unprecedented level of complexity in the regulation of cancer cell metabolism, strongly suggesting the existence of a tight feedback loop between protein synthesis and energy metabolism, based on the demonstration that a single molecular chaperone plays a role in both mitochondrial and cytosolic translation, as well as in mitochondrial respiration.
Collapse
Affiliation(s)
- Rosario Avolio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
| | - Ilenia Agliarulo
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"-IEOS, National Research Council of Italy (CNR), Naples 80131, Italy
| | - Daniela Criscuolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
| | - Daniela Sarnataro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
| | - Margherita Auriemma
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
| | - Sabrina De Lella
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
| | - Sara Pennacchio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
| | - Giovanni Calice
- Laboratory of Preclinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture 85028, Italy
| | - Martin Y Ng
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Carlotta Giorgi
- Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Barry S Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Matteo Landriscina
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"-IEOS, National Research Council of Italy (CNR), Naples 80131, Italy
- Department Medical and Surgical Science, University of Foggia, Foggia 71122, Italy
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy;
| | - Danilo Swann Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy;
| |
Collapse
|
23
|
Del Giudice L, Pontieri P, Aletta M, Calcagnile M. Mitochondrial Neurodegenerative Diseases: Three Mitochondrial Ribosomal Proteins as Intermediate Stage in the Pathway That Associates Damaged Genes with Alzheimer's and Parkinson's. BIOLOGY 2023; 12:972. [PMID: 37508402 PMCID: PMC10376763 DOI: 10.3390/biology12070972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Currently, numerous research endeavors are dedicated to unraveling the intricate nature of neurodegenerative diseases. These conditions are characterized by the gradual and progressive impairment of specific neuronal systems that exhibit anatomical or physiological connections. In particular, in the last twenty years, remarkable efforts have been made to elucidate neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. However, despite extensive research endeavors, no cure or effective treatment has been discovered thus far. With the emergence of studies shedding light on the contribution of mitochondria to the onset and advancement of mitochondrial neurodegenerative disorders, researchers are now directing their investigations toward the development of therapies. These therapies include molecules designed to protect mitochondria and neurons from the detrimental effects of aging, as well as mutant proteins. Our objective is to discuss and evaluate the recent discovery of three mitochondrial ribosomal proteins linked to Alzheimer's and Parkinson's diseases. These proteins represent an intermediate stage in the pathway connecting damaged genes to the two mitochondrial neurological pathologies. This discovery potentially could open new avenues for the production of medicinal substances with curative potential for the treatment of these diseases.
Collapse
Affiliation(s)
- Luigi Del Giudice
- Istituto di Bioscienze e BioRisorse-UOS Napoli-CNR c/o Dipartimento di Biologia, Sezione di Igiene, 80134 Napoli, Italy
| | - Paola Pontieri
- Istituto di Bioscienze e BioRisorse-UOS Napoli-CNR c/o Dipartimento di Biologia, Sezione di Igiene, 80134 Napoli, Italy
| | | | - Matteo Calcagnile
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, 73100 Lecce, Italy
| |
Collapse
|
24
|
Saikia BJ, Bhardwaj J, Paul S, Sharma S, Neog A, Paul SR, Binukumar BK. Understanding the Roles and Regulation of Mitochondrial microRNAs (MitomiRs) in Neurodegenerative Diseases: Current Status and Advances. Mech Ageing Dev 2023:111838. [PMID: 37329989 DOI: 10.1016/j.mad.2023.111838] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Abstract
MicroRNAs (miRNA) are a class of small non-coding RNA, roughly 21 - 22 nucleotides in length, which are master gene regulators. These miRNAs bind to the mRNA's 3' - untranslated region and regulate post-transcriptional gene regulation, thereby influencing various physiological and cellular processes. Another class of miRNAs known as mitochondrial miRNA (MitomiRs) has been found to either originate from the mitochondrial genome or be translocated directly into the mitochondria. Although the role of nuclear DNA encoded miRNA in the progression of various neurological diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, etc. is well known, accumulating evidence suggests the possible role of deregulated mitomiRs in the progression of various neurodegenerative diseases with unknown mechanism. We have attempted to outline the current state of mitomiRs role in controlling mitochondrial gene expression and function through this review, paying particular attention to their contribution to neurological processes, their etiology, and their potential therapeutic use.
Collapse
Affiliation(s)
- Bhaskar Jyoti Saikia
- CSIR Institute of Genomics and Integrative Biology, Mall Road, New Delhi - 110007; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Juhi Bhardwaj
- CSIR Institute of Genomics and Integrative Biology, Mall Road, New Delhi - 110007; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Sangita Paul
- CSIR Institute of Genomics and Integrative Biology, Mall Road, New Delhi - 110007; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Srishti Sharma
- CSIR Institute of Genomics and Integrative Biology, Mall Road, New Delhi - 110007; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Anindita Neog
- CSIR Institute of Genomics and Integrative Biology, Mall Road, New Delhi - 110007
| | - Swaraj Ranjan Paul
- CSIR Institute of Genomics and Integrative Biology, Mall Road, New Delhi - 110007
| | - B K Binukumar
- CSIR Institute of Genomics and Integrative Biology, Mall Road, New Delhi - 110007; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
25
|
Jerome MS, Nanjappa DP, Chakraborty A, Chakrabarty S. Molecular etiology of defective nuclear and mitochondrial ribosome biogenesis: Clinical phenotypes and therapy. Biochimie 2023; 207:122-136. [PMID: 36336106 DOI: 10.1016/j.biochi.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Ribosomopathies are rare congenital disorders associated with defective ribosome biogenesis due to pathogenic variations in genes that encode proteins related to ribosome function and biogenesis. Defects in ribosome biogenesis result in a nucleolar stress response involving the TP53 tumor suppressor protein and impaired protein synthesis leading to a deregulated translational output. Despite the accepted notion that ribosomes are omnipresent and essential for all cells, most ribosomopathies show tissue-specific phenotypes affecting blood cells, hair, spleen, or skin. On the other hand, defects in mitochondrial ribosome biogenesis are associated with a range of clinical manifestations affecting more than one organ. Intriguingly, the deregulated ribosomal function is also a feature in several human malignancies with a selective upregulation or downregulation of specific ribosome components. Here, we highlight the clinical conditions associated with defective ribosome biogenesis in the nucleus and mitochondria with a description of the affected genes and the implicated pathways, along with a note on the treatment strategies currently available for these disorders.
Collapse
Affiliation(s)
- Maria Sona Jerome
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Dechamma Pandyanda Nanjappa
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to Be University), Deralakate, Mangaluru, 575018, India
| | - Anirban Chakraborty
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to Be University), Deralakate, Mangaluru, 575018, India.
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
26
|
Brischigliaro M, Fernandez-Vizarra E, Viscomi C. Mitochondrial Neurodegeneration: Lessons from Drosophila melanogaster Models. Biomolecules 2023; 13:378. [PMID: 36830747 PMCID: PMC9953451 DOI: 10.3390/biom13020378] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
The fruit fly-i.e., Drosophila melanogaster-has proven to be a very useful model for the understanding of basic physiological processes, such as development or ageing. The availability of straightforward genetic tools that can be used to produce engineered individuals makes this model extremely interesting for the understanding of the mechanisms underlying genetic diseases in physiological models. Mitochondrial diseases are a group of yet-incurable genetic disorders characterized by the malfunction of the oxidative phosphorylation system (OXPHOS), which is the highly conserved energy transformation system present in mitochondria. The generation of D. melanogaster models of mitochondrial disease started relatively recently but has already provided relevant information about the molecular mechanisms and pathological consequences of mitochondrial dysfunction. Here, we provide an overview of such models and highlight the relevance of D. melanogaster as a model to study mitochondrial disorders.
Collapse
Affiliation(s)
- Michele Brischigliaro
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Erika Fernandez-Vizarra
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
- Centre for the Study of Neurodegeneration (CESNE), University of Padova, 35131 Padova, Italy
| |
Collapse
|
27
|
Mitra S, Rauf A, Sutradhar H, Sadaf S, Hossain MJ, Soma MA, Emran TB, Ahmad B, Aljohani ASM, Al Abdulmonem W, Thiruvengadam M. Potential candidates from marine and terrestrial resources targeting mitochondrial inhibition: Insights from the molecular approach. Comp Biochem Physiol C Toxicol Pharmacol 2023; 264:109509. [PMID: 36368509 DOI: 10.1016/j.cbpc.2022.109509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/21/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
Mitochondria are the target sites for multiple disease manifestations, for which it is appealing to researchers' attention for advanced pharmacological interventions. Mitochondrial inhibitors from natural sources are of therapeutic interest due to their promising benefits on physiological complications. Mitochondrial complexes I, II, III, IV, and V are the most common sites for the induction of inhibition by drug candidates, henceforth alleviating the manifestations, prevalence, as well as severity of diseases. Though there are few therapeutic options currently available on the market. However, it is crucial to develop new candidates from natural resources, as mitochondria-targeting abnormalities are rising to a greater extent. Marine and terrestrial sources possess plenty of bioactive compounds that are appeared to be effective in this regard. Ample research investigations have been performed to appraise the potentiality of these compounds in terms of mitochondrial disorders. So, this review outlines the role of terrestrial and marine-derived compounds in mitochondrial inhibition as well as their clinical status too. Additionally, mitochondrial regulation and, therefore, the significance of mitochondrial inhibition by terrestrial and marine-derived compounds in drug discovery are also discussed.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Swabi 23430, Khyber Pakhtunkhwa (KP), Pakistan.
| | - Hriday Sutradhar
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Samia Sadaf
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Md Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road Dhanmondi, Dhaka 1205, Bangladesh
| | - Mahfuza Afroz Soma
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road Dhanmondi, Dhaka 1205, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Bashir Ahmad
- Institute of Biotechnology & Microbiology, Bacha Khan University, Charsadda, KP, Pakistan
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul 05029, Republic of Korea; Saveetha Dental College and Hospital, Saveetha Institute of Medical Technical Sciences, Chennai 600077, Tamil Nadu, India.
| |
Collapse
|
28
|
Dobrynina LA, Makarova AG, Shabalina AA, Burmak AG, Shlapakova PS, Shamtieva KV, Tsypushtanova MM, Trubitsyna VV, Gnedovskaya EV. [A role of altered inflammation-related gene expression in cerebral small vessel disease with cognitive impairment]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:58-68. [PMID: 37796069 DOI: 10.17116/jnevro202312309158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
OBJECTIVE To identify the role of changes in the expression of inflammation-related genes in cerebral microangiopathy/cerebral small vessel disease (cSVD). MATERIAL AND METHODS Forty-four cSVD patients (mean age 61.4±9.2) and 11 controls (mean age 57.3±9.7) were studied. Gene expression was assessed on an individual NanoString nCounter panel of 58 inflammation-related genes and 4 reference genes. A set of genes was generated based on converging results of complete genome-wide association studies (GWAS) in cSVD and Alzheimer's disease (AD) and circulating markers associated with vascular wall and Brain lesions in cSVD. RNA was isolated from blood leukocytes and analyzed with the nCounter Analysis System, followed by analysis in nSolver 4.0. Results were verified by real-time PCR. RESULTS CSVD patients had a significant decrease in BIN1 (log2FC=-1.272; p=0.039) and VEGFA (log2FC=-1.441; p=0.038) expression compared to controls, which showed predictive ability for cSVD. The cut-off for BIN1 expression was 5.76 a.u. (sensitivity 73%; specificity 75%) and the cut-off for VEGFA expression was 9.27 a.u. (sensitivity 64%; specificity 86%). Reduced expression of VEGFA (p=0.011), VEGFC (p=0.017), CD2AP (p=0.044) was associated with cognitive impairment (CI). There was a significant direct correlation between VEGFC expression and the scores on the Montreal Cognitive Assessment test and between BIN1 and VEGFC expression and delayed memory. CONCLUSION The possible prediction of cSVD by reduced expression levels of BIN1, VEGFA and the association of clinically significant CI with reduced VEGFA and VEGFC expression indicate their importance in the development and progression of the disease. The established importance of these genes in the pathogenesis of AD suggests that similar changes in their expression profile in cSVD may be one of the conditions for the comorbidity of the two pathologies.
Collapse
Affiliation(s)
| | | | | | - A G Burmak
- Research Center of Neurology, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Mitoribosome biogenesis is a complex and energetically costly process that involves RNA elements encoded in the mitochondrial genome and mitoribosomal proteins most frequently encoded in the nuclear genome. The process is catalyzed by extra-ribosomal proteins, nucleus-encoded assembly factors that act in all stages of the assembly process to coordinate the processing and maturation of ribosomal RNAs with the hierarchical association of ribosomal proteins. Biochemical studies and recent cryo-EM structures of mammalian mitoribosomes have provided hints regarding their assembly. In this general concept chapter, we will briefly describe the current knowledge, mainly regarding the mammalian mitoribosome biogenesis pathway and factors involved, and will emphasize the biological sources and approaches that have been applied to advance the field.
Collapse
Affiliation(s)
- J Conor Moran
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Samuel Del'Olio
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Austin Choi
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Hui Zhong
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Antoni Barrientos
- Department of Neurology and Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
30
|
Muñoz‐Pujol G, Ortigoza‐Escobar JD, Paredes‐Fuentes AJ, Jou C, Ugarteburu O, Gort L, Yubero D, García‐Cazorla A, O'Callaghan M, Campistol J, Muchart J, Yépez VA, Gusic M, Gagneur J, Prokisch H, Artuch R, Ribes A, Urreizti R, Tort F. Leigh syndrome is the main clinical characteristic of
PTCD3
deficiency. Brain Pathol 2022; 33:e13134. [PMID: 36450274 PMCID: PMC10154364 DOI: 10.1111/bpa.13134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
Mitochondrial translation defects are a continuously growing group of disorders showing a large variety of clinical symptoms including a wide range of neurological abnormalities. To date, mutations in PTCD3, encoding a component of the mitochondrial ribosome, have only been reported in a single individual with clinical evidence of Leigh syndrome. Here, we describe three additional PTCD3 individuals from two unrelated families, broadening the genetic and phenotypic spectrum of this disorder, and provide definitive evidence that PTCD3 deficiency is associated with Leigh syndrome. The patients presented in the first months of life with psychomotor delay, respiratory insufficiency and feeding difficulties. The neurologic phenotype included dystonia, optic atrophy, nystagmus and tonic-clonic seizures. Brain MRI showed optic nerve atrophy and thalamic changes, consistent with Leigh syndrome. WES and RNA-seq identified compound heterozygous variants in PTCD3 in both families: c.[1453-1G>C];[1918C>G] and c.[710del];[902C>T]. The functional consequences of the identified variants were determined by a comprehensive characterization of the mitochondrial function. PTCD3 protein levels were significantly reduced in patient fibroblasts and, consistent with a mitochondrial translation defect, a severe reduction in the steady state levels of complexes I and IV subunits was detected. Accordingly, the activity of these complexes was also low, and high-resolution respirometry showed a significant decrease in the mitochondrial respiratory capacity. Functional complementation studies demonstrated the pathogenic effect of the identified variants since the expression of wild-type PTCD3 in immortalized fibroblasts restored the steady-state levels of complexes I and IV subunits as well as the mitochondrial respiratory capacity. Additionally, minigene assays demonstrated that three of the identified variants were pathogenic by altering PTCD3 mRNA processing. The fourth variant was a frameshift leading to a truncated protein. In summary, we provide evidence of PTCD3 involvement in human disease confirming that PTCD3 deficiency is definitively associated with Leigh syndrome.
Collapse
Affiliation(s)
- Gerard Muñoz‐Pujol
- Secció d'Errors Congènits del Metabolisme‐IBC, Servei de Bioquímica i Genètica Molecular Hospital Clínic de Barcelona, IDIBAPS, CIBERER Barcelona Spain
| | | | - Abraham J. Paredes‐Fuentes
- Clinical Biochemistry and Molecular Medicine and Genetics Departments Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, and CIBERER Esplugues de Llobregat Barcelona Spain
| | - Cristina Jou
- Pathology Department, Institut de Recerca Sant Joan de Déu Hospital Sant Joan de Déu, University of Barcelona, CIBERER Esplugues de Llobregat Barcelona Spain
| | - Olatz Ugarteburu
- Secció d'Errors Congènits del Metabolisme‐IBC, Servei de Bioquímica i Genètica Molecular Hospital Clínic de Barcelona, IDIBAPS, CIBERER Barcelona Spain
| | - Laura Gort
- Secció d'Errors Congènits del Metabolisme‐IBC, Servei de Bioquímica i Genètica Molecular Hospital Clínic de Barcelona, IDIBAPS, CIBERER Barcelona Spain
| | - Delia Yubero
- Clinical Biochemistry and Molecular Medicine and Genetics Departments Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, and CIBERER Esplugues de Llobregat Barcelona Spain
| | - Angels García‐Cazorla
- Pediatric Neurology Department Hospital Sant Joan de Déu Esplugues de Llobregat Barcelona Spain
| | - Mar O'Callaghan
- Pediatric Neurology Department Hospital Sant Joan de Déu Esplugues de Llobregat Barcelona Spain
| | - Jaume Campistol
- Pediatric Neurology Department Hospital Sant Joan de Déu Esplugues de Llobregat Barcelona Spain
| | - Jordi Muchart
- Pediatric Radiology Department Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu Esplugues de Llobregat Barcelona Spain
| | - Vicente A. Yépez
- School of Medicine Institute of Human Genetics, Technische Universität München Munich Germany
- Department of Informatics Technical University of Munich Garching Germany
| | - Mirjana Gusic
- School of Medicine Institute of Human Genetics, Technische Universität München Munich Germany
- Institute of Neurogenomics, Helmholtz Zentrum München Neuherberg Germany
| | - Julien Gagneur
- School of Medicine Institute of Human Genetics, Technische Universität München Munich Germany
- Department of Informatics Technical University of Munich Garching Germany
| | - Holger Prokisch
- School of Medicine Institute of Human Genetics, Technische Universität München Munich Germany
- Institute of Neurogenomics, Helmholtz Zentrum München Neuherberg Germany
| | - Rafael Artuch
- Clinical Biochemistry and Molecular Medicine and Genetics Departments Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, and CIBERER Esplugues de Llobregat Barcelona Spain
| | - Antonia Ribes
- Secció d'Errors Congènits del Metabolisme‐IBC, Servei de Bioquímica i Genètica Molecular Hospital Clínic de Barcelona, IDIBAPS, CIBERER Barcelona Spain
| | - Roser Urreizti
- Clinical Biochemistry and Molecular Medicine and Genetics Departments Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, and CIBERER Esplugues de Llobregat Barcelona Spain
| | - Frederic Tort
- Secció d'Errors Congènits del Metabolisme‐IBC, Servei de Bioquímica i Genètica Molecular Hospital Clínic de Barcelona, IDIBAPS, CIBERER Barcelona Spain
| |
Collapse
|
31
|
Al-Sharif F, Alsadeq H, Rozan A, Halabi MB, Badwilan H, Mohammed AA, Rahman M, Balgith T. Bilateral Nonsyndromic Sensorineural Hearing Loss Caused by a NARS2 Mutation. Cureus 2022; 14:e31467. [DOI: 10.7759/cureus.31467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2022] [Indexed: 11/16/2022] Open
|
32
|
Khan AU, Khan I, Khan MI, Latif M, Siddiqui MI, Khan SU, Htar TT, Wahid G, Ullah I, Bibi F, Khan A, Naseer MI, Seo GH, Jelani M. Whole exome sequencing identifies a novel compound heterozygous GFM1 variant underlying developmental delay, dystonia, polymicrogyria, and severe intellectual disability in a Pakhtun family. Am J Med Genet A 2022; 188:2693-2700. [PMID: 35703069 DOI: 10.1002/ajmg.a.62856] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/05/2022] [Accepted: 05/12/2022] [Indexed: 01/25/2023]
Abstract
Mitochondrial protein synthesis requires three elongation factors including EF-Tu (TUFM; OMIM 602389), EF-Ts (TSFM; OMIM 604723), and EF-G1 (GFM1; OMIM 606639). Pathogenic variants in any of these three members result in defective mitochondrial translation which can impart an oxidative phosphorylation (OXPHOS) deficiency. In this study, we investigated a consanguineous Pakhtun Pakistani family. There were four affected siblings at the time of this study and one affected girl had died in infancy. The index patient had severe intellectual disability, global developmental delay, dystonia, no speech development, feeding difficulties, and nystagmus. MRI brain presented thinning of corpus callosum and polymicrogyria. Whole exome sequencing revealed a novel compound heterozygous variant in GFM1 located on chromosome 3q25.32. Sanger sequencing confirmed recessive segregation of the maternal (NM_001308164.1:c.409G > A; p.Val137Met) and paternal (NM_001308164.1:c.1880G > A; p.Arg627Gln) variants in all the four affected siblings. These variants are classified as "likely-pathogenic" according to the recommendation of ACMG/AMP guideline. GFM1 alterations mostly lead to severe phenotypes and the patients may die in early neonatal life; however, four of the affected siblings had survived till the ages of 10-17 years, without developing any life-threatening conditions. Mostly, in cousin marriages, the pathogenic variants are identical-by-descent, and affected siblings born to such parents are homozygous. Three homozygous variants were shortlisted in the analysis of the WES data, but Sanger sequencing did not confirm their segregation with the disease phenotype. This is the first report from Pakistan expanding pathogenicity of GFM1 gene.
Collapse
Affiliation(s)
- Atta Ullah Khan
- Department of Medicine, Pak International Medical College Hayatabad Phase 5, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Ibrar Khan
- Rare Disease Genetics and Genomics, Centre for Omic Sciences, Khyber Pakhtunkhwa, Pakistan
| | | | - Muhammad Latif
- Centre for Genetics and Inherited Diseases (CGID), Taibah University, Madinah, Saudi Arabia
| | - Muhammad Imran Siddiqui
- Radiology Department, North West General Hospital and Research Center, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Shafi Ullah Khan
- School of Pharmacy Monash University Malaysia Jalan Lagoon Selatan Bandar Sunway 47500 Selangor, Malaysia
| | - Thet Thet Htar
- School of Pharmacy Monash University Malaysia Jalan Lagoon Selatan Bandar Sunway 47500 Selangor, Malaysia
| | - Ghazala Wahid
- Department of Radiology, Hayatabad Medical Complex, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Ikram Ullah
- International Islamic University, Sulaiman Bin Abdullah Aba Al-Khail Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Pakistan
| | - Fehmida Bibi
- Department of Medical Laboratory Technology, King Abdulaziz University, Jeddah, Saudi Arabia.,Special Infectious Agents Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asifullah Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan (AWKUM), Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Imran Naseer
- Department of Medical Laboratory Technology, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Go Hun Seo
- 3billion Inc., Seoul, Republic of Korea (South Korea)
| | - Musharraf Jelani
- Rare Disease Genetics and Genomics, Centre for Omic Sciences, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
33
|
Mitochondrial rRNA Methylation by Mettl15 Contributes to the Exercise and Learning Capability in Mice. Int J Mol Sci 2022; 23:ijms23116056. [PMID: 35682734 PMCID: PMC9181494 DOI: 10.3390/ijms23116056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/22/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
Mitochondrial translation is a unique relic of the symbiotic origin of the organelle. Alterations of its components cause a number of severe human diseases. Hereby we report a study of mice devoid of Mettl15 mitochondrial 12S rRNA methyltransferase, responsible for the formation of m4C839 residue (human numbering). Homozygous Mettl15−/− mice appeared to be viable in contrast to other mitochondrial rRNA methyltransferase knockouts reported earlier. The phenotype of Mettl15−/− mice is much milder than that of other mutants of mitochondrial translation apparatus. In agreement with the results obtained earlier for cell cultures with an inactivated Mettl15 gene, we observed accumulation of the RbfA factor, normally associated with the precursor of the 28S subunit, in the 55S mitochondrial ribosome fraction of knockout mice. A lack of Mettl15 leads to a lower blood glucose level after physical exercise relative to that of the wild-type mice. Mettl15−/− mice demonstrated suboptimal muscle performance and lower levels of Cox3 protein synthesized by mitoribosomes in the oxidative soleus muscles. Additionally, we detected decreased learning capabilities in the Mettl15−/− knockout mice in the tests with both positive and negative reinforcement. Such properties make Mettl15−/− knockout mice a suitable model for mild mitochondriopathies.
Collapse
|
34
|
Organization and expression of the mammalian mitochondrial genome. Nat Rev Genet 2022; 23:606-623. [PMID: 35459860 DOI: 10.1038/s41576-022-00480-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
The mitochondrial genome encodes core subunits of the respiratory chain that drives oxidative phosphorylation and is, therefore, essential for energy conversion. Advances in high-throughput sequencing technologies and cryoelectron microscopy have shed light on the structure and organization of the mitochondrial genome and revealed unique mechanisms of mitochondrial gene regulation. New animal models of impaired mitochondrial protein synthesis have shown how the coordinated regulation of the cytoplasmic and mitochondrial translation machineries ensures the correct assembly of the respiratory chain complexes. These new technologies and disease models are providing a deeper understanding of mitochondrial genome organization and expression and of the diseases caused by impaired energy conversion, including mitochondrial, neurodegenerative, cardiovascular and metabolic diseases. They also provide avenues for the development of treatments for these conditions.
Collapse
|
35
|
Meseguer S, Rubio MP. mt tRFs, New Players in MELAS Disease. Front Physiol 2022; 13:800171. [PMID: 35273517 PMCID: PMC8902416 DOI: 10.3389/fphys.2022.800171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/20/2022] [Indexed: 12/22/2022] Open
Abstract
MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) is an OXPHOS disease mostly caused by the m.3243A>G mutation in the mitochondrial tRNALeu(UUR) gene. Recently, we have shown that the mutation significantly changes the expression pattern of several mitochondrial tRNA-derived small RNAs (mt tsRNAs or mt tRFs) in a cybrid model of MELAS and in fibroblasts from MELAS patients versus control cells. Among them are those derived from mt tRNA LeuUUR containing or not the m.3243A>G mutation (mt 5′-tRF LeuUUR-m.3243A>G and mt 5′-tRF LeuUUR), whose expression levels are, respectively, increased and decreased in both MELAS cybrids and fibroblasts. Here, we asked whether mt 5′-tRF LeuUUR and mt 5′-tRF LeuUUR-m.3243A>G are biologically relevant and whether these mt tRFs are detected in diverse patient samples. Treatment with a mimic oligonucleotide of mt tRNA LeuUUR fragment (mt 5′-tRF LeuUUR) showed a therapeutic potential since it partially restored mitochondrial respiration in MELAS cybrids. Moreover, these mt tRFs could be detected in biofluids like urine and blood. We also investigated the participation of miRNA pathway components Dicer and Ago2 in the mt tRFs biogenesis process. We found that Dicer and Ago2 localize in the mitochondria of MELAS cybrids and that immunoprecipitation of these proteins in cytoplasm and mitochondria fractions revealed an increased mt tRF/mt tRNA ratio in MELAS condition compared to WT. These preliminary results suggest an involvement of Dicer and Ago2 in the mechanism of mt tRF biogenesis and action.
Collapse
Affiliation(s)
- Salvador Meseguer
- Molecular and Cellular Immunology Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Mari-Paz Rubio
- Molecular and Cellular Immunology Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| |
Collapse
|
36
|
Del Giudice L, Alifano P, Calcagnile M, Di Schiavi E, Bertapelle C, Aletta M, Pontieri P. Mitochondrial ribosomal protein genes connected with Alzheimer's and tellurite toxicity. Mitochondrion 2022; 64:45-58. [PMID: 35218961 DOI: 10.1016/j.mito.2022.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 12/19/2022]
Abstract
Mitochondrial diseases are a group of genetic disorders characterized by dysfunctional mitochondria. Within eukaryotic cells, mitochondria contain their own ribosomes, which synthesize small amounts of proteins, all of which are essential for the biogenesis of the oxidative phosphorylation system. The ribosome is an evolutionarily conserved macromolecular machine in nature both from a structural and functional point of view, universally responsible for the synthesis of proteins. Among the diseases afflicting humans, those of ribosomal origin - either cytoplasmic ribosomes (80S) or mitochondrial ribosomes (70S) - are relevant. These are inherited or acquired diseases most commonly caused by either ribosomal protein haploinsufficiency or defects in ribosome biogenesis. Here we review the scientific literature about the recent advances on changes in mitochondrial ribosomal structural and assembly proteins that are implicated in primary mitochondrial diseases and neurodegenerative disorders, and their possible connection with metalloid pollution and toxicity, with a focus on MRPL44, NAM9 (MNA6) and GEP3 (MTG3), whose lack or defect was associated with resistance to tellurite. Finally, we illustrate the suitability of yeast Saccharomyces cerevisiae (S.cerevisiae) and the nematode Caenorhabditis elegans (C.elegans) as model organisms for studying mitochondrial ribosome dysfunctions including those involved in human diseases.
Collapse
Affiliation(s)
- Luigi Del Giudice
- Istituto di Bioscienze e BioRisorse-UOS Napoli-CNR c/o Dipartimento di Biologia, Sezione di Igiene, Napoli 80134, Italy.
| | - Pietro Alifano
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Lecce 73100, Italy
| | - Matteo Calcagnile
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Lecce 73100, Italy
| | | | | | | | - Paola Pontieri
- Istituto di Bioscienze e BioRisorse-UOS Napoli-CNR c/o Dipartimento di Biologia, Sezione di Igiene, Napoli 80134, Italy
| |
Collapse
|
37
|
Mitochondrial Neurodegeneration. Cells 2022; 11:cells11040637. [PMID: 35203288 PMCID: PMC8870525 DOI: 10.3390/cells11040637] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 01/27/2023] Open
Abstract
Mitochondria are cytoplasmic organelles, which generate energy as heat and ATP, the universal energy currency of the cell. This process is carried out by coupling electron stripping through oxidation of nutrient substrates with the formation of a proton-based electrochemical gradient across the inner mitochondrial membrane. Controlled dissipation of the gradient can lead to production of heat as well as ATP, via ADP phosphorylation. This process is known as oxidative phosphorylation, and is carried out by four multiheteromeric complexes (from I to IV) of the mitochondrial respiratory chain, carrying out the electron flow whose energy is stored as a proton-based electrochemical gradient. This gradient sustains a second reaction, operated by the mitochondrial ATP synthase, or complex V, which condensates ADP and Pi into ATP. Four complexes (CI, CIII, CIV, and CV) are composed of proteins encoded by genes present in two separate compartments: the nuclear genome and a small circular DNA found in mitochondria themselves, and are termed mitochondrial DNA (mtDNA). Mutations striking either genome can lead to mitochondrial impairment, determining infantile, childhood or adult neurodegeneration. Mitochondrial disorders are complex neurological syndromes, and are often part of a multisystem disorder. In this paper, we divide the diseases into those caused by mtDNA defects and those that are due to mutations involving nuclear genes; from a clinical point of view, we discuss pediatric disorders in comparison to juvenile or adult-onset conditions. The complementary genetic contributions controlling organellar function and the complexity of the biochemical pathways present in the mitochondria justify the extreme genetic and phenotypic heterogeneity of this new area of inborn errors of metabolism known as ‘mitochondrial medicine’.
Collapse
|
38
|
Bykov YS, Flohr T, Boos F, Zung N, Herrmann JM, Schuldiner M. Widespread use of unconventional targeting signals in mitochondrial ribosome proteins. EMBO J 2022; 41:e109519. [PMID: 34786732 PMCID: PMC8724765 DOI: 10.15252/embj.2021109519] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/04/2021] [Accepted: 10/11/2021] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial ribosomes are complex molecular machines indispensable for respiration. Their assembly involves the import of several dozens of mitochondrial ribosomal proteins (MRPs), encoded in the nuclear genome, into the mitochondrial matrix. Proteomic and structural data as well as computational predictions indicate that up to 25% of yeast MRPs do not have a conventional N-terminal mitochondrial targeting signal (MTS). We experimentally characterized a set of 15 yeast MRPs in vivo and found that five use internal MTSs. Further analysis of a conserved model MRP, Mrp17/bS6m, revealed the identity of the internal targeting signal. Similar to conventional MTS-containing proteins, the internal sequence mediates binding to TOM complexes. The entire sequence of Mrp17 contains positive charges mediating translocation. The fact that these sequence properties could not be reliably predicted by standard methods shows that mitochondrial protein targeting is more versatile than expected. We hypothesize that structural constraints imposed by ribosome assembly interfaces may have disfavored N-terminal presequences and driven the evolution of internal targeting signals in MRPs.
Collapse
Affiliation(s)
- Yury S Bykov
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Tamara Flohr
- Division of Cell BiologyUniversity of KaiserslauternKaiserslauternGermany
| | - Felix Boos
- Division of Cell BiologyUniversity of KaiserslauternKaiserslauternGermany
- Present address:
Department of GeneticsStanford UniversityStanfordCAUSA
| | - Naama Zung
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | | | - Maya Schuldiner
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
39
|
Trifunov S, Paredes-Fuentes AJ, Badosa C, Codina A, Montoya J, Ruiz-Pesini E, Jou C, Garrabou G, Grau-Junyent JM, Yubero D, Montero R, Muchart J, Ortigoza-Escobar JD, O'Callaghan MM, Nascimento A, Català A, Garcia-Cazorla À, Jimenez-Mallebrera C, Artuch R. Circulating Cell-Free Mitochondrial DNA in Cerebrospinal Fluid as a Biomarker for Mitochondrial Diseases. Clin Chem 2021; 67:1113-1121. [PMID: 34352085 DOI: 10.1093/clinchem/hvab091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/05/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mitochondrial diseases (MD) are genetic metabolic disorders that impair normal mitochondrial structure or function. The aim of this study was to investigate the status of circulating cell-free mitochondrial DNA (ccfmtDNA) in cerebrospinal fluid (CSF), together with other biomarkers (growth differentiation factor-15 [GDF-15], alanine, and lactate), in a cohort of 25 patients with a molecular diagnosis of MD. METHODS Measurement of ccfmtDNA was performed by using droplet digital PCR. RESULTS The mean copy number of ccfmtDNA was approximately 6 times higher in the MD cohort compared to the control group; patients with mitochondrial deletion and depletion syndromes (MDD) had the higher levels. We also detected the presence of both wild-type mtDNA and mtDNA deletions in CSF samples of patients with single deletions. Patients with MDD with single deletions had significantly higher concentrations of GDF-15 in CSF than controls, whereas patients with point mutations in mitochondrial DNA presented no statistically significant differences. Additionally, we found a significant positive correlation between ccfmtDNA levels and GDF-15 concentrations (r = 0.59, P = 0.016). CONCLUSION CSF ccfmtDNA levels are significantly higher in patients with MD in comparison to controls and, thus, they can be used as a novel biomarker for MD research. Our results could also be valuable to support the clinical outcome assessment of MD patients.
Collapse
Affiliation(s)
- Selena Trifunov
- Neuromuscular Unit, Department of Neuropediatrics, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Abraham J Paredes-Fuentes
- Department of Clinical Biochemistry, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Carmen Badosa
- Neuromuscular Unit, Department of Neuropediatrics, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Anna Codina
- Neuromuscular Unit, Department of Neuropediatrics, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Julio Montoya
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Institute for Health Research of Aragón (IISAragón), University of Zaragoza, Zaragoza, Spain
| | - Eduardo Ruiz-Pesini
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Institute for Health Research of Aragón (IISAragón), University of Zaragoza, Zaragoza, Spain
| | - Cristina Jou
- Neuromuscular Unit, Department of Neuropediatrics, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Pathology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Glòria Garrabou
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Internal Medicine, Laboratory of Muscle Research and Mitochondrial Function-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Science, University of Barcelona (UB), Hospital Clínic of Barcelona (HCB), Barcelona, Spain
| | - Josep M Grau-Junyent
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Internal Medicine, Laboratory of Muscle Research and Mitochondrial Function-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Science, University of Barcelona (UB), Hospital Clínic of Barcelona (HCB), Barcelona, Spain
| | - Dèlia Yubero
- Department of Genetics and Molecular Medicine, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Raquel Montero
- Department of Clinical Biochemistry, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Jordi Muchart
- Department of Radiology, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | | | - Andrés Nascimento
- Neuromuscular Unit, Department of Neuropediatrics, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Albert Català
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Hematology, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - Cecilia Jimenez-Mallebrera
- Neuromuscular Unit, Department of Neuropediatrics, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Artuch
- Neuromuscular Unit, Department of Neuropediatrics, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
40
|
Friedlander JE, Shen N, Zeng A, Korm S, Feng H. Failure to Guard: Mitochondrial Protein Quality Control in Cancer. Int J Mol Sci 2021; 22:ijms22158306. [PMID: 34361072 PMCID: PMC8348654 DOI: 10.3390/ijms22158306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are energetic and dynamic organelles with a crucial role in bioenergetics, metabolism, and signaling. Mitochondrial proteins, encoded by both nuclear and mitochondrial DNA, must be properly regulated to ensure proteostasis. Mitochondrial protein quality control (MPQC) serves as a critical surveillance system, employing different pathways and regulators as cellular guardians to ensure mitochondrial protein quality and quantity. In this review, we describe key pathways and players in MPQC, such as mitochondrial protein translocation-associated degradation, mitochondrial stress responses, chaperones, and proteases, and how they work together to safeguard mitochondrial health and integrity. Deregulated MPQC leads to proteotoxicity and dysfunctional mitochondria, which contributes to numerous human diseases, including cancer. We discuss how alterations in MPQC components are linked to tumorigenesis, whether they act as drivers, suppressors, or both. Finally, we summarize recent advances that seek to target these alterations for the development of anti-cancer drugs.
Collapse
Affiliation(s)
- Joseph E. Friedlander
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
| | - Ning Shen
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
- Department of Medicine, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Aozhuo Zeng
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
| | - Sovannarith Korm
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
| | - Hui Feng
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
- Department of Medicine, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA 02118, USA
- Correspondence: ; Tel.: +1-617-358-4688; Fax: +1-617-358-1599
| |
Collapse
|
41
|
Venit T, El Said NH, Mahmood SR, Percipalle P. A dynamic actin-dependent nucleoskeleton and cell identity. J Biochem 2021; 169:243-257. [PMID: 33351909 DOI: 10.1093/jb/mvaa133] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
Actin is an essential regulator of cellular functions. In the eukaryotic cell nucleus, actin regulates chromatin as a bona fide component of chromatin remodelling complexes, it associates with nuclear RNA polymerases to regulate transcription and is involved in co-transcriptional assembly of nascent RNAs into ribonucleoprotein complexes. Actin dynamics are, therefore, emerging as a major regulatory factor affecting diverse cellular processes. Importantly, the involvement of actin dynamics in nuclear functions is redefining the concept of nucleoskeleton from a rigid scaffold to a dynamic entity that is likely linked to the three-dimensional organization of the nuclear genome. In this review, we discuss how nuclear actin, by regulating chromatin structure through phase separation may contribute to the architecture of the nuclear genome during cell differentiation and facilitate the expression of specific gene programs. We focus specifically on mitochondrial genes and how their dysregulation in the absence of actin raises important questions about the role of cytoskeletal proteins in regulating chromatin structure. The discovery of a novel pool of mitochondrial actin that serves as 'mitoskeleton' to facilitate organization of mtDNA supports a general role for actin in genome architecture and a possible function of distinct actin pools in the communication between nucleus and mitochondria.
Collapse
Affiliation(s)
- Tomas Venit
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), PO Box 129188, Abu Dhabi United Arab Emirates
| | - Nadine Hosny El Said
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), PO Box 129188, Abu Dhabi United Arab Emirates
| | - Syed Raza Mahmood
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), PO Box 129188, Abu Dhabi United Arab Emirates.,Department of Biology, New York University, 100 Washington Square East, 1009 Silver Center, New York, NY 10003, USA
| | - Piergiorgio Percipalle
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), PO Box 129188, Abu Dhabi United Arab Emirates.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 114 18 Stockholm, Sweden
| |
Collapse
|
42
|
Wang F, Zhang D, Zhang D, Li P, Gao Y. Mitochondrial Protein Translation: Emerging Roles and Clinical Significance in Disease. Front Cell Dev Biol 2021; 9:675465. [PMID: 34277617 PMCID: PMC8280776 DOI: 10.3389/fcell.2021.675465] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/09/2021] [Indexed: 12/28/2022] Open
Abstract
Mitochondria are one of the most important organelles in cells. Mitochondria are semi-autonomous organelles with their own genetic system, and can independently replicate, transcribe, and translate mitochondrial DNA. Translation initiation, elongation, termination, and recycling of the ribosome are four stages in the process of mitochondrial protein translation. In this process, mitochondrial protein translation factors and translation activators, mitochondrial RNA, and other regulatory factors regulate mitochondrial protein translation. Mitochondrial protein translation abnormalities are associated with a variety of diseases, including cancer, cardiovascular diseases, and nervous system diseases. Mutation or deletion of various mitochondrial protein translation factors and translation activators leads to abnormal mitochondrial protein translation. Mitochondrial tRNAs and mitochondrial ribosomal proteins are essential players during translation and mutations in genes encoding them represent a large fraction of mitochondrial diseases. Moreover, there is crosstalk between mitochondrial protein translation and cytoplasmic translation, and the imbalance between mitochondrial protein translation and cytoplasmic translation can affect some physiological and pathological processes. This review summarizes the regulation of mitochondrial protein translation factors, mitochondrial ribosomal proteins, mitochondrial tRNAs, and mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs) in the mitochondrial protein translation process and its relationship with diseases. The regulation of mitochondrial protein translation and cytoplasmic translation in multiple diseases is also summarized.
Collapse
Affiliation(s)
- Fei Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Deyu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.,Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| |
Collapse
|
43
|
Richman TR, Ermer JA, Siira SJ, Kuznetsova I, Brosnan CA, Rossetti G, Baker J, Perks KL, Cserne Szappanos H, Viola HM, Gray N, Larance M, Hool LC, Zuryn S, Rackham O, Filipovska A. Mitochondrial mistranslation modulated by metabolic stress causes cardiovascular disease and reduced lifespan. Aging Cell 2021; 20:e13408. [PMID: 34096683 PMCID: PMC8282274 DOI: 10.1111/acel.13408] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/17/2021] [Accepted: 05/08/2021] [Indexed: 12/25/2022] Open
Abstract
Changes in the rate and fidelity of mitochondrial protein synthesis impact the metabolic and physiological roles of mitochondria. Here we explored how environmental stress in the form of a high-fat diet modulates mitochondrial translation and affects lifespan in mutant mice with error-prone (Mrps12ep / ep ) or hyper-accurate (Mrps12ha / ha ) mitochondrial ribosomes. Intriguingly, although both mutations are metabolically beneficial in reducing body weight, decreasing circulating insulin and increasing glucose tolerance during a high-fat diet, they manifest divergent (either deleterious or beneficial) outcomes in a tissue-specific manner. In two distinct organs that are commonly affected by the metabolic disease, the heart and the liver, Mrps12ep / ep mice were protected against heart defects but sensitive towards lipid accumulation in the liver, activating genes involved in steroid and amino acid metabolism. In contrast, enhanced translational accuracy in Mrps12ha / ha mice protected the liver from a high-fat diet through activation of liver proliferation programs, but enhanced the development of severe hypertrophic cardiomyopathy and led to reduced lifespan. These findings reflect the complex transcriptional and cell signalling responses that differ between post-mitotic (heart) and highly proliferative (liver) tissues. We show trade-offs between the rate and fidelity of mitochondrial protein synthesis dictate tissue-specific outcomes due to commonly encountered stressful environmental conditions or aging.
Collapse
Affiliation(s)
- Tara R. Richman
- Harry Perkins Institute of Medical Research QEII Medical Centre Nedlands WA Australia
- ARC Centre of Excellence in Synthetic Biology QEII Medical Centre Nedlands WA Australia
- Centre for Medical Research QEII Medical Centre, The University of Western Australia Nedlands WA Australia
| | - Judith A. Ermer
- Harry Perkins Institute of Medical Research QEII Medical Centre Nedlands WA Australia
- ARC Centre of Excellence in Synthetic Biology QEII Medical Centre Nedlands WA Australia
- Centre for Medical Research QEII Medical Centre, The University of Western Australia Nedlands WA Australia
| | - Stefan J. Siira
- Harry Perkins Institute of Medical Research QEII Medical Centre Nedlands WA Australia
- ARC Centre of Excellence in Synthetic Biology QEII Medical Centre Nedlands WA Australia
- Centre for Medical Research QEII Medical Centre, The University of Western Australia Nedlands WA Australia
| | - Irina Kuznetsova
- Harry Perkins Institute of Medical Research QEII Medical Centre Nedlands WA Australia
- ARC Centre of Excellence in Synthetic Biology QEII Medical Centre Nedlands WA Australia
- Centre for Medical Research QEII Medical Centre, The University of Western Australia Nedlands WA Australia
| | - Christopher A. Brosnan
- Clem Jones Centre for Ageing Dementia Research Queensland Brain Institute The University of Queensland Brisbane Qld Australia
| | - Giulia Rossetti
- Harry Perkins Institute of Medical Research QEII Medical Centre Nedlands WA Australia
- ARC Centre of Excellence in Synthetic Biology QEII Medical Centre Nedlands WA Australia
- Centre for Medical Research QEII Medical Centre, The University of Western Australia Nedlands WA Australia
- Telethon Kids Institute Perth Children's Hospital Nedlands WA Australia
| | - Jessica Baker
- Harry Perkins Institute of Medical Research QEII Medical Centre Nedlands WA Australia
- ARC Centre of Excellence in Synthetic Biology QEII Medical Centre Nedlands WA Australia
- Centre for Medical Research QEII Medical Centre, The University of Western Australia Nedlands WA Australia
- Telethon Kids Institute Perth Children's Hospital Nedlands WA Australia
| | - Kara L. Perks
- Harry Perkins Institute of Medical Research QEII Medical Centre Nedlands WA Australia
- ARC Centre of Excellence in Synthetic Biology QEII Medical Centre Nedlands WA Australia
- Centre for Medical Research QEII Medical Centre, The University of Western Australia Nedlands WA Australia
- Telethon Kids Institute Perth Children's Hospital Nedlands WA Australia
- School of Pharmacy and Biomedical Sciences Curtin University Bentley WA Australia
| | | | - Helena M. Viola
- School of Human Sciences The University of Western Australia Nedlands WA Australia
| | - Nicola Gray
- Australian National Phenome Centre Centre for Computational and Systems Medicine Health Futures Institute Murdoch University Perth WA Australia
| | - Mark Larance
- Charles Perkins Centre School of Life and Environmental Sciences University of Sydney Sydney NSW Australia
| | - Livia C. Hool
- School of Human Sciences The University of Western Australia Nedlands WA Australia
- Victor Chang Cardiac Research Institute Sydney NSW Australia
| | - Steven Zuryn
- Clem Jones Centre for Ageing Dementia Research Queensland Brain Institute The University of Queensland Brisbane Qld Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research QEII Medical Centre Nedlands WA Australia
- ARC Centre of Excellence in Synthetic Biology QEII Medical Centre Nedlands WA Australia
- Centre for Medical Research QEII Medical Centre, The University of Western Australia Nedlands WA Australia
- Telethon Kids Institute Perth Children's Hospital Nedlands WA Australia
- School of Pharmacy and Biomedical Sciences Curtin University Bentley WA Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research QEII Medical Centre Nedlands WA Australia
- ARC Centre of Excellence in Synthetic Biology QEII Medical Centre Nedlands WA Australia
- Centre for Medical Research QEII Medical Centre, The University of Western Australia Nedlands WA Australia
- Telethon Kids Institute Perth Children's Hospital Nedlands WA Australia
- Victor Chang Cardiac Research Institute Sydney NSW Australia
| |
Collapse
|
44
|
Lenarčič T, Jaskolowski M, Leibundgut M, Scaiola A, Schönhut T, Saurer M, Lee RG, Rackham O, Filipovska A, Ban N. Stepwise maturation of the peptidyl transferase region of human mitoribosomes. Nat Commun 2021; 12:3671. [PMID: 34135320 PMCID: PMC8208988 DOI: 10.1038/s41467-021-23811-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/07/2021] [Indexed: 02/08/2023] Open
Abstract
Mitochondrial ribosomes are specialized for the synthesis of membrane proteins responsible for oxidative phosphorylation. Mammalian mitoribosomes have diverged considerably from the ancestral bacterial ribosomes and feature dramatically reduced ribosomal RNAs. The structural basis of the mammalian mitochondrial ribosome assembly is currently not well understood. Here we present eight distinct assembly intermediates of the human large mitoribosomal subunit involving seven assembly factors. We discover that the NSUN4-MTERF4 dimer plays a critical role in the process by stabilizing the 16S rRNA in a conformation that exposes the functionally important regions of rRNA for modification by the MRM2 methyltransferase and quality control interactions with the conserved mitochondrial GTPase MTG2 that contacts the sarcin-ricin loop and the immature active site. The successive action of these factors leads to the formation of the peptidyl transferase active site of the mitoribosome and the folding of the surrounding rRNA regions responsible for interactions with tRNAs and the small ribosomal subunit.
Collapse
Affiliation(s)
- Tea Lenarčič
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Mateusz Jaskolowski
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Marc Leibundgut
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Alain Scaiola
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Tanja Schönhut
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Martin Saurer
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Richard G Lee
- Harry Perkins Institute of Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, WA, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, University of Western Australia, Nedlands, WA, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, WA, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, University of Western Australia, Nedlands, WA, Australia
- Curtin Health Innovation Research Institute and Curtin Medical School, Curtin University, Bentley, WA, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, WA, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, University of Western Australia, Nedlands, WA, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
45
|
Lee S, Kang H, Jung H, Kim E, Lee E. Gene Dosage- and Age-Dependent Differential Transcriptomic Changes in the Prefrontal Cortex of Shank2-Mutant Mice. Front Mol Neurosci 2021; 14:683196. [PMID: 34177464 PMCID: PMC8226033 DOI: 10.3389/fnmol.2021.683196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/18/2021] [Indexed: 11/20/2022] Open
Abstract
Shank2 is an abundant postsynaptic scaffolding protein that is known to regulate excitatory synapse assembly and synaptic transmission and has been implicated in various neurodevelopmental disorders, including autism spectrum disorders (ASD). Previous studies on Shank2-mutant mice provided mechanistic insights into their autistic-like phenotypes, but it remains unclear how transcriptomic patterns are changed in brain regions of the mutant mice in age- and gene dosage-dependent manners. To this end, we performed RNA-Seq analyses of the transcripts from the prefrontal cortex (PFC) of heterozygous and homozygous Shank2-mutant mice lacking exons 6 and 7 at juvenile (week 3) and adult (week 12) stages. Juvenile heterozygous Shank2-mutant mice showed upregulation of glutamate synapse-related genes, downregulation of ribosomal and mitochondrial genes, and transcriptomic changes that are opposite to those observed in ASD (anti-ASD) such as upregulation of ASD_down (downregulated in ASD), GABA neuron-related, and oligodendrocyte-related genes. Juvenile homozygous Shank2 mice showed upregulation of chromatin-related genes and transcriptomic changes that are in line with those occurring in ASD (pro-ASD) such as downregulation of ASD_down, GABA neuron-related, and oligodendrocyte-related genes. Adult heterozygous and homozygous Shank2-mutant mice both exhibited downregulation of ribosomal and mitochondrial genes and pro-ASD transcriptomic changes. Therefore, the gene dosage- and age-dependent effects of Shank2 deletions in mice include differential transcriptomic changes across distinct functional contexts, including synapses, chromatin, ribosomes, mitochondria, GABA neurons, and oligodendrocytes.
Collapse
Affiliation(s)
- Seungjoon Lee
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Hyojin Kang
- Division of National Supercomputing, KISTI, Daejeon, South Korea
| | - Hwajin Jung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Eunee Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea.,Department of Anatomy, School of Medicine, Yonsei University, Seoul, South Korea
| |
Collapse
|
46
|
Chakrabarty S, Govindaraj P, Sankaran BP, Nagappa M, Kabekkodu SP, Jayaram P, Mallya S, Deepha S, Ponmalar JNJ, Arivinda HR, Meena AK, Jha RK, Sinha S, Gayathri N, Taly AB, Thangaraj K, Satyamoorthy K. Contribution of nuclear and mitochondrial gene mutations in mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome. J Neurol 2021; 268:2192-2207. [PMID: 33484326 PMCID: PMC8179915 DOI: 10.1007/s00415-020-10390-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mitochondrial disorders are clinically complex and have highly variable phenotypes among all inherited disorders. Mutations in mitochon drial DNA (mtDNA) and nuclear genome or both have been reported in mitochondrial diseases suggesting common pathophysiological pathways. Considering the clinical heterogeneity of mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) phenotype including focal neurological deficits, it is important to look beyond mitochondrial gene mutation. METHODS The clinical, histopathological, biochemical analysis for OXPHOS enzyme activity, and electron microscopic, and neuroimaging analysis was performed to diagnose 11 patients with MELAS syndrome with a multisystem presentation. In addition, whole exome sequencing (WES) and whole mitochondrial genome sequencing were performed to identify nuclear and mitochondrial mutations. RESULTS Analysis of whole mtDNA sequence identified classical pathogenic mutation m.3243A > G in seven out of 11 patients. Exome sequencing identified pathogenic mutation in several nuclear genes associated with mitochondrial encephalopathy, sensorineural hearing loss, diabetes, epilepsy, seizure and cardiomyopathy (POLG, DGUOK, SUCLG2, TRNT1, LOXHD1, KCNQ1, KCNQ2, NEUROD1, MYH7) that may contribute to classical mitochondrial disease phenotype alone or in combination with m.3243A > G mutation. CONCLUSION Individuals with MELAS exhibit clinical phenotypes with varying degree of severity affecting multiple systems including auditory, visual, cardiovascular, endocrine, and nervous system. This is the first report to show that nuclear genetic factors influence the clinical outcomes/manifestations of MELAS subjects alone or in combination with m.3243A > G mutation.
Collapse
Affiliation(s)
- Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Periyasamy Govindaraj
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
- Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
- Institute of Bioinformatics, International Tech Park, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Bindu Parayil Sankaran
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
- Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
- Genetic Metabolic Disorders Service, Children's Hospital At Westmead, Sydney, NSW, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Madhu Nagappa
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
- Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Pradyumna Jayaram
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sandeep Mallya
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sekar Deepha
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
- Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - J N Jessiena Ponmalar
- Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Hanumanthapura R Arivinda
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | | | - Rajan Kumar Jha
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Sanjib Sinha
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Narayanappa Gayathri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
- Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Arun B Taly
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
- Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Kumarasamy Thangaraj
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
47
|
Li SHJ, Nofal M, Parsons LR, Rabinowitz JD, Gitai Z. Monitoring mammalian mitochondrial translation with MitoRiboSeq. Nat Protoc 2021; 16:2802-2825. [PMID: 33953394 PMCID: PMC8610098 DOI: 10.1038/s41596-021-00517-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/05/2021] [Indexed: 02/03/2023]
Abstract
Several essential components of the electron transport chain, the major producer of ATP in mammalian cells, are encoded in the mitochondrial genome. These 13 proteins are translated within mitochondria by 'mitoribosomes'. Defective mitochondrial translation underlies multiple inborn errors of metabolism and has been implicated in pathologies such as aging, metabolic syndrome and cancer. Here, we provide a detailed ribosome profiling protocol optimized to interrogate mitochondrial translation in mammalian cells (MitoRiboSeq), wherein mitoribosome footprints are generated with micrococcal nuclease and mitoribosomes are separated from cytosolic ribosomes and other RNAs by ultracentrifugation in a single straightforward step. We highlight critical steps during library preparation and provide a step-by-step guide to data analysis accompanied by open-source bioinformatic code. Our method outputs mitoribosome footprints at single-codon resolution. Codons with high footprint densities are sites of mitoribosome stalling. We recently applied this approach to demonstrate that defects in mitochondrial serine catabolism or in mitochondrial tRNA methylation cause stalling of mitoribosomes at specific codons. Our method can be applied to study basic mitochondrial biology or to characterize abnormalities in mitochondrial translation in patients with mitochondrial disorders.
Collapse
Affiliation(s)
| | - Michel Nofal
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Lance R Parsons
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
48
|
Meseguer S. MicroRNAs and tRNA-Derived Small Fragments: Key Messengers in Nuclear-Mitochondrial Communication. Front Mol Biosci 2021; 8:643575. [PMID: 34026824 PMCID: PMC8138316 DOI: 10.3389/fmolb.2021.643575] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
Mitochondria are not only important as energy suppliers in cells but also participate in other biological processes essential for cell growth and survival. They arose from α-proteobacterial predecessors through endosymbiosis and evolved transferring a large part of their genome to the host cell nucleus. Such a symbiotic relationship has been reinforced over time through increasingly complex signaling mechanisms between the host cell and mitochondria. So far, we do not have a complete view of the mechanisms that allow the mitochondria to communicate their functional status to the nucleus and trigger adaptive and compensatory responses. Recent findings place two classes of small non-coding RNAs (sncRNAs), microRNAs (miRNAs), and tRNA-derived small fragments, in such a scenario, acting as key pieces in the mitochondria-nucleus cross-talk. This review highlights the emerging roles and the interrelation of these sncRNAs in different signaling pathways between mitochondria and the host cell. Moreover, we describe in what way alterations of these complex regulatory mechanisms involving sncRNAs lead to diseases associated with mitochondrial dysfunction. In turn, these discoveries provide novel prognostic biomarker candidates and/or potential therapeutic targets.
Collapse
Affiliation(s)
- Salvador Meseguer
- Molecular and Cellular Immunology Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| |
Collapse
|
49
|
Abstract
Purpose Glaucoma remains a poorly understood disease, and identifying biomarkers for early diagnosis is critical to reducing the risk of glaucoma-related visual impairment and blindness. The aim of this review is to provide current metabolic profiles for glaucoma through a summary and analysis of reported metabolites associated with glaucoma. Methods We searched PubMed and Web of Science for metabolomics studies of humans on glaucoma published before November 11, 2020. Studies were included if they assessed the biomarkers of any types of glaucoma and performed mass spectrometry-based or nuclear magnetic resonance–based metabolomics approach. Pathway enrichment analysis and topology analysis were performed to generate a global view of metabolic signatures related to glaucoma using the MetaboAnalyst 3.0. Results In total, 18 articles were included in this review, among which 13 studies were focused on open-angle glaucoma (OAG). Seventeen metabolites related to OAG were repeatedly identified, including seven amino acids (arginine, glycine, alanine, lysine, methionine, phenylalanine, tyrosine), two phosphatidylcholine (PC aa C34:2, PC aa C36:4), three complements (acetylcarnitine, propionylcarnitine, butyrylcarnitine), carnitine, glutamine, hypoxanthine, spermine, and spermidine. The pathway analysis implied a major role of amino metabolism in OAG pathophysiology and revealed the metabolic characteristics between different biological samples. Conclusions In this review, we summarize existing metabolomic studies related to glaucoma biomarker identification and point out a series of metabolic disorders in OAG patients, providing information on the molecular mechanism changes in glaucoma. Additional studies are needed to validate existing findings, and future research will need to explore the potential overlap between different biological fluids.
Collapse
Affiliation(s)
- Ying Wang
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Xiao-Wen Hou
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Gang Liang
- Department of Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming, China.,Department of Ophthalmology, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Chen-Wei Pan
- School of Public Health, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
50
|
Mitochondrial translation inhibition triggers ATF4 activation, leading to integrated stress response but not to mitochondrial unfolded protein response. Biosci Rep 2021; 40:226915. [PMID: 33165592 PMCID: PMC7685009 DOI: 10.1042/bsr20201289] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/12/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial–nuclear communication, known as retrograde signaling, is important for regulating nuclear gene expression in response to mitochondrial dysfunction. Previously, we have found that p32/C1qbp-deficient mice, which have a mitochondrial translation defect, show endoplasmic reticulum (ER) stress response and integrated stress response (ISR) gene expression in the heart and brain. However, the mechanism by which mitochondrial translation inhibition elicits these responses is not clear. Among the transcription factors that respond to mitochondrial stress, activating transcription factor 4 (ATF4) is a key transcription factor in the ISR. Herein, chloramphenicol (CAP), which inhibits mitochondrial DNA (mtDNA)-encoded protein expression, induced eukaryotic initiation factor 2 α subunit (eIF2α) phosphorylation and ATF4 induction, leading to ISR gene expression. However, the expression of the mitochondrial unfolded protein response (mtUPR) genes, which has been shown in Caenorhabditis elegans, was not induced. Short hairpin RNA-based knockdown of ATF4 markedly inhibited the CAP-induced ISR gene expression. We also observed by ChIP analysis that induced ATF4 bound to the promoter region of several ISR genes, suggesting that mitochondrial translation inhibition induces ISR gene expression through ATF4 activation. In the present study, we showed that mitochondrial translation inhibition induced the ISR through ATF4 activation rather than the mtUPR.
Collapse
|