1
|
Palese F, Rakotobe M, Zurzolo C. Transforming the concept of connectivity: unveiling tunneling nanotube biology and their roles in brain development and neurodegeneration. Physiol Rev 2025; 105:1823-1865. [PMID: 40067081 DOI: 10.1152/physrev.00023.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/17/2024] [Accepted: 02/03/2025] [Indexed: 05/08/2025] Open
Abstract
Tunneling nanotubes (TNTs) are thin tubular membrane protrusions that connect distant cells, generating a complex cellular network. Over the past few decades, research on TNTs has provided important insights into their biology, including structural composition, formation mechanisms, modulators, and functionality. It has been discovered that TNTs allow cytoplasmic continuity between connected cells, facilitating fast intercellular communication via both passive and active exchange of materials. These features are pivotal in the nervous system, where rapid processing of inputs is physiologically required. TNTs have been implicated in the progression of neurodegenerative diseases and cancer in various in vitro models, and TNT-like structures have also been observed in the developing brain and in vivo. This highlights their significant role in pathophysiological processes. In this comprehensive review we aim to provide an extensive overview of TNTs, starting from key structural features and mechanisms of formation and describing the main experimental techniques used to detect these structures both in vitro and in vivo. We focus primarily on the nervous system, where the discovery of TNTs could prompt a reconsideration of the brain functioning as individual units (the neuronal theory of Cajal) versus neurons being physically connected, as Golgi believed. We illustrate the involvement of TNTs in brain development and neurodegenerative states and highlight the limitations and future research needs in this field.
Collapse
Affiliation(s)
- Francesca Palese
- Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Membrane Traffic and Pathogenesis, Paris, France
| | - Malalaniaina Rakotobe
- Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Membrane Traffic and Pathogenesis, Paris, France
| | - Chiara Zurzolo
- Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Membrane Traffic and Pathogenesis, Paris, France
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
2
|
Wang Z, Lee Y, Xu Y, Gao P, Yu C, Chen J. Model Architecture Analysis and Implementation of TENET for Cell-Cell Interaction Network Reconstruction Using Spatial Transcriptomics Data. Bio Protoc 2025; 15:e5205. [PMID: 39968356 PMCID: PMC11833462 DOI: 10.21769/bioprotoc.5205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 02/20/2025] Open
Abstract
Cellular communication relies on the intricate interplay of signaling molecules, which come together to form the cell-cell interaction (CCI) network that orchestrates tissue behavior. Researchers have shown that shallow neural networks can effectively reconstruct the CCI from the abundant molecular data captured in spatial transcriptomics (ST). However, in scenarios characterized by sparse connections and excessive noise within the CCI, shallow networks are often susceptible to inaccuracies, leading to suboptimal reconstruction outcomes. To achieve a more comprehensive and precise CCI reconstruction, we propose a novel method called triple-enhancement-based graph neural network (TENET). The TENET framework has been implemented and evaluated on both real and synthetic ST datasets. This protocol primarily introduces our network architecture and its implementation. Key features • Cell-cell reconstruction network using ST data. • To facilitate the implementation of a more holistic CCI, we incorporate diverse CCI modalities into consideration. • To further enrich the input information, the downstream gene regulatory network (GRN) is also incorporated as an input to the network. • The network architecture considers global and local cellular and genetic features rather than solely leveraging the graph neural network (GNN) to model such information.
Collapse
Affiliation(s)
- Ziyang Wang
- Dept/Center, Guangdong Medical University, Dongguan, China
| | - Yujian Lee
- Guangdong Provincial Key Laboratory IRADS, BNU-HKBU UIC, Zhuhai, China
| | - Yongqi Xu
- Department of Computer Science and Technology, Guangdong University of Technology, Guangzhou, China
| | - Peng Gao
- Guangdong Provincial Key Laboratory IRADS, BNU-HKBU UIC, Zhuhai, China
| | - Chuckel Yu
- Independent researcher, Guangzhou, China
| | - Jiaxing Chen
- Guangdong Provincial Key Laboratory IRADS, BNU-HKBU UIC, Zhuhai, China
| |
Collapse
|
3
|
Alekseenko I, Zhukova L, Kondratyeva L, Buzdin A, Chernov I, Sverdlov E. Tumor Cell Communications as Promising Supramolecular Targets for Cancer Chemotherapy: A Possible Strategy. Int J Mol Sci 2024; 25:10454. [PMID: 39408784 PMCID: PMC11476449 DOI: 10.3390/ijms251910454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Fifty-two years have passed since President Nixon launched the "War on Cancer". Despite unparalleled efforts and funds allocated worldwide, the outlined goals were not achieved because cancer treatment approaches such as chemotherapy, radiation therapy, hormonal and targeted therapies have not fully met the expectations. Based on the recent literature, a new direction in cancer therapy can be proposed which targets connections between cancer cells and their microenvironment by chemical means. Cancer-stromal synapses such as immunological synapses between cancer and immune cells provide an attractive target for this approach. Such synapses form ligand-receptor clusters on the interface of the interacting cells. They share a common property of involving intercellular clusters of spatially proximate and cooperatively acting proteins. Synapses provide the space for the focused intercellular signaling molecules exchange. Thus, the disassembly of cancer-stromal synapses may potentially cause the collapse of various tumors. Additionally, the clustered arrangement of synapse components offers opportunities to enhance treatment safety and precision by using targeted crosslinking chemical agents which may inactivate cancer synapses even in reduced concentrations. Furthermore, attaching a cleavable cell-permeable toxic agent(s) to a crosslinker may further enhance the anti-cancer effect of such therapeutics. The highlighted approach promises to be universal, relatively simple and cost-efficient. We also hope that, unlike chemotherapeutic and immune drugs that interact with a single target, by using supramolecular large clusters that include many different components as a target, the emergence of a resistance characteristic of chemo- and immunotherapy is extremely unlikely.
Collapse
Affiliation(s)
- Irina Alekseenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (I.A.); (A.B.); (I.C.)
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
| | - Lyudmila Zhukova
- Department of Oncology, SBIH “Moscow Clinical Scientific and Practical Center Named After A.S. Loginov” DHM, 111123 Moscow, Russia;
| | - Liya Kondratyeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (I.A.); (A.B.); (I.C.)
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
| | - Anton Buzdin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (I.A.); (A.B.); (I.C.)
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119992 Moscow, Russia
- Oncobox LLC, 121205 Moscow, Russia
| | - Igor Chernov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (I.A.); (A.B.); (I.C.)
| | - Eugene Sverdlov
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
| |
Collapse
|
4
|
Dufrancais O, Verdys P, Plozza M, Métais A, Juzans M, Sanchez T, Bergert M, Halper J, Panebianco CJ, Mascarau R, Gence R, Arnaud G, Neji MB, Maridonneau-Parini I, Cabec VL, Boerckel JD, Pavlos NJ, Diz-Muñoz A, Lagarrigue F, Blin-Wakkach C, Carréno S, Poincloux R, Burkhardt JK, Raynaud-Messina B, Vérollet C. Moesin controls cell-cell fusion and osteoclast function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593799. [PMID: 38798563 PMCID: PMC11118517 DOI: 10.1101/2024.05.13.593799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Cell-cell fusion is an evolutionarily conserved process that is essential for many functions, including fertilisation and the formation of placenta, muscle and osteoclasts, multinucleated cells that are unique in their ability to resorb bone. The mechanisms of osteoclast multinucleation involve dynamic interactions between the actin cytoskeleton and the plasma membrane that are still poorly characterized. Here, we found that moesin, a cytoskeletal linker protein member of the Ezrin/Radixin/Moesin (ERM) protein family, is activated during osteoclast maturation and plays an instrumental role in both osteoclast fusion and function. In mouse and human osteoclast precursors, moesin inhibition favors their ability to fuse into multinucleated osteoclasts. Accordingly, we demonstrated that moesin depletion decreases membrane-to-cortex attachment and enhances the formation of tunneling nanotubes (TNTs), F-actin-based intercellular bridges that we reveal here to trigger cell-cell fusion. Moesin also controls HIV-1- and inflammation-induced cell fusion. In addition, moesin regulates the formation of the sealing zone, the adhesive structure determining osteoclast bone resorption area, and thus controls bone degradation, via a β3-integrin/RhoA/SLK pathway. Supporting our results, moesin - deficient mice present a reduced density of trabecular bones and increased osteoclast abundance and activity. These findings provide a better understanding of the regulation of cell-cell fusion and osteoclast biology, opening new opportunities to specifically target osteoclast activity in bone disease therapy.
Collapse
|
5
|
Lee Y, Xu Y, Gao P, Chen J. TENET: Triple-enhancement based graph neural network for cell-cell interaction network reconstruction from spatial transcriptomics. J Mol Biol 2024; 436:168543. [PMID: 38508302 DOI: 10.1016/j.jmb.2024.168543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/03/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
Cellular communication relies on the intricate interplay of signaling molecules, forming the Cell-cell Interaction network (CCI) that coordinates tissue behavior. Researchers have shown the capability of shallow neural networks in reconstructing CCI, given molecules' abundance in the Spatial Transcriptomics (ST) data. When encountering situations such as sparse connections in CCI and excessive noise, the susceptibility of shallow networks to these factors significantly impacts the accuracy of CCI reconstruction, resulting in subpar results. To reconstruct a more comprehensive and accurate CCI, we propose a novel method named Triple-Enhancement based Graph Neural Network (TENET). In TENET, three progressive enhancement mechanisms build upon each other, creating a cumulative effect. This approach can ensure the ability to capture valuable features in limited data and amplify the noise signal to facilitate the denoising effect. Additionally, the whole architecture guides the decoding reconstruction phase with integrated knowledge, which leverages the accumulated insights from each stage of enhancement to ensure a refined and comprehensive CCI reconstruction. The presented TENET has been implemented and tested on both real and synthetic ST datasets. Averagely, the CCI reconstruction using TENET achieves a 9.61% improvement in Average Precision (AP) and a 7.32% improvement in Area Under the Receiver Operating Characteristic (AUROC) compared to the existing state-of-the-art (SOTA) method. The source code and data are available at https://github.com/Yujian-Lee/TENET.
Collapse
Affiliation(s)
- Yujian Lee
- Guangdong Provincial Key Laboratory IRADS, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China; Department of Computer Science, Hong Kong Baptist University, Hong Kong Special Administrative Region; Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
| | - Yongqi Xu
- Department of Computer Science and Technology, Guangdong University of Technology, Guangzhou, China
| | - Peng Gao
- Department of Computer Science, Hong Kong Baptist University, Hong Kong Special Administrative Region; Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
| | - Jiaxing Chen
- Guangdong Provincial Key Laboratory IRADS, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China; Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China.
| |
Collapse
|
6
|
Wang Y, Xiong Y, Shi K, Effah CY, Song L, He L, Liu J. DNA nanostructures for exploring cell-cell communication. Chem Soc Rev 2024; 53:4020-4044. [PMID: 38444346 DOI: 10.1039/d3cs00944k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The process of coordinating between the same or multiple types of cells to jointly execute various instructions in a controlled and carefully regulated environment is a very appealing field. In order to provide clearer insight into the role of cell-cell interactions and the cellular communication of this process in their local communities, several interdisciplinary approaches have been employed to enhance the core understanding of this phenomenon. DNA nanostructures have emerged in recent years as one of the most promising tools in exploring cell-cell communication and interactions due to their programmability and addressability. Herein, this review is dedicated to offering a new perspective on using DNA nanostructures to explore the progress of cell-cell communication. After briefly outlining the anchoring strategy of DNA nanostructures on cell membranes and the subsequent dynamic regulation of DNA nanostructures, this paper highlights the significant contribution of DNA nanostructures in monitoring cell-cell communication and regulating its interactions. Finally, we provide a quick overview of the current challenges and potential directions for the application of DNA nanostructures in cellular communication and interactions.
Collapse
Affiliation(s)
- Ya Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Yamin Xiong
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Kangqi Shi
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Clement Yaw Effah
- The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou 450003, China
| | - Lulu Song
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Leiliang He
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| |
Collapse
|
7
|
Hurst R, Brewer DS, Gihawi A, Wain J, Cooper CS. Cancer invasion and anaerobic bacteria: new insights into mechanisms. J Med Microbiol 2024; 73:001817. [PMID: 38535967 PMCID: PMC10995961 DOI: 10.1099/jmm.0.001817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/27/2024] [Indexed: 04/07/2024] Open
Abstract
There is growing evidence that altered microbiota abundance of a range of specific anaerobic bacteria are associated with cancer, including Peptoniphilus spp., Porphyromonas spp., Fusobacterium spp., Fenollaria spp., Prevotella spp., Sneathia spp., Veillonella spp. and Anaerococcus spp. linked to multiple cancer types. In this review we explore these pathogenic associations. The mechanisms by which bacteria are known or predicted to interact with human cells are reviewed and we present an overview of the interlinked mechanisms and hypotheses of how multiple intracellular anaerobic bacterial pathogens may act together to cause host cell and tissue microenvironment changes associated with carcinogenesis and cancer cell invasion. These include combined effects on changes in cell signalling, DNA damage, cellular metabolism and immune evasion. Strategies for early detection and eradication of anaerobic cancer-associated bacterial pathogens that may prevent cancer progression are proposed.
Collapse
Affiliation(s)
- Rachel Hurst
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Daniel S. Brewer
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
- Earlham Institute, Norwich Research Park Innovation Centre, Colney Lane, Norwich NR4 7UZ, UK
| | - Abraham Gihawi
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - John Wain
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
- Quadram Institute Biosciences, Colney Lane, Norwich, Norfolk, NR4 7UQ, UK
| | - Colin S. Cooper
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| |
Collapse
|
8
|
Lv W, Li Z, Wang S, He J, Zhang L. A role for tunneling nanotubes in virus spread. Front Microbiol 2024; 15:1356415. [PMID: 38435698 PMCID: PMC10904554 DOI: 10.3389/fmicb.2024.1356415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
Tunneling nanotubes (TNTs) are actin-rich intercellular conduits that mediate distant cell-to-cell communication and enable the transfer of various cargos, including proteins, organelles, and virions. They play vital roles in both physiological and pathological processes. In this review, we focus on TNTs in different types of viruses, including retroviruses such as HIV, HTLV, influenza A, herpesvirus, paramyxovirus, alphavirus and SARS-CoV-2. We summarize the viral proteins responsible for inducing TNT formation and explore how these virus-induced TNTs facilitate intercellular communication, thereby promoting viral spread. Furthermore, we highlight other virus infections that can induce TNT-like structures, facilitating the dissemination of viruses. Moreover, TNTs promote intercellular spread of certain viruses even in the presence of neutralizing antibodies and antiviral drugs, posing significant challenges in combating viral infections. Understanding the mechanisms underlying viral spread via TNTs provides valuable insights into potential drug targets and contributes to the development of effective therapies for viral infections.
Collapse
Affiliation(s)
- Weimiao Lv
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zichen Li
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shule Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Jingyi He
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Leiliang Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
9
|
Liu Y, Wu H, Sang Y, Chong W, Shang L, Li L. Research progress of exosomes in the angiogenesis of digestive system tumour. Discov Oncol 2024; 15:33. [PMID: 38341827 PMCID: PMC10859358 DOI: 10.1007/s12672-024-00879-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/30/2024] [Indexed: 02/13/2024] Open
Abstract
Malignant tumours of the digestive system cover a wide range of diseases that affect the health of people to a large extent. Angiogenesis is indispensable in the development, and metastasis of tumours, mainly in two ways: occupation or formation. Vessels can provide nutrients, oxygen, and growth factors for tumours to encourage growth and metastasis, so cancer progression depends on simultaneous angiogenesis. Recently, exosomes have been proven to participate in the angiogenesis of tumours. They influence angiogenesis by binding to tyrosine kinase receptors (VEGFR)-1, VEGFR-2, and VEGFR-3 with different affinities, regulating Yap-VEGF pathway, Akt pathway or other signaling pathway. Additionally, exosomes are potential therapeutic vectors that can deliver many types of cargoes to different cells. In this review, we summarize the roles of exosomes in the angiogenesis of digestive system tumours and highlight the clinical application prospects, directly used as targers or delivery vehicles, in antiangiogenic therapy.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
- Department of Gastrointestinal Surgery, Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Jinan, 250021, China
- Department of Gastrointestinal Surgery, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Hao Wu
- Department of General Surgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yaodong Sang
- Department of Gastrointestinal Surgery, Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Jinan, 250021, China
- Department of Gastrointestinal Surgery, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Wei Chong
- Department of Gastrointestinal Surgery, Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Jinan, 250021, China.
- Department of Gastrointestinal Surgery, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China.
| | - Liang Shang
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Gastrointestinal Surgery, Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Jinan, 250021, China.
- Department of Gastrointestinal Surgery, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China.
| | - Leping Li
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Gastrointestinal Surgery, Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Jinan, 250021, China.
- Department of Gastrointestinal Surgery, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China.
| |
Collapse
|
10
|
Szabó-Meleg E. Intercellular Highways in Transport Processes. Results Probl Cell Differ 2024; 73:173-201. [PMID: 39242380 DOI: 10.1007/978-3-031-62036-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Communication among cells is vital in multicellular organisms. Various structures and mechanisms have evolved over time to achieve the intricate flow of material and information during this process. One such way of communication is through tunnelling membrane nanotubes (TNTs), which were initially described in 2004. These TNTs are membrane-bounded actin-rich cellular extensions, facilitating direct communication between distant cells. They exhibit remarkable diversity in terms of structure, morphology, and function, in which cytoskeletal proteins play an essential role. Biologically, TNTs play a crucial role in transporting membrane components, cell organelles, and nucleic acids, and they also present opportunities for the efficient transmission of bacteria and viruses, furthermore, may contribute to the dissemination of misfolded proteins in certain neurodegenerative diseases. Convincing results of studies conducted both in vitro and in vivo indicate that TNTs play roles in various biomedical processes, including cell differentiation, tissue regeneration, neurodegenerative diseases, immune response and function, as well as tumorigenesis.
Collapse
Affiliation(s)
- Edina Szabó-Meleg
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary.
| |
Collapse
|
11
|
Rey-Barroso J, Dufrançais O, Vérollet C. Tunneling Nanotubes in Myeloid Cells: Perspectives for Health and Infectious Diseases. Results Probl Cell Differ 2024; 73:419-434. [PMID: 39242388 DOI: 10.1007/978-3-031-62036-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Tunneling nanotubes (TNTs) are cellular connections, which represent a novel route for cell-to-cell communication. Strong evidence points to a role for TNTs in the intercellular transfer of signals, molecules, organelles, and pathogens, involving them in many cellular functions. In myeloid cells (e.g., monocytes/macrophages, dendritic cells, and osteoclasts), intercellular communication via TNT contributes to their differentiation and immune functions, by favoring material and pathogen transfer, as well as cell fusion. This chapter addresses the complexity of the definition and characterization of TNTs in myeloid cells, the different processes involved in their formation, their existence in vivo, and finally their function(s) in health and infectious diseases, with the example of HIV-1 infection.
Collapse
Affiliation(s)
- Javier Rey-Barroso
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Ophélie Dufrançais
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Christel Vérollet
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France.
- International Research Laboratory (IRP) CNRS "IM-TB/HIV", Toulouse, France.
- International Research Laboratory (IRP) CNRS "IM-TB/HIV", Buenos Aires, Argentina.
| |
Collapse
|
12
|
Hou J, Liu J, Huang Z, Wang Y, Yao H, Hu Z, Shi C, Xu J, Wang Q. Structure and function of the membrane microdomains in osteoclasts. Bone Res 2023; 11:61. [PMID: 37989999 PMCID: PMC10663511 DOI: 10.1038/s41413-023-00294-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 11/23/2023] Open
Abstract
The cell membrane structure is closely related to the occurrence and progression of many metabolic bone diseases observed in the clinic and is an important target to the development of therapeutic strategies for these diseases. Strong experimental evidence supports the existence of membrane microdomains in osteoclasts (OCs). However, the potential membrane microdomains and the crucial mechanisms underlying their roles in OCs have not been fully characterized. Membrane microdomain components, such as scaffolding proteins and the actin cytoskeleton, as well as the roles of individual membrane proteins, need to be elucidated. In this review, we discuss the compositions and critical functions of membrane microdomains that determine the biological behavior of OCs through the three main stages of the OC life cycle.
Collapse
Affiliation(s)
- Jialong Hou
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhixian Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yining Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hanbing Yao
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhenxin Hu
- Department of Spine Surgery, Peking University Fourth School of Clinical Medicine, Beijing, China
| | - Chengge Shi
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Qingqing Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
13
|
Stefano GB, Büttiker P, Weissenberger S, Esch T, Anders M, Raboch J, Kream RM, Ptacek R. Independent and sensory human mitochondrial functions reflecting symbiotic evolution. Front Cell Infect Microbiol 2023; 13:1130197. [PMID: 37389212 PMCID: PMC10302212 DOI: 10.3389/fcimb.2023.1130197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
The bacterial origin of mitochondria has been a widely accepted as an event that occurred about 1.45 billion years ago and endowed cells with internal energy producing organelle. Thus, mitochondria have traditionally been viewed as subcellular organelle as any other - fully functionally dependent on the cell it is a part of. However, recent studies have given us evidence that mitochondria are more functionally independent than other organelles, as they can function outside the cells, engage in complex "social" interactions, and communicate with each other as well as other cellular components, bacteria and viruses. Furthermore, mitochondria move, assemble and organize upon sensing different environmental cues, using a process akin to bacterial quorum sensing. Therefore, taking all these lines of evidence into account we hypothesize that mitochondria need to be viewed and studied from a perspective of a more functionally independent entity. This view of mitochondria may lead to new insights into their biological function, and inform new strategies for treatment of disease associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- George B. Stefano
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Pascal Büttiker
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | | | - Tobias Esch
- Institute for Integrative Health Care and Health Promotion, School of Medicine, Witten/Herdecke University, Witten, Germany
| | - Martin Anders
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Jiri Raboch
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Richard M. Kream
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Radek Ptacek
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| |
Collapse
|
14
|
Mahadik P, Patwardhan S. ECM stiffness-regulated exosomal thrombospondin-1 promotes tunneling nanotubes-based cellular networking in breast cancer cells. Arch Biochem Biophys 2023; 742:109624. [PMID: 37146866 DOI: 10.1016/j.abb.2023.109624] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/22/2023] [Accepted: 05/03/2023] [Indexed: 05/07/2023]
Abstract
Intercellular communication is pivotal in various stages of cancer progression. For smart and effective communication, cancer cells employ diverse modes of messaging that may be further fine-tuned by the microenvironmental changes. Extracellular matrix (ECM) stiffening due to excess deposition and crosslinking of collagen is one of the crucial tumor-microenvironmental changes that influence a plethora of cellular processes, including cell-cell communication. We herein studied the crosstalk between exosomes and tunneling nanotubes (TNT), the two distinct means of cell-cell communication under varying ECM-stiffness conditions. We show that exosomes promote the formation of tunneling nanotubes in breast cancer cells, which results in cellular internet. Interestingly, exosomes drastically increased the fraction of cells connected by TNT; however, they elicited no effect on the number of TNTs per pair of connected cells or the length of TNT. The observed pro-TNT effects of exosomes were found to be ECM-stiffness dependent. ECM-stiffness tuned exosomes were found to promote TNT formation predominantly via the 'cell dislodgment model'. At the molecular level, exosomal thrombospondin-1 was identified as a critical pro-TNT factor. These findings underline the influence of ECM stiffening on two diverse modes of cell communication and their interdependence, which may have significant implications in cancer biomedical research.
Collapse
Affiliation(s)
- Pratiksha Mahadik
- Patwardhan Lab, Advanced Centre for Treatment, Research and Education in Cancer, (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India
| | - Sejal Patwardhan
- Patwardhan Lab, Advanced Centre for Treatment, Research and Education in Cancer, (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
15
|
Genna A, Duran CL, Entenberg D, Condeelis JS, Cox D. Macrophages Promote Tumor Cell Extravasation across an Endothelial Barrier through Thin Membranous Connections. Cancers (Basel) 2023; 15:2092. [PMID: 37046751 PMCID: PMC10093384 DOI: 10.3390/cancers15072092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Macrophages are important players involved in the progression of breast cancer, including in seeding the metastatic niche. However, the mechanism by which macrophages in the lung parenchyma interact with tumor cells in the vasculature to promote tumor cell extravasation at metastatic sites is not clear. To mimic macrophage-driven tumor cell extravasation, we used an in vitro assay (eTEM) in which an endothelial monolayer and a matrigel-coated filter separated tumor cells and macrophages from each other. The presence of macrophages promoted tumor cell extravasation, while macrophage conditioned media was insufficient to stimulate tumor cell extravasation in vitro. This finding is consistent with a requirement for direct contact between macrophages and tumor cells. We observed the presence of Thin Membranous Connections (TMCs) resembling similar structures formed between macrophages and tumor cells called tunneling nanotubes, which we previously demonstrated to be important in tumor cell invasion in vitro and in vivo. To determine if TMCs are important for tumor cell extravasation, we used macrophages with reduced levels of endogenous M-Sec (TNFAIP2), which causes a defect in tunneling nanotube formation. As predicted, these macrophages showed reduced macrophage-tumor cell TMCs. In both, human and murine breast cancer cell lines, there was also a concomitant reduction in tumor cell extravasation in vitro when co-cultured with M-Sec deficient macrophages compared to control macrophages. We also detected TMCs formed between macrophages and tumor cells through the endothelial layer in the eTEM assay. Furthermore, tumor cells were more frequently found in pores under the endothelium that contain macrophage protrusions. To determine the role of macrophage-tumor cell TMCs in vivo, we generated an M-Sec deficient mouse. Using an in vivo model of experimental metastasis, we detected a significant reduction in the number of metastatic lesions in M-Sec deficient mice compared to wild type mice. There was no difference in the size of the metastases, consistent with a defect specific to tumor cell extravasation and not metastatic outgrowth. Additionally, with an examination of time-lapse intravital-imaging (IVI) data sets of breast cancer cell extravasation in the lungs, we could detect the presence of TMCs between extravascular macrophages and vascular tumor cells. Overall, our data indicate that macrophage TMCs play an important role in promoting the extravasation of circulating tumor cells in the lungs.
Collapse
Affiliation(s)
- Alessandro Genna
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
| | - Camille L. Duran
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
| | - David Entenberg
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - John S. Condeelis
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Dianne Cox
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
16
|
Genna A, Duran CL, Entenberg D, Condeelis J, Cox D. Macrophages Promote Tumor Cell Extravasation across an Endothelial Barrier through Thin Membranous Connections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528161. [PMID: 36824832 PMCID: PMC9948990 DOI: 10.1101/2023.02.16.528161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Macrophages are important players involved in the progression of breast cancer, including in seeding the metastatic niche. However, the mechanism by which macrophages in the lung parenchyma interact with tumor cells in the vasculature to promote tumor cell extravasation at metastatic sites is not clear. To mimic macrophage-driven tumor cell extravasation, we used an in vitro assay (eTEM) in which an endothelial monolayer and a matrigel-coated filter separated tumor cells and macrophages from each other. The presence of macrophages promoted tumor cell extravasation while macrophage conditioned media was insufficient to stimulate tumor cell extravasation in vitro . This finding is consistent with a requirement for direct contact between macrophages and tumor cells. We observed the presence of Thin Membranous Connections (TMCs) resembling similar structures formed between macrophages and tumor cells called tunneling nanotubes which we previously demonstrated to be important in tumor cell invasion in vitro and in vivo (Hanna 2019). To determine if TMCs are important for tumor cell extravasation, we used macrophages with reduced levels of endogenous M-Sec (TNFAIP2), which causes a defect in tunneling nanotube formation. As predicted, these macrophages showed reduced macrophage-tumor cell TMCs. In both, human and murine breast cancer cell lines, there was also a concomitant reduction in tumor cell extravasation in vitro when co-cultured with M-Sec deficient macrophages compared to control macrophages. We also detected TMCs formed between macrophages and tumor cells through the endothelial layer in the eTEM assay. Furthermore, tumor cells were more frequently found in pores under the endothelium that contain macrophage protrusions. To determine the role of macrophage-tumor cell TMCs in vivo , we generated an M-Sec deficient mouse. Using an in vivo model of experimental metastasis, we detected a significant reduction in the number of metastatic lesions in M-Sec deficient mice compared to wild type mice. There was no difference in the size of the metastases, consistent with a defect specific to tumor cell extravasation and not metastatic outgrowth. Additionally, examination of time-lapse intravital-imaging (IVI) data sets of breast cancer cell extravasation in the lung, we could detect the presence of TMCs between extravascular macrophages and vascular tumor cells. Overall, our data indicate that macrophage TMCs play an important role in promoting the extravasation of circulating tumor cells in the lung.
Collapse
|
17
|
Han M, Woottum M, Mascarau R, Vahlas Z, Verollet C, Benichou S. Mechanisms of HIV-1 cell-to-cell transfer to myeloid cells. J Leukoc Biol 2022; 112:1261-1271. [PMID: 35355323 DOI: 10.1002/jlb.4mr0322-737r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Indexed: 12/24/2022] Open
Abstract
In addition to CD4+ T lymphocytes, cells of the myeloid lineage such as macrophages, dendritic cells (DCs), and osteoclasts (OCs) are emerging as important target cells for HIV-1, as they likely participate in all steps of pathogenesis, including sexual transmission and early virus dissemination in both lymphoid and nonlymphoid tissues where they can constitute persistent virus reservoirs. At least in vitro, these myeloid cells are poorly infected by cell-free viral particles. In contrast, intercellular virus transmission through direct cell-to-cell contacts may be a predominant mode of virus propagation in vivo leading to productive infection of these myeloid target cells. HIV-1 cell-to-cell transfer between CD4+ T cells mainly through the formation of the virologic synapse, or from infected macrophages or dendritic cells to CD4+ T cell targets, have been extensively described in vitro. Recent reports demonstrate that myeloid cells can be also productively infected through virus homotypic or heterotypic cell-to-cell transfer between macrophages or from virus-donor-infected CD4+ T cells, respectively. These modes of infection of myeloid target cells lead to very efficient spreading in these poorly susceptible cell types. Thus, the goal of this review is to give an overview of the different mechanisms reported in the literature for cell-to-cell transfer and spreading of HIV-1 in myeloid cells.
Collapse
Affiliation(s)
- Mingyu Han
- Institut Cochin, Inserm U1016, Paris, France.,Centre National de la Recherche Scientifique CNRS UMR8104, Paris, France.,Faculty of Health, University of Paris Cité, Paris, France
| | - Marie Woottum
- Institut Cochin, Inserm U1016, Paris, France.,Centre National de la Recherche Scientifique CNRS UMR8104, Paris, France.,Faculty of Health, University of Paris Cité, Paris, France
| | - Rémi Mascarau
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, Toulouse, France.,International Research Project (IRP) CNRS, Toulouse, France.,International Research Project (IRP), CNRS, Buenos Aires, Argentina
| | - Zoï Vahlas
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, Toulouse, France.,International Research Project (IRP) CNRS, Toulouse, France.,International Research Project (IRP), CNRS, Buenos Aires, Argentina
| | - Christel Verollet
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, Toulouse, France.,International Research Project (IRP) CNRS, Toulouse, France.,International Research Project (IRP), CNRS, Buenos Aires, Argentina
| | - Serge Benichou
- Institut Cochin, Inserm U1016, Paris, France.,Centre National de la Recherche Scientifique CNRS UMR8104, Paris, France.,Faculty of Health, University of Paris Cité, Paris, France
| |
Collapse
|
18
|
Luchetti F, Carloni S, Nasoni MG, Reiter RJ, Balduini W. Tunneling nanotubes and mesenchymal stem cells: New insights into the role of melatonin in neuronal recovery. J Pineal Res 2022; 73:e12800. [PMID: 35419879 PMCID: PMC9540876 DOI: 10.1111/jpi.12800] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022]
Abstract
Efficient cell-to-cell communication is essential for tissue development, homeostasis, and the maintenance of cellular functions after injury. Tunneling nanotubes (TNTs) have emerged as a new important method of cell-to-cell communication. TNTs are primarily established between stressed and unstressed cells and can transport a variety of cellular components. Mitochondria are important trafficked entities through TNTs. Transcellular mitochondria transfer permits the incorporation of healthy mitochondria into the endogenous network of recipient cells, changing the bioenergetic profile and other functional properties of the recipient and may allow the recipient cells to recuperate from apoptotic processes and return to a normal operating state. Mesenchymal cells (MSCs) can form TNTs and transfer mitochondria and other constituents to target cells. This occurs under both physiological and pathological conditions, leading to changes in cellular energy metabolism and functions. This review summarizes the newly described capacity of melatonin to improve mitochondrial fusion/fission dynamics and promote TNT formation. This new evidence suggests that melatonin's protective effects could be attributed to its ability to prevent mitochondrial damage in injured cells, reduce senescence, and promote anastasis, a natural cell recovery phenomenon that rescues cells from the brink of death. The modulation of these new routes of intercellular communication by melatonin could play a key role in increasing the therapeutic potential of MSCs.
Collapse
Affiliation(s)
- Francesca Luchetti
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Silvia Carloni
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Maria G. Nasoni
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Russel J. Reiter
- Department of Cell Systems and AnatomyLong School of Medicine, UT HealthSan AntonioTexasUSA
| | - Walter Balduini
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| |
Collapse
|
19
|
Jing H, Saed B, Pálmai M, Gunasekara H, Snee PT, Hu YS. Fluorescent Artificial Antigens Revealed Extended Membrane Networks Utilized by Live Dendritic Cells for Antigen Uptake. NANO LETTERS 2022; 22:4020-4027. [PMID: 35499493 DOI: 10.1021/acs.nanolett.2c00629] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Dendritic cells (DCs) can infiltrate tight junctions of the epithelium to collect remote antigens during immune surveillance. While elongated membrane structures represent a plausible structure to perform this task, their functional mechanisms remain elusive owing to the lack of high-resolution characterizations in live DCs. Here, we developed fluorescent artificial antigens (FAAs) based on quantum dots coated with polyacrylic acid. Single-particle tracking of FAAs enables us to superresolve the membrane fiber network responsible for the antigen uptake. Using the DC2.4 cell line as a model system, we discovered the extensive membrane network approaching 200 μm in length with tunnel-like cavities about 150 nm in width. The membrane fiber network also contained heterogeneous circular migrasomes. Disconnecting the membrane network from the cell body decreased the intracellular FAA density. Our study enables mechanistic investigations of DC membrane networks and nanocarriers that target this mechanism.
Collapse
Affiliation(s)
- Haoran Jing
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois 60607-7061, United States
| | - Badeia Saed
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois 60607-7061, United States
| | - Marcell Pálmai
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois 60607-7061, United States
| | - Hirushi Gunasekara
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois 60607-7061, United States
| | - Preston T Snee
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois 60607-7061, United States
| | - Ying S Hu
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois 60607-7061, United States
| |
Collapse
|
20
|
Driscoll J, Gondaliya P, Patel T. Tunneling Nanotube-Mediated Communication: A Mechanism of Intercellular Nucleic Acid Transfer. Int J Mol Sci 2022; 23:5487. [PMID: 35628298 PMCID: PMC9143920 DOI: 10.3390/ijms23105487] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 12/19/2022] Open
Abstract
Tunneling nanotubes (TNTs) are thin, F-actin-based membranous protrusions that connect distant cells and can provide e a novel mechanism for intercellular communication. By establishing cytoplasmic continuity between interconnected cells, TNTs enable the bidirectional transfer of nuclear and cytoplasmic cargo, including organelles, nucleic acids, drugs, and pathogenic molecules. TNT-mediated nucleic acid transfer provides a unique opportunity for donor cells to directly alter the genome, transcriptome, and metabolome of recipient cells. TNTs have been reported to transport DNA, mitochondrial DNA, mRNA, viral RNA, and non-coding RNAs, such as miRNA and siRNA. This mechanism of transfer is observed in physiological as well as pathological conditions, and has been implicated in the progression of disease. Herein, we provide a concise overview of TNTs' structure, mechanisms of biogenesis, and the functional effects of TNT-mediated intercellular transfer of nucleic acid cargo. Furthermore, we highlight the potential translational applications of TNT-mediated nucleic acid transfer in cancer, immunity, and neurological diseases.
Collapse
Affiliation(s)
| | | | - Tushar Patel
- Departments of Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (J.D.); (P.G.)
| |
Collapse
|
21
|
Di Daniele A, Antonucci Y, Campello S. Migrasomes, new vescicles as Hansel and Gretel white pebbles? Biol Direct 2022; 17:8. [PMID: 35484629 PMCID: PMC9047267 DOI: 10.1186/s13062-022-00321-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/16/2022] [Indexed: 02/07/2023] Open
Abstract
Migrasomes, released by migrating cells, belong to the heterogeneous world of extracellular vesicles (EVs). However, they can be distinguished from all other members of EVs by their size, biorigin and protein cargo. As far as we know, they can play important roles in various communication processes, by mediating the release of signals, such as mRNAs, proteins or damaged mitochondria. To extend and better understand the functional roles and importance of migrasomes, it is first essential to well understand the basic molecular mechanisms behind their formation and function. Herein, we endeavor to provide a brief and up-to-date description of migrasome biogenesis, release, characterization, biological properties and functional activities in cell-to-cell communication, and we will discuss and propose putative new functions for these vesicles.
Collapse
Affiliation(s)
- Arianna Di Daniele
- grid.6530.00000 0001 2300 0941Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Ylenia Antonucci
- grid.6530.00000 0001 2300 0941Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Silvia Campello
- grid.6530.00000 0001 2300 0941Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
22
|
Kloc M, Uosef A, Wosik J, Kubiak JZ, Ghobrial RM. Virus interactions with the actin cytoskeleton-what we know and do not know about SARS-CoV-2. Arch Virol 2022; 167:737-749. [PMID: 35102456 PMCID: PMC8803281 DOI: 10.1007/s00705-022-05366-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022]
Abstract
The actin cytoskeleton and actin-dependent molecular and cellular events are responsible for the organization of eukaryotic cells and their functions. Viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), depend on host cell organelles and molecular components for cell entry and propagation. Thus, it is not surprising that they also interact at many levels with the actin cytoskeleton of the host. There have been many studies on how different viruses reconfigure and manipulate the actin cytoskeleton of the host during successive steps of their life cycle. However, we know relatively little about the interactions of SARS-CoV-2 with the actin cytoskeleton. Here, we describe how the actin cytoskeleton is involved in the strategies used by different viruses for entry, assembly, and egress from the host cell. We emphasize what is known and unknown about SARS-CoV-2 in this regard. This review should encourage further investigation of the interactions of SARS-CoV-2 with cellular components, which will eventually be helpful for developing novel antiviral therapies for mitigating the severity of COVID-19.
Collapse
Affiliation(s)
- Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX, USA.
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA.
- Department of Genetics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| | - Ahmed Uosef
- The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA
| | - Jarek Wosik
- Electrical and Computer Engineering Department, University of Houston, Houston, TX, 77204, USA
- Texas Center for Superconductivity, University of Houston, Houston, TX, 77204, USA
| | - Jacek Z Kubiak
- Military Institute of Medicine, Laboratory of Molecular Oncology and Innovative Therapies, Department of Oncology, 04-141, Warsaw, Poland
- Institute of Genetics and Development of Rennes, Dynamics and Mechanics of Epithelia Group, Faculty of Medicine, Univ. Rennes, UMR 6290, CNRS, 35000, Rennes, France
| | - Rafik M Ghobrial
- The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
23
|
Specialized Intercellular Communications via Tunnelling Nanotubes in Acute and Chronic Leukemia. Cancers (Basel) 2022; 14:cancers14030659. [PMID: 35158927 PMCID: PMC8833474 DOI: 10.3390/cancers14030659] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Tunneling nanotubes (TNTs) are cytoplasmic channels which regulate the contacts between cells and allow the transfer of several elements, including ions, mitochondria, microvesicles, exosomes, lysosomes, proteins, and microRNAs. Through this transport, TNTs are implicated in different physiological and pathological phenomena, such as immune response, cell proliferation and differentiation, embryogenesis, programmed cell death, and angiogenesis. TNTs can promote cancer progression, transferring substances capable of altering apoptotic dynamics, modifying the metabolism and energy balance, inducing changes in immunosurveillance, or affecting the response to chemotherapy. In this review, we evaluated their influence on hematologic malignancies’ progression and resistance to therapies, focusing on acute and chronic myeloid and acute lymphoid leukemia. Abstract Effectual cell-to-cell communication is essential to the development and differentiation of organisms, the preservation of tissue tasks, and the synchronization of their different physiological actions, but also to the proliferation and metastasis of tumor cells. Tunneling nanotubes (TNTs) are membrane-enclosed tubular connections between cells that carry a multiplicity of cellular loads, such as exosomes, non-coding RNAs, mitochondria, and proteins, and they have been identified as the main participants in healthy and tumoral cell communication. TNTs have been described in numerous tumors in in vitro, ex vivo, and in vivo models favoring the onset and progression of tumors. Tumor cells utilize TNT-like membranous channels to transfer information between themselves or with the tumoral milieu. As a result, tumor cells attain novel capabilities, such as the increased capacity of metastasis, metabolic plasticity, angiogenic aptitude, and chemoresistance, promoting tumor severity. Here, we review the morphological and operational characteristics of TNTs and their influence on hematologic malignancies’ progression and resistance to therapies, focusing on acute and chronic myeloid and acute lymphoid leukemia. Finally, we examine the prospects and challenges for TNTs as a therapeutic approach for hematologic diseases by examining the development of efficient and safe drugs targeting TNTs.
Collapse
|
24
|
Hirashima S, Ohta K, Togo A, Nakamura KI. 3D Mesoscopic Architecture of a Heterogeneous Cellular Network in the Cementum-Periodontal Ligament-Alveolar Bone Complex. Microscopy (Oxf) 2021; 71:22-33. [PMID: 34850074 DOI: 10.1093/jmicro/dfab051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/14/2022] Open
Abstract
Cell-to-cell communication orchestrates various cell and tissue functions. This communication enables cells to form cellular networks with each other through direct contact via intercellular junctions. Because these cellular networks are closely related to tissue and organ functions, elucidating the morphological characteristics of cellular networks could lead to the development of novel therapeutic approaches. The tooth, periodontal ligament (PDL), and alveolar bone form a complex via collagen fibres. Teeth depend on the co-ordinated activity of this complex to maintain their function, with cellular networks in each of its three components. Imaging methods for three-dimensional (3D) mesoscopic architectural analysis include focused ion beam/scanning electron microscopy (FIB/SEM), which is characterised by its ability to select observation points and acquire data from complex tissue after extensive block-face imaging, without the need to prepare numerous ultrathin sections. Previously, we employed FIB/SEM to analyse the 3D mesoscopic architecture of hard tissue including the PDL, which exists between the bone and tooth root. The imaging results showed that the cementum, PDL, and alveolar bone networks are in contact and form a heterogeneous cellular network. This cellular network may orchestrate mechanical loading-induced remodelling of the cementum-PDL-alveolar bone complex as the remodelling of each complex component is coordinated, as exemplified by tooth movement due to orthodontic treatment and tooth dislocation due to occlusal loss. In this review, we summarise and discuss the 3D mesoscopic architecture of cellular networks in the cementum, PDL, and alveolar bone as observed in our recent mesoscopic and morphological studies.
Collapse
Affiliation(s)
- Shingo Hirashima
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, 830-0011, Japan.,Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Keisuke Ohta
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, 830-0011, Japan.,Advanced Imaging Research Center, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Akinobu Togo
- Advanced Imaging Research Center, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Kei-Ichiro Nakamura
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, 830-0011, Japan.,Cognitive and Molecular Research Institute of Brain Diseases, Kurume University School of Medicine, Kurume, 830-0011, Japan
| |
Collapse
|
25
|
Ma F, Vayalil J, Lee G, Wang Y, Peng G. Emerging role of tumor-derived extracellular vesicles in T cell suppression and dysfunction in the tumor microenvironment. J Immunother Cancer 2021; 9:jitc-2021-003217. [PMID: 34642246 PMCID: PMC8513270 DOI: 10.1136/jitc-2021-003217] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2021] [Indexed: 02/07/2023] Open
Abstract
Immunotherapeutic drugs including immune checkpoint blockade antibodies have been approved to treat patients in many types of cancers. However, some patients have little or no reaction to the immunotherapy drugs. The mechanisms underlying resistance to tumor immunotherapy are complicated and involve multiple aspects, including tumor-intrinsic factors, formation of immunosuppressive microenvironment, and alteration of tumor and stromal cell metabolism in the tumor microenvironment. T cell is critical and participates in every aspect of antitumor response, and T cell dysfunction is a severe barrier for effective immunotherapy for cancer. Emerging evidence indicates that extracellular vesicles (EVs) secreted by tumor is one of the major factors that can induce T cell dysfunction. Tumor-derived EVs are widely distributed in serum, tissues, and the tumor microenvironment of patients with cancer, which serve as important communication vehicles for cancer cells. In addition, tumor-derived EVs can carry a variety of immune suppressive signals driving T cell dysfunction for tumor immunity. In this review, we explore the potential mechanisms employed by tumor-derived EVs to control T cell development and effector function within the tumor microenvironment. Especially, we focus on current understanding of how tumor-derived EVs molecularly and metabolically reprogram T cell fates and functions for tumor immunity. In addition, we discuss potential translations of targeting tumor-derived EVs to reconstitute suppressive tumor microenvironment or to develop antigen-based vaccines and drug delivery systems for cancer immunotherapy.
Collapse
Affiliation(s)
- Feiya Ma
- Biology, Saint Louis University, Saint Louis, Missouri, USA
| | - Jensen Vayalil
- Biology, Saint Louis University, Saint Louis, Missouri, USA
| | - Grace Lee
- Biology, Saint Louis University, Saint Louis, Missouri, USA
| | - Yuqi Wang
- Biology, Saint Louis University, Saint Louis, Missouri, USA
| | - Guangyong Peng
- Internal Medicine, Saint Louis University, Saint Louis, Missouri, USA
| |
Collapse
|
26
|
Wood BM, Baena V, Huang H, Jorgens DM, Terasaki M, Kornberg TB. Cytonemes with complex geometries and composition extend into invaginations of target cells. J Cell Biol 2021; 220:211896. [PMID: 33734293 PMCID: PMC7980254 DOI: 10.1083/jcb.202101116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 12/16/2022] Open
Abstract
Cytonemes are specialized filopodia that mediate paracrine signaling in Drosophila and other animals. Studies using fluorescence confocal microscopy (CM) established their general paths, cell targets, and essential roles in signaling. To investigate details unresolvable by CM, we used high-pressure freezing and EM to visualize cytoneme structures, paths, contents, and contacts. We observed cytonemes previously seen by CM in the Drosophila wing imaginal disc system, including disc, tracheal air sac primordium (ASP), and myoblast cytonemes, and identified cytonemes extending into invaginations of target cells, and cytonemes connecting ASP cells and connecting myoblasts. Diameters of cytoneme shafts vary between repeating wide (206 ± 51.8 nm) and thin (55.9 ± 16.2 nm) segments. Actin, ribosomes, and membranous compartments are present throughout; rough ER and mitochondria are in wider proximal sections. These results reveal novel structural features of filopodia and provide a basis for understanding cytoneme cell biology and function.
Collapse
Affiliation(s)
- Brent M Wood
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Valentina Baena
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT
| | - Hai Huang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Danielle M Jorgens
- Electron Microscope Laboratory, University of California, Berkeley, Berkeley, CA
| | - Mark Terasaki
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT
| | - Thomas B Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
27
|
Akhmetzyanova I, Aaron T, Galbo P, Tikhonova A, Dolgalev I, Tanaka M, Aifantis I, Zheng D, Zang X, Fooksman D. Tissue-resident macrophages promote early dissemination of multiple myeloma via IL-6 and TNFα. Blood Adv 2021; 5:3592-3608. [PMID: 34550328 PMCID: PMC8945576 DOI: 10.1182/bloodadvances.2021005327] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 01/11/2023] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy characterized by the presence of multiple foci in the skeleton. These distinct tumor foci represent cycles of tumor growth and dissemination that seed new clusters and drive disease progression. By using an intratibial Vk*MYC murine myeloma model, we found that CD169+ radiation-resistant tissue-resident macrophages (MPs) were critical for early dissemination of myeloma and disease progression. Depletion of these MPs had no effect on tumor proliferation, but it did reduce egress of myeloma from bone marrow (BM) and its spread to other bones. Depletion of MPs as a single therapy and in combination with BM transplantation improved overall survival. Dissemination of myeloma was correlated with an increased inflammatory signature in BM MPs. It was also correlated with the production of interleukin-6 (IL-6) and tumor necrosis factor α (TNFα) by tumor-associated MPs. Exogenous intravenous IL-6 and TNFα can trigger myeloma intravasation in the BM by increasing vascular permeability in the BM and by enhancing the motility of myeloma cells by reducing the adhesion of CD138. Moreover, mice that lacked IL-6 had defects in disseminating myeloma similar to those in MP-depleted recipients. Mice that were deficient in TNFα or TNFα receptor (TNFR) had defects in disseminating MM, and engraftment was also impaired. These effects on dissemination of myeloma required production of cytokines in the radiation-resistant compartment that contained these radiation-resistant BM MPs. Taken together, we propose that egress of myeloma cells from BM is regulated by localized inflammation in foci, driven in part by CD169+ MPs.
Collapse
Affiliation(s)
| | - Tonya Aaron
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY
| | - Phillip Galbo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY
| | - Anastasia Tikhonova
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Pathology, New York University Langone School of Medicine, New York, NY
| | - Igor Dolgalev
- Department of Pathology, New York University Langone School of Medicine, New York, NY
| | - Masato Tanaka
- School of Life Science, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan; and
| | - Iannis Aifantis
- Department of Pathology, New York University Langone School of Medicine, New York, NY
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY
| | - David Fooksman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
28
|
Matkó J, Tóth EA. Membrane nanotubes are ancient machinery for cell-to-cell communication and transport. Their interference with the immune system. Biol Futur 2021; 72:25-36. [PMID: 34554502 PMCID: PMC7869423 DOI: 10.1007/s42977-020-00062-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 12/21/2020] [Indexed: 12/27/2022]
Abstract
Nanotubular connections between mammalian cell types came into the focus only two decades ago, when “live cell super-resolution imaging” was introduced. Observations of these long-time overlooked structures led to understanding mechanisms of their growth/withdrawal and exploring some key genetic and signaling factors behind their formation. Unbelievable level of multiple supportive collaboration between tumor cells undergoing cytotoxic chemotherapy, cross-feeding” between independent bacterial strains or “cross-dressing” collaboration of immune cells promoting cellular immune response, all via nanotubes, have been explored recently. Key factors and "calling signals" determining the spatial directionality of their growth and their overall in vivo significance, however, still remained debated. Interestingly, prokaryotes, including even ancient archaebacteria, also seem to use such NT connections for intercellular communication. Herein, we will give a brief overview of current knowledge of membrane nanotubes and depict a simple model about their possible “historical role”.
Collapse
Affiliation(s)
- János Matkó
- Department of Immunology, Institute of Biology, Eötvös Loránd University, H-1117 Pázmány Péter sétány 1/C, Budapest, Hungary.
| | - Eszter Angéla Tóth
- ATRC Aurigon Toxicological Research Center, H-2120 Pálya utca 2, Dunakeszi, Hungary
| |
Collapse
|
29
|
Nasoni MG, Carloni S, Canonico B, Burattini S, Cesarini E, Papa S, Pagliarini M, Ambrogini P, Balduini W, Luchetti F. Melatonin reshapes the mitochondrial network and promotes intercellular mitochondrial transfer via tunneling nanotubes after ischemic-like injury in hippocampal HT22 cells. J Pineal Res 2021; 71:e12747. [PMID: 34085316 PMCID: PMC8365755 DOI: 10.1111/jpi.12747] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/21/2021] [Accepted: 05/31/2021] [Indexed: 12/17/2022]
Abstract
Mitochondrial dysfunction is considered one of the hallmarks of ischemia/reperfusion injury. Mitochondria are plastic organelles that undergo continuous biogenesis, fusion, and fission. They can be transferred between cells through tunneling nanotubes (TNTs), dynamic structures that allow the exchange of proteins, soluble molecules, and organelles. Maintaining mitochondrial dynamics is crucial to cell function and survival. The present study aimed to assess the effects of melatonin on mitochondrial dynamics, TNT formation, and mitochondria transfer in HT22 cells exposed to oxygen/glucose deprivation followed by reoxygenation (OGD/R). The results showed that melatonin treatment during the reoxygenation phase reduced mitochondrial reactive oxygen species (ROS) production, improved cell viability, and increased the expression of PGC1α and SIRT3. Melatonin also preserved the expression of the membrane translocase proteins TOM20 and TIM23, and of the matrix protein HSP60, which are involved in mitochondrial biogenesis. Moreover, it promoted mitochondrial fusion and enhanced the expression of MFN2 and OPA1. Remarkably, melatonin also fostered mitochondrial transfer between injured HT22 cells through TNT connections. These results provide new insights into the effect of melatonin on mitochondrial network reshaping and cell survival. Fostering TNTs formation represents a novel mechanism mediating the protective effect of melatonin in ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Maria Gemma Nasoni
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Silvia Carloni
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Barbara Canonico
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Sabrina Burattini
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Erica Cesarini
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Stefano Papa
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Marica Pagliarini
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Patrizia Ambrogini
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Walter Balduini
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Francesca Luchetti
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| |
Collapse
|
30
|
Guo L, Wei RX, Sun R, Yang Q, Li GJ, Wang LY, Luo HB, Feng M. "Cytokine-microfactories" recruit DCs and deliver tumor antigens via gap junctions for immunotherapy. J Control Release 2021; 337:417-430. [PMID: 34324896 DOI: 10.1016/j.jconrel.2021.07.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/07/2021] [Accepted: 07/23/2021] [Indexed: 01/13/2023]
Abstract
The majority (~80%) of patients with cancer do not derive clinical benefit from current immunotherapy, largely due to attenuation of immune responses imposed by robust immunosuppression at tumor sites. Here, a cell-based tumor antigen delivery strategy was developed to boost tumor-specific immunity. Notably, the platform constructing ferric oxide nanoparticle-trained macrophages loading tumor antigens (MFe-N) acquired an immunostimulatory program and functioned as the tumoritropic "cytokine-microfactories" to sustainably produce high levels of multiple therapeutic cytokines (GM-CSF, TNFα, and MIP-1α), which are important in activation of immune cells with antitumor potential. Indeed, MFe-N markedly enhanced recruitment of the professional antigen-presenting cells, dendritic cells (DCs), to the tumor sites of an established B16F10 mouse melanoma model. Subsequently, MFe-N effectively delivered tumor antigens to DCs by gap junction-mediated cell-to-cell transmission. And this trafficking was critical for DC maturation to augment antitumor T-cell responses. Simultaneously, the "cytokine-microfactories" elicited high production of the tumoricidal effectors, and in turn blunted the pro-angiogenic activity of tumor-associated macrophages, resulting in conversion of the tumor-supporting milieu to a tumoricidal function that favored infiltration of antitumor T-cells. The findings provided a novel "cytokine-microfactories" harnessing effective delivery of tumor antigens and production of therapeutic cytokines to robustly promote antigen presentation and reshape the tumor immune milieu for priming antitumor immunity. This can enhance existing T-cell mediated immunotherapeutic potency and extend the curative potential immunotherapy to a broader range of patients.
Collapse
Affiliation(s)
- Ling Guo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China
| | - Run-Xiu Wei
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China
| | - Ran Sun
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China
| | - Qiang Yang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China
| | - Gao-Jie Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China
| | - Ling-Yun Wang
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China.
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China.
| | - Min Feng
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China.
| |
Collapse
|
31
|
Secretome and Tunneling Nanotubes: A Multilevel Network for Long Range Intercellular Communication between Endothelial Cells and Distant Cells. Int J Mol Sci 2021; 22:ijms22157971. [PMID: 34360735 PMCID: PMC8347715 DOI: 10.3390/ijms22157971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
As a cellular interface between the blood and tissues, the endothelial cell (EC) monolayer is involved in the control of key functions including vascular tone, permeability and homeostasis, leucocyte trafficking and hemostasis. EC regulatory functions require long-distance communications between ECs, circulating hematopoietic cells and other vascular cells for efficient adjusting thrombosis, angiogenesis, inflammation, infection and immunity. This intercellular crosstalk operates through the extracellular space and is orchestrated in part by the secretory pathway and the exocytosis of Weibel Palade Bodies (WPBs), secretory granules and extracellular vesicles (EVs). WPBs and secretory granules allow both immediate release and regulated exocytosis of messengers such as cytokines, chemokines, extracellular membrane proteins, coagulation or growth factors. The ectodomain shedding of transmembrane protein further provide the release of both receptor and ligands with key regulatory activities on target cells. Thin tubular membranous channels termed tunneling nanotubes (TNTs) may also connect EC with distant cells. EVs, in particular exosomes, and TNTs may contain and transfer different biomolecules (e.g., signaling mediators, proteins, lipids, and microRNAs) or pathogens and have emerged as a major triggers of horizontal intercellular transfer of information.
Collapse
|
32
|
Dufrançais O, Mascarau R, Poincloux R, Maridonneau-Parini I, Raynaud-Messina B, Vérollet C. Cellular and molecular actors of myeloid cell fusion: podosomes and tunneling nanotubes call the tune. Cell Mol Life Sci 2021; 78:6087-6104. [PMID: 34296319 PMCID: PMC8429379 DOI: 10.1007/s00018-021-03875-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/25/2021] [Accepted: 06/05/2021] [Indexed: 12/22/2022]
Abstract
Different types of multinucleated giant cells (MGCs) of myeloid origin have been described; osteoclasts are the most extensively studied because of their importance in bone homeostasis. MGCs are formed by cell-to-cell fusion, and most types have been observed in pathological conditions, especially in infectious and non-infectious chronic inflammatory contexts. The precise role of the different MGCs and the mechanisms that govern their formation remain poorly understood, likely due to their heterogeneity. First, we will introduce the main populations of MGCs derived from the monocyte/macrophage lineage. We will then discuss the known molecular actors mediating the early stages of fusion, focusing on cell-surface receptors involved in the cell-to-cell adhesion steps that ultimately lead to multinucleation. Given that cell-to-cell fusion is a complex and well-coordinated process, we will also describe what is currently known about the evolution of F-actin-based structures involved in macrophage fusion, i.e., podosomes, zipper-like structures, and tunneling nanotubes (TNT). Finally, the localization and potential role of the key fusion mediators related to the formation of these F-actin structures will be discussed. This review intends to present the current status of knowledge of the molecular and cellular mechanisms supporting multinucleation of myeloid cells, highlighting the gaps still existing, and contributing to the proposition of potential disease-specific MGC markers and/or therapeutic targets.
Collapse
Affiliation(s)
- Ophélie Dufrançais
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Rémi Mascarau
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Buenos Aires, Argentina
| | - Renaud Poincloux
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France
| | - Brigitte Raynaud-Messina
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France.
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Buenos Aires, Argentina.
| | - Christel Vérollet
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France.
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Buenos Aires, Argentina.
| |
Collapse
|
33
|
Desantis V, Solimando AG, Saltarella I, Sacco A, Giustini V, Bento M, Lamanuzzi A, Melaccio A, Frassanito MA, Paradiso A, Montagnani M, Vacca A, Roccaro AM. MicroRNAs as a Potential New Preventive Approach in the Transition from Asymptomatic to Symptomatic Multiple Myeloma Disease. Cancers (Basel) 2021; 13:cancers13153650. [PMID: 34359551 PMCID: PMC8344971 DOI: 10.3390/cancers13153650] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Multiple myeloma (MM) is the second most common haematologic malignancy, and it remains an incurable disease despite the advances of novel therapies. It is characterised by a multistep process that arises from a pre-malignant asymptomatic status-defined monoclonal gammopathy of undetermined significance (MGUS), evolves to a middle stage named smouldering myeloma phase (SMM), and culminates in the active disease (MM). Identification of early and non-invasive markers of the disease progression is currently an active field of investigation. In this review, we discuss the role and significance of microRNAs (miRNAs) as potential diagnostic biomarkers to predict the clinical transition from MGUS/SMM status to MM. Abstract Multiple myeloma (MM) is a hematological malignancy characterised by proliferation of clonal plasma cells (PCs) within the bone marrow (BM). Myelomagenesis is a multi-step process which goes from an asymptomatic phase, defined as monoclonal gammopathy of undetermined significance (MGUS), to a smouldering myeloma (SMM) stage, to a final active MM disease, characterised by hypercalcemia, renal failure, bone lesions anemia, and higher risk of infections. Overall, microRNAs (miRNAs) have shown to significantly impact on MM tumorigenesis, as a result of miRNA-dependent modulation of genes involved in pathways known to be crucial for MM pathogenesis and disease progression. We aim to revise the literature related to the role of miRNAs as potential diagnostic and prognostic biomarkers, thus highlighting their key role as novel players within the field of MM and related premalignant conditions.
Collapse
Affiliation(s)
- Vanessa Desantis
- Unit of Internal Medicine and Clinical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (V.D.); (A.G.S.); (I.S.); (A.L.); (A.M.)
- Department of Biomedical Sciences and Human Oncology, Pharmacology Section, Medical School, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Antonio Giovanni Solimando
- Unit of Internal Medicine and Clinical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (V.D.); (A.G.S.); (I.S.); (A.L.); (A.M.)
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
| | - Ilaria Saltarella
- Unit of Internal Medicine and Clinical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (V.D.); (A.G.S.); (I.S.); (A.L.); (A.M.)
| | - Antonio Sacco
- Clinical Research Development and Phase I Unit, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.S.); (V.G.)
| | - Viviana Giustini
- Clinical Research Development and Phase I Unit, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.S.); (V.G.)
| | - Marta Bento
- Centro Hospitalar Lisboa Norte, Department of Hematology and Transplantation, Institute of Molecular Medicine, University of Lisbon, 1649-035 Lisbon, Portugal;
| | - Aurelia Lamanuzzi
- Unit of Internal Medicine and Clinical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (V.D.); (A.G.S.); (I.S.); (A.L.); (A.M.)
| | - Assunta Melaccio
- Unit of Internal Medicine and Clinical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (V.D.); (A.G.S.); (I.S.); (A.L.); (A.M.)
| | - Maria Antonia Frassanito
- Unit of General Pathology, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Angelo Paradiso
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
| | - Monica Montagnani
- Department of Biomedical Sciences and Human Oncology, Pharmacology Section, Medical School, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Angelo Vacca
- Unit of Internal Medicine and Clinical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (V.D.); (A.G.S.); (I.S.); (A.L.); (A.M.)
- Correspondence: (A.V.); (A.M.R.)
| | - Aldo M. Roccaro
- Clinical Research Development and Phase I Unit, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.S.); (V.G.)
- Correspondence: (A.V.); (A.M.R.)
| |
Collapse
|
34
|
Wang F, Chen X, Cheng H, Song L, Liu J, Caplan S, Zhu L, Wu JY. MICAL2PV suppresses the formation of tunneling nanotubes and modulates mitochondrial trafficking. EMBO Rep 2021; 22:e52006. [PMID: 34096155 PMCID: PMC8366454 DOI: 10.15252/embr.202052006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 12/24/2022] Open
Abstract
Tunneling nanotubes (TNTs) are actin-rich structures that connect two or more cells and mediate cargo exchange between spatially separated cells. TNTs transport signaling molecules, vesicles, organelles, and even pathogens. However, the molecular mechanisms regulating TNT formation remain unclear and little is known about the endogenous mechanisms suppressing TNT formation in lung cancer cells. Here, we report that MICAL2PV, a splicing isoform of the neuronal guidance gene MICAL2, is a novel TNT regulator that suppresses TNT formation and modulates mitochondrial distribution. MICAL2PV interacts with mitochondrial Rho GTPase Miro2 and regulates subcellular mitochondrial trafficking. Moreover, down-regulation of MICAL2PV enhances survival of cells treated with chemotherapeutical drugs. The monooxygenase (MO) domain of MICAL2PV is required for its activity to inhibit TNT formation by depolymerizing F-actin. Our data demonstrate a previously unrecognized function of MICAL2 in TNT formation and mitochondrial trafficking. Furthermore, our study uncovers a role of the MICAL2PV-Miro2 axis in mitochondrial trafficking, providing a mechanistic explanation for MICAL2PV activity in suppressing TNT formation and in modulating mitochondrial subcellular distribution.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Brain and Cognitive ScienceInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaoping Chen
- Department of NeurologyCenter for Genetic MedicineLurie Cancer CenterNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Haipeng Cheng
- Department of NeurologyCenter for Genetic MedicineLurie Cancer CenterNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Lu Song
- State Key Laboratory of Brain and Cognitive ScienceInstitute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Jianghong Liu
- State Key Laboratory of Brain and Cognitive ScienceInstitute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Steve Caplan
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Li Zhu
- State Key Laboratory of Brain and Cognitive ScienceInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jane Y Wu
- Department of NeurologyCenter for Genetic MedicineLurie Cancer CenterNorthwestern University Feinberg School of MedicineChicagoILUSA
| |
Collapse
|
35
|
Tiwari V, Koganti R, Russell G, Sharma A, Shukla D. Role of Tunneling Nanotubes in Viral Infection, Neurodegenerative Disease, and Cancer. Front Immunol 2021; 12:680891. [PMID: 34194434 PMCID: PMC8236699 DOI: 10.3389/fimmu.2021.680891] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
The network of tunneling nanotubes (TNTs) represents the filamentous (F)-actin rich tubular structure which is connected to the cytoplasm of the adjacent and or distant cells to mediate efficient cell-to-cell communication. They are long cytoplasmic bridges with an extraordinary ability to perform diverse array of function ranging from maintaining cellular physiology and cell survival to promoting immune surveillance. Ironically, TNTs are now widely documented to promote the spread of various pathogens including viruses either during early or late phase of their lifecycle. In addition, TNTs have also been associated with multiple pathologies in a complex multicellular environment. While the recent work from multiple laboratories has elucidated the role of TNTs in cellular communication and maintenance of homeostasis, this review focuses on their exploitation by the diverse group of viruses such as retroviruses, herpesviruses, influenza A, human metapneumovirus and SARS CoV-2 to promote viral entry, virus trafficking and cell-to-cell spread. The later process may aggravate disease severity and the associated complications due to widespread dissemination of the viruses to multiple organ system as observed in current coronavirus disease 2019 (COVID-19) patients. In addition, the TNT-mediated intracellular spread can be protective to the viruses from the circulating immune surveillance and possible neutralization activity present in the extracellular matrix. This review further highlights the relevance of TNTs in ocular and cardiac tissues including neurodegenerative diseases, chemotherapeutic resistance, and cancer pathogenesis. Taken together, we suggest that effective therapies should consider precise targeting of TNTs in several diseases including virus infections.
Collapse
Affiliation(s)
- Vaibhav Tiwari
- Department of Microbiology & Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States
| | - Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Greer Russell
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| | - Ananya Sharma
- Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States.,Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
36
|
Mitochondrial DNA Heteroplasmy as an Informational Reservoir Dynamically Linked to Metabolic and Immunological Processes Associated with COVID-19 Neurological Disorders. Cell Mol Neurobiol 2021; 42:99-107. [PMID: 34117968 PMCID: PMC8196276 DOI: 10.1007/s10571-021-01117-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/07/2021] [Indexed: 12/21/2022]
Abstract
Mitochondrial DNA (mtDNA) heteroplasmy is the dynamically determined co-expression of wild type (WT) inherited polymorphisms and collective time-dependent somatic mutations within individual mtDNA genomes. The temporal expression and distribution of cell-specific and tissue-specific mtDNA heteroplasmy in healthy individuals may be functionally associated with intracellular mitochondrial signaling pathways and nuclear DNA gene expression. The maintenance of endogenously regulated tissue-specific copy numbers of heteroplasmic mtDNA may represent a sensitive biomarker of homeostasis of mitochondrial dynamics, metabolic integrity, and immune competence. Myeloid cells, monocytes, macrophages, and antigen-presenting dendritic cells undergo programmed changes in mitochondrial metabolism according to innate and adaptive immunological processes. In the central nervous system (CNS), the polarization of activated microglial cells is dependent on strategically programmed changes in mitochondrial function. Therefore, variations in heteroplasmic mtDNA copy numbers may have functional consequences in metabolically competent mitochondria in innate and adaptive immune processes involving the CNS. Recently, altered mitochondrial function has been demonstrated in the progression of coronavirus disease 2019 (COVID-19) due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Accordingly, our review is organized to present convergent lines of empirical evidence that potentially link expression of mtDNA heteroplasmy by functionally interactive CNS cell types to the extent and severity of acute and chronic post-COVID-19 neurological disorders.
Collapse
|
37
|
Tavasolian F, Hosseini AZ, Rashidi M, Soudi S, Abdollahi E, Momtazi-Borojeni AA, Sathyapalan T, Sahebkar A. The Impact of Immune Cell-derived Exosomes on Immune Response Initiation and Immune System Function. Curr Pharm Des 2021; 27:197-205. [PMID: 33290196 DOI: 10.2174/1381612826666201207221819] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/16/2020] [Indexed: 11/22/2022]
Abstract
Exosomes are small extracellular vesicles that pass genetic material between various cells to modulate or alter their biological function. The role of exosomes is to communicate with the target cell for cell-to-cell communication. Their inherent characteristics of exosomes, such as adhesion molecules, allow targeting specifically to the receiving cell. Exosomes are involved in cell to cell communication in the immune system including antigen presentation, natural killer cells (NK cells) and T cell activation/polarisation, immune suppression and various anti-inflammatory processes. In this review, we have described various functions of exosomes secreted by the immune cells in initiating, activating and modulating immune responses; and highlight the distinct roles of exosomal surface proteins and exosomal cargo. Potential applications of exosomes such as distribution vehicles for immunotherapy are also discussed.
Collapse
Affiliation(s)
- Fataneh Tavasolian
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Z Hosseini
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Rashidi
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elham Abdollahi
- Department of Medical Immunology and Allergy, Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir A Momtazi-Borojeni
- Nanotechnology Research Center, Department of Medical Biotechnology, Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull HU3 2JZ, United Kingdom
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
38
|
Cordero Cervantes D, Zurzolo C. Peering into tunneling nanotubes-The path forward. EMBO J 2021; 40:e105789. [PMID: 33646572 PMCID: PMC8047439 DOI: 10.15252/embj.2020105789] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/21/2020] [Accepted: 01/15/2021] [Indexed: 12/19/2022] Open
Abstract
The identification of Tunneling Nanotubes (TNTs) and TNT-like structures signified a critical turning point in the field of cell-cell communication. With hypothesized roles in development and disease progression, TNTs' ability to transport biological cargo between distant cells has elevated these structures to a unique and privileged position among other mechanisms of intercellular communication. However, the field faces numerous challenges-some of the most pressing issues being the demonstration of TNTs in vivo and understanding how they form and function. Another stumbling block is represented by the vast disparity in structures classified as TNTs. In order to address this ambiguity, we propose a clear nomenclature and provide a comprehensive overview of the existing knowledge concerning TNTs. We also discuss their structure, formation-related pathways, biological function, as well as their proposed role in disease. Furthermore, we pinpoint gaps and dichotomies found across the field and highlight unexplored research avenues. Lastly, we review the methods employed to date and suggest the application of new technologies to better understand these elusive biological structures.
Collapse
Affiliation(s)
| | - Chiara Zurzolo
- Institut PasteurMembrane Traffic and PathogenesisParisFrance
| |
Collapse
|
39
|
Wang S, Li Y, Zhao Y, Lin F, Qu J, Liu L. Investigating tunneling nanotubes in ovarian cancer based on two-photon excitation FLIM-FRET. BIOMEDICAL OPTICS EXPRESS 2021; 12:1962-1973. [PMID: 33996210 PMCID: PMC8086450 DOI: 10.1364/boe.418778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 05/13/2023]
Abstract
Precise and efficient cell-to-cell communication is critical to the growth and differentiation of organisms, the formation of various organism, the maintenance of tissue function and the coordination of their various physiological activities, especially to the growth and invasion of cancer cells. Tunneling nanotubes (TNTs) were discovered as a new method of cell-to-cell communication in many cell lines. In this paper, we investigated TNTs-like structures in ovarian cancer cells and proved their elements by fluorescent staining, which showed that TNTs are comprised of natural lipid bilayers with microtubules as the skeleton that can transmit ions and organelles between adjacent cells. We then used fluorescence resonance energy transfer (FRET) based on two-photon excitation fluorescence lifetime imaging microscopy (FLIM) (TP-FLIM-FRET) to detect material transport in TNTs. The experimental results showed that the number of TNTs have an impact on the drug treatment of cancer cells, which provided a new perspective for TNTs involvement in cancer treatment. Our results also showed that TP-FLIM-FRET would potentially become a new optical method for TNTs study.
Collapse
|
40
|
Pi YN, Xia BR, Jin MZ, Jin WL, Lou G. Exosomes: Powerful weapon for cancer nano-immunoengineering. Biochem Pharmacol 2021; 186:114487. [PMID: 33647264 DOI: 10.1016/j.bcp.2021.114487] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 12/15/2022]
Abstract
Cancer immunotherapy (CIT) that targets the tumor immune microenvironment is regarded as a revolutionary advancement in the fight against cancer. The success and failure of CIT are due to the complexity of the immunosuppressive microenvironment. Cancer nanomedicine is a potential adjuvant therapeutic strategy for immune-based combination therapy. Exosomes are natural nanomaterials that play a pivotal role in mediating intercellular communications and package delivery in the tumor microenvironment. They affect the immune response or the effectiveness of immunotherapy. In particular, exosomal PD-L1 promotes cancer progression and resistance to immunotherapy. Exosomes possess high bioavailability, biological stability, targeting specificity, low toxicity, and immune characteristics, which indicate their potential for cancer therapy. They can be engineered to act as effective cancer therapeutic tools that activate anti-tumor immune response and start immune surveillance. In the current review, we introduce the role of exosomes in a tumor immune microenvironment, highlight the application of engineered exosomes to CIT, and discuss the challenges and prospects for clinical application.
Collapse
Affiliation(s)
- Ya-Nan Pi
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China
| | - Bai-Rong Xia
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, Anhui 230031, PR China
| | - Ming-Zhu Jin
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China.
| | - Ge Lou
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China.
| |
Collapse
|
41
|
Schust DJ, Bonney EA, Sugimoto J, Ezashi T, Roberts RM, Choi S, Zhou J. The Immunology of Syncytialized Trophoblast. Int J Mol Sci 2021; 22:ijms22041767. [PMID: 33578919 PMCID: PMC7916661 DOI: 10.3390/ijms22041767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/02/2021] [Accepted: 02/06/2021] [Indexed: 02/06/2023] Open
Abstract
Multinucleate syncytialized trophoblast is found in three forms in the human placenta. In the earliest stages of pregnancy, it is seen at the invasive leading edge of the implanting embryo and has been called primitive trophoblast. In later pregnancy, it is represented by the immense, multinucleated layer covering the surface of placental villi and by the trophoblast giant cells found deep within the uterine decidua and myometrium. These syncytia interact with local and/or systemic maternal immune effector cells in a fine balance that allows for invasion and persistence of allogeneic cells in a mother who must retain immunocompetence for 40 weeks of pregnancy. Maternal immune interactions with syncytialized trophoblast require tightly regulated mechanisms that may differ depending on the location of fetal cells and their invasiveness, the nature of the surrounding immune effector cells and the gestational age of the pregnancy. Some specifically reflect the unique mechanisms involved in trophoblast cell–cell fusion (aka syncytialization). Here we will review and summarize several of the mechanisms that support healthy maternal–fetal immune interactions specifically at syncytiotrophoblast interfaces.
Collapse
Affiliation(s)
- Danny J. Schust
- Department of Obstetrics, Gynecology, University of Missouri School of Medicine, Columbia, MO 65202, USA; (T.E.); (R.M.R.); (S.C.); (J.Z.)
- Correspondence:
| | - Elizabeth A. Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont College of Medicine, Burlington, VT 05405, USA;
| | - Jun Sugimoto
- Department of Obstetrics and Gynecology, Hiroshima University, Hiroshima 734-8551, Japan;
| | - Toshi Ezashi
- Department of Obstetrics, Gynecology, University of Missouri School of Medicine, Columbia, MO 65202, USA; (T.E.); (R.M.R.); (S.C.); (J.Z.)
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - R. Michael Roberts
- Department of Obstetrics, Gynecology, University of Missouri School of Medicine, Columbia, MO 65202, USA; (T.E.); (R.M.R.); (S.C.); (J.Z.)
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Sehee Choi
- Department of Obstetrics, Gynecology, University of Missouri School of Medicine, Columbia, MO 65202, USA; (T.E.); (R.M.R.); (S.C.); (J.Z.)
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Jie Zhou
- Department of Obstetrics, Gynecology, University of Missouri School of Medicine, Columbia, MO 65202, USA; (T.E.); (R.M.R.); (S.C.); (J.Z.)
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
42
|
Cole JM, Dahl R, Cowden Dahl KD. MAPK Signaling Is Required for Generation of Tunneling Nanotube-Like Structures in Ovarian Cancer Cells. Cancers (Basel) 2021; 13:cancers13020274. [PMID: 33450985 PMCID: PMC7828401 DOI: 10.3390/cancers13020274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 02/02/2023] Open
Abstract
Simple Summary Ovarian cancer is the 5th leading cause of cancer death in US women, due to late diagnosis. The vast majority of patients with ovarian cancer have metastatic disease at diagnosis, leading to poor survival. As the tumor cells metastasize, they are influenced by other cells they encounter. In particular, we found that macrophages induce a mechanism of communication in tumor cells called tunneling nanotubes. These tunneling nanotubes allow cells to share molecules that promote metastasis. We found that macrophages send signals to the tumor cells in order to activate oncogenic MAPKinase signaling, which is required for tunneling nanotubes to form. Our new understanding of these events will enable us to devise ways to target tunneling nanotubes and limit tumor spread. Abstract Ovarian cancer (OC) cells survive in the peritoneal cavity in a complex microenvironment composed of diverse cell types. The interaction between tumor cells and non-malignant cells is crucial to the success of the metastatic process. Macrophages activate pro-metastatic signaling pathways in ovarian cancer cells (OCCs), induce tumor angiogenesis, and orchestrate a tumor suppressive immune response by releasing anti-inflammatory cytokines. Understanding the interaction between immune cells and tumor cells will enhance our ability to combat tumor growth and dissemination. When co-cultured with OCCs, macrophages induce projections consistent with tunneling nanotubes (TnTs) to form between OCCs. TnTs mediate transfer of material between cells, thus promoting invasiveness, angiogenesis, proliferation, and/or therapy resistance. Macrophage induction of OCC TnTs occurs through a soluble mediator as macrophage-conditioned media potently induced TnT formation in OCCs. Additionally, EGFR-induced TnT formation in OCCs through MAPK signaling may occur. In particular, inhibition of ERK and RSK prevented EGFR-induced TnTs. TnT formation in response to macrophage-conditioned media or EGFR signaling required MAPK signaling. Collectively, these studies suggest that inhibition of ERK/RSK activity may dampen macrophage-OCC communication and be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Jennifer M. Cole
- Kabara Cancer Research Institute, Gundersen Medical Foundation, La Crosse, WI 54601, USA;
| | - Richard Dahl
- Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, IN 46617, USA;
| | - Karen D. Cowden Dahl
- Kabara Cancer Research Institute, Gundersen Medical Foundation, La Crosse, WI 54601, USA;
- Correspondence: ; Tel.: +1-608-775-3606
| |
Collapse
|
43
|
Franco S, Noureddine A, Guo J, Keth J, Paffett ML, Brinker CJ, Serda RE. Direct Transfer of Mesoporous Silica Nanoparticles between Macrophages and Cancer Cells. Cancers (Basel) 2020; 12:cancers12102892. [PMID: 33050177 PMCID: PMC7600949 DOI: 10.3390/cancers12102892] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
Macrophages line the walls of microvasculature, extending processes into the blood flow to capture foreign invaders, including nano-scale materials. Using mesoporous silica nanoparticles (MSNs) as a model nano-scale system, we show the interplay between macrophages and MSNs from initial uptake to intercellular trafficking to neighboring cells along microtubules. The nature of cytoplasmic bridges between cells and their role in the cell-to-cell transfer of nano-scale materials is examined, as is the ability of macrophages to function as carriers of nanomaterials to cancer cells. Both direct administration of nanoparticles and adoptive transfer of nanoparticle-loaded splenocytes in mice resulted in abundant localization of nanomaterials within macrophages 24 h post-injection, predominately in the liver. While heterotypic, trans-species nanomaterial transfer from murine macrophages to human HeLa cervical cancer cells or A549 lung cancer cells was robust, transfer to syngeneic 4T1 breast cancer cells was not detected in vitro or in vivo. Cellular connections and nanomaterial transfer in vivo were rich among immune cells, facilitating coordinated immune responses.
Collapse
Affiliation(s)
- Stefan Franco
- Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA; (S.F.); (J.G.); (J.K.)
| | - Achraf Noureddine
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131, USA; (A.N.); (C.J.B.)
| | - Jimin Guo
- Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA; (S.F.); (J.G.); (J.K.)
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131, USA; (A.N.); (C.J.B.)
| | - Jane Keth
- Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA; (S.F.); (J.G.); (J.K.)
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131, USA; (A.N.); (C.J.B.)
| | - Michael L. Paffett
- Fluorescence Microscopy Shared Resource, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA;
| | - C. Jeffrey Brinker
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131, USA; (A.N.); (C.J.B.)
| | - Rita E. Serda
- Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA; (S.F.); (J.G.); (J.K.)
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131, USA; (A.N.); (C.J.B.)
- Correspondence: ; Tel.: +1-505−272−7698
| |
Collapse
|
44
|
Zhang S, Kazanietz MG, Cooke M. Rho GTPases and the emerging role of tunneling nanotubes in physiology and disease. Am J Physiol Cell Physiol 2020; 319:C877-C884. [PMID: 32845720 DOI: 10.1152/ajpcell.00351.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tunneling nanotubes (TNTs) emerged as important specialized actin-rich membrane protrusions for cell-to-cell communication. These structures allow the intercellular exchange of material, such as ions, soluble proteins, receptors, vesicles and organelles, therefore exerting critical roles in normal cell function. Indeed, TNTs participate in a number of physiological processes, including embryogenesis, immune response, and osteoclastogenesis. TNTs have been also shown to contribute to the transmission of retroviruses (e.g., human immunodeficiency virus-1, HIV-1) and coronaviruses. As with other membrane protrusions, the involvement of Rho GTPases in the formation of these elongated structures is undisputable, although the mechanisms involved are not yet fully elucidated. The tight control of Rho GTPase function by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) strongly suggests that localized control of these Rho regulators may contribute to TNT assembly and disassembly. Deciphering the intricacies of the complex signaling mechanisms leading to actin reorganization and TNT development would reveal important information about their involvement in normal cellular physiology as well as unveil potential targets for disease management.
Collapse
Affiliation(s)
- Suli Zhang
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
45
|
Auguste M, Balbi T, Ciacci C, Canesi L. Conservation of Cell Communication Systems in Invertebrate Host-Defence Mechanisms: Possible Role in Immunity and Disease. BIOLOGY 2020; 9:E234. [PMID: 32824821 PMCID: PMC7464772 DOI: 10.3390/biology9080234] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022]
Abstract
Innate immunity is continuously revealing multiple and highly conserved host-defence mechanisms. Studies on mammalian immunocytes are showing different communication systems that may play a role in coordinating innate immune responses also in invertebrates. Extracellular traps (ETs) are an immune response by which cells release net-like material, including DNA, histones and proteins. ETs are thought to immobilise and kill microorganisms, but are also involved in inflammation and autoimmune disease. Immune cells are also known to communicate through extracellular vesicles secreted in the extracellular environment or exosomes, which can carry a variety of different signalling molecules. Tunnelling nanotubes (TNTs) represent a direct cell-to-cell communication over a long distance, that allow for bi- or uni-directional transfer of cellular components between cells. Their functional role in a number of physio-pathological processes, including immune responses and pathogen transfer, has been underlined. Although ETs, exosomes, and TNTs have been described in invertebrate species, their possible role in immune responses is not fully understood. In this work, available data on these communication systems are summarised, in an attempt to provide basic information for further studies on their relevance in invertebrate immunity and disease.
Collapse
Affiliation(s)
- Manon Auguste
- Department of Earth Environment and Life Sciences (DISTAV), University of Genoa, 16136 Genoa, Italy; (M.A.); (T.B.)
| | - Teresa Balbi
- Department of Earth Environment and Life Sciences (DISTAV), University of Genoa, 16136 Genoa, Italy; (M.A.); (T.B.)
| | - Caterina Ciacci
- Department of Biomolecular Sciences (DIBS), University “Carlo Bo” of Urbino, 61029 Urbino, Italy;
| | - Laura Canesi
- Department of Earth Environment and Life Sciences (DISTAV), University of Genoa, 16136 Genoa, Italy; (M.A.); (T.B.)
| |
Collapse
|
46
|
O’Dowd K, Emam M, El Khili MR, Emad A, Ibeagha-Awemu EM, Gagnon CA, Barjesteh N. Distinct miRNA Profile of Cellular and Extracellular Vesicles Released from Chicken Tracheal Cells Following Avian Influenza Virus Infection. Vaccines (Basel) 2020; 8:vaccines8030438. [PMID: 32764349 PMCID: PMC7565416 DOI: 10.3390/vaccines8030438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 01/08/2023] Open
Abstract
Innate responses provide the first line of defense against viral infections, including the influenza virus at mucosal surfaces. Communication and interaction between different host cells at the early stage of viral infections determine the quality and magnitude of immune responses against the invading virus. The release of membrane-encapsulated extracellular vesicles (EVs), from host cells, is defined as a refined system of cell-to-cell communication. EVs contain a diverse array of biomolecules, including microRNAs (miRNAs). We hypothesized that the activation of the tracheal cells with different stimuli impacts the cellular and EV miRNA profiles. Chicken tracheal rings were stimulated with polyI:C and LPS from Escherichia coli 026:B6 or infected with low pathogenic avian influenza virus H4N6. Subsequently, miRNAs were isolated from chicken tracheal cells or from EVs released from chicken tracheal cells. Differentially expressed (DE) miRNAs were identified in treated groups when compared to the control group. Our results demonstrated that there were 67 up-regulated miRNAs, 157 down-regulated miRNAs across all cellular and EV samples. In the next step, several genes or pathways targeted by DE miRNAs were predicted. Overall, this study presented a global miRNA expression profile in chicken tracheas in response to avian influenza viruses (AIV) and toll-like receptor (TLR) ligands. The results presented predicted the possible roles of some DE miRNAs in the induction of antiviral responses. The DE candidate miRNAs, including miR-146a, miR-146b, miR-205a, miR-205b and miR-449, can be investigated further for functional validation studies and to be used as novel prophylactic and therapeutic targets in tailoring or enhancing antiviral responses against AIV.
Collapse
Affiliation(s)
- Kelsey O’Dowd
- Research Group on Infectious Diseases in Production Animals (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (K.O.); (C.A.G.)
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Mehdi Emam
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada;
- McGill University Research Centre on Complex Traits (MRCCT), Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, QC H3G 0B1, Canada
| | - Mohamed Reda El Khili
- Department of Electrical and Computer Engineering, Faculty of Engineering, McGill University, Montreal, QC H3A 0E9, Canada; (M.R.E.K.); (A.E.)
| | - Amin Emad
- Department of Electrical and Computer Engineering, Faculty of Engineering, McGill University, Montreal, QC H3A 0E9, Canada; (M.R.E.K.); (A.E.)
| | - Eveline M. Ibeagha-Awemu
- Sherbrooke Research & Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada;
| | - Carl A. Gagnon
- Research Group on Infectious Diseases in Production Animals (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (K.O.); (C.A.G.)
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Neda Barjesteh
- Research Group on Infectious Diseases in Production Animals (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (K.O.); (C.A.G.)
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada;
- Correspondence: ; Tel.: +1-450-773-8521 (ext. 33191)
| |
Collapse
|
47
|
Das Mohapatra A, Tirrell I, Bénéchet AP, Pattnayak S, Khanna KM, Srivastava PK. Cross-dressing of CD8α + Dendritic Cells with Antigens from Live Mouse Tumor Cells Is a Major Mechanism of Cross-priming. Cancer Immunol Res 2020; 8:1287-1299. [PMID: 32759362 DOI: 10.1158/2326-6066.cir-20-0248] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/09/2020] [Accepted: 07/31/2020] [Indexed: 11/16/2022]
Abstract
Live cells are the most abundant sources of antigen in a tumor-bearing host. Here, we used live tumor cells as source of antigens to investigate the mechanism underlying their immunogenicity in murine tumor models. The live tumor cells were significantly more immunogenic than irradiated or apoptotic tumor cells. We examined the interaction of live and apoptotic tumor cells with major subsets of antigen-presenting cells, i.e., CD8α+ dendritic cells (DC), CD8α- DCs, plasmacytoid DCs, and CD169+ macrophages at skin draining lymph nodes. The CD8α+ DCs captured cell-associated antigens from both live and apoptotic tumor cells, whereas CD169+ macrophages picked up cell-associated antigens mostly from apoptotic tumor cells. Trogocytosis and cross-dressing of membrane-associated antigenic material from live tumor cells to CD8α+ DCs was the primary mechanism for cross-priming of tumor antigens upon immunization with live cells. Phagocytosis of apoptotic tumor cells was the primary mechanism for cross-priming of tumor antigens upon immunization with apoptotic or irradiated cells. These findings clarify the mechanism of cross-priming of cancer antigens by DCs, allowing for a greater understanding of antitumor immune responses.
Collapse
Affiliation(s)
- Alok Das Mohapatra
- Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Isaac Tirrell
- Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Alexandre P Bénéchet
- Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Shashmita Pattnayak
- Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Kamal M Khanna
- Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Pramod K Srivastava
- Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, Connecticut.
| |
Collapse
|
48
|
NeuroEVs: Characterizing Extracellular Vesicles Generated in the Neural Domain. J Neurosci 2020; 39:9262-9268. [PMID: 31748281 DOI: 10.1523/jneurosci.0146-18.2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 07/27/2019] [Accepted: 08/15/2019] [Indexed: 12/19/2022] Open
Abstract
Intercellular communication has recently been shown to occur via transfer of cargo loaded within extracellular vesicles (EVs). Present within all biofluids of the body, EVs can contain various signaling factors, including coding and noncoding RNAs (e.g., mRNA, miRNA, lncRNA, snRNA, tRNA, yRNA), DNA, proteins, and enzymes. Multiple types of cells appear to be capable of releasing EVs, including cancer, stem, epithelial, immune, glial, and neuronal cells. However, the functional impact of these circulating signals among neural networks within the brain has been difficult to establish given the complexity of cellular populations involved in release and uptake, as well as inherent limitations of examining a biofluid. In this brief commentary, we provide an analysis of the conceptual and technical considerations that limit our current understanding of signaling mediated by circulating EVs relative to their impact on neural function.
Collapse
|
49
|
Varela-Vázquez A, Guitián-Caamaño A, Carpintero-Fernandez P, Fonseca E, Sayedyahossein S, Aasen T, Penuela S, Mayán MD. Emerging functions and clinical prospects of connexins and pannexins in melanoma. Biochim Biophys Acta Rev Cancer 2020; 1874:188380. [PMID: 32461135 DOI: 10.1016/j.bbcan.2020.188380] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 05/16/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022]
Abstract
Cellular communication through gap junctions and hemichannels formed by connexins and through channels made by pannexins allows for metabolic cooperation and control of cellular activity and signalling. These channel proteins have been described to be tumour suppressors that regulate features such as cell death, proliferation and differentiation. However, they display cancer type-dependent and stage-dependent functions and may facilitate tumour progression through junctional and non-junctional pathways. The accumulated knowledge and emerging strategies to target connexins and pannexins are providing novel clinical opportunities for the treatment of cancer. Here, we provide an updated overview of the role of connexins and pannexins in malignant melanoma. We discuss how targeting of these channel proteins may be used to potentiate antitumour effects in therapeutic settings, including through improved immune-mediated tumour elimination.
Collapse
Affiliation(s)
- Adrián Varela-Vázquez
- CellCOM Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña, Xubias de Arriba, 84, 15006 A Coruña, Spain
| | - Amanda Guitián-Caamaño
- CellCOM Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña, Xubias de Arriba, 84, 15006 A Coruña, Spain
| | - Paula Carpintero-Fernandez
- CellCOM Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña, Xubias de Arriba, 84, 15006 A Coruña, Spain
| | - Eduardo Fonseca
- CellCOM Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña, Xubias de Arriba, 84, 15006 A Coruña, Spain; Dermatology Deparment, University Hospital of A Coruña, Xubias de Arriba, 84, 15006 A Coruña, Spain
| | - Samar Sayedyahossein
- Department of Anatomy & Cell Biology, and Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A5C1, Canada
| | - Trond Aasen
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, Barcelona, Spain
| | - Silvia Penuela
- Department of Anatomy & Cell Biology, and Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A5C1, Canada
| | - María D Mayán
- CellCOM Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña, Xubias de Arriba, 84, 15006 A Coruña, Spain.
| |
Collapse
|
50
|
Dupont M, Sattentau QJ. Macrophage Cell-Cell Interactions Promoting HIV-1 Infection. Viruses 2020; 12:E492. [PMID: 32354203 PMCID: PMC7290394 DOI: 10.3390/v12050492] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Many pathogens infect macrophages as part of their intracellular life cycle. This is particularly true for viruses, of which HIV-1 is one of the best studied. HIV-1 infection of macrophages has important consequences for viral persistence and pathogenesis, but the mechanisms of macrophage infection remain to be fully elucidated. Despite expressing viral entry receptors, macrophages are inefficiently infected by cell-free HIV-1 virions, whereas direct cell-cell spread is more efficient. Different modes of cell-cell spread have been described, including the uptake by macrophages of infected T cells and the fusion of infected T cells with macrophages, both leading to macrophage infection. Cell-cell spread can also transmit HIV-1 between macrophages and from macrophages to T cells. Here, we describe the current state of the field concerning the cell-cell spread of HIV-1 to and from macrophages, discuss mechanisms, and highlight potential in vivo relevance.
Collapse
Affiliation(s)
- Maeva Dupont
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford OX13RE, UK
| | | |
Collapse
|