1
|
Zhang H, Vandesompele J, Braeckmans K, De Smedt SC, Remaut K. Nucleic acid degradation as barrier to gene delivery: a guide to understand and overcome nuclease activity. Chem Soc Rev 2024; 53:317-360. [PMID: 38073448 DOI: 10.1039/d3cs00194f] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Gene therapy is on its way to revolutionize the treatment of both inherited and acquired diseases, by transferring nucleic acids to correct a disease-causing gene in the target cells of patients. In the fight against infectious diseases, mRNA-based therapeutics have proven to be a viable strategy in the recent Covid-19 pandemic. Although a growing number of gene therapies have been approved, the success rate is limited when compared to the large number of preclinical and clinical trials that have been/are being performed. In this review, we highlight some of the hurdles which gene therapies encounter after administration into the human body, with a focus on nucleic acid degradation by nucleases that are extremely abundant in mammalian organs, biological fluids as well as in subcellular compartments. We overview the available strategies to reduce the biodegradation of gene therapeutics after administration, including chemical modifications of the nucleic acids, encapsulation into vectors and co-administration with nuclease inhibitors and discuss which strategies are applied for clinically approved nucleic acid therapeutics. In the final part, we discuss the currently available methods and techniques to qualify and quantify the integrity of nucleic acids, with their own strengths and limitations.
Collapse
Affiliation(s)
- Heyang Zhang
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Jo Vandesompele
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Centre for Nano- and Biophotonics, Ghent University, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Centre for Nano- and Biophotonics, Ghent University, 9000 Ghent, Belgium
| | - Katrien Remaut
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
2
|
Roth S, Wernsdorf SR, Liesz A. The role of circulating cell-free DNA as an inflammatory mediator after stroke. Semin Immunopathol 2023:10.1007/s00281-023-00993-5. [PMID: 37212886 DOI: 10.1007/s00281-023-00993-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 05/23/2023]
Abstract
Stroke is the second leading cause of death worldwide and a leading cause of disability. Clinical and experimental studies highlighted the complex role of the immune system in the pathophysiology of stroke. Ischemic brain injury leads to the release of cell-free DNA, a damage-associated molecular pattern, which binds to pattern recognition receptors on immune cells such as toll-like receptors and cytosolic inflammasome sensors. The downstream signaling cascade then induces a rapid inflammatory response. In this review, we are highlighting the characteristics of cell-free DNA and how these can affect a local as well as a systemic response after stroke. For this purpose, we screened literature on clinical studies investigating cell-free DNA concentration and properties after brain ischemia. We report the current understanding for mechanisms of DNA uptake and sensing in the context of post-stroke inflammation. Moreover, we compare possible treatment options targeting cell-free DNA, DNA-sensing pathways, and the downstream mediators. Finally, we describe clinical implications of this inflammatory pathway for stroke patients, open questions, and potential future research directions.
Collapse
Affiliation(s)
- Stefan Roth
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
| | - Saskia R Wernsdorf
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Arthur Liesz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
3
|
Bai Q, He X, Hu T. Pan‑cancer analysis of the deoxyribonuclease gene family. Mol Clin Oncol 2023; 18:19. [PMID: 36798465 PMCID: PMC9926046 DOI: 10.3892/mco.2023.2615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
Deoxyribonuclease (DNase) is an enzyme that catalyzes the cleavage of phosphodiester bonds in the main chain of DNA to degrade DNA. DNase serves a vital role in several immune-related diseases. The present study linked the expression of DNase with overall survival (OS), performed pan-cancer co-expression analysis, and assessed the association between DNase and immune infiltration subtypes, tumor microenvironment and drug sensitivity through pan-cancer studies. Furthermore, gene expression data and clinical data were downloaded from The Cancer Genome Atlas. Next, through a series of bioinformatics analyses, DNase expression and survival, immune subtypes, tumor microenvironment and drug sensitivity in 33 tumor types were systematically studied. The expression of the DNase gene family was shown to have an apparent intratumoral heterogeneity. The expression of DNase 2, lysosomal (DNASE2) was the highest in tumors, whereas that of DNASE2 β was the lowest. DNase 1-like 3 (DNASE1L3) was mainly downregulated in tumors, whereas the rest of the DNases were mainly upregulated in tumors. The expression of DNase family members was also found to be associated with the OS rate of patients. DNase family genes may serve an essential role in the tumor microenvironment. DNase family gene expression was related to the content of cytotoxic cells, Immunescore, Stromalscore, Estimatescore and Tumorpurity. The present study also revealed that the DNase genes may be involved in the drug resistance of cancer cells. Finally, the correlation between DNase, and clinical stage and tumor microenvironment in hepatocellular carcinoma (HCC) was studied. In addition, the difference in DNASE1L3 expression between HCC and adjacent normal tissues, and the relationship between DNASE1L3 expression and clinical stage was verified by analyzing three groups in a Gene Expression Omnibus dataset and by performing immunohistochemistry. In conclusion, the present study assessed DNase gene expression, analyzed its relationship with patient OS, performed pan-cancer co-expression analysis, and assessed the association between DNase and immune infiltration subtypes, tumor microenvironment and drug sensitivity. The present study also confirmed the value of further laboratory research on DNases and their prospects in clinical cancer treatment.
Collapse
Affiliation(s)
- Qingquan Bai
- Department of Hepatology and Gastroenterology, Campus Virchow Clinic and Campus Charité Mitte, Charité University Medicine, D-13353 Berlin, Germany,Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China,Correspondence to: Dr Qingquan Bai, Department of Hepatology and Gastroenterology, Campus Virchow Clinic and Campus Charité Mitte, Charité University Medicine, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Xiao He
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, P.R. China
| | - Tianhui Hu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China,Correspondence to: Dr Qingquan Bai, Department of Hepatology and Gastroenterology, Campus Virchow Clinic and Campus Charité Mitte, Charité University Medicine, Augustenburger Platz 1, D-13353 Berlin, Germany
| |
Collapse
|
4
|
Sun Z, Yu T, Cao X, Gao L, Pang Q, Liu B, Deng H. Identification and characterization of Deoxyribonuclease II in planarian Dugesia japonica. Gene 2022; 826:146464. [PMID: 35358655 DOI: 10.1016/j.gene.2022.146464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/09/2022] [Accepted: 03/25/2022] [Indexed: 11/04/2022]
Abstract
Deoxyribonuclease II (DNase II) has been found to regulate inflammation, autoimmunity and apoptosis in vertebrates and invertebrates. The strong capacity of degrading DNA makes DNase II play an important role in the immune process. Planarian has become one of the model references due to its strong immune system, the environment they live makes planarians face the threat of microorganisms and injury, the strong immune system can protect planarians from the threat of bacterial and infection. In this study, we found that there was DNase in the lysis buffer of planarians, then we acquired the sequence of DjDN2s (Dugesia japonica DNase2s) and confirmed the DjDN2s were conserved DNase IIs. The predicted structure showed the active sites and binding patterns of DjDN2s. Whole-mount in situ hybridization results showed DjDN2s mainly expressed in immune organs. Quantitative real-time PCR revealed that the expression of DjDN2s upregulated in varying degrees when got hurt and challenged with bacteria, and the knockdown of DjDN2s led to the slower repair of wound. The recombinant phages which take DjDN2 also had the ability to degrade DNA and clear young biofilm of Gram-negative bacteria. Collectively, DNase II of planarian might play a role in the antimicrobial response and wound-induced response.
Collapse
Affiliation(s)
- Zhe Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Tong Yu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Xiangyu Cao
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Lili Gao
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Qiuxiang Pang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China.
| | - Baohua Liu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China; Shenzhen University of Health Science Center, Shenzhen, Guangdong 518060, China.
| | - Hongkuan Deng
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China.
| |
Collapse
|
5
|
Garland KM, Rosch JC, Carson CS, Wang-Bishop L, Hanna A, Sevimli S, Van Kaer C, Balko JM, Ascano M, Wilson JT. Pharmacological Activation of cGAS for Cancer Immunotherapy. Front Immunol 2021; 12:753472. [PMID: 34899704 PMCID: PMC8662543 DOI: 10.3389/fimmu.2021.753472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/29/2021] [Indexed: 01/23/2023] Open
Abstract
When compartmentally mislocalized within cells, nucleic acids can be exceptionally immunostimulatory and can even trigger the immune-mediated elimination of cancer. Specifically, the accumulation of double-stranded DNA in the cytosol can efficiently promote antitumor immunity by activating the cGAMP synthase (cGAS) / stimulator of interferon genes (STING) cellular signaling pathway. Targeting this cytosolic DNA sensing pathway with interferon stimulatory DNA (ISD) is therefore an attractive immunotherapeutic strategy for the treatment of cancer. However, the therapeutic activity of ISD is limited by several drug delivery barriers, including susceptibility to deoxyribonuclease degradation, poor cellular uptake, and inefficient cytosolic delivery. Here, we describe the development of a nucleic acid immunotherapeutic, NanoISD, which overcomes critical delivery barriers that limit the activity of ISD and thereby promotes antitumor immunity through the pharmacological activation of cGAS at the forefront of the STING pathway. NanoISD is a nanoparticle formulation that has been engineered to confer deoxyribonuclease resistance, enhance cellular uptake, and promote endosomal escape of ISD into the cytosol, resulting in potent activation of the STING pathway via cGAS. NanoISD mediates the local production of proinflammatory cytokines via STING signaling. Accordingly, the intratumoral administration of NanoISD induces the infiltration of natural killer cells and T lymphocytes into murine tumors. The therapeutic efficacy of NanoISD is demonstrated in preclinical tumor models by attenuated tumor growth, prolonged survival, and an improved response to immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Kyle M. Garland
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Jonah C. Rosch
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Carcia S. Carson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Lihong Wang-Bishop
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Ann Hanna
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sema Sevimli
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Casey Van Kaer
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Justin M. Balko
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Manuel Ascano
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, United States
| | - John T. Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
6
|
Phan MAT, Madigan MC, Stapleton F, Willcox M, Golebiowski B. Human meibomian gland epithelial cell culture models: Current progress, challenges, and future directions. Ocul Surf 2021; 23:96-113. [PMID: 34843998 DOI: 10.1016/j.jtos.2021.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/04/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022]
Abstract
The widely used immortalised human meibomian gland epithelia cell (iHMGEC) line has made possible extensive studies of the biology and pathophysiology of meibomian glands (MG). Tissue culture protocols for iHMGEC have been revised and modified to optimise the growth conditions for cell differentiation and lipid accumulation. iHMGEC proliferate in serum-free medium but require serum or other appropriate exogenous factors to differentiate. Several supplements can enhance differentiation and neutral lipid accumulation in iHMGEC grown in serum-containing medium. In serum-free medium, rosiglitazone, a peroxisome proliferator activator receptor-γ (PPARγ) agonist, is reported to induce iHMGEC differentiation, neutral lipid accumulation and expression of key biomarkers of differentiation. iHMGEC cultured in serum-containing medium under hypoxia or with azithromycin increases DNAse 2 activity, a biomarker of terminal differentiation in sebocytes. The production of lipids with composition similar to meibum has not been observed in vitro and this remains a major challenge for iHMGEC culture. Innovative methodologies such as 3D ex vivo culture of MG and generation of MG organoids from stem cells are important for further developing a model that more closely mimics the in vivo biology of human MG and to facilitate the next generation of studies of MG disease and dry eye.
Collapse
Affiliation(s)
- Minh Anh Thu Phan
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW Sydney, NSW, 2033, Australia.
| | - Michele C Madigan
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW Sydney, NSW, 2033, Australia
| | - Fiona Stapleton
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW Sydney, NSW, 2033, Australia
| | - Mark Willcox
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW Sydney, NSW, 2033, Australia
| | - Blanka Golebiowski
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW Sydney, NSW, 2033, Australia
| |
Collapse
|
7
|
Perkin LC, Oppert B, Duke S, Suh CPC. Assessment of DNA Integrity From Trap-Captured Boll Weevil (Coleoptera: Curculionidae) for Use in a New PCR-Based Diagnostic Tool. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1321-1328. [PMID: 33885764 DOI: 10.1093/jee/toab073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Indexed: 06/12/2023]
Abstract
The boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), is a major pest of commercial cotton (Gossypium hirsutum) in the southern United States and throughout Central and South America. Efforts are underway to develop a PCR-based diagnostic tool that can be used to rapidly and accurately differentiate boll weevils from other weevil species that are commonly captured in pheromone traps. However, the quantity and integrity of weevil DNA must be sufficient for a successful PCR assay. Currently, active eradication programs service traps weekly, but post-eradication programs service traps at 2- or 3-wk intervals. Consequently, captured weevils may be dead, dismembered, and exposed to environmental conditions for prolonged periods which may adversely affect the quantity and quality of weevil DNA. We documented DNA quantity and integrity in boll weevils and weevil body parts aged in traps over a 3-wk period under field conditions. The quantity of DNA extracted from whole weevils, heads, abdomens, and legs generally remained sufficient (> 1 ng/μl) for successful PCR amplification throughout the 21-d period. The integrity (fragment length) of extracted DNA declined over time but generally was sufficient (> 700 bp) for successful amplification. PCR amplification of three marker genes validated that the quality and integrity of DNA extracted from dead weevils and individual weevil body parts aged in traps up to 21 d remained at sufficient levels for the PCR-based assay. However, our data also suggested that rain events may accelerate degradation of weevil DNA.
Collapse
Affiliation(s)
- L C Perkin
- USDA, ARS, SPARC, Insect Control and Cotton Disease Research Unit, College Station, TX, USA
| | - B Oppert
- USDA, ARS, CGAHR, Stored Product Insect and Engineering Research Unit, Manhattan, KS, USA
| | - S Duke
- USDA, ARS, SPARC, Insect Control and Cotton Disease Research Unit, College Station, TX, USA
| | - C P-C Suh
- USDA, ARS, SPARC, Insect Control and Cotton Disease Research Unit, College Station, TX, USA
| |
Collapse
|
8
|
Raudenska M, Balvan J, Fojtu M, Gumulec J, Masarik M. Unexpected therapeutic effects of cisplatin. Metallomics 2020; 11:1182-1199. [PMID: 31098602 DOI: 10.1039/c9mt00049f] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cisplatin is a widely used chemotherapeutic agent that is clinically approved to fight both carcinomas and sarcomas. It has relatively high efficiency in treating ovarian cancers and metastatic testicular cancers. It is generally accepted that the major mechanism of cisplatin anti-cancer action is DNA damage. However, cisplatin is also effective in metastatic cancers and should, therefore, affect slow-cycling cancer stem cells in some way. In this review, we focused on the alternative effects of cisplatin that can support a good therapeutic response. First, attention was paid to the effects of cisplatin at the cellular level such as changes in intracellular pH and cellular mechanical properties. Alternative cellular targets of cisplatin, and the effects of cisplatin on cancer cell metabolism and ER stress were also discussed. Furthermore, the impacts of cisplatin on the tumor microenvironment and in the whole organism context were reviewed. In this review, we try to reveal possible causes of the unexpected effectiveness of this anti-cancer drug.
Collapse
Affiliation(s)
- Martina Raudenska
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic.
| | - Jan Balvan
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic. and Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Michaela Fojtu
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic.
| | - Jaromir Gumulec
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic. and Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic. and Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, CZ-252 50 Vestec, Czech Republic
| |
Collapse
|
9
|
Zhang J, Cui WW, Du C, Huang Y, Pi X, Guo W, Wang J, Huang W, Chen D, Li J, Li H, Zhang J, Ma Y, Mu H, Zhang S, Liu M, Cui X, Hu Y. Knockout of DNase1l1l abrogates lens denucleation process and causes cataract in zebrafish. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165724. [PMID: 32061775 DOI: 10.1016/j.bbadis.2020.165724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022]
Abstract
Removal of nuclei in lens fiber cells is required for organelle-free zone (OFZ) formation during lens development. Defect in degradation of nuclear DNA leads to cataract formation. DNase2β degrades nuclear DNA of lens fiber cells during lens differentiation in mouse. Hsf4 is the principal heat shock transcription factor in lens and facilitates the lens differentiation. Knockout of Hsf4 in mouse and zebrafish resulted in lens developmental defect that was characterized by retaining of nuclei in lens fiber cells. In previous in vitro studies, we found that Hsf4 promoted DNase2β expression in human and mouse lens epithelial cells. In this study, it was found that, instead of DNase2β, DNase1l1l is uniquely expressed in zebrafish lens and was absent in Hsf4-/- zebrafish lens. Using CRISPR-Cas9 technology, a DNase1l1l knockout zebrafish line was constructed, which developed cataract. Deletion of DNase1l1l totally abrogated lens primary and secondary fiber cell denucleation process, whereas had little effect on the clearance of other organelles. The transcriptional regulation of DNase1l1l was dramatically impaired in Hsf4-/- zebrafish lens. Rescue of DNase1l1l mRNA into Hsf4-/- zebrafish embryos alleviated its defect in lens fiber cell denucleation. Our results in vivo demonstrated that DNase1l1l is the primary DNase responsible for nuclear DNA degradation in lens fiber cells, and Hsf4 can transcriptionally activate DNase1l1l expression in zebrafish.
Collapse
Affiliation(s)
- Jing Zhang
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Wen-Wen Cui
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Chunxiao Du
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Yuwen Huang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiahui Pi
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Wenya Guo
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Jungai Wang
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Weikang Huang
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Danling Chen
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Jing Li
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Hui Li
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Jun Zhang
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Yuanfang Ma
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Hongmei Mu
- Kaifeng Key Lab of Myopia and Cataract, Institute of Eye Disease, Kaifeng Central Hospital, Kaifeng, China
| | - Shuman Zhang
- Huaihe Hospital of Henan University, Kaifeng, China
| | - Mugen Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiukun Cui
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China.
| | - Yanzhong Hu
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China; Kaifeng Key Lab of Myopia and Cataract, Institute of Eye Disease, Kaifeng Central Hospital, Kaifeng, China.
| |
Collapse
|
10
|
Oumaima A, Tesnim A, Zohra H, Amira S, Ines Z, Sana C, Intissar G, Lobna E, Ali J, Meriem M. Investigation on the origin of sperm morphological defects: oxidative attacks, chromatin immaturity, and DNA fragmentation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:13775-13786. [PMID: 29508198 DOI: 10.1007/s11356-018-1417-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 01/29/2018] [Indexed: 06/08/2023]
Abstract
DNA fragmentation can be deleterious on spermatozoon morphology but the pathogenesis of teratozoospermia associated with DNA breaks is not fully understood, even if oxidative attacks and defects in chromatin maturation are hypothesized. Therefore, this study is one of the first to clarify on the underlying hypothesizes behind such observations. The objectives of our study were to assess the role of oxidative attacks in DNA damage pathogenesis in ejaculated spermatozoa from patients with isolated teratozoospermia. We aimed to assess the correlation of DNA breaks with morphologically abnormal spermatozoa, as well as ROS level and impairment chromatin condensation. A total of 90 patients were divided into two groups, men with isolated teratozoospermia (n = 60) and men with normal semen parameters (n = 30) as controls. DNA fragmentation was evaluated by TUNEL assay; chromatin immaturity was studied using acridine orange and toluidine blue staining. We evaluated the ability of spermatozoa to produce reactive oxygen species with nitro blue tetrazolium staining. Patient with teratozoospermia when compared to fertile men showed significantly higher rates of semen ROS production, sperm hypocondensated chromatin, denaturated DNA, and fragmented DNA. All these parameters were positively correlated with abnormal sperm morphology. The studied DNA integrity markers were also correlated with ROS production. Fragmented DNA is the main pathway leading to morphology defects in the sperm. In fact, impaired chromatin compaction may induce DNA breaks and free radicals, which can break the DNA backbone indirectly, by reducing protamination and disulphide bond formation, as oxidative attack appears to be the major cause of poor semen morphology.
Collapse
Affiliation(s)
- Ammar Oumaima
- Laboratory of Histology Embryology and Cytogenetic (UR 12 ES 10), Faculty of Medicine, University of Monastir, Street Avicenne, 5019, Monastir, Tunisia.
| | - Ajina Tesnim
- Laboratory of Histology Embryology and Cytogenetic (UR 12 ES 10), Faculty of Medicine, University of Monastir, Street Avicenne, 5019, Monastir, Tunisia
| | - Haouas Zohra
- Laboratory of Histology Embryology and Cytogenetic (UR 12 ES 10), Faculty of Medicine, University of Monastir, Street Avicenne, 5019, Monastir, Tunisia
| | - Sallem Amira
- Laboratory of Histology Embryology and Cytogenetic (UR 12 ES 10), Faculty of Medicine, University of Monastir, Street Avicenne, 5019, Monastir, Tunisia
- Laboratory of Cytogenetics and Reproductive Biology, Center of Maternity and Neonatology, Monastir, Fattouma Bourguiba University Teaching Hospital, Monastir, Tunisia
| | - Zidi Ines
- Laboratory of Histology Embryology and Cytogenetic (UR 12 ES 10), Faculty of Medicine, University of Monastir, Street Avicenne, 5019, Monastir, Tunisia
- Laboratory of Cytogenetics and Reproductive Biology, Center of Maternity and Neonatology, Monastir, Fattouma Bourguiba University Teaching Hospital, Monastir, Tunisia
| | - Chakroun Sana
- Laboratory of Histology Embryology and Cytogenetic (UR 12 ES 10), Faculty of Medicine, University of Monastir, Street Avicenne, 5019, Monastir, Tunisia
| | - Grissa Intissar
- Laboratory of Histology Embryology and Cytogenetic (UR 12 ES 10), Faculty of Medicine, University of Monastir, Street Avicenne, 5019, Monastir, Tunisia
| | - Ezzi Lobna
- Laboratory of Histology Embryology and Cytogenetic (UR 12 ES 10), Faculty of Medicine, University of Monastir, Street Avicenne, 5019, Monastir, Tunisia
| | - Jlali Ali
- Laboratory of Histology Embryology and Cytogenetic (UR 12 ES 10), Faculty of Medicine, University of Monastir, Street Avicenne, 5019, Monastir, Tunisia
| | - Mehdi Meriem
- Laboratory of Histology Embryology and Cytogenetic (UR 12 ES 10), Faculty of Medicine, University of Monastir, Street Avicenne, 5019, Monastir, Tunisia
- Laboratory of Cytogenetics and Reproductive Biology, Center of Maternity and Neonatology, Monastir, Fattouma Bourguiba University Teaching Hospital, Monastir, Tunisia
| |
Collapse
|
11
|
Rybczynska AA, Boersma HH, de Jong S, Gietema JA, Noordzij W, Dierckx RAJO, Elsinga PH, van Waarde A. Avenues to molecular imaging of dying cells: Focus on cancer. Med Res Rev 2018. [PMID: 29528513 PMCID: PMC6220832 DOI: 10.1002/med.21495] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Successful treatment of cancer patients requires balancing of the dose, timing, and type of therapeutic regimen. Detection of increased cell death may serve as a predictor of the eventual therapeutic success. Imaging of cell death may thus lead to early identification of treatment responders and nonresponders, and to “patient‐tailored therapy.” Cell death in organs and tissues of the human body can be visualized, using positron emission tomography or single‐photon emission computed tomography, although unsolved problems remain concerning target selection, tracer pharmacokinetics, target‐to‐nontarget ratio, and spatial and temporal resolution of the scans. Phosphatidylserine exposure by dying cells has been the most extensively studied imaging target. However, visualization of this process with radiolabeled Annexin A5 has not become routine in the clinical setting. Classification of death modes is no longer based only on cell morphology but also on biochemistry, and apoptosis is no longer found to be the preponderant mechanism of cell death after antitumor therapy, as was earlier believed. These conceptual changes have affected radiochemical efforts. Novel probes targeting changes in membrane permeability, cytoplasmic pH, mitochondrial membrane potential, or caspase activation have recently been explored. In this review, we discuss molecular changes in tumors which can be targeted to visualize cell death and we propose promising biomarkers for future exploration.
Collapse
Affiliation(s)
- Anna A Rybczynska
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Genetics, University of Groningen, Groningen, the Netherlands
| | - Hendrikus H Boersma
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Clinical Pharmacy & Pharmacology, University of Groningen, Groningen, the Netherlands
| | - Steven de Jong
- Department of Medical Oncology, University of Groningen, Groningen, the Netherlands
| | - Jourik A Gietema
- Department of Medical Oncology, University of Groningen, Groningen, the Netherlands
| | - Walter Noordzij
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Nuclear Medicine, Ghent University, Ghent, Belgium
| | - Philip H Elsinga
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Aren van Waarde
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
12
|
Abstract
DNA degradation is critical to healthy organism development and survival. Two nuclease families that play key roles in development and in disease are the Dnase1 and Dnase2 families. While these two families were initially characterized by biochemical function, it is now clear that multiple enzymes in each family perform similar, non-redundant roles in many different tissues. Most Dnase1 and Dnase2 family members are poorly characterized, yet their elimination can lead to a wide range of diseases, including lethal anemia, parakeratosis, cataracts and systemic lupus erythematosus. Therefore, understanding these enzyme families represents a critical field of emerging research. This review explores what is currently known about Dnase1 and Dnase2 family members, highlighting important questions about the structure and function of family members, and how their absence translates to disease.
Collapse
Affiliation(s)
- Peter A Keyel
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, United States.
| |
Collapse
|
13
|
Shirmanova MV, Druzhkova IN, Lukina MM, Dudenkova VV, Ignatova NI, Snopova LB, Shcheslavskiy VI, Belousov VV, Zagaynova EV. Chemotherapy with cisplatin: insights into intracellular pH and metabolic landscape of cancer cells in vitro and in vivo. Sci Rep 2017; 7:8911. [PMID: 28827680 PMCID: PMC5566551 DOI: 10.1038/s41598-017-09426-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 07/25/2017] [Indexed: 12/23/2022] Open
Abstract
Although cisplatin plays a central role in cancer chemotherapy, the mechanisms of cell response to this drug have been unexplored. The present study demonstrates the relationships between the intracellular pH (pHi), cell bioenergetics and the response of cervical cancer to cisplatin. pHi was measured using genetically encoded sensor SypHer2 and metabolic state was accessed by fluorescence intensities and lifetimes of endogenous cofactors NAD(P)H and FAD. Our data support the notion that cisplatin induces acidification of the cytoplasm early after the treatment. We revealed in vitro that a capacity of cells to recover and maintain alkaline pHi after the initial acidification is the crucial factor in mediating the cellular decision to survive and proliferate at a vastly reduced rate or to undergo cell death. Additionally, we showed for the first time that pHi acidification occurs after prolonged therapy in vitro and in vivo, and this, likely, favors metabolic reorganization of cells. A metabolic shift from glycolysis towards oxidative metabolism accompanied the cisplatin-induced inhibition of cancer cell growth in vitro and in vivo. Overall, these findings contribute to an understanding of the mechanisms underlying the responsiveness of an individual cell and tumor to therapy and are valuable for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Marina V Shirmanova
- Institute of Biomedical Technologies, Nizhny Novgorod State Medical Academy, 10/1 Minin and Pozharsky Sq., 603005, Nizhny Novgorod, Russia.
| | - Irina N Druzhkova
- Institute of Biomedical Technologies, Nizhny Novgorod State Medical Academy, 10/1 Minin and Pozharsky Sq., 603005, Nizhny Novgorod, Russia
| | - Maria M Lukina
- Institute of Biomedical Technologies, Nizhny Novgorod State Medical Academy, 10/1 Minin and Pozharsky Sq., 603005, Nizhny Novgorod, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603950, Nizhny Novgorod, Russia
| | - Varvara V Dudenkova
- Institute of Biomedical Technologies, Nizhny Novgorod State Medical Academy, 10/1 Minin and Pozharsky Sq., 603005, Nizhny Novgorod, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603950, Nizhny Novgorod, Russia
| | - Nadezhda I Ignatova
- Institute of Biomedical Technologies, Nizhny Novgorod State Medical Academy, 10/1 Minin and Pozharsky Sq., 603005, Nizhny Novgorod, Russia
| | - Ludmila B Snopova
- Institute of Biomedical Technologies, Nizhny Novgorod State Medical Academy, 10/1 Minin and Pozharsky Sq., 603005, Nizhny Novgorod, Russia
| | | | - Vsevolod V Belousov
- Molecular technologies laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya St., 117997, Moscow, Russia
| | - Elena V Zagaynova
- Institute of Biomedical Technologies, Nizhny Novgorod State Medical Academy, 10/1 Minin and Pozharsky Sq., 603005, Nizhny Novgorod, Russia
| |
Collapse
|
14
|
Epi-reevesioside F inhibits Na+/K+-ATPase, causing cytosolic acidification, Bak activation and apoptosis in glioblastoma. Oncotarget 2016; 6:24032-46. [PMID: 26125228 PMCID: PMC4695168 DOI: 10.18632/oncotarget.4429] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/04/2015] [Indexed: 12/17/2022] Open
Abstract
Epi-reevesioside F, a new cardiac glycoside isolated from the root of Reevesia formosana, displayed potent activity against glioblastoma cells. Epi-reevesioside F was more potent than ouabain with IC50 values of 27.3±1.7 vs. 48.7±1.8 nM (P < 0.001) and 45.0±3.4 vs. 81.3±4.3 nM (P < 0.001) in glioblastoma T98 and U87 cells, respectively. However, both Epi-reevesioside F and ouabain were ineffective in A172 cells, a glioblastoma cell line with low Na+/K+-ATPase α3 subunit expression. Epi-reevesioside F induced cell cycle arrest at S and G2 phases and apoptosis. It also induced an increase of intracellular concentration of Na+ but not Ca2+, cleavage and exposure of N-terminus of Bak, loss of mitochondrial membrane potential, inhibition of Akt activity and induction of caspase cascades. Potassium supplements significantly inhibited Epi-reevesioside F-induced effects. Notably, Epi-reevesioside F caused cytosolic acidification that was highly correlated with the anti-proliferative activity. In summary, the data suggest that Epi-reevesioside F inhibits Na+/K+-ATPase, leading to overload of intracellular Na+ and cytosolic acidification, Bak activation and loss of mitochondrial membrane potential. The PI3-kinase/Akt pathway is inhibited and caspase-dependent apoptosis is ultimately triggered in Epi-reevesioside F-treated glioblastoma cells.
Collapse
|
15
|
Du A, Xie J, Guo K, Yang L, Wan Y, OuYang Q, Zhang X, Niu X, Lu L, Wu J, Zhang X. A novel role for synaptic acetylcholinesterase as an apoptotic deoxyribonuclease. Cell Discov 2015; 1:15002. [PMID: 27462404 PMCID: PMC4851313 DOI: 10.1038/celldisc.2015.2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 01/27/2015] [Indexed: 12/28/2022] Open
Abstract
In addition to terminating neurotransmission by hydrolyzing acetylcholine, synaptic acetylcholinesterase (AChES) has been found to have a pro-apoptotic role. However, the underlying mechanism has rarely been investigated. Here, we report a nuclear translocation-dependent role for AChES as an apoptotic deoxyribonuclease (DNase). AChES polypeptide binds to and cleaves naked DNA at physiological pH in a Ca(2+)-Mg(2+)-dependent manner. It also cleaves chromosomal DNA both in pre-fixed and in apoptotic cells. In the presence of a pan-caspase inhibitor, the cleavage still occurred after nuclear translocation of AChES, implying that AChES-DNase acts in a CAD- and EndoG-independent manner. AChE gene knockout impairs apoptotic DNA cleavage; this impairment is rescued by overexpression of the wild-type but not (aa 32-138)-deleted AChES. Furthermore, in comparison with the nuclear-localized wild-type AChES, (aa 32-138)-deleted AChES loses the capacity to initiate apoptosis. These observations confirm that AChES mediates apoptosis via its DNase activity.
Collapse
Affiliation(s)
- Aiying Du
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Jing Xie
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Kaijie Guo
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Lei Yang
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Yihan Wan
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Qi OuYang
- Department of Pathology, School of Basic Medical Sciences, Fudan University , Shanghai, China
| | - Xuejin Zhang
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Xin Niu
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Lu Lu
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Jun Wu
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Xuejun Zhang
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| |
Collapse
|
16
|
Autonomous and non-autonomous roles of DNase II during cell death in C. elegans embryos. Biosci Rep 2015; 35:BSR20150055. [PMID: 26182365 PMCID: PMC4613723 DOI: 10.1042/bsr20150055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/23/2015] [Indexed: 12/02/2022] Open
Abstract
The method of ToLFP (topoisomerase labelled fluorescence probes) is useful for detecting the DNA fragments generated by DNase II in Caenorhabditis elegans embryos. It reveals ~70% ToLFP signals in dying cells and 30% in engulfing cells during embryogenesis. Generation of DNA fragments is a hallmark of cell apoptosis and is executed within the dying cells (autonomous) or in the engulfing cells (non-autonomous). The TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labelling) method is used as an in situ assay of apoptosis by labelling DNA fragments generated by caspase-associated DNase (CAD), but not those by the downstream DNase II. In the present study, we report a method of ToLFP (topoisomerase ligation fluorescence probes) for directly visualizing DNA fragments generated by DNase II in Caenorhabditis elegans embryos. ToLFP analysis provided the first demonstration of a cell autonomous mode of DNase II activity in dying cells in ced-1 embryos, which are defective in engulfing apoptotic bodies. Compared with the number of ToLFP signals between ced-1 and wild-type (N2) embryos, a 30% increase in N2 embryos was found, suggesting that the ratio of non-autonomous and autonomous modes of DNase II was ~3–7. Among three DNase II mutant embryos (nuc-1, crn-6 and crn-7), nuc-1 embryos exhibited the least number of ToLFP. The ToLFP results confirmed the previous findings that NUC-1 is the major DNase II for degrading apoptotic DNA. To further elucidate NUC-1′s mode of action, nuc-1-rescuing transgenic worms that ectopically express free or membrane-bound forms of NUC-1 fusion proteins were utilized. ToLFP analyses revealed that anteriorly expressed NUC-1 digests apoptotic DNA in posterior blastomeres in a non-autonomous and secretion-dependent manner. Collectively, we demonstrate that the ToLFP method can be used to differentiate the locations of blastomeres where DNase II acts autonomously or non-autonomously in degrading apoptotic DNA.
Collapse
|
17
|
Glinka EM. Killing of cancer cells through the use of eukaryotic expression vectors harbouring genes encoding nucleases and ribonuclease inhibitor. Tumour Biol 2015; 36:3147-57. [PMID: 25874497 DOI: 10.1007/s13277-015-3360-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/19/2015] [Indexed: 11/29/2022] Open
Abstract
Cancer gene therapy vectors are promising tools for killing cancer cells with the purpose of eradicating malignant tumours entirely. Different delivery methods of vectors into the cancer cells, including both non-viral and viral, as well as promoters for the targeted expression of genes encoding anticancer proteins were developed for effective and selective killing of cancer cells without harming healthy cells. Many vectors have been created to kill cancer cells, and some vectors suppress malignant tumours with high efficiency. This review is focused on vectors bearing genes for nucleases such as deoxyribonucleases (caspase-activated DNase, deoxyribonuclease I-like 3, endonuclease G) and ribonucleases (human polynucleotide phosphorylase, ribonuclease L, α-sarcin, barnase), as well as vectors harbouring gene encoding ribonuclease inhibitor. The data concerning the functionality and the efficacy of such vectors are presented.
Collapse
|
18
|
Na+-H+ exchanger-1 (NHE1) regulation in kidney proximal tubule. Cell Mol Life Sci 2015; 72:2061-74. [PMID: 25680790 DOI: 10.1007/s00018-015-1848-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/28/2015] [Accepted: 01/29/2015] [Indexed: 01/17/2023]
Abstract
The ubiquitously expressed plasma membrane Na(+)-H(+) exchanger NHE1 is a 12 transmembrane-spanning protein that directs important cell functions such as homeostatic intracellular volume and pH control. The 315 amino acid cytosolic tail of NHE1 binds plasma membrane phospholipids and multiple proteins that regulate additional, ion-translocation independent functions. This review focuses on NHE1 structure/function relationships, as well as the role of NHE1 in kidney proximal tubule functions, including pH regulation, vectorial Na(+) transport, cell volume control and cell survival. The implications of these functions are particularly critical in the setting of progressive, albuminuric kidney diseases, where the accumulation of reabsorbed fatty acids leads to disruption of NHE1-membrane phospholipid interactions and tubular atrophy, which is a poor prognostic factor for progression to end stage renal disease. This review amplifies the vital role of the proximal tubule NHE1 Na(+)-H(+) exchanger as a kidney cell survival factor.
Collapse
|
19
|
Muratori M, Tamburrino L, Marchiani S, Cambi M, Olivito B, Azzari C, Forti G, Baldi E. Investigation on the Origin of Sperm DNA Fragmentation: Role of Apoptosis, Immaturity and Oxidative Stress. Mol Med 2015; 21:109-22. [PMID: 25786204 PMCID: PMC4461587 DOI: 10.2119/molmed.2014.00158] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 01/30/2015] [Indexed: 01/16/2023] Open
Abstract
Sperm DNA fragmentation (sDF) represents a threat to male fertility, human reproduction and the health of the offspring. The causes of sDF are still unclear, even if apoptosis, oxidative assault and defects in chromatin maturation are hypothesized. Using multicolor flow cytometry and sperm sorting, we challenged the three hypothesized mechanisms by simultaneously evaluating sDF and signs of oxidative damage (8-hydroxy, 2'-deoxyguanosine [8-OHdG] and malondialdehyde [MDA]), apoptosis (caspase activity and cleaved poly[ADP-ribose] polymerase [cPARP]) and sperm immaturity (creatine phosphokinase [CK] and excess of residual histones). Active caspases and c-PARP were concomitant with sDF in a high percentage of spermatozoa (82.6% ± 9.1% and 53.5% ± 16.4%, respectively). Excess of residual histones was significantly higher in DNA-fragmented sperm versus sperm without DNA fragmentation (74.8% ± 17.5% and 37.3% ± 16.6%, respectively, p < 0.005), and largely concomitant with active caspases. Conversely, oxidative damage was scarcely concomitant with sDF in the total sperm population, at variance with live sperm, where 8-OHdG and MDA were clearly associated to sDF. In addition, most live cells with active caspase also showed 8-OHdG, suggesting activation of apoptotic pathways in oxidative-injured live cells. This is the first investigation on the origin of sDF directly evaluating the simultaneous presence of the signs of the hypothesized mechanisms with DNA breaks at the single cell level. The results indicate that the main pathway leading to sperm DNA breaks is a process of apoptosis, likely triggered by an impairment of chromatin maturation in the testis and by oxidative stress during the transit in the male genital tract. These findings are highly relevant for clinical studies on the effects of drugs on sDF and oxidative stress in infertile men and for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Monica Muratori
- Sexual Medicine and Andrology Unit, Department of Experimental and Biomedical Sciences, Center of Excellence DeNothe, University of Florence, Italy
| | - Lara Tamburrino
- Sexual Medicine and Andrology Unit, Department of Experimental and Biomedical Sciences, Center of Excellence DeNothe, University of Florence, Italy
| | - Sara Marchiani
- Sexual Medicine and Andrology Unit, Department of Experimental and Biomedical Sciences, Center of Excellence DeNothe, University of Florence, Italy
| | - Marta Cambi
- Sexual Medicine and Andrology Unit, Department of Experimental and Biomedical Sciences, Center of Excellence DeNothe, University of Florence, Italy
| | - Biagio Olivito
- Pediatric Section, Department of Health Sciences, University of Florence and Anna Meyer Children’s University Hospital, Florence, Italy
| | - Chiara Azzari
- Pediatric Section, Department of Health Sciences, University of Florence and Anna Meyer Children’s University Hospital, Florence, Italy
| | - Gianni Forti
- Sexual Medicine and Andrology Unit, Department of Experimental and Biomedical Sciences, Center of Excellence DeNothe, University of Florence, Italy
| | - Elisabetta Baldi
- Sexual Medicine and Andrology Unit, Department of Experimental and Biomedical Sciences, Center of Excellence DeNothe, University of Florence, Italy
| |
Collapse
|
20
|
Liao C, Liu M, Bai X, Liu P, Wang X, Li T, Tang B, Gao H, Sun Q, Liu X, Zhao Y, Wang F, Wu X, Boireau P, Liu X. Characterisation of a plancitoxin-1-like DNase II gene in Trichinella spiralis. PLoS Negl Trop Dis 2014; 8:e3097. [PMID: 25165857 PMCID: PMC4148230 DOI: 10.1371/journal.pntd.0003097] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 07/01/2014] [Indexed: 01/29/2023] Open
Abstract
Background Deoxyribonuclease II (DNase II) is a well-known acidic endonuclease that catalyses the degradation of DNA into oligonucleotides. Only one or a few genes encoding DNase II have been observed in the genomes of many species. 125 DNase II-like protein family genes were predicted in the Trichinella spiralis (T. spiralis) genome; however, none have been confirmed. DNase II is a monomeric nuclease that contains two copies of a variant HKD motif in the N- and C-termini. Of these 125 genes, only plancitoxin-1 (1095 bp, GenBank accession no. XM_003370715.1) contains the HKD motif in its C-terminus domain. Methodology/Principal Findings In this study, we cloned and characterised the plancitoxin-1 gene. However, the sequences of plancitoxin-1 cloned from T. spiralis were shorter than the predicted sequences in GenBank. Intriguingly, there were two HKD motifs in the N- and C-termini in the cloned sequences. Therefore, the gene with shorter sequences was named after plancitoxin-1-like (Ts-Pt, 885 bp) and has been deposited in GenBank under accession number KF984291. The recombinant protein (rTs-Pt) was expressed in a prokaryotic expression system and purified by nickel affinity chromatography. Western blot analysis showed that rTs-Pt was recognised by serum from T. spiralis-infected mice; the anti-rTs-Pt serum recognised crude antigens but not ES antigens. The Ts-Pt gene was examined at all T. spiralis developmental stages by real-time quantitative PCR. Immunolocalisation analysis showed that Ts-Pt was distributed throughout newborn larvae (NBL), the tegument of adults (Ad) and muscle larvae (ML). As demonstrated by DNase zymography, the expressed proteins displayed cation-independent DNase activity. rTs-Pt had a narrow optimum pH range in slightly acidic conditions (pH 4 and pH 5), and its optimum temperature was 25°C, 30°C, and 37°C. Conclusions This study indicated that Ts-Pt was classified as a somatic protein in different T. spiralis developmental stages, and demonstrated for the first time that an expressed DNase II protein from T. spiralis had nuclease activity. Deoxyribonuclease II (DNase II) is classified into a unique family of nucleases and mediates the degradation of DNA associated with apoptosis. Although DNase II activity was first observed in 1947, and has been studied biochemically and enzymatically since the 1960s, only recently has genetic information on the enzyme been reported. Compared with enzymes from other species, including C. elegans, the DNase II-like protein family of the parasitic nematode T. spiralis has expanded remarkably, with an estimated 125 genes found in the draft genome of T. spiralis. However, none of these proteins have been confirmed by biochemical studies. This study describes Ts-Pt, a DNase II protein that is expressed in different T. spiralis developmental stages. The recombinant protein purified via a prokaryotic expression system displayed in vitro nuclease activity, as determined by DNase zymography. The exact function and mechanisms of Ts-Pt should be further explored in vivo.
Collapse
Affiliation(s)
- Chengshui Liao
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, People's Republic of China
| | - Mingyuan Liu
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
- * E-mail: (ML); (XW); (PB); (XL)
| | - Xue Bai
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, People's Republic of China
| | - Pan Liu
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, People's Republic of China
| | - Xuelin Wang
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, People's Republic of China
| | - Tingting Li
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, People's Republic of China
| | - Bin Tang
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, People's Republic of China
| | - He Gao
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, People's Republic of China
| | - Qingsong Sun
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, People's Republic of China
| | - Xidong Liu
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, People's Republic of China
| | - Ying Zhao
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, People's Republic of China
| | - Feng Wang
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, People's Republic of China
| | - Xiuping Wu
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, People's Republic of China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- * E-mail: (ML); (XW); (PB); (XL)
| | - Pascal Boireau
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, People's Republic of China
- * E-mail: (ML); (XW); (PB); (XL)
| | - Xiaolei Liu
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, People's Republic of China
- * E-mail: (ML); (XW); (PB); (XL)
| |
Collapse
|
21
|
Leprêtre C, Tchakarska G, Blibech H, Lebon C, Torriglia A. Apoptosis-inducing factor (AIF) and leukocyte elastase inhibitor/L-DNase II (LEI/LDNaseII), can interact to conduct caspase-independent cell death. Apoptosis 2014; 18:1048-59. [PMID: 23673989 DOI: 10.1007/s10495-013-0862-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Programmed cell death is an important factor in tissue homeostasis. Lot of work has been performed to characterize the caspase-dependent cell death. Caspase-independent cell death, although important in many physiological situations, is less investigated. In this work we show that two caspase-independent effectors of cell death, namely apoptosis-inducing factor and leukocyte elastase inhibitor derived DNase II interact and can cooperate to induce cell death. These results contribute to the knowledge of molecular pathways of cell death, an important issue in the development of new therapeutic strategies for the treatment of cancer or neurodegenerative diseases.
Collapse
Affiliation(s)
- Chloé Leprêtre
- Centre de Recherches des Cordeliers, INSERM, UMR S 872, 15, rue de L'école de médecine, 75006, Paris, France
| | | | | | | | | |
Collapse
|
22
|
Aleksandrushkina NI, Vanyushin BF. Endonucleases and apoptosis in animals. BIOCHEMISTRY (MOSCOW) 2013; 77:1436-51. [PMID: 23379520 DOI: 10.1134/s0006297912130032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Endonucleases are the main instruments of obligatory DNA degradation in apoptosis. Many endonucleases have marked processive action; initially they split DNA in chromatin into very large domains, and then they perform in it internucleosomal fragmentation of DNA followed by its hydrolysis to small fragments (oligonucleotides). During apoptosis, DNA of chromatin is attacked by many nucleases that are different in activity, specificity, and order of action. The activity of every endonuclease is regulated in the cell through its own regulatory mechanism (metal ions and other effectors, possibly also S-adenosylmethionine). Apoptosis is impossible without endonucleases as far as it leads to accumulation of unnecessary (defective) DNA, disorders in cell differentiation, embryogenesis, the organism's development, and is accompanied by various severe diseases. The interpretation of the structure and functions of endonucleases and of the nature and action of their modulating effectors is important not only for elucidation of mechanisms of apoptosis, but also for regulation and control of programmed cell death, cell differentiation, and development of organisms.
Collapse
Affiliation(s)
- N I Aleksandrushkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | |
Collapse
|
23
|
Tabata K, Hamano A, Akihisa T, Suzuki T. Kuguaglycoside C, a constituent of Momordica charantia, induces caspase-independent cell death of neuroblastoma cells. Cancer Sci 2012; 103:2153-8. [PMID: 22957888 DOI: 10.1111/cas.12021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/28/2012] [Accepted: 09/03/2012] [Indexed: 12/12/2022] Open
Abstract
Kuguaglycoside C is a triterpene glycoside isolated from the leaves of Momordica charantia, and the biological effects of this compound remain almost unknown. We investigated the anti-cancer effect of kuguaglycoside C against human neuroblastoma IMR-32 cells. In the MTT assay, kuguaglycoside C induced significant cytotoxicity against the IMR-32 cells (IC(50) : 12.6 μM) after 48 h treatment. Although examination by Hoechst 33342 staining revealed that kuguaglycoside C induced nuclear shrinkage at a high concentration (100 μM), no apoptotic bodies were observed on flow cytometry. No activation of caspase-3 or caspase-9 was observed at the effective concentration (30 μM) of kuguaglycoside C. On the other hand, the substance significantly decreased the expression of survivin and cleaved poly (ADP-ribose) polymerase (PARP). Kuguaglycoside C also significantly increased the expression and cleavage of apoptosis-inducing factor (AIF). Moreover, kuguaglycoside C was found to induce caspase-independent DNA cleavage in the dual-fluorescence apoptosis detection assay. These results suggest that kuguaglycoside C induces caspase-independent cell death, and is involved, at least in part, in the mechanism underlying cell necroptosis.
Collapse
Affiliation(s)
- Keiichi Tabata
- Laboratory of Clinical Medicine, School of Pharmacy, Nihon University, Funabashi-shi, Chiba, Japan.
| | | | | | | |
Collapse
|
24
|
Gu HT, Wang DH, Li X, He CX, Xu ZH, Bai SN. Characterization of an ethylene-inducible, calcium-dependent nuclease that is differentially expressed in cucumber flower development. THE NEW PHYTOLOGIST 2011; 192:590-600. [PMID: 21801181 DOI: 10.1111/j.1469-8137.2011.03825.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
• Production of unisexual flowers is an important mechanism that promotes cross-pollination in angiosperms. We previously identified primordial anther-specific DNA damage and organ-specific ethylene perception responsible for the arrest of stamen development in female flowers, but little is known about how the two processes are linked. • To identify potential links between the two processes, we performed suppression subtractive hybridization (SSH) on cucumber (Cucumis sativus L.) stamens of male and female flowers at stage 6, with stamens at stage 5 of bisexual flowers as a control. • Among the differentially expressed genes, we identified an expressed sequence tag (EST) encoding a cucumber homolog to an Arabidopsis calcium-dependent nuclease (CAN), designated CsCaN. Full-length CsCaN cDNA and the respective genomic DNA sequence were cloned and characterized. The CsCaN protein exhibited calcium-dependent nuclease activity. CsCaN showed ubiquitous expression; however, increased gene expression was detected in the stamens of stage 6 female flowers compared with male flowers. As expected, CsCaN expression was ethylene inducible. It was of great interest that CsCaN was post-translationally modified. • This study demonstrated that CsCaN is a novel cucumber nuclease gene, whose DNase activity is regulated at multiple levels, and which could be involved in the primordial anther-specific DNA damage of developing female cucumber flowers.
Collapse
Affiliation(s)
- Hai-Tao Gu
- PKU-Yale Joint Research Center of Agricultural and Plant Molecular Biology, National Key Laboratory of Protein Engineering and Plant Gene Engineering, College of Life Sciences, Peking University, Beijing, China
| | | | | | | | | | | |
Collapse
|
25
|
Fischer H, Scherz J, Szabo S, Mildner M, Benarafa C, Torriglia A, Tschachler E, Eckhart L. DNase 2 is the main DNA-degrading enzyme of the stratum corneum. PLoS One 2011; 6:e17581. [PMID: 21390259 PMCID: PMC3046983 DOI: 10.1371/journal.pone.0017581] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 02/09/2011] [Indexed: 01/28/2023] Open
Abstract
The cornified layer, the stratum corneum, of the epidermis is an efficient barrier to the passage of genetic material, i.e. nucleic acids. It contains enzymes that degrade RNA and DNA which originate from either the living part of the epidermis or from infectious agents of the environment. However, the molecular identities of these nucleases are only incompletely known at present. Here we performed biochemical and genetic experiments to determine the main DNase activity of the stratum corneum. DNA degradation assays and zymographic analyses identified the acid endonucleases L-DNase II, which is derived from serpinB1, and DNase 2 as candidate DNases of the cornified layer of the epidermis. siRNA-mediated knockdown of serpinB1 in human in vitro skin models and the investigation of mice deficient in serpinB1a demonstrated that serpinB1-derived L-DNase II is dispensable for epidermal DNase activity. By contrast, knockdown of DNase 2, also known as DNase 2a, reduced DNase activity in human in vitro skin models. Moreover, the genetic ablation of DNase 2a in the mouse was associated with the lack of acid DNase activity in the stratum corneum in vivo. The degradation of endogenous DNA in the course of cornification of keratinocytes was not impaired by the absence of DNase 2. Taken together, these data identify DNase 2 as the predominant DNase on the mammalian skin surface and indicate that its activity is primarily targeted to exogenous DNA.
Collapse
Affiliation(s)
- Heinz Fischer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Jennifer Scherz
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sandra Szabo
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Charaf Benarafa
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Alicia Torriglia
- INSERM UMR 872, Physiopathologie des maladies oculaires, Centre de Recherches des Cordeliers, Paris, France
| | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Centre de Recherches et d'Investigations Épidermiques et Sensorielles, Neuilly-sur-Seine, France
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
26
|
Quantification of DNase type I ends, DNase type II ends, and modified bases using fluorescently labeled ddUTP, terminal deoxynucleotidyl transferase, and formamidopyrimidine-DNA glycosylase. Biotechniques 2010; 49:505-12. [PMID: 20615203 DOI: 10.2144/000113439] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Here we describe the substitution of fluorescently labeled ddUTP for dUTP in the TUNEL assay to allow quantification of generated fluorescence signals by epifluorescence microscopy. The capping of DNase type I 3'OH DNA ends using ddTUNEL was further combined with phosphatase treatment for detection of DNase type II 3'PO4 ends in the same sample using a second round of ddTUNEL. Levels of modified DNA bases in tissues and fixed cultured cells could be interrogated in the ddTUNEL assay with the base modification repair enzyme formamidopyrimidine DNA glycosylase. Using rat mammary gland, from days 1 and 7 of involution, we validate the methodology's ability to label apoptotic nuclei and apoptotic inclusion bodies. In addition, we examined the types of DNA damage and modification that occur in human glioblastoma, U87 cells, following exposure to reactive oxygen stressing agents, chemotherapeutic alkylating agents, and a topoisomerase I inhibitor, irinotecan.
Collapse
|
27
|
Coordinated and sequential activation of neutral and acidic DNases during interdigital cell death in the embryonic limb. Apoptosis 2010; 15:1197-210. [DOI: 10.1007/s10495-010-0523-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
28
|
McHenry P, Wang WLW, Devitt E, Kluesner N, Davisson VJ, McKee E, Schweitzer D, Helquist P, Tenniswood M. Iejimalides A and B inhibit lysosomal vacuolar H+-ATPase (V-ATPase) activity and induce S-phase arrest and apoptosis in MCF-7 cells. J Cell Biochem 2010; 109:634-42. [PMID: 20039309 DOI: 10.1002/jcb.22438] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Iejimalides are novel macrolides that are cytostatic or cytotoxic against a wide range of cancer cells at low nanomolar concentrations. A recent study by our laboratory characterized the expression of genes and proteins that determine the downstream effects of iejimalide B. However, little is known about the cellular target(s) of iejimalide or downstream signaling that lead to cell-cycle arrest and/or apoptosis. Iejimalides have been shown to inhibit the activity of vacuolar H(+)-ATPase (V-ATPase) in osteoclasts, but how this inhibition may lead to cell-cycle arrest and/or apoptosis in epithelial cells is not known. In this study, MCF-7 breast cancer cells were treated with iejimalide A or B and analyzed for changes in cell-cycle dynamics, apoptosis, lysosomal pH, cytoplasmic pH, mitochondrial membrane potential, and generation of reactive oxygen species. Both iejimalides A and B sequentially neutralize the pH of lysosomes, induce S-phase cell-cycle arrest, and trigger apoptosis in MCF-7 cells. Apoptosis occurs through a mechanism that involves oxidative stress and mitochondrial depolarization but not cytoplasmic acidification. These data confirm that iejimalides inhibit V-ATPase activity in the context of epithelial tumor cells, and that this inhibition may lead to a lysosome-initiated cell death process.
Collapse
Affiliation(s)
- Peter McHenry
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, Indiana 46617, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Apoptosis, the best known form of programmed cell death, is tightly regulated by a number of sensors, signal transducers and effectors. Apoptosis is mainly active during embryonic development, when deletion of redundant cellular material is required for the correct morphogenesis of tissues and organs; moreover, it is essential for the maintenance of tissue homeostasis during cell life. Cells also activate apoptosis when they suffer from various insults, such as damage to DNA or to other cellular components, or impairment of basic processes, such as DNA replication and DNA repair. Removal of damaged cells is fundamental in maintaining the health of organisms. In addition, apoptosis induction following DNA damage is exploited to kill cancer cells. In this chapter we will review the main features of developmental and induced apoptosis.
Collapse
|
30
|
Kempaiah P, Danielson LA, Barry M, Kisiel W. Comparative effects of aprotinin and human recombinant R24K KD1 on temporal renal function in Long-Evans rats. J Pharmacol Exp Ther 2009; 331:940-5. [PMID: 19776384 PMCID: PMC2784715 DOI: 10.1124/jpet.109.161034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 09/22/2009] [Indexed: 01/24/2023] Open
Abstract
Bovine aprotinin, a reversible inhibitor of plasmin and kallikrein, has been clinically approved for over two decades to prevent perioperative blood loss during cardiac surgery. However, because of postoperative renal dysfunction in thousands of these patients, aprotinin was voluntarily withdrawn from the market. Our earlier studies indicated that a R24K mutant of the first Kunitz-type domain of human tissue factor pathway inhibitor-2 (R24K KD1) exhibited plasmin inhibitory activity equivalent to aprotinin in vitro. In this study, we compared the effects on renal function after infusion of aprotinin and recombinant R24K KD1 in chronically instrumented, conscious rats. Aprotinin-infused rats exhibited statistically significant decreases in glomerular filtration rate and effective renal plasma flow relative to rats infused with phosphate-buffered saline (PBS) or R24K KD1 dissolved in PBS. In addition, aprotinin-treated rats exhibited marked increases in serum creatinine, blood urea nitrogen, urinary protein, and effective renal vascular resistance, whereas these renal parameters remained essentially unchanged in vehicle and R24K KD1-treated rats for a one-week period. Moreover, with use of a highly sensitive apoptosis detection assay, a significant increase in the rate of early and late apoptotic events in renal tubule cells occurred in aprotinin-treated rats relative to R24K KD1-treated rats. In addition, histological examination of the rat kidney revealed markedly higher levels of protein reabsorption droplets in the aprotinin-infused rats. Our data collectively provide suggestive evidence that R24K KD1 does not induce the renal dysfunction associated with aprotinin, and may be an effective clinical alternative to aprotinin as an antifibrinolytic agent in cardiac surgery.
Collapse
Affiliation(s)
- Prakasha Kempaiah
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | | | | | |
Collapse
|
31
|
He B, Lu N, Zhou Z. Cellular and nuclear degradation during apoptosis. Curr Opin Cell Biol 2009; 21:900-12. [PMID: 19781927 PMCID: PMC2787732 DOI: 10.1016/j.ceb.2009.08.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 08/27/2009] [Accepted: 08/28/2009] [Indexed: 11/27/2022]
Abstract
Apoptosis ensures quick death and quiet clearance of unwanted or damaged cells, without inducing much, if any, immunological responses from the organism. In metazoan organisms, apoptotic cells are swiftly engulfed by other cells. The degradation of cellular content is initiated in apoptotic cells and completed within engulfing cells. In apoptotic cells, caspase-mediated proteolysis cleaves protein substrates into fragments; nuclear DNA is partially degraded into nucleosomal units; and autophagy potentially contributes to apoptotic cell removal. In engulfing cells, specific signaling pathways promote the sequential fusion of intracellular vesicles with phagosomes and lead to the complete degradation of apoptotic cells in an acidic environment. Phagocytic receptors that initiate the engulfment of apoptotic cells play an additional and crucial role in initiating phagosome maturation through activating these signaling pathways. Here we highlight recent discoveries made in invertebrate models and mammalian systems, focusing on the molecular mechanisms that regulate the efficient degradation of apoptotic cells.
Collapse
Affiliation(s)
- Bin He
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nan Lu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zheng Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
32
|
Lai HJ, Lo SJ, Kage-Nakadai E, Mitani S, Xue D. The roles and acting mechanism of Caenorhabditis elegans DNase II genes in apoptotic dna degradation and development. PLoS One 2009; 4:e7348. [PMID: 19809494 PMCID: PMC2752799 DOI: 10.1371/journal.pone.0007348] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 09/08/2009] [Indexed: 11/22/2022] Open
Abstract
DNase II enzymes are acidic endonucleases that have been implicated in mediating apoptotic DNA degradation, a critical cell death execution event. C. elegans genome contains three DNase II homologues, NUC-1, CRN-6, and CRN-7, but their expression patterns, acting sites, and roles in apoptotic DNA degradation and development are unclear. We have conducted a comprehensive analysis of three C. elegans DNase II genes and found that nuc-1 plays a major role, crn-6 plays an auxiliary role, and crn-7 plays a negligible role in resolving 3′ OH DNA breaks generated in apoptotic cells. Promoter swapping experiments suggest that crn-6 but not crn-7 can partially substitute for nuc-1 in mediating apoptotic DNA degradation and both fail to replace nuc-1 in degrading bacterial DNA in intestine. Despite of their restricted and largely non-overlapping expression patterns, both CRN-6 and NUC-1 can mediate apoptotic DNA degradation in many cells, suggesting that they are likely secreted nucleases that are retaken up by other cells to exert DNA degradation functions. Removal or disruption of NUC-1 secretion signal eliminates NUC-1's ability to mediate DNA degradation across its expression border. Furthermore, blocking cell corpse engulfment does not affect apoptotic DNA degradation mediated by nuc-1, suggesting that NUC-1 acts in apoptotic cells rather than in phagocytes to resolve 3′ OH DNA breaks. Our study illustrates how multiple DNase II nucleases play differential roles in apoptotic DNA degradation and development and reveals an unexpected mode of DNase II action in mediating DNA degradation.
Collapse
Affiliation(s)
- Huey-Jen Lai
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
- Division of Microbiology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Szecheng J. Lo
- Division of Microbiology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Department of Life Science, Chang Gung University, Taoyuan, Taiwan
- * E-mail: (DX); (SJL)
| | - Eriko Kage-Nakadai
- Department of Physiology, Tokyo Women's Medical University, School of Medicine and CREST, Japan Science and Technology, Tokyo, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University, School of Medicine and CREST, Japan Science and Technology, Tokyo, Japan
| | - Ding Xue
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
- * E-mail: (DX); (SJL)
| |
Collapse
|
33
|
Alaeddini R, Walsh SJ, Abbas A. Forensic implications of genetic analyses from degraded DNA--a review. Forensic Sci Int Genet 2009; 4:148-57. [PMID: 20215026 DOI: 10.1016/j.fsigen.2009.09.007] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 08/30/2009] [Accepted: 09/11/2009] [Indexed: 10/20/2022]
Abstract
Forensic DNA identification techniques are principally based on determination of the size or sequence of desired PCR products. The fragmentation of DNA templates or the structural modifications that can occur during the decomposition process can impact the outcomes of the analytical procedures. This study reviews the pathways involved in cell death and DNA decomposition and the subsequent difficulties these present in DNA analysis of degraded samples.
Collapse
Affiliation(s)
- Reza Alaeddini
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, Australia
| | | | | |
Collapse
|
34
|
Bass BP, Tanner EA, Martín DMS, Blute T, Kinser RD, Dolph PJ, McCall K. Cell-autonomous requirement for DNaseII in nonapoptotic cell death. Cell Death Differ 2009; 16:1362-71. [PMID: 19557011 PMCID: PMC2770252 DOI: 10.1038/cdd.2009.79] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA fragmentation is a critical component of apoptosis but it has not been characterized in nonapoptotic forms of cell death, such as necrosis and autophagic cell death. In mammalian apoptosis, caspase-activated DNase cleaves DNA into nucleosomal fragments in dying cells, and subsequently DNase II, an acid nuclease, completes the DNA degradation but acts non-cell autonomously within lysosomes of engulfing cells. Here we examine the requirement for DNases during two examples of programmed cell death (PCD) that occurs in the Drosophila melanogaster ovary, starvation-induced death of mid-stage egg chambers and developmental nurse cell death in late oogenesis. Surprisingly, we found that DNaseII was required cell autonomously in nurse cells during developmental PCD, indicating that it acts within dying cells. Dying nurse cells contain autophagosomes, indicating that autophagy may contribute to these forms of PCD. Furthermore, we provide evidence that developmental nurse cell PCD in late oogenesis shows hallmarks of necrosis. These findings indicate that DNaseII can act cell autonomously to degrade DNA during nonapoptotic cell death.
Collapse
Affiliation(s)
- B. Paige Bass
- Department of Biology, Boston University, Boston, Massachusetts, 02215
- Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Boston University, Boston, Massachusetts, 02215
| | - Elizabeth A. Tanner
- Department of Biology, Boston University, Boston, Massachusetts, 02215
- Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Boston University, Boston, Massachusetts, 02215
| | | | - Todd Blute
- Department of Biology, Boston University, Boston, Massachusetts, 02215
| | | | | | - Kimberly McCall
- Department of Biology, Boston University, Boston, Massachusetts, 02215
| |
Collapse
|
35
|
The early apoptotic DNA fragmentation targets a small number of specific open chromatin regions. PLoS One 2009; 4:e5010. [PMID: 19347039 PMCID: PMC2661134 DOI: 10.1371/journal.pone.0005010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 03/02/2009] [Indexed: 11/19/2022] Open
Abstract
We report here that early apoptotic DNA fragmentation, as obtained by using an entirely new approach, is the result of an attack at a small number of specific open chromatin regions of interphase nuclei. This was demonstrated as follows: (i) chicken liver was excised and kept in sterile tubes for 1 to 3 hours at 37 degrees C; (ii) this induced apoptosis (possibly because of oxygen deprivation), as shown by the electrophoretic nucleosomal ladder produced by DNA preparations; (iii) low molecular-weight DNA fragments (approximately 200 bp) were cloned, sequenced, and shown to derive predominantly from genes and surrounding 100 kb regions; (iv) a few hundred cuts were produced, very often involving the same chromosomal sites; (v) at comparable DNA degradation levels, micrococcal nuclease (MNase) also showed a general preference for genes and surrounding regions, but MNase cuts were located at sites that were quite distinct from, and less specific than, those cut by apoptosis. In conclusion, the approach presented here, which is the mildest and least intrusive approach, identifies a preferred accessibility landscape in interphase chromatin.
Collapse
|
36
|
Torriglia A, Leprêtre C, Padrón-Barthe L, Chahory S, Martin E. Molecular mechanism of L-DNase II activation and function as a molecular switch in apoptosis. Biochem Pharmacol 2008; 76:1490-502. [DOI: 10.1016/j.bcp.2008.07.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 07/14/2008] [Accepted: 07/15/2008] [Indexed: 01/22/2023]
|
37
|
Liu MF, Wu XP, Wang XL, Yu YL, Wang WF, Chen QJ, Boireau P, Liu MY. The functions of Deoxyribonuclease II in immunity and development. DNA Cell Biol 2008; 27:223-8. [PMID: 18419230 DOI: 10.1089/dna.2007.0691] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Apoptosis, which is usually accompanied by DNA degradation, is important not only for the homeostasis of metazoans but also for mammalian development. If DNA is not properly degraded in these processes, it can cause diverse diseases, such as anemia, cataracts, and some autoimmune diseases. A large effort has been made to identify these nucleases that are responsible for these effects. In contrast to Deoxyribonuclease I (DNase I), Deoxyribonuclease II (DNase II) has been less well characterized in these processes. Additionally, enzymes of DNase II family in Trichinella spiralis, which is an intracellular parasitic nematode, are also considered involved in the development of the nematode. We have compiled information from studies on DNase II from various organisms and found some nonclassic features in these enzymes of T. spiralis. Here we have reviewed the characterization and functions of DNase II in these processes and predicted the functions of these enzymes in T. spiralis during host invasion and development.
Collapse
Affiliation(s)
- Ma-feng Liu
- Key Laboratory of Zoonosis, Institute of Zoonosis, Jilin University, Ministry of Education, Changchun, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Wilson DM. Processing of nonconventional DNA strand break ends. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2007; 48:772-782. [PMID: 17948279 DOI: 10.1002/em.20346] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Single-strand breaks (SSBs) are one of the most common forms of genetic damage, arising from attack of DNA by reactive oxygen species or as intended or inadvertent products of normal cellular DNA metabolic events. Recent evidence linking defects in the enzymatic processing of nonconventional DNA SSBs, i.e., lesions incompatible with polymerase or ligase reactions, with inherited neurodegenerative disorders, reveals the importance of SSB repair in disease manifestation. I review herein the major eukaryotic enzymes (with an emphasis on the human proteins) responsible for the "clean-up" of DNA breaks harboring 3'- or 5'-blocking termini, and the cellular and disease ramifications of unrepaired SSB damage.
Collapse
Affiliation(s)
- David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA.
| |
Collapse
|
39
|
Meima ME, Mackley JR, Barber DL. Beyond ion translocation: structural functions of the sodium-hydrogen exchanger isoform-1. Curr Opin Nephrol Hypertens 2007; 16:365-72. [PMID: 17565280 DOI: 10.1097/mnh.0b013e3281bd888d] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW The sodium-hydrogen exchanger isoform-1 (NHE1) functions in intracellular pH and cell volume homeostasis by catalyzing an electroneutral exchange of extracellular sodium and intracellular hydrogen. Recent studies have revealed the structural functions of NHE1 as an anchor for actin filaments and a scaffold for an ensemble of signaling proteins. This review highlights how these functions contribute to NHE1 regulation of biochemical events and cell behaviors. RECENT FINDINGS New data confirming nontransport structural functions of NHE1 suggest reexamining how NHE1 regulates cell functions. Cell survival, cell substrate adhesion, and organization of the actin cytoskeleton are confirmed to be regulated through actin anchoring by NHE1 and likely by NHE1-dependent scaffolding of signaling proteins. A role for NHE1 in mechanotransduction is emerging and a challenge of future studies is to determine whether structural functions of NHE1 are important for mechanoresponsiveness. SUMMARY This review highlights evidence for the nontransport functions of NHE1 and describes how the structural functions are integrated with ion translocation to regulate a range of cellular processes. Nontransporting features of NHE1 are analogous to recently observed nonconducting actions of ion channels in regulating cell behaviors and represent an emerging paradigm of ion transporters as multifunctional proteins.
Collapse
Affiliation(s)
- Marcel E Meima
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California 94143, USA
| | | | | |
Collapse
|
40
|
Current World Literature. Curr Opin Nephrol Hypertens 2007; 16:388-93. [PMID: 17565283 DOI: 10.1097/mnh.0b013e3282472fd5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|