1
|
Dreher L, Kuehl MB, Wenzel UO, Kylies D. Aortic aneurysm and dissection: complement and precision medicine in aortic disease. Am J Physiol Heart Circ Physiol 2025; 328:H814-H829. [PMID: 40019851 DOI: 10.1152/ajpheart.00853.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/08/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
Aortic disease encompasses life-threatening conditions such as aortic aneurysm and dissection, which are associated with high prevalence, morbidity, and mortality. The complement system, a key component of innate immunity, not only defends against pathogens but also maintains tissue homeostasis. Recent discoveries have expanded its role beyond immunity, linking complement dysregulation to numerous diseases and positioning it as a target for pharmacotherapy. Complement-based treatments for precision medicine are emerging, with several pharmaceuticals either already approved or under investigation. In aortic disease, complement activation and dysregulation have unveiled novel mechanisms and clinical implications. Human and experimental studies suggest that all three complement pathways contribute to disease pathophysiology. The complement system induces direct cellular damage via the membrane attack complex, as well as matrix-metalloproteinase (MMP)-associated tissue damage by promoting MMP-2 and MMP-9 expression. The anaphylatoxins C3a and C5a exacerbate disease by recruiting immune cells and triggering proinflammatory responses. Examples include neutrophil extracellular trap formation and cytokine release by polymorphonuclear neutrophils. These findings highlight the complement system as a promising novel diagnostic and therapeutic target in aortic disease with potential for individualized treatment. However, gaps remain, emphasizing the need for standardized multisite preclinical studies to improve reproducibility and translation. Biomarker studies must also be validated across diverse patient cohorts for clinical applicability. This review examines current knowledge regarding complement in aortic disease, aiming to evaluate its potential for innovative diagnostic and personalized treatment strategies.
Collapse
Affiliation(s)
- Leonie Dreher
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, Hamburg, Germany
| | - Malte B Kuehl
- Department of Clinical Medicine - The Department of Pathology, Aarhus University, Aarhus, Denmark
| | - Ulrich O Wenzel
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, Hamburg, Germany
| | - Dominik Kylies
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, Hamburg, Germany
| |
Collapse
|
2
|
Becker S, Swoboda A, Siemer H, Schimmelpfennig S, Sargin S, Shahin V, Schwab A, Najder K. Membrane potential dynamics of C5a-stimulated neutrophil granulocytes. Pflugers Arch 2024; 476:1007-1018. [PMID: 38613695 PMCID: PMC11139730 DOI: 10.1007/s00424-024-02947-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/15/2024]
Abstract
Neutrophil granulocytes play a crucial role in host defense against invading pathogens and in inflammatory diseases. The aim of this study was to elucidate membrane potential dynamics during the initial phase of neutrophil activation and its relation to migration and production of reactive oxygen species (ROS). We performed ROS production measurements of neutrophils from healthy C57BL/6J mice after TNFα-priming and/or C5a stimulation. The actin cytoskeleton was visualized with fluorescence microscopy. Furthermore, we combined migration assays and measurements of membrane potential dynamics after stimulating unprimed and/or TNFα-primed neutrophils with C5a. We show that C5a has a concentration-dependent effect on ROS production and chemokinetic migration. Chemokinetic migration and chemotaxis are impaired at C5a concentrations that induce ROS production. The actin cytoskeleton of unstimulated and of ROS-producing neutrophils is not distributed in a polarized way. Inhibition of the phagocytic NADPH oxidase NOX2 with diphenyleneiodonium (DPI) leads to a polarized distribution of the actin cytoskeleton and rescues chemokinetic migration of primed and C5a-stimulated neutrophils. Moreover, C5a evokes a pronounced depolarization of the cell membrane potential by 86.6 ± 4.2 mV starting from a resting membrane potential of -74.3 ± 0.7 mV. The C5a-induced depolarization occurs almost instantaneously (within less than one minute) in contrast to the more gradually developing depolarization induced by PMA (lag time of 3-4 min). This initial depolarization is accompanied by a decrease of the migration velocity. Collectively, our results show that stimulation with C5a evokes parallel changes in membrane potential dynamics, neutrophil ROS production and motility. Notably, the amplitude of membrane potential dynamics is comparable to that of excitable cells.
Collapse
Affiliation(s)
- Stina Becker
- Institute of Physiology II, University Hospital Münster, Münster, Germany
| | - Aljoscha Swoboda
- Institute of Physiology II, University Hospital Münster, Münster, Germany
| | - Henrik Siemer
- Institute of Physiology II, University Hospital Münster, Münster, Germany
| | | | - Sarah Sargin
- Institute of Physiology II, University Hospital Münster, Münster, Germany
| | - Victor Shahin
- Institute of Physiology II, University Hospital Münster, Münster, Germany
| | - Albrecht Schwab
- Institute of Physiology II, University Hospital Münster, Münster, Germany.
| | - Karolina Najder
- Institute of Physiology II, University Hospital Münster, Münster, Germany.
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany.
| |
Collapse
|
3
|
Huang XM, Liao E, Liao JQ, Liu YL, Shao Y. FPR1 Antagonist (BOC-MLF) Inhibits Amniotic Epithelial-mesenchymal Transition. Curr Med Sci 2024; 44:187-194. [PMID: 38300426 DOI: 10.1007/s11596-023-2794-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 06/02/2023] [Indexed: 02/02/2024]
Abstract
OBJECTIVE Premature rupture of membranes (PROM) is a common pregnancy disorder that is closely associated with structural weakening of fetal membranes. Studies have found that formyl peptide receptor 1 (FPR1) activates inflammatory pathways and amniotic epithelialmesenchymal transition (EMT), stimulates collagen degradation, and leads to membrane weakening and membrane rupture. The purpose of this study was to investigate the anti-inflammatory and EMT inhibitory effects of FPR1 antagonist (BOC-MLF) to provide a basis for clinical prevention of PROM. METHODS The relationship between PROM, FPR1, and EMT was analyzed in human fetal membrane tissue and plasma samples using Western blotting, PCR, Masson staining, and ELISA assays. Lipopolysaccharide (LPS) was used to establish a fetal membrane inflammation model in pregnant rats, and BOC-MLF was used to treat the LPS rat model. We detected interleukin (IL)-6 in blood from the rat hearts to determine whether the inflammatory model was successful and whether the anti-inflammatory treatment was effective. We used electron microscopy to analyze the structure and collagen expression of rat fetal membrane. RESULTS Western blotting, PCR and Masson staining indicated that the expression of FPR1 was significantly increased, the expression of collagen was decreased, and EMT appeared in PROM. The rat model indicated that LPS caused the collapse of fetal membrane epithelial cells, increased intercellular gaps, and decreased collagen. BOC-MLF promoted an increase in fetal membrane collagen, inhibited EMT, and reduced the weakening of fetal membranes. CONCLUSION The expression of FPR1 in the fetal membrane of PROM was significantly increased, and EMT of the amniotic membrane was obvious. BOC-MLF can treat inflammation and inhibit amniotic EMT.
Collapse
Affiliation(s)
- Xiao-Mei Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - E Liao
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, China
| | - Jun-Qun Liao
- Medical Laboratory Science, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Ya-Ling Liu
- Department of Obstetrics, Yubei Maternity and Child Healthcare Hospital, Chongqing, 400042, China
| | - Yong Shao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China.
| |
Collapse
|
4
|
de Melo IS, Sabino-Silva R, Costa MA, Vaz ER, Anselmo-E-Silva CI, de Paula Soares Mendonça T, Oliveira KB, de Souza FMA, Dos Santos YMO, Pacheco ALD, Freitas-Santos J, Caixeta DC, Goulart LR, de Castro OW. N-Formyl-Methionyl-Leucyl-Phenylalanine Plays a Neuroprotective and Anticonvulsant Role in Status Epilepticus Model. Cell Mol Neurobiol 2023; 43:4231-4244. [PMID: 37742326 PMCID: PMC11407717 DOI: 10.1007/s10571-023-01410-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/31/2023] [Indexed: 09/26/2023]
Abstract
Status epilepticus (SE) is described as continuous and self-sustaining seizures, which triggers hippocampal neurodegeneration, inflammation, and gliosis. N-formyl peptide receptor (FPR) has been associated with inflammatory process. N-formyl-methionyl-leucyl-phenylalanine (fMLP) peptide plays an anti-inflammatory role, mediated by the activation of G-protein-coupled FPR. Here, we evaluated the influence of fMLP peptides on the behavior of limbic seizures, memory consolidation, and hippocampal neurodegeneration process. Male Wistar rats (Rattus norvegicus) received microinjections of pilocarpine in hippocampus (H-PILO, 1.2 mg/μL, 1 μL) followed by fMLP (1 mg/mL, 1 μL) or vehicle (VEH, saline 0.9%, 1 μL). During the 90 min of SE, epileptic seizures were analyzed according to the Racine's Scale. After 24 h of SE, memory impairment was assessed by the inhibitory avoidance test and the neurodegeneration process was evaluated in hippocampal areas. There was no change in latency and number of wet dog shake (WDS) after administration of fMLP. However, our results showed that the intrahippocampal infusion of fMLP reduced the severity of seizures, as well as the number of limbic seizures. In addition, fMLP infusion protected memory dysfunction followed by SE. Finally, the intrahippocampal administration of fMLP attenuated the process of neurodegeneration in both hippocampi. Taken together, our data suggest a new insight into the functional role of fMLP peptides, with important implications for their potential use as a therapeutic agent for the treatment of brain disorders, such as epilepsy. Schematic drawing on the neuroprotective and anticonvulsant role of fMLP during status epilepticus. Initially, a cannula was implanted in hippocampus and pilocarpine/saline was administered into the hippocampus followed by fMLP/saline (A-C). fMLP reduced seizure severity and neuronal death in the hippocampus, as well as protecting against memory deficit (D).
Collapse
Affiliation(s)
- Igor Santana de Melo
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil.
| | - Robinson Sabino-Silva
- Department of Physiology, Innovation Center in Salivary Diagnostic and Nanotheranostics, Institute of Biomedical Sciences (ICBIM), Federal University of Uberlandia (UFU), Av. Pará, 1720, Uberlandia, MG, CEP 38400-902, Brazil.
| | - Maisa Araújo Costa
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Emília Rezende Vaz
- Institute of Biotechnology, Federal University of Uberlandia, Minas Gerais, Brazil
| | | | | | - Kellysson Bruno Oliveira
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Fernanda Maria Araújo de Souza
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Yngrid Mickaelli Oliveira Dos Santos
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Amanda Larissa Dias Pacheco
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Jucilene Freitas-Santos
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Douglas Carvalho Caixeta
- Department of Physiology, Innovation Center in Salivary Diagnostic and Nanotheranostics, Institute of Biomedical Sciences (ICBIM), Federal University of Uberlandia (UFU), Av. Pará, 1720, Uberlandia, MG, CEP 38400-902, Brazil
| | - Luiz Ricardo Goulart
- Institute of Biotechnology, Federal University of Uberlandia, Minas Gerais, Brazil
| | - Olagide Wagner de Castro
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil.
| |
Collapse
|
5
|
Waigi EW, Webb RC, Moss MA, Uline MJ, McCarthy CG, Wenceslau CF. Soluble and insoluble protein aggregates, endoplasmic reticulum stress, and vascular dysfunction in Alzheimer's disease and cardiovascular diseases. GeroScience 2023; 45:1411-1438. [PMID: 36823398 PMCID: PMC10400528 DOI: 10.1007/s11357-023-00748-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/28/2023] [Indexed: 02/25/2023] Open
Abstract
Dementia refers to a particular group of symptoms characterized by difficulties with memory, language, problem-solving, and other thinking skills that affect a person's ability to perform everyday activities. Alzheimer's disease (AD) is the most common form of dementia, affecting about 6.2 million Americans aged 65 years and older. Likewise, cardiovascular diseases (CVDs) are a major cause of disability and premature death, impacting 126.9 million adults in the USA, a number that increases with age. Consequently, CVDs and cardiovascular risk factors are associated with an increased risk of AD and cognitive impairment. They share important age-related cardiometabolic and lifestyle risk factors, that make them among the leading causes of death. Additionally, there are several premises and hypotheses about the mechanisms underlying the association between AD and CVD. Although AD and CVD may be considered deleterious to health, the study of their combination constitutes a clinical challenge, and investigations to understand the mechanistic pathways for the cause-effect and/or shared pathology between these two disease constellations remains an active area of research. AD pathology is propagated by the amyloid β (Aβ) peptides. These peptides give rise to small, toxic, and soluble Aβ oligomers (SPOs) that are nonfibrillar, and it is their levels that show a robust correlation with the extent of cognitive impairment. This review will elucidate the interplay between the effects of accumulating SPOs in AD and CVDs, the resulting ER stress response, and their role in vascular dysfunction. We will also address the potential underlying mechanisms, including the possibility that SPOs are among the causes of vascular injury in CVD associated with cognitive decline. By revealing common mechanistic underpinnings of AD and CVD, we hope that novel experimental therapeutics can be designed to reduce the burden of these devastating diseases. Graphical abstract Alzheimer's disease (AD) pathology leads to the release of Aβ peptides, and their accumulation in the peripheral organs has varying effects on various components of the cardiovascular system including endoplasmic reticulum (ER) stress and vascular damage. Image created with BioRender.com.
Collapse
Affiliation(s)
- Emily W Waigi
- Cardiovascular Translational Research Cententer (CTRC), Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - R Clinton Webb
- Cardiovascular Translational Research Cententer (CTRC), Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA
| | - Melissa A Moss
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, USA
| | - Mark J Uline
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, USA
| | - Cameron G McCarthy
- Cardiovascular Translational Research Cententer (CTRC), Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA
| | - Camilla Ferreira Wenceslau
- Cardiovascular Translational Research Cententer (CTRC), Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA.
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA.
| |
Collapse
|
6
|
Lavon H, Scherz-Shouval R. Insights into the co-evolution of epithelial cells and fibroblasts in the esophageal tumor microenvironment. Cancer Cell 2023; 41:826-828. [PMID: 37054715 DOI: 10.1016/j.ccell.2023.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/15/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are recruited and rewired by cancer cells to become protumorigenic. The molecular mechanisms underlying this crosstalk in esophageal cancer are completely unknown. Chen et al. discover that premalignant epithelial cells of the esophagus rewire normal resident fibroblasts into CAFs through the downregulation of ANXA1-FRP2 signaling.
Collapse
Affiliation(s)
- Hagar Lavon
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
7
|
Chen Y, Zhu S, Liu T, Zhang S, Lu J, Fan W, Lin L, Xiang T, Yang J, Zhao X, Xi Y, Ma Y, Cheng G, Lin D, Wu C. Epithelial cells activate fibroblasts to promote esophageal cancer development. Cancer Cell 2023; 41:903-918.e8. [PMID: 36963399 DOI: 10.1016/j.ccell.2023.03.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/09/2022] [Accepted: 02/28/2023] [Indexed: 03/26/2023]
Abstract
Esophageal squamous-cell carcinoma (ESCC) develops through multistage epithelial cancer formation, i.e., from normal epithelium, low- and high-grade intraepithelial neoplasia to invasive carcinoma. However, how the precancerous lesions progress to carcinoma remains elusive. Here, we report a comprehensive single-cell RNA sequencing and spatial transcriptomic study of 79 multistage esophageal lesions from 29 patients with ESCC. We reveal a gradual and significant loss of ANXA1 expression in epithelial cells due to its transcription factor KLF4 suppression along the lesion progression. We demonstrate that ANXA1 is a ligand to formyl peptide receptor type 2 (FPR2) on fibroblasts that maintain fibroblast homeostasis. Loss of ANXA1 leads to uncontrolled transformation of normal fibroblasts into cancer-associated fibroblasts (CAFs), which can be enhanced by secreted TGF-β from malignant epithelial cells. Given the role of CAFs in cancer, our study underscores ANXA1/FPR2 signaling as an important crosstalk mechanism between epithelial cells and fibroblasts in promoting ESCC.
Collapse
Affiliation(s)
- Yamei Chen
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shihao Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tianyuan Liu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Junting Lu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wenyi Fan
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tao Xiang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jie Yang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xuan Zhao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yiyi Xi
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuling Ma
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Guoyu Cheng
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; CAMS Oxford Institute, Chinese Academy of Medical Sciences, Beijing 100006, China.
| |
Collapse
|
8
|
de Arriba MDC, Fernández G, Chacón-Solano E, Mataix M, Martínez-Santamaría L, Illera N, Carrión-Marchante R, Martín ME, Larcher F, González VM, Del Río M, Carretero M. FPR2 DNA Aptamers for Targeted Therapy of Wound Repair. J Invest Dermatol 2022; 142:2238-2248.e8. [PMID: 34979109 DOI: 10.1016/j.jid.2021.12.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 02/05/2023]
Abstract
Chronic wounds represent a major health problem worldwide. Some of the available therapies based on recombinant proteins usually fail owing to the hostile environment found at the wound bed. Aptamers appear as an attractive alternative to recombinant factors owing in part to their stability, sensitivity, specificity, and low-cost production. In this study, the Cell-Systematic Evolution of Ligands by EXponential Enrichment technology was employed to generate aptamers that specifically recognize and modulate the function of the FPR2, a receptor expressed in a variety of cells involved in wound repair. Three aptamers were obtained that specifically bound to FPR2 stable transfectants generated in HaCaT cells. The targeted aptamers were shown to act as FPR2 agonists in different in vitro functional assays, including wound healing assays, and elicited a similar pattern of response to that obtained with other known FPR2 peptide agonists, such as the human LL37 cathelicidin. We have also obtained in vivo evidence for the prohealing activities of one of these FPR2 aptamers in a skin-humanized mouse model developed by us, previously shown to accurately recreate the main phases of physiological human wound repair process. In conclusion, we provide evidence of the potential therapeutic value of FPR2 aptamers for cutaneous repair.
Collapse
Affiliation(s)
- María Del Carmen de Arriba
- Department of Bioengineering and Aerospace, University Carlos III of Madrid, Madrid, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), CB06/07/0019, ISCIII, Madrid, Spain; Biomedical Research Institute Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | | | - Esteban Chacón-Solano
- Department of Bioengineering and Aerospace, University Carlos III of Madrid, Madrid, Spain; Biomedical Research Institute Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Manuel Mataix
- Epithelial Biomedicine Division, Centre for Energy, Environment and Technology Research (CIEMAT), Madrid, Spain
| | - Lucía Martínez-Santamaría
- Department of Bioengineering and Aerospace, University Carlos III of Madrid, Madrid, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), CB06/07/0019, ISCIII, Madrid, Spain; Biomedical Research Institute Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Nuria Illera
- Biomedical Research Institute Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain; Epithelial Biomedicine Division, Centre for Energy, Environment and Technology Research (CIEMAT), Madrid, Spain
| | | | | | - Fernando Larcher
- Department of Bioengineering and Aerospace, University Carlos III of Madrid, Madrid, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), CB06/07/0019, ISCIII, Madrid, Spain; Biomedical Research Institute Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain; Epithelial Biomedicine Division, Centre for Energy, Environment and Technology Research (CIEMAT), Madrid, Spain
| | - Victor M González
- Aptus Biotech SL, Madrid, Spain; Aptamer Group, IRYCIS-Hospital Ramón y Cajal, Madrid, Spain
| | - Marcela Del Río
- Department of Bioengineering and Aerospace, University Carlos III of Madrid, Madrid, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), CB06/07/0019, ISCIII, Madrid, Spain; Biomedical Research Institute Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Marta Carretero
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), CB06/07/0019, ISCIII, Madrid, Spain; Biomedical Research Institute Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain; Epithelial Biomedicine Division, Centre for Energy, Environment and Technology Research (CIEMAT), Madrid, Spain.
| |
Collapse
|
9
|
Liao HR, Kao YY, Leu YL, Liu FC, Tseng CP. Larixol inhibits fMLP-induced superoxide anion production and chemotaxis by targeting the βγ subunit of Gi-protein of fMLP receptor in human neutrophils. Biochem Pharmacol 2022; 201:115091. [DOI: 10.1016/j.bcp.2022.115091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/24/2022]
|
10
|
Eerhart MJ, Reyes JA, Blanton CL, Danobeitia JS, Chlebeck PJ, Zitur LJ, Springer M, Polyak E, Coonen J, Capuano S, D’Alessandro AM, Torrealba J, van Amersfoort E, Ponstein Y, Van Kooten C, Burlingham W, Sullivan J, Pozniak M, Zhong W, Yankol Y, Fernandez LA. Complement Blockade in Recipients Prevents Delayed Graft Function and Delays Antibody-mediated Rejection in a Nonhuman Primate Model of Kidney Transplantation. Transplantation 2022; 106:60-71. [PMID: 34905763 PMCID: PMC8674492 DOI: 10.1097/tp.0000000000003754] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Complement activation in kidney transplantation is implicated in the pathogenesis of delayed graft function (DGF). This study evaluated the therapeutic efficacy of high-dose recombinant human C1 esterase inhibitor (rhC1INH) to prevent DGF in a nonhuman primate model of kidney transplantation after brain death and prolonged cold ischemia. METHODS Brain death donors underwent 20 h of conventional management. Procured kidneys were stored on ice for 44-48 h, then transplanted into ABO-compatible major histocompatibility complex-mismatched recipients. Recipients were treated with vehicle (n = 5) or rhC1INH 500 U/kg plus heparin 40 U/kg (n = 8) before reperfusion, 12 h, and 24 h posttransplant. Recipients were followed up for 120 d. RESULTS Of vehicle-treated recipients, 80% (4 of 5) developed DGF versus 12.5% (1 of 8) rhC1INH-treated recipients (P = 0.015). rhC1INH-treated recipients had faster creatinine recovery, superior urinary output, and reduced urinary neutrophil gelatinase-associated lipocalin and tissue inhibitor of metalloproteinases 2-insulin-like growth factor-binding protein 7 throughout the first week, indicating reduced allograft injury. Treated recipients presented lower postreperfusion plasma interleukin (IL)-6, IL-8, tumor necrosis factor-alpha, and IL-18, lower day 4 monocyte chemoattractant protein 1, and trended toward lower C5. Treated recipients exhibited less C3b/C5b-9 deposition on day 7 biopsies. rhC1INH-treated animals also trended toward prolonged mediated rejection-free survival. CONCLUSIONS Our results recommend high-dose C1INH complement blockade in transplant recipients as an effective strategy to reduce kidney injury and inflammation, prevent DGF, delay antibody-mediated rejection development, and improve transplant outcomes.
Collapse
Affiliation(s)
- Michael J. Eerhart
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jose A. Reyes
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Department of Surgery, New York Medical College at Metropolitan Hospital Center, New York, NY, United States
| | - Casi L. Blanton
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Juan S. Danobeitia
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Peter J. Chlebeck
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Laura J. Zitur
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Megan Springer
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Erzsebet Polyak
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jennifer Coonen
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, United States
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, United States
| | - Anthony M. D’Alessandro
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jose Torrealba
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | | | | | - Cees Van Kooten
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - William Burlingham
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jeremy Sullivan
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Myron Pozniak
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Weixiong Zhong
- Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Yucel Yankol
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Luis A. Fernandez
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
11
|
AaTs-1: A Tetrapeptide from Androctonus australis Scorpion Venom, Inhibiting U87 Glioblastoma Cells Proliferation by p53 and FPRL-1 Up-Regulations. Molecules 2021; 26:molecules26247610. [PMID: 34946686 PMCID: PMC8704564 DOI: 10.3390/molecules26247610] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/28/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023] Open
Abstract
Glioblastoma is an aggressive cancer, against which medical professionals are still quite helpless, due to its resistance to current treatments. Scorpion toxins have been proposed as a promising alternative for the development of effective targeted glioblastoma therapy and diagnostic. However, the exploitation of the long peptides could present disadvantages. In this work, we identified and synthetized AaTs-1, the first tetrapeptide from Androctonus australis scorpion venom (Aa), which exhibited an antiproliferative effect specifically against human glioblastoma cells. Both the native and synthetic AaTs-1 were endowed with the same inhibiting effect on the proliferation of U87 cells with an IC50 of 0.56 mM. Interestingly, AaTs-1 was about two times more active than the anti-glioblastoma conventional chemotherapeutic drug, temozolomide (TMZ), and enhanced its efficacy on U87 cells. AaTs-1 showed a significant similarity with the synthetic peptide WKYMVm, an agonist of a G-coupled formyl-peptide receptor, FPRL-1, known to be involved in the proliferation of glioma cells. Interestingly, the tetrapeptide triggered the dephosphorylation of ERK, p38, and JNK kinases. It also enhanced the expression of p53 and FPRL-1, likely leading to the inhibition of the store operated calcium entry. Overall, our work uncovered AaTs-1 as a first natural potential FPRL-1 antagonist, which could be proposed as a promising target to develop new generation of innovative molecules used alone or in combination with TMZ to improve glioblastoma treatment response. Its chemical synthesis in non-limiting quantity represents a valuable advantage to design and develop low-cost active analogues to treat glioblastoma cancer.
Collapse
|
12
|
Filina Y, Gabdoulkhakova A, Rizvanov A, Safronova V. MAP kinases in regulation of NOX activity stimulated through two types of formyl peptide receptors in murine bone marrow granulocytes. Cell Signal 2021; 90:110205. [PMID: 34826588 DOI: 10.1016/j.cellsig.2021.110205] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/29/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022]
Abstract
The functional activity of the phagocytes, as well as the development and resolution of the inflammation, is determined by formylpeptide receptors (FPRs) signaling. There is a growing data on the signaling pathways from two major types of formylpeptide receptors, FPR1 and FPR2, which could be activated by different sets of ligands to provide certain defense functions. Generation of reactive oxygen species (ROS) by the membrane enzyme NADPH oxidase is the most important among them. One of the most studied and significant mechanism for the regulation of activity of NADPH oxidase is phosphorylation by a variety of kinases, including MAP kinases. The question arose whether the role of MAPKs differ in the activation of NADPH oxidase through FPR1 and FPR2. We have studied Fpr1- and Fpr2-induced phosphorylation of p38, ERK, and JNK kinases and their role in the activation of the respiratory burst in isolated mice bone marrow granulocytes. Data has shown distinct patterns of MAP kinase activity for Fpr1 and Fpr2: JNK was involved in both Fpr1 and Fpr2 mediated activation of ROS production, while p38 MAPK and ERK were involved in Fpr1 induced ROS generation only.
Collapse
Affiliation(s)
- Yuliya Filina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.
| | - Aida Gabdoulkhakova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation; Kazan State Medical Academy, Federal State Budgetary Educational Institution of Further Professional Education "Russian Medical Academy of Continuous Professional Education" of the Ministry of Healthcare of the Russian Federation, Kazan, Russian Federation
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Valentina Safronova
- Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Russian Federation
| |
Collapse
|
13
|
Immunohistochemistry in the Postmortem Diagnosis of Sepsis: A Systematic Review. Appl Immunohistochem Mol Morphol 2021; 28:571-578. [PMID: 31290786 DOI: 10.1097/pai.0000000000000790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
It is not uncommon for the forensic pathologist to question whether a deceased person had experienced sepsis that could have either been the cause of or contributed to the person's death. Often, the missing typical pathologic factors or lack of clinical and circumstantial information on the death render the autopsy of a sepsis-related death a difficult task for the forensic pathologist. Several authors emphasize on how an immunohistochemical analysis could help in diagnosing death related to sepsis. The research we carried out analyzes the main scientific studies in the literature, primarily the tracing of 21 immunohistochemical antigens evaluated to help diagnose death related to sepsis. The purpose of this review was to analyze and summarize the markers studied until now and to consider the limitations of immunohistochemistry that currently exist with regard to this particular field of forensic pathology. Immunohistochemistry provided interesting and promising results, but further studies are needed in order for them to be confirmed, so that they may be applied in standard forensic practice.
Collapse
|
14
|
El-Benna J, Hurtado-Nedelec M, Gougerot-Pocidalo MA, Dang PMC. Effects of venoms on neutrophil respiratory burst: a major inflammatory function. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200179. [PMID: 34249119 PMCID: PMC8237995 DOI: 10.1590/1678-9199-jvatitd-2020-0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/01/2021] [Indexed: 11/24/2022] Open
Abstract
Neutrophils play a pivotal role in innate immunity and in the inflammatory
response. Neutrophils are very motile cells that are rapidly recruited to the
inflammatory site as the body first line of defense. Their bactericidal activity
is due to the release into the phagocytic vacuole, called phagosome, of several
toxic molecules directed against microbes. Neutrophil stimulation induces
release of this arsenal into the phagosome and induces the assembly at the
membrane of subunits of the NAPDH oxidase, the enzyme responsible for the
production of superoxide anion that gives rise to other reactive oxygen species
(ROS), a process called respiratory burst. Altogether, they are responsible for
the bactericidal activity of the neutrophils. Excessive activation of
neutrophils can lead to extensive release of these toxic agents, inducing tissue
injury and the inflammatory reaction. Envenomation, caused by different animal
species (bees, wasps, scorpions, snakes etc.), is well known to induce a local
and acute inflammatory reaction, characterized by recruitment and activation of
leukocytes and the release of several inflammatory mediators, including
prostaglandins and cytokines. Venoms contain several molecules such as enzymes
(phospholipase A2, L-amino acid oxidase and proteases, among others) and
peptides (disintegrins, mastoporan, parabutoporin etc.). These molecules are
able to stimulate or inhibit ROS production by neutrophils. The present review
article gives a general overview of the main neutrophil functions focusing on
ROS production and summarizes how venoms and venom molecules can affect this
function.
Collapse
Affiliation(s)
- Jamel El-Benna
- Université de Paris, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France
| | - Margarita Hurtado-Nedelec
- Université de Paris, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France.,AP-HP, Centre Hospitalier Universitaire Xavier Bichat, UF Dysfonctionnements Immunitaires, Paris, France
| | - Marie-Anne Gougerot-Pocidalo
- Université de Paris, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France.,AP-HP, Centre Hospitalier Universitaire Xavier Bichat, UF Dysfonctionnements Immunitaires, Paris, France
| | - Pham My-Chan Dang
- Université de Paris, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France
| |
Collapse
|
15
|
Nording H, Baron L, Haberthür D, Emschermann F, Mezger M, Sauter M, Sauter R, Patzelt J, Knoepp K, Nording A, Meusel M, Meyer-Saraei R, Hlushchuk R, Sedding D, Borst O, Eitel I, Karsten CM, Feil R, Pichler B, Erdmann J, Verschoor A, Chavakis E, Chavakis T, von Hundelshausen P, Köhl J, Gawaz M, Langer HF. The C5a/C5a receptor 1 axis controls tissue neovascularization through CXCL4 release from platelets. Nat Commun 2021; 12:3352. [PMID: 34099640 PMCID: PMC8185003 DOI: 10.1038/s41467-021-23499-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 03/28/2021] [Indexed: 02/05/2023] Open
Abstract
Platelets contribute to the regulation of tissue neovascularization, although the specific factors underlying this function are unknown. Here, we identified the complement anaphylatoxin C5a-mediated activation of C5a receptor 1 (C5aR1) on platelets as a negative regulatory mechanism of vessel formation. We showed that platelets expressing C5aR1 exert an inhibitory effect on endothelial cell functions such as migration and 2D and 3D tube formation. Growth factor- and hypoxia-driven vascularization was markedly increased in C5ar1-/- mice. Platelet-specific deletion of C5aR1 resulted in a proangiogenic phenotype with increased collateralization, capillarization and improved pericyte coverage. Mechanistically, we found that C5a induced preferential release of CXC chemokine ligand 4 (CXCL4, PF4) from platelets as an important antiangiogenic paracrine effector molecule. Interfering with the C5aR1-CXCL4 axis reversed the antiangiogenic effect of platelets both in vitro and in vivo.In conclusion, we identified a mechanism for the control of tissue neovascularization through C5a/C5aR1 axis activation in platelets and subsequent induction of the antiangiogenic factor CXCL4.
Collapse
Affiliation(s)
- Henry Nording
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany ,grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Lasse Baron
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - David Haberthür
- grid.5734.50000 0001 0726 5157Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Frederic Emschermann
- grid.10392.390000 0001 2190 1447University Hospital, Department of Cardiovascular Medicine, Eberhard Karls University, Tübingen, Germany
| | - Matthias Mezger
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Manuela Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Reinhard Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Johannes Patzelt
- grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Kai Knoepp
- grid.9018.00000 0001 0679 2801Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Martin-Luther-University Halle (Saale), Halle (Saale), Germany
| | - Anne Nording
- grid.10392.390000 0001 2190 1447Institute of Medical Genetics and Applied Genomics, Eberhard Karls University, Tübingen, Germany
| | - Moritz Meusel
- grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Roza Meyer-Saraei
- grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany ,grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Ruslan Hlushchuk
- grid.5734.50000 0001 0726 5157Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Daniel Sedding
- grid.9018.00000 0001 0679 2801Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Martin-Luther-University Halle (Saale), Halle (Saale), Germany
| | - Oliver Borst
- grid.10392.390000 0001 2190 1447University Hospital, Department of Cardiovascular Medicine, Eberhard Karls University, Tübingen, Germany
| | - Ingo Eitel
- grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany ,grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Christian M. Karsten
- grid.4562.50000 0001 0057 2672Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Robert Feil
- grid.10392.390000 0001 2190 1447Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Bernd Pichler
- grid.10392.390000 0001 2190 1447Institute for Preclinical Imaging, Eberhard Karls University, Tübingen, Germany
| | - Jeanette Erdmann
- grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany ,grid.4562.50000 0001 0057 2672Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Admar Verschoor
- grid.4562.50000 0001 0057 2672Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Emmanouil Chavakis
- grid.411088.40000 0004 0578 8220Department for Internal Medicine III/Cardiology, University Hospital of the Johann-Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Triantafyllos Chavakis
- grid.4488.00000 0001 2111 7257Department of Clinical Pathobiochemistry, Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Philipp von Hundelshausen
- grid.5252.00000 0004 1936 973XInstitute for Cardiovascular Prevention, Ludwig Maximilians University Munich, Munich, Germany
| | - Jörg Köhl
- grid.4562.50000 0001 0057 2672Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany ,grid.239573.90000 0000 9025 8099Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Meinrad Gawaz
- grid.10392.390000 0001 2190 1447University Hospital, Department of Cardiovascular Medicine, Eberhard Karls University, Tübingen, Germany
| | - Harald F. Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany ,grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany ,grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| |
Collapse
|
16
|
Dahlstrand Rudin A, Khamzeh A, Venkatakrishnan V, Persson T, Gabl M, Savolainen O, Forsman H, Dahlgren C, Christenson K, Bylund J. Porphyromonas gingivalis Produce Neutrophil Specific Chemoattractants Including Short Chain Fatty Acids. Front Cell Infect Microbiol 2021; 10:620681. [PMID: 33542906 PMCID: PMC7851090 DOI: 10.3389/fcimb.2020.620681] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/02/2020] [Indexed: 01/01/2023] Open
Abstract
Neutrophil migration from blood to tissue-residing microbes is governed by a series of chemoattractant gradients of both endogenous and microbial origin. Periodontal disease is characterized by neutrophil accumulation in the gingival pocket, recruited by the subgingival biofilm consisting mainly of gram-negative, anaerobic and proteolytic species such as Porphyromonas gingivalis. The fact that neutrophils are the dominating cell type in the gingival pocket suggests that neutrophil-specific chemoattractants are released by subgingival bacteria, but characterization of chemoattractants released by subgingival biofilm species remains incomplete. In the present study we characterized small (< 3 kDa) soluble chemoattractants released by growing P. gingivalis, and show that these are selective for neutrophils. Most neutrophil chemoattractant receptors are expressed also by mononuclear phagocytes, the free fatty acid receptor 2 (FFAR2) being an exception. In agreement with the selective neutrophil recruitment, the chemotactic activity found in P. gingivalis supernatants was mediated in part by a mixture of short chain fatty acids (SCFAs) that are recognized by FFAR2, and other leukocytes (including monocytes) did not respond to SCFA stimulation. Although SCFAs, produced by bacterial fermentation of dietary fiber in the gut, has previously been shown to utilize FFAR2, our data demonstrate that the pronounced proteolytic metabolism employed by P. gingivalis (and likely also other subgingival biofilm bacteria associated with periodontal diseases) may result in the generation of SCFAs that attract neutrophils to the gingival pocket. This finding highlights the interaction between SCFAs and FFAR2 in the context of P. gingivalis colonization during periodontal disease, but may also have implications for other inflammatory pathologies involving proteolytic bacteria.
Collapse
Affiliation(s)
- Agnes Dahlstrand Rudin
- Department of Oral Microbiology and Immunology, Institute of Odontology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Arsham Khamzeh
- Department of Oral Microbiology and Immunology, Institute of Odontology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Vignesh Venkatakrishnan
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Tishana Persson
- Department of Oral Microbiology and Immunology, Institute of Odontology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Michael Gabl
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Otto Savolainen
- Chalmers Mass Spectrometry Infrastructure, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Karin Christenson
- Department of Oral Microbiology and Immunology, Institute of Odontology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Johan Bylund
- Department of Oral Microbiology and Immunology, Institute of Odontology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Li XX, Clark RJ, Woodruff TM. C5aR2 Activation Broadly Modulates the Signaling and Function of Primary Human Macrophages. THE JOURNAL OF IMMUNOLOGY 2020; 205:1102-1112. [PMID: 32611725 DOI: 10.4049/jimmunol.2000407] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023]
Abstract
The complement activation fragment C5a is a potent proinflammatory mediator that is increasingly recognized as an immune modulator. C5a acts through two C5a receptors, C5aR1 (C5aR, CD88) and C5aR2 (C5L2, GPR77), to powerfully modify multiple aspects of immune cell function. Although C5aR1 is generally acknowledged to be proinflammatory and immune-activating, the potential roles played by C5aR2 remain poorly defined. Despite studies demonstrating C5aR2 can modulate C5aR1 in human cells, it is not yet known whether C5aR2 functionality is limited to, or requires, C5aR1 activation or influences immune cells more broadly. The present study, therefore, aimed to characterize the roles of C5aR2 on the signaling and function of primary human monocyte-derived macrophages, using a C5aR2 agonist (Ac-RHYPYWR-OH; P32) to selectively activate the receptor. We found that although C5aR2 activation with P32 by itself was devoid of any detectable MAPK signaling activities, C5aR2 agonism significantly dampened C5aR1-, C3aR-, and chemokine-like receptor 1 (CMKLR1)-mediated ERK signaling and altered intracellular calcium mobilization mediated by these receptors. Functionally, selective C5aR2 activation also downregulated cytokine production triggered by various TLRs (TLR2, TLR3, TLR4, and TLR7), C-type lectin receptors (Dectin-1, Dectin-2, and Mincle), and the cytosolic DNA sensor stimulator of IFN genes (STING). Surprisingly, activity at the C-type lectin receptors was particularly powerful, with C5aR2 activation reducing Mincle-mediated IL-6 and TNF-α generation by 80-90%. In sum, this study demonstrates that C5aR2 possesses pleiotropic functions in primary human macrophages, highlighting the role of C5aR2 as a powerful regulator of innate immune function.
Collapse
Affiliation(s)
- Xaria X Li
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Richard J Clark
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|
18
|
Wang H, Peng X, Ge Y, Zhang S, Wang Z, Fan Y, Huang W, Qiu M, Ye RD. A Ganoderma-Derived Compound Exerts Inhibitory Effect Through Formyl Peptide Receptor 2. Front Pharmacol 2020; 11:337. [PMID: 32265709 PMCID: PMC7105723 DOI: 10.3389/fphar.2020.00337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/06/2020] [Indexed: 12/28/2022] Open
Abstract
Formyl peptide receptors (FPRs) are G protein-coupled receptors (GPCRs) widely expressed in neutrophils and other phagocytes. FPRs play important roles in host defense, inflammation, and the pathogenesis of infectious and inflammatory diseases. Because of these functions, FPRs are potential targets for anti-inflammatory therapies. In order to search for potentially novel anti-inflammatory agents, we examined Ganoderma (Lingzhi), a Chinese medicinal herbs known for its anti-inflammatory effects, and found that compound 18 (C18) derived from Ganoderma cochlear could limit the inflammatory response through FPR-related signaling pathways. Further studies showed that C18 could bind to FPR2 and induce conformation change of the receptor that differed from the conformational change induced by the pan-agonist, WKYMVm. C18 inhibited at the receptor level and blocked WKYMVm signaling through FPR2, resulting in reduced superoxide production and compromised cell chemotaxis. These results identified for the first time that a Ganoderma-derived component with inhibitory effects that acts through a G protein-coupled receptor FPR2. Considering its less than optimal IC50 value, further optimization of C18 would be necessary for future applications.
Collapse
Affiliation(s)
- Huirong Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, Macau
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xingrong Peng
- Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
| | - Yunjun Ge
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, Macau
| | - Shuo Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenyi Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, China
| | - Yu Fan
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, Macau
| | - Wei Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Minghua Qiu
- Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
| | - Richard D. Ye
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, Macau
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
19
|
Preservation of Post-Infarction Cardiac Structure and Function via Long-Term Oral Formyl Peptide Receptor Agonist Treatment. JACC Basic Transl Sci 2019; 4:905-920. [PMID: 31909300 PMCID: PMC6939031 DOI: 10.1016/j.jacbts.2019.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 11/24/2022]
Abstract
Myocardial infarction leads to recruitment of monocyte/macrophages to the injured myocardium to drive infarct healing. Activation of formyl peptide receptors (FPR1 and FPR2) present on macrophages contributes to key cellular activities that can potentiate wound healing. Myocardial infarction was induced in rodents to study the effects of long-term treatment with Compound 43, a small molecule agonist of FPR1 and FPR2. Main findings: Compound 43 stimulated proresolution macrophage activities, improved left ventricle and infarct structure, and preserved cardiac function post-myocardial infarction. The results suggest that stimulation of proresolution activities of FPRs can favorably alter post-myocardial infarction pathophysiology that leads to heart failure.
Dysregulated inflammation following myocardial infarction (MI) promotes left ventricular (LV) remodeling and loss of function. Targeting inflammation resolution by activating formyl peptide receptors (FPRs) may limit adverse remodeling and progression towards heart failure. This study characterized the cellular and signaling properties of Compound 43 (Cmpd43), a dual FPR1/FPR2 agonist, and examined whether Cmpd43 treatment improves LV and infarct remodeling in rodent MI models. Cmpd43 stimulated FPR1/2-mediated signaling, enhanced proresolution cellular function, and modulated cytokines. Cmpd43 increased LV function and reduced chamber remodeling while increasing proresolution macrophage markers. The findings demonstrate that FPR agonism improves cardiac structure and function post-MI.
Collapse
Key Words
- Cmpd43, Compound 43
- Compound 43
- FPR, formyl peptide receptor
- HF, heart failure
- IL, interleukin
- IR, ischemia–reperfusion
- KO, knockout
- LAD, left anterior descending
- LV, left ventricular
- MI, myocardial infarction
- PV, pressure–volume
- SAA, serum amyloid A
- WT, wild-type
- agonist
- formyl peptide receptor
- heart failure
- myocardial infarction
Collapse
|
20
|
Castora FJ. Mitochondrial function and abnormalities implicated in the pathogenesis of ASD. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:83-108. [PMID: 30599156 DOI: 10.1016/j.pnpbp.2018.12.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 12/18/2022]
Abstract
Mitochondria are the powerhouse that generate over 90% of the ATP produced in cells. In addition to its role in energy production, the mitochondrion also plays a major role in carbohydrate, fatty acid, amino acid and nucleotide metabolism, programmed cell death (apoptosis), generation of and protection against reactive oxygen species (ROS), immune response, regulation of intracellular calcium ion levels and even maintenance of gut microbiota. With its essential role in bio-energetic as well as non-energetic biological processes, it is not surprising that proper cellular, tissue and organ function is dependent upon proper mitochondrial function. Accordingly, mitochondrial dysfunction has been shown to be directly linked to a variety of medical disorders, particularly neuromuscular disorders and increasing evidence has linked mitochondrial dysfunction to neurodegenerative and neurodevelopmental disorders such as Alzheimer's Disease (AD), Parkinson's Disease (PD), Rett Syndrome (RS) and Autism Spectrum Disorders (ASD). Over the last 40 years there has been a dramatic increase in the diagnosis of ASD and, more recently, an increasing body of evidence indicates that mitochondrial dysfunction plays an important role in ASD development. In this review, the latest evidence linking mitochondrial dysfunction and abnormalities in mitochondrial DNA (mtDNA) to the pathogenesis of autism will be presented. This review will also summarize the results of several recent `approaches used for improving mitochondrial function that may lead to new therapeutic approaches to managing and/or treating ASD.
Collapse
Affiliation(s)
- Frank J Castora
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA; Department of Neurology, Eastern Virginia Medical School, Norfolk, VA, USA.
| |
Collapse
|
21
|
Wang J, Chen M, Li S, Ye RD. Targeted Delivery of a Ligand-Drug Conjugate via Formyl Peptide Receptor 1 through Cholesterol-Dependent Endocytosis. Mol Pharm 2019; 16:2636-2647. [PMID: 31067065 DOI: 10.1021/acs.molpharmaceut.9b00188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
G protein-coupled receptors (GPCRs) undergo ligand-induced internalization that carries the cognate ligands into intracellular compartments. The present study explores this property for the use of formyl peptide receptor 1 (FPR1), a class A GPCR that binds formylated peptides, as a potential target for drug delivery. A pH-sensitive peptide-drug conjugate consisting of doxorubicin (DOX), N-ε-maleimidocaproic acid hydrazide (EMCH), and the formyl peptide fMet-Leu-Phe-Cys (abbreviated as DEF) was prepared. DEF retained pharmacological activities of formyl peptides in binding to FPR1 and mobilization of Ca2+ from intracellular stores. However, the conjugated DOX was no longer cell membrane-permeable and relied on FPR1 for cellular entry. DOX was released from DEF into acidic compartments labeled with fluorescent trackers for endosomes. Treatment of cells with pharmacological inhibitors that block clathrin- or caveolae-mediated endocytosis did not abrogate FPR1-dependent DEF internalization, nor did inhibition of macropinocytosis and phagocytosis. In contrast, cholesterol depletion abrogated DEF internalization through FPR1, suggesting characteristics of cholesterol-dependent uptake mediated by a cell surface receptor. These results demonstrate the possibility of using FPR1 for targeted drug delivery.
Collapse
Affiliation(s)
- Junlin Wang
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine , University of Macau , Macau Special Administrative Region 999078 , China
| | - Meiwan Chen
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine , University of Macau , Macau Special Administrative Region 999078 , China
| | - Shaoping Li
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine , University of Macau , Macau Special Administrative Region 999078 , China
| | - Richard D Ye
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine , University of Macau , Macau Special Administrative Region 999078 , China
| |
Collapse
|
22
|
Porro C, Cianciulli A, Trotta T, Lofrumento DD, Calvello R, Panaro MA. Formyl-methionyl-leucyl-phenylalanine Induces Apoptosis in Murine Neurons: Evidence for NO-Dependent Caspase-9 Activation. BIOLOGY 2019; 8:biology8010004. [PMID: 30621183 PMCID: PMC6466069 DOI: 10.3390/biology8010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 12/21/2022]
Abstract
Formyl-methionyl-leucyl-phenylalanine (fMLP) may be present in the brain in the course of some infectious diseases of the central nervous system (CNS), although little is known about its role. This investigation was performed to study the effect of fMLP on neuron apoptosis. Our results showed that fMLP treatment of primary cultures of neurons was able to induce morphological features of apoptosis in cell cultures, as well as activation of the intrinsic apoptotic pathway, through the upregulation of caspase-9 and caspase-3. This effect contextually occurred to the pro-apoptotic protein Bax activation and cytochrome c release. The in vitro fMLP treatment was also able to induce, in a dose-dependent manner, the increase of inducible nitric oxide synthase (iNOS) expression accompanied by an up-regulation of nitric oxide (NO) release. When neuron cultures were pre-treated with 1400 W, a selective iNOS inhibitor, all of the apoptotic features were significantly reversed. Overall, these results demonstrated that fMLP treatment of neurons leads to intrinsic apoptosis activation, through iNOS expression regulation, suggesting a role for fMLP in CNS neurodegenerative processes.
Collapse
Affiliation(s)
- Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy.
| | - Antonia Cianciulli
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona, 4, 70126 Bari, Italy.
| | - Teresa Trotta
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy.
| | - Dario Domenico Lofrumento
- Department of Biological and Environmental Sciences and Technologies, Section of Human Anatomy, University of Salento, 73100 Lecce, Italy.
| | - Rosa Calvello
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona, 4, 70126 Bari, Italy.
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona, 4, 70126 Bari, Italy.
| |
Collapse
|
23
|
Tasneem S, Liu B, Li B, Choudhary MI, Wang W. Molecular pharmacology of inflammation: Medicinal plants as anti-inflammatory agents. Pharmacol Res 2019; 139:126-140. [DOI: 10.1016/j.phrs.2018.11.001] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 12/20/2022]
|
24
|
Abstract
Mitochondria are functionally versatile organelles. In addition to their conventional role of meeting the cell's energy requirements, mitochondria also actively regulate innate immune responses against infectious and sterile insults. Components of mitochondria, when released or exposed in response to dysfunction or damage, can be directly recognized by receptors of the innate immune system and trigger an immune response. In addition, despite initiation that may be independent from mitochondria, numerous innate immune responses are still subject to mitochondrial regulation as discrete steps of their signaling cascades occur on mitochondria or require mitochondrial components. Finally, mitochondrial metabolites and the metabolic state of the mitochondria within an innate immune cell modulate the precise immune response and shape the direction and character of that cell's response to stimuli. Together, these pathways result in a nuanced and very specific regulation of innate immune responses by mitochondria.
Collapse
Key Words
- ASC, Apoptosis Associated Speck like protein containing CARD
- ASK1, apoptosis signal-regulating kinase 1
- ATP, adenosine tri-phosphate
- CAPS, cryopyrin associated periodic syndromes
- CARD, caspase activation and recruitment domain
- CL, cardiolipin
- CLR, C-type lectin receptor
- CREB, cAMP response element binding protein
- Cgas, cyclic GMP-AMP synthase
- DAMP, damage associated molecular pattern
- ESCIT, evolutionarily conserved signaling intermediate in the toll pathway
- ETC, electron transport chain
- FPR, formyl peptide receptor
- HIF, hypoxia-inducible factor
- HMGB1, high mobility group box protein 1
- IFN, interferon
- IL, interleukin
- IRF, interferon regulatory factor
- JNK, cJUN NH2-terminal kinase
- LPS, lipopolysaccharide
- LRR, leucine rich repeat
- MAPK, mitogen-activated protein kinase
- MARCH5, membrane-associated ring finger (C3HC4) 5
- MAVS, mitochondrial antiviral signaling
- MAVS, mitochondrial antiviral signaling protein
- MFN1/2, mitofusin
- MOMP, mitochondrial outer membrane permeabilization
- MPT, mitochondrial permeability transition
- MyD88, myeloid differentiation primary response 88
- NADH, nicotinamide adenine dinucleotide
- NBD, nucleotide binding domain
- NFκB, Nuclear factor κ B
- NLR, NOD like receptor
- NOD, nucleotide-binding oligomerization domain
- NRF2, nuclear factor erythroid 2-related factor 2
- PAMP, pathogen associated molecular pattern
- PPAR, peroxisome proliferator-accelerated receptor
- PRRs, pathogen recognition receptors
- RIG-I, retinoic acid inducible gene I
- RLR, retinoic acid inducible gene like receptor
- ROS, reactive oxygen species
- STING, stimulator of interferon gene
- TAK1, transforming growth factor-β-activated kinase 1
- TANK, TRAF family member-associated NFκB activator
- TBK1, TANK Binding Kinase 1
- TCA, Tri-carboxylic acid
- TFAM, mitochondrial transcription factor A
- TLR, Toll Like Receptor
- TRAF6, tumor necrosis factor receptor-associated factor 6
- TRIF, TIR-domain-containing adapter-inducing interferon β
- TUFM, Tu translation elongation factor.
- fMet, N-formylated methionine
- mROS, mitochondrial ROS
- mtDNA, mitochondrial DNA
- n-fp, n-formyl peptides
Collapse
|
25
|
Banoth B, Cassel SL. Mitochondria in innate immune signaling. Transl Res 2018; 202:52-68. [PMID: 30165038 DOI: 10.1016/j.trsl.2018.07.014.mitochondria] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 05/25/2023]
Abstract
Mitochondria are functionally versatile organelles. In addition to their conventional role of meeting the cell's energy requirements, mitochondria also actively regulate innate immune responses against infectious and sterile insults. Components of mitochondria, when released or exposed in response to dysfunction or damage, can be directly recognized by receptors of the innate immune system and trigger an immune response. In addition, despite initiation that may be independent from mitochondria, numerous innate immune responses are still subject to mitochondrial regulation as discrete steps of their signaling cascades occur on mitochondria or require mitochondrial components. Finally, mitochondrial metabolites and the metabolic state of the mitochondria within an innate immune cell modulate the precise immune response and shape the direction and character of that cell's response to stimuli. Together, these pathways result in a nuanced and very specific regulation of innate immune responses by mitochondria.
Collapse
Key Words
- ASC, Apoptosis Associated Speck like protein containing CARD
- ASK1, apoptosis signal-regulating kinase 1
- ATP, adenosine tri-phosphate
- CAPS, cryopyrin associated periodic syndromes
- CARD, caspase activation and recruitment domain
- CL, cardiolipin
- CLR, C-type lectin receptor
- CREB, cAMP response element binding protein
- Cgas, cyclic GMP-AMP synthase
- DAMP, damage associated molecular pattern
- ESCIT, evolutionarily conserved signaling intermediate in the toll pathway
- ETC, electron transport chain
- FPR, formyl peptide receptor
- HIF, hypoxia-inducible factor
- HMGB1, high mobility group box protein 1
- IFN, interferon
- IL, interleukin
- IRF, interferon regulatory factor
- JNK, cJUN NH2-terminal kinase
- LPS, lipopolysaccharide
- LRR, leucine rich repeat
- MAPK, mitogen-activated protein kinase
- MARCH5, membrane-associated ring finger (C3HC4) 5
- MAVS, mitochondrial antiviral signaling
- MAVS, mitochondrial antiviral signaling protein
- MFN1/2, mitofusin
- MOMP, mitochondrial outer membrane permeabilization
- MPT, mitochondrial permeability transition
- MyD88, myeloid differentiation primary response 88
- NADH, nicotinamide adenine dinucleotide
- NBD, nucleotide binding domain
- NFκB, Nuclear factor κ B
- NLR, NOD like receptor
- NOD, nucleotide-binding oligomerization domain
- NRF2, nuclear factor erythroid 2-related factor 2
- PAMP, pathogen associated molecular pattern
- PPAR, peroxisome proliferator-accelerated receptor
- PRRs, pathogen recognition receptors
- RIG-I, retinoic acid inducible gene I
- RLR, retinoic acid inducible gene like receptor
- ROS, reactive oxygen species
- STING, stimulator of interferon gene
- TAK1, transforming growth factor-β-activated kinase 1
- TANK, TRAF family member-associated NFκB activator
- TBK1, TANK Binding Kinase 1
- TCA, Tri-carboxylic acid
- TFAM, mitochondrial transcription factor A
- TLR, Toll Like Receptor
- TRAF6, tumor necrosis factor receptor-associated factor 6
- TRIF, TIR-domain-containing adapter-inducing interferon β
- TUFM, Tu translation elongation factor.
- fMet, N-formylated methionine
- mROS, mitochondrial ROS
- mtDNA, mitochondrial DNA
- n-fp, n-formyl peptides
Collapse
Affiliation(s)
- Balaji Banoth
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Suzanne L Cassel
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.
| |
Collapse
|
26
|
Thomas MA, Kleist AB, Volkman BF. Decoding the chemotactic signal. J Leukoc Biol 2018; 104:359-374. [PMID: 29873835 PMCID: PMC6099250 DOI: 10.1002/jlb.1mr0218-044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 02/25/2018] [Indexed: 12/20/2022] Open
Abstract
From an individual bacterium to the cells that compose the human immune system, cellular chemotaxis plays a fundamental role in allowing cells to navigate, interpret, and respond to their environments. While many features of cellular chemotaxis are shared among systems as diverse as bacteria and human immune cells, the machinery that guides the migration of these model organisms varies widely. In this article, we review current literature on the diversity of chemoattractant ligands, the cell surface receptors that detect and process chemotactic gradients, and the link between signal recognition and the regulation of cellular machinery that allow for efficient directed cellular movement. These facets of cellular chemotaxis are compared among E. coli, Dictyostelium discoideum, and mammalian neutrophils to derive organizational principles by which diverse cell systems sense and respond to chemotactic gradients to initiate cellular migration.
Collapse
Affiliation(s)
- Monica A. Thomas
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Andrew B. Kleist
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Brian F. Volkman
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
27
|
Garg AD, Agostinis P. Cell death and immunity in cancer: From danger signals to mimicry of pathogen defense responses. Immunol Rev 2018; 280:126-148. [PMID: 29027218 DOI: 10.1111/imr.12574] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The immunogenicity of cancer cells is an emerging determinant of anti-cancer immunotherapy. Beyond developing immunostimulatory regimens like dendritic cell-based vaccines, immune-checkpoint blockers, and adoptive T-cell transfer, investigators are beginning to focus on the immunobiology of dying cancer cells and its relevance for the success of anticancer immunotherapies. It is currently accepted that cancer cells may die in response to anti-cancer therapies through regulated cell death programs, which may either repress or increase their immunogenic potential. In particular, the induction of immunogenic cancer cell death (ICD), which is hallmarked by the emission of damage-associated molecular patterns (DAMPs); molecules analogous to pathogen-associated molecular patterns (PAMPs) acting as danger signals/alarmins, is of great relevance in cancer therapy. These ICD-associated danger signals favor immunomodulatory responses that lead to tumor-associated antigens (TAAs)-directed T-cell immunity, which paves way for the removal of residual, treatment-resistant cancer cells. It is also emerging that cancer cells succumbing to ICD can orchestrate "altered-self mimicry" i.e. mimicry of pathogen defense responses, on the levels of nucleic acids and/or chemokines (resulting in type I interferon/IFN responses or pathogen response-like neutrophil activity). In this review, we exhaustively describe the main molecular, immunological, preclinical, and clinical aspects of immunosuppressive cell death or ICD (with respect to apoptosis, necrosis and necroptosis). We also provide an extensive historical background of these fields, with special attention to the self/non-self and danger models, which have shaped the field of cell death immunology.
Collapse
Affiliation(s)
- Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| |
Collapse
|
28
|
Cardoso SM, Empadinhas N. The Microbiome-Mitochondria Dance in Prodromal Parkinson's Disease. Front Physiol 2018; 9:471. [PMID: 29867531 PMCID: PMC5954091 DOI: 10.3389/fphys.2018.00471] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/16/2018] [Indexed: 12/22/2022] Open
Abstract
The brain is an immunologically active organ where neurons and glia cells orchestrate complex innate immune responses against infections and injuries. Neuronal responses involve Toll-like or Nod-like receptors and the secretion of antimicrobial peptides and cytokines. The endosymbiotic theory for the evolutionary origin of mitochondria from primitive bacteria, suggests that they may have also retained the capacity to activate neuronal innate immunity. In fact, it was shown that mitochondrial damage-associated molecular patterns could signal and activate innate immunity and inflammation. Moreover, the mitochondrial cascade hypothesis for sporadic Parkinson’s disease (PD) argues that altered mitochondrial metabolism and function can drive neurodegeneration. Additionally, a neuroinflammatory signature with increased levels of pro-inflammatory mediators in PD affected brain areas was recently detected. Herein, we propose that a cascade of events initiating in a dysbiotic gut microbiome drive the production of toxins or antibiotics that target and damage mitochondria. This in turn activates neuronal innate immunity and triggers sterile inflammation phenomena that culminate in the neurodegenerative processes observed in the enteric and in the central nervous systems and that ultimately lead to Parkinson’s disease.
Collapse
Affiliation(s)
- Sandra M Cardoso
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Nuno Empadinhas
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
29
|
Designer cells programming quorum-sensing interference with microbes. Nat Commun 2018; 9:1822. [PMID: 29739943 PMCID: PMC5940823 DOI: 10.1038/s41467-018-04223-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 04/16/2018] [Indexed: 02/07/2023] Open
Abstract
Quorum sensing is a promising target for next-generation anti-infectives designed to address evolving bacterial drug resistance. The autoinducer-2 (AI-2) is a key quorum-sensing signal molecule which regulates bacterial group behaviors and is recognized by many Gram-negative and Gram-positive bacteria. Here we report a synthetic mammalian cell-based microbial-control device that detects microbial chemotactic formyl peptides through a formyl peptide sensor (FPS) and responds by releasing AI-2. The microbial-control device was designed by rewiring an artificial receptor-based signaling cascade to a modular biosynthetic AI-2 production platform. Mammalian cells equipped with the microbial-control gene circuit detect formyl peptides secreted from various microbes with high sensitivity and respond with robust AI-2 production, resulting in control of quorum sensing-related behavior of pathogenic Vibrio harveyi and attenuation of biofilm formation by the human pathogen Candida albicans. The ability to manipulate mixed microbial populations through fine-tuning of AI-2 levels may provide opportunities for future anti-infective strategies.
Collapse
|
30
|
Synthetic integrin-binding immune stimulators target cancer cells and prevent tumor formation. Sci Rep 2017; 7:17592. [PMID: 29242512 PMCID: PMC5730604 DOI: 10.1038/s41598-017-17627-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/28/2017] [Indexed: 01/03/2023] Open
Abstract
Immuno-oncology approaches mainly utilize monoclonal antibodies or protein-based scaffolds that bind with high affinity to cancer cells and can generate an immune response. Peptides can also bind with high affinity to cancer cells and are intermediate in size between antibodies and small molecules. They are also synthetically accessible and therefore easily modified to optimize their stability, binding affinity and selectivity. Here we describe the design of immune system engagers (ISErs), a novel class of synthetic peptide-based compounds that bind specifically to cancer cells and stimulate the immune system. A prototype, Y9, targets integrin α3, which is overexpressed on several cancer cells, and activates the immune system via a formyl methionine-containing effector peptide. Injection of Y9 leads to immune cell infiltration into tissue and prevents tumor formation in a guinea pig model. The anti-tumor activity and synthetic accessibility of Y9 illustrate that ISErs could be applied to a wide variety of targets and diseases.
Collapse
|
31
|
Winther M, Dahlgren C, Forsman H. Formyl Peptide Receptors in Mice and Men: Similarities and Differences in Recognition of Conventional Ligands and Modulating Lipopeptides. Basic Clin Pharmacol Toxicol 2017; 122:191-198. [PMID: 28881079 DOI: 10.1111/bcpt.12903] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/28/2017] [Indexed: 12/17/2022]
Abstract
The pattern recognition formyl peptide receptors (FPRs) belong to the class of G-protein-coupled receptors (GPCRs), the largest group of cell surface receptors involved in a range of physiological processes and pathologies. The FPRs have regulatory function in the initiation as well as resolution of inflammatory reactions, making them highly interesting as targets for drug development. Recent research in the GPCR/FPR fields has uncovered novel receptor biology concepts, including biased signalling/functional selectivity, allosteric modulation, receptor reactivation and receptor cross-talk. When it comes to allosteric modulators, 'tailor-made' lipopeptides (pepducins and lipopeptoids) represent a novel concept of GPCR/FPR regulation. This MiniReview is focused on the basis for recognition of conventional ligands and immunomodulating lipopeptides, novel allosteric modulators for the FPRs, receptors that are highly expressed by both human and mouse neutrophils. The FPRs play key roles in host defence against microbial infections, tissue homeostasis and the initiation as well as resolution of inflammation but there are both similarities and differences in ligand recognition between mice and men. Thus, identification and functional characterization of activating and inhibiting ligands should provide insights into future design of FPR-based animal models of human diseases and development of therapeutics for treating inflammatory diseases.
Collapse
Affiliation(s)
- Malene Winther
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
32
|
Mei H, Yao P, Wang S, Li N, Zhu T, Chen X, Yang M, Zhuo S, Chen S, Wang JM, Wang H, Xie D, Wu Y, Le Y. Chronic Low-Dose Cadmium Exposure Impairs Cutaneous Wound Healing With Defective Early Inflammatory Responses After Skin Injury. Toxicol Sci 2017; 159:327-338. [PMID: 28666365 PMCID: PMC6256962 DOI: 10.1093/toxsci/kfx137] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Impairment of the immune system is a developing concern in evaluating the toxicity of cadmium (Cd). In the present study, we investigated if Cd could impair cutaneous wound healing through interfering with inflammation after injury. We found that exposure of mice to CdCl2 through drinking water at doses of 10, 30, and 50 mg/l for 8 weeks significantly impaired cutaneous wound healing. Chronic 30 mg/l CdCl2 treatment elevated murine blood Cd level comparable to that of low dose Cd-exposed humans, had no effect on blood total and differential leukocyte counts, but reduced neutrophil infiltration, chemokines (CXCL1 and CXCL2), and proinflammatory cytokines (TNFα, IL-1β, and IL-6) expression in wounded tissue at early stage after injury. Wounded tissue homogenates from CdCl2-treated mice had lower chemotactic activity for neutrophils than those from untreated mice. Mechanistic studies showed that chronic Cd treatment suppressed ERK1/2 and NF-κB p65 phosphorylation in wounded tissue at early stage after injury. Compared with neutrophils isolated from untreated mice, neutrophils from CdCl2 treated mice and normal neutrophils treated with CdCl2 invitro both had lower chemotactic response, calcium mobilization and ERK1/2 phosphorylation upon chemoattractant stimulation. Collectively, our study indicate that chronic low-dose Cd exposure impaired cutaneous wound healing by reducing neutrophil infiltration through inhibiting chemokine expression and neutrophil chemotactic response, and suppressing proinflammatory cytokine expression. Cd may suppress chemokine and proinflammatory expression through inactivating ERK1/2 and NF-κB, and inhibit neutrophil chemotaxis by attenuating calcium mobilization and ERK1/2 phosphorylation in response to chemoattractants.
Collapse
Affiliation(s)
- Hong Mei
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Pengle Yao
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Shanshan Wang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Na Li
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Tengfei Zhu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaofang Chen
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Mengmei Yang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Shu Zhuo
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Shiting Chen
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Ji Ming Wang
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702
| | - Hui Wang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; University of the Chinese Academy of Sciences, Shanghai 200031, China
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, China
| | - Dong Xie
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; University of the Chinese Academy of Sciences, Shanghai 200031, China
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, China
| | - Yongning Wu
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, China
| | - Yingying Le
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; University of the Chinese Academy of Sciences, Shanghai 200031, China
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, China
- Institute for Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou 215104, China
| |
Collapse
|
33
|
Nguyen GT, Green ER, Mecsas J. Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance. Front Cell Infect Microbiol 2017; 7:373. [PMID: 28890882 PMCID: PMC5574878 DOI: 10.3389/fcimb.2017.00373] [Citation(s) in RCA: 499] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/02/2017] [Indexed: 12/16/2022] Open
Abstract
Reactive oxygen species (ROS) generated by NADPH oxidase play an important role in antimicrobial host defense and inflammation. Their deficiency in humans results in recurrent and severe bacterial infections, while their unregulated release leads to pathology from excessive inflammation. The release of high concentrations of ROS aids in clearance of invading bacteria. Localization of ROS release to phagosomes containing pathogens limits tissue damage. Host immune cells, like neutrophils, also known as PMNs, will release large amounts of ROS at the site of infection following the activation of surface receptors. The binding of ligands to G-protein-coupled receptors (GPCRs), toll-like receptors, and cytokine receptors can prime PMNs for a more robust response if additional signals are encountered. Meanwhile, activation of Fc and integrin directly induces high levels of ROS production. Additionally, GPCRs that bind to the bacterial-peptide analog fMLP, a neutrophil chemoattractant, can both prime cells and trigger low levels of ROS production. Engagement of these receptors initiates intracellular signaling pathways, resulting in activation of downstream effector proteins, assembly of the NADPH oxidase complex, and ultimately, the production of ROS by this complex. Within PMNs, ROS released by the NADPH oxidase complex can activate granular proteases and induce the formation of neutrophil extracellular traps (NETs). Additionally, ROS can cross the membranes of bacterial pathogens and damage their nucleic acids, proteins, and cell membranes. Consequently, in order to establish infections, bacterial pathogens employ various strategies to prevent restriction by PMN-derived ROS or downstream consequences of ROS production. Some pathogens are able to directly prevent the oxidative burst of phagocytes using secreted effector proteins or toxins that interfere with translocation of the NADPH oxidase complex or signaling pathways needed for its activation. Nonetheless, these pathogens often rely on repair and detoxifying proteins in addition to these secreted effectors and toxins in order to resist mammalian sources of ROS. This suggests that pathogens have both intrinsic and extrinsic mechanisms to avoid restriction by PMN-derived ROS. Here, we review mechanisms of oxidative burst in PMNs in response to bacterial infections, as well as the mechanisms by which bacterial pathogens thwart restriction by ROS to survive under conditions of oxidative stress.
Collapse
Affiliation(s)
- Giang T Nguyen
- Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts UniversityBoston, MA, United States
| | - Erin R Green
- Department of Molecular Biology and Microbiology, Tufts University School of MedicineBoston, MA, United States
| | - Joan Mecsas
- Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts UniversityBoston, MA, United States.,Department of Molecular Biology and Microbiology, Tufts University School of MedicineBoston, MA, United States
| |
Collapse
|
34
|
The Expression of Formyl Peptide Receptor 1 is Correlated with Tumor Invasion of Human Colorectal Cancer. Sci Rep 2017; 7:5918. [PMID: 28724995 PMCID: PMC5517416 DOI: 10.1038/s41598-017-06368-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 06/12/2017] [Indexed: 12/18/2022] Open
Abstract
Formyl peptide receptors (FPRs) are G protein-coupled chemoattractant receptors expressed mainly in phagocytic leukocytes. High expression of FPRs has also been detected in several cancers but the functions of FPR1 in tumor invasion and metastasis is poorly understood. In this study, we investigated the expression of FPRs in primary human colorectal cancer (CRC) and analyzed the association of FPRs expression with clinicopathological parameters. The levels of FPRs mRNA, especially those of FPR1, were significantly higher in colorectal tumors than in distant normal tissues and adjacent non-tumor tissues. FPR1 mRNA expression was also associated with tumor serosal infiltration. FPR1 protein expression was both in the colorectal epitheliums and tumor infiltrating neutrophils/macrophages. Furthermore, the functions of FPR1 in tumor invasion and tissue repair were investigated using the CRC cell lines SW480 and HT29. Higher cell surface expression of FPR1 is associated with significantly increased migration in SW480 cells compared with HT29 cells that have less FPR1 membrane expression. Finally, genetic deletion of fpr1 increased the survival rate of the resulting knockout mice compared with wild type littermates in a mouse model of colitis-associated colorectal cancer. Our data demonstrate that FPR1 may play an important role in tumor cell invasion in CRC patients.
Collapse
|
35
|
El-Benna J, Hurtado-Nedelec M, Marzaioli V, Marie JC, Gougerot-Pocidalo MA, Dang PMC. Priming of the neutrophil respiratory burst: role in host defense and inflammation. Immunol Rev 2017; 273:180-93. [PMID: 27558335 DOI: 10.1111/imr.12447] [Citation(s) in RCA: 339] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neutrophils are the major circulating white blood cells in humans. They play an essential role in host defense against pathogens. In healthy individuals, circulating neutrophils are in a dormant state with very low efficiency of capture and arrest on the quiescent endothelium. Upon infection and subsequent release of pro-inflammatory mediators, the vascular endothelium signals to circulating neutrophils to roll, adhere, and cross the endothelial barrier. Neutrophils migrate toward the infection site along a gradient of chemo-attractants, then recognize and engulf the pathogen. To kill this pathogen entrapped inside the vacuole, neutrophils produce and release high quantities of antibacterial peptides, proteases, and reactive oxygen species (ROS). The robust ROS production is also called 'the respiratory burst', and the NADPH oxidase or NOX2 is the enzyme responsible for the production of superoxide anion, leading to other ROS. In vitro, several soluble and particulate agonists induce neutrophil ROS production. This process can be enhanced by prior neutrophil treatment with 'priming' agents, which alone do not induce a respiratory burst. In this review, we will describe the priming process and discuss the beneficial role of controlled neutrophil priming in host defense and the detrimental effect of excessive neutrophil priming in inflammatory diseases.
Collapse
Affiliation(s)
- Jamel El-Benna
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France.,Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, DHU FIRE, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France
| | - Margarita Hurtado-Nedelec
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France.,Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, DHU FIRE, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France.,Département d'Immunologie et d'Hématologie, UF Dysfonctionnements Immunitaires, HUPNVS, Hôpital Bichat, Paris, France
| | - Viviana Marzaioli
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France.,Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, DHU FIRE, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France
| | - Jean-Claude Marie
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France.,Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, DHU FIRE, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France.,Département d'Immunologie et d'Hématologie, UF Dysfonctionnements Immunitaires, HUPNVS, Hôpital Bichat, Paris, France
| | - Marie-Anne Gougerot-Pocidalo
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France.,Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, DHU FIRE, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France.,Département d'Immunologie et d'Hématologie, UF Dysfonctionnements Immunitaires, HUPNVS, Hôpital Bichat, Paris, France
| | - Pham My-Chan Dang
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France.,Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, DHU FIRE, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France
| |
Collapse
|
36
|
Abstract
As the largest receptor gene family in the human genome, with >800 members, the signal-transducing G protein-coupled receptors (GPCRs) play critical roles in nearly all conceivable physiological processes, ranging from the sensing of photons and odorants to metabolic homeostasis and migration of leukocytes. Unfortunately, an exhaustive review of the several hundred GPCRs expressed by myeloid cells/macrophages (P.J. Groot-Kormelink, L .Fawcett, P.D. Wright, M. Gosling, and T.C. Kent, BMC Immunol 12:57, 2012, doi:10.1186/1471-2172-13-57) is beyond the scope of this chapter; however, we will endeavor to cover the GPCRs that contribute to the major facets of macrophage biology, i.e., those whose expression is restricted to macrophages and the GPCRs involved in macrophage differentiation/polarization, microbial elimination, inflammation and resolution, and macrophage-mediated pathology. The chemokine receptors, a major group of myeloid GPCRs, will not be extensively covered as they are comprehensively reviewed elsewhere.
Collapse
|
37
|
The Controversial C5a Receptor C5aR2: Its Role in Health and Disease. J Immunol Res 2017; 2017:8193932. [PMID: 28706957 PMCID: PMC5494583 DOI: 10.1155/2017/8193932] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/11/2017] [Indexed: 01/24/2023] Open
Abstract
After the discovery of the C5a receptor C5aR1, C5aR2 is the second receptor found to bind C5a and its des-arginine form. As a heptahelical G protein-coupled receptor but devoid of the intracellular Gα signal, C5aR2 is special and confusing. Ramifications and controversies about C5aR2 are under debate since its identification, from putative ligands and cellular localization to intracellular signals and pathological roles in inflammation and immunity. The ruleless and even conflicting pro- or anti-inflammatory role of C5aR2 in animal models of diverse diseases makes one bewildered. This review summarizes reports on C5aR2, tries to clear up available evidence on these four controversial aspects, and delineates C5aR2 function(s). It also summarizes available toolboxes for C5aR2 study.
Collapse
|
38
|
Deshpande SA, Pawar AB, Dighe A, Athale CA, Sengupta D. Role of spatial inhomogenity in GPCR dimerisation predicted by receptor association–diffusion models. Phys Biol 2017; 14:036002. [DOI: 10.1088/1478-3975/aa6b68] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
39
|
Elloumi N, Ben Mansour R, Marzouk S, Mseddi M, Fakhfakh R, Gargouri B, Masmoudi H, Lassoued S. Differential reactive oxygen species production of neutrophils and their oxidative damage in patients with active and inactive systemic lupus erythematosus. Immunol Lett 2017; 184:1-6. [PMID: 28163154 DOI: 10.1016/j.imlet.2017.01.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/25/2017] [Accepted: 01/30/2017] [Indexed: 12/07/2022]
Abstract
OBJECTIVE Increasing interest is given to the involvement of the innate immunity and especially Polymorphonuclear neutrophils (PMN) in the physiopathological process of inflammatory diseases such as systemic lupus erythematosus (SLE). Here, we investigated the oxidative burst and damages in SLE patients neutrophils, considering the two phases of the disease, the active and the remission/inactive states. METHODS This study was conducted on 30 SLE patients and 23 healthy controls. The oxidative burst in neutrophils of SLE patients and controls was triggered by fMLP and TPA, while reactive oxygen species (ROS) production was evaluated using a chemiluminescence assay. Oxidative damages in neutrophils were assessed by measuring Free thiol groups level and carbonyl groups, as protein oxidative markers. The malondialdehyde (MDA) level informed about the lipid peroxidation (LPO) and the catalase activity indicated the antioxidant enzymatic activity. RESULT Compared to controls, SLE patients exhibited a significantly increased level of ROS production concomitantly to a decreased response time. Their Neutrophils were characterized by a decreased level of MDA and high levels of protein oxidation as evidenced by increased carbonyl groups and decreased SH levels. The catalase activity was higher in SLE patients' neutrophils compared to controls. When patients were clustered according to the disease activity, PMN of patients in active phase showed, paradoxically, a lower ROS production and exhibited higher oxidative damages than the inactive group. CONCLUSION Our results highlight an altered behavior of LES patients derived PMN particularly in the active phase of the disease. The evaluation of the redox status including the rate of ROS production could be a biological marker to follow the activity of the disease.
Collapse
Affiliation(s)
- Nesrine Elloumi
- Immunology Department, Habib Bourguiba Hospital, University of Sfax, Tunisia.
| | - Riadh Ben Mansour
- Laboratory LR11ES45, Research Group "Biotechnology and Pathology", National School of Engineers, Universisty of Sfax, Tunisia.
| | - Sameh Marzouk
- Internal Medicine Department, Hedi Chaker Hospital, University of Sfax, Tunisia,.
| | - Malek Mseddi
- Laboratory LR11ES45, Research Group "Biotechnology and Pathology", National School of Engineers, Universisty of Sfax, Tunisia.
| | - Raouia Fakhfakh
- Immunology Department, Habib Bourguiba Hospital, University of Sfax, Tunisia.
| | - Bochra Gargouri
- Laboratory LR11ES45, Research Group "Biotechnology and Pathology", National School of Engineers, Universisty of Sfax, Tunisia.
| | - Hatem Masmoudi
- Immunology Department, Habib Bourguiba Hospital, University of Sfax, Tunisia.
| | - Saloua Lassoued
- Laboratory LR11ES45, Research Group "Biotechnology and Pathology", National School of Engineers, Universisty of Sfax, Tunisia.
| |
Collapse
|
40
|
Sannikova EP, Bulushova NV, Cheperegin SE, Gubaydullin II, Chestukhina GG, Ryabichenko VV, Zalunin IA, Kotlova EK, Konstantinova GE, Kubasova TS, Shtil AA, Pokrovsky VS, Yarotsky SV, Efremov BD, Kozlov DG. The Modified Heparin-Binding L-Asparaginase of Wolinella succinogenes. Mol Biotechnol 2017; 58:528-39. [PMID: 27198565 DOI: 10.1007/s12033-016-9950-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The modified asparaginase Was79 was derived from the recombinant wild-type L-asparaginase of Wolinella succinogenes. The Was79 contains the amino acid substitutions V23Q and K24T responsible for the resistance to trypsinolysis and the N-terminal heparin-binding peptide KRKKKGKGLGKKR responsible for the binding to heparin and tumor K562 cells in vitro. When tested on a mouse model of Fischer lymphadenosis L5178Y, therapeutic efficacy of Was79 was significantly higher than that of reference enzymes at all single therapeutic doses used (125-8000 IU/kg). At Was79 single doses of 500-8000 IU/kg, the complete remission rate of 100 % was observed. The Was79 variant can be expressed intracellularly in E. coli as a less immunogenic formyl-methionine-free form at high per cell production levels.
Collapse
Affiliation(s)
- E P Sannikova
- State Research Institute for Genetics and Selection of Industrial Microorganisms, Moscow, Russia, 117545
| | - N V Bulushova
- State Research Institute for Genetics and Selection of Industrial Microorganisms, Moscow, Russia, 117545
| | - S E Cheperegin
- State Research Institute for Genetics and Selection of Industrial Microorganisms, Moscow, Russia, 117545
| | - I I Gubaydullin
- State Research Institute for Genetics and Selection of Industrial Microorganisms, Moscow, Russia, 117545
| | - G G Chestukhina
- State Research Institute for Genetics and Selection of Industrial Microorganisms, Moscow, Russia, 117545
| | - V V Ryabichenko
- State Research Institute for Genetics and Selection of Industrial Microorganisms, Moscow, Russia, 117545
| | - I A Zalunin
- State Research Institute for Genetics and Selection of Industrial Microorganisms, Moscow, Russia, 117545
| | - E K Kotlova
- State Research Institute for Genetics and Selection of Industrial Microorganisms, Moscow, Russia, 117545
| | - G E Konstantinova
- State Research Institute for Genetics and Selection of Industrial Microorganisms, Moscow, Russia, 117545
| | - T S Kubasova
- State Research Institute for Genetics and Selection of Industrial Microorganisms, Moscow, Russia, 117545
| | - A A Shtil
- N. N. Blokhin Russian Cancer Research Center, Kashirskoye Shosse 24, Moscow, Russia, 115478
| | - V S Pokrovsky
- N. N. Blokhin Russian Cancer Research Center, Kashirskoye Shosse 24, Moscow, Russia, 115478
| | - S V Yarotsky
- State Research Institute for Genetics and Selection of Industrial Microorganisms, Moscow, Russia, 117545
| | - B D Efremov
- State Research Institute for Genetics and Selection of Industrial Microorganisms, Moscow, Russia, 117545
| | - D G Kozlov
- State Research Institute for Genetics and Selection of Industrial Microorganisms, Moscow, Russia, 117545.
| |
Collapse
|
41
|
Zenobia C, Hajishengallis G. Basic biology and role of interleukin-17 in immunity and inflammation. Periodontol 2000 2017; 69:142-59. [PMID: 26252407 DOI: 10.1111/prd.12083] [Citation(s) in RCA: 315] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2014] [Indexed: 02/06/2023]
Abstract
Interleukin-17 (also known as interleukin-17A) is a key cytokine that links T-cell activation to neutrophil mobilization and activation. As such, interleukin-17 can mediate protective innate immunity to pathogens or contribute to the pathogenesis of inflammatory diseases, such as psoriasis and rheumatoid arthritis. This review summarizes the basic biology of interleukin-17 and discusses its emerging role in periodontal disease. The current burden of evidence from human and animal model studies suggests that the net effect of interleukin-17 signaling promotes disease development. In addition to promoting neutrophilic inflammation, interleukin-17 has potent pro-osteoclastogenic effects that are likely to contribute to the pathogenesis of periodontitis, rheumatoid arthritis and other diseases involving bone immunopathology. Systemic treatments with anti-interleukin-17 biologics have shown promising results in clinical trials for psoriasis and rheumatoid arthritis; however, their impact on the highly prevalent periodontal disease has not been investigated or reported. Future clinical trials, preferably using locally administered interleukin-17 blockers, are required to implicate conclusivelyinterleukin-17 in periodontitis and, more importantly, to establish an effective adjunctive treatment for this oral inflammatory disease.
Collapse
|
42
|
Hirano Y, Yang WL, Aziz M, Zhang F, Sherry B, Wang P. MFG-E8-derived peptide attenuates adhesion and migration of immune cells to endothelial cells. J Leukoc Biol 2017; 101:1201-1209. [PMID: 28096298 DOI: 10.1189/jlb.3a0416-184rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 12/20/2016] [Accepted: 12/28/2016] [Indexed: 02/05/2023] Open
Abstract
Milk fat globule-epidermal growth factor-factor 8 (MFG-E8) plays an immunomodulatory role in inflammatory diseases. MFG-E8-derived short peptide (MSP68) greatly reduces neutrophil infiltration and injury in the lung during sepsis. In this study, we examined the effect of MSP68 on chemotaxis of various immune cells and its regulatory mechanism. Bone marrow-derived neutrophils (BMDNs) from C57BL/6 mice, human monocyte THP-1 cell line, and human T lymphocyte Jurkat cell line were used for adhesion and migration assays using a Transwell method in the presence of MSP68. Treatment with MSP68 significantly inhibited the BMDN and THP-1 cell but not Jurkat cell adhesion on the TNF-α-stimulated pulmonary artery endothelial cell (PAEC) monolayer dose-dependently. MSP68 also significantly reduced BMDN adhesion on VCAM-1-coated wells dose dependently. Surface plasmon resonance (SPR) analysis revealed that MSP68 efficiently recognized integrin α4β1 (receptor for VCAM-1) at the dissociation constant (KD) of 1.53 × 10-7 M. These findings implicate that MSP68 prevents neutrophil adhesion to the activated endothelial cells by interfering with the binding between integrin α4β1 on neutrophils and VCAM-1 on endothelial cells. Moreover, MSP68 significantly attenuated the migration of BMDN and THP-1 cells but not Jurkat cells to their chemoattractants. Pretreatment with MSP68 inhibited the transmigration of BMDNs across the PAECs toward chemoattractants, fMLP, MIP-2, and complement fragment 5a (C5a) dose-dependently. Finally, we identified that the activation of p38 MAPK in BMDNs by fMLP was inhibited by MSP68. Thus, MSP68 attenuates extravasation of immune cells through the endothelial cell lining into inflamed tissue, implicating MSP68 to be a novel, therapeutic agent for inflammatory diseases caused by excessive immune cell infiltration.
Collapse
Affiliation(s)
- Yohei Hirano
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York, USA.,Department of Emergency and Critical Care Medicine, Juntendo University and Urayasu Hospital, Chiba, Japan; and
| | - Weng-Lang Yang
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York, USA.,Department of Surgery, Hofstra Northwell School of Medicine, Manhasset, New York, USA
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Fangming Zhang
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Barbara Sherry
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York, USA; .,Department of Surgery, Hofstra Northwell School of Medicine, Manhasset, New York, USA
| |
Collapse
|
43
|
Mukhin NA, Bogdanova MV, Rameev VV, Kozlovskaya LV. Autoinflammatory diseases and kidney involvement. TERAPEVT ARKH 2017; 89:4-20. [DOI: 10.17116/terarkh20178964-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Bohovych I, Khalimonchuk O. Sending Out an SOS: Mitochondria as a Signaling Hub. Front Cell Dev Biol 2016; 4:109. [PMID: 27790613 PMCID: PMC5061732 DOI: 10.3389/fcell.2016.00109] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022] Open
Abstract
Normal cellular physiology is critically dependent on numerous mitochondrial activities including energy conversion, cofactor and precursor metabolite synthesis, and regulation of ion and redox homeostasis. Advances in mitochondrial research during the last two decades provide solid evidence that these organelles are deeply integrated with the rest of the cell and multiple mechanisms are in place to monitor and communicate functional states of mitochondria. In many cases, however, the exact molecular nature of various mitochondria-to-cell communication pathways is only beginning to emerge. Here, we review various signals emitted by distressed or dysfunctional mitochondria and the stress-responsive pathways activated in response to these signals in order to restore mitochondrial function and promote cellular survival.
Collapse
Affiliation(s)
- Iryna Bohovych
- Department of Biochemistry, University of Nebraska-LincolnLincoln, NE, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska-LincolnLincoln, NE, USA
- Nebraska Redox Biology Center, University of Nebraska-LincolnLincoln, NE, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical CenterOmaha, NE, USA
| |
Collapse
|
45
|
Marine Natural Product Inhibitors of Neutrophil-Associated Inflammation. Mar Drugs 2016; 14:md14080141. [PMID: 27472345 PMCID: PMC4999902 DOI: 10.3390/md14080141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/31/2016] [Accepted: 07/07/2016] [Indexed: 12/11/2022] Open
Abstract
Neutrophils are widely recognized to play an important role in acute inflammatory responses, and recent evidence has expanded their role to modulating chronic inflammatory and autoimmune diseases. Reactive oxygen species (ROS) and microbicidal compounds released from neutrophils that are recruited to the site of inflammation contribute to the pathogenesis of multiple inflammation-associated diseases such as chronic obstructive pulmonary disease, atherosclerosis, and hepatitis. Marine organisms are a valuable source of bioactive compounds with potential for industrial and pharmaceutical application. Marine natural products that inhibit neutrophil activation could be used as drugs for the treatment of inflammatory diseases. Numerous studies investigating marine natural products have reported novel anti-inflammatory agents. Nevertheless, the detailed mechanisms underlying their actions, which could facilitate our understanding of the molecular events occurring in neutrophils, have not been reported in most of the associated research studies. Therefore, in this review, we will present marine products that inhibit neutrophil-associated inflammation. Furthermore, we will be limiting the detailed discussion to agents with well-investigated molecular targets.
Collapse
|
46
|
Pomara C, Riezzo I, Bello S, De Carlo D, Neri M, Turillazzi E. A Pathophysiological Insight into Sepsis and Its Correlation with Postmortem Diagnosis. Mediators Inflamm 2016; 2016:4062829. [PMID: 27239102 PMCID: PMC4863102 DOI: 10.1155/2016/4062829] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/21/2016] [Accepted: 04/10/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Sepsis is among the leading causes of death worldwide and is the focus of a great deal of attention from policymakers and caregivers. However, sepsis poses significant challenges from a clinical point of view regarding its early detection and the best organization of sepsis care. Furthermore, we do not yet have reliable tools for measuring the incidence of sepsis. Methods based on analyses of insurance claims are unreliable, and postmortem diagnosis is still challenging since autopsy findings are often nonspecific. AIM The objective of this review is to assess the state of our knowledge of the molecular and biohumoral mechanisms of sepsis and to correlate them with our postmortem diagnosis ability. CONCLUSION The diagnosis of sepsis-related deaths is an illustrative example of the reciprocal value of autopsy both for clinicians and for pathologists. A complete methodological approach, integrating clinical data by means of autopsy and histological and laboratory findings aiming to identify and demonstrate the host response to infectious insults, is mandatory to illuminate the exact cause of death. This would help clinicians to compare pre- and postmortem findings and to reliably measure the incidence of sepsis.
Collapse
Affiliation(s)
- C. Pomara
- Department of Clinical and Experimental Medicine, Section of Forensic Pathology, Ospedale Colonnello D'Avanzo, University of Foggia, Viale degli Aviatori 1, 71100 Foggia, Italy
| | - I. Riezzo
- Department of Clinical and Experimental Medicine, Section of Forensic Pathology, Ospedale Colonnello D'Avanzo, University of Foggia, Viale degli Aviatori 1, 71100 Foggia, Italy
| | - S. Bello
- Department of Clinical and Experimental Medicine, Section of Forensic Pathology, Ospedale Colonnello D'Avanzo, University of Foggia, Viale degli Aviatori 1, 71100 Foggia, Italy
| | - D. De Carlo
- Department of Clinical and Experimental Medicine, Section of Forensic Pathology, Ospedale Colonnello D'Avanzo, University of Foggia, Viale degli Aviatori 1, 71100 Foggia, Italy
| | - M. Neri
- Department of Clinical and Experimental Medicine, Section of Forensic Pathology, Ospedale Colonnello D'Avanzo, University of Foggia, Viale degli Aviatori 1, 71100 Foggia, Italy
| | - E. Turillazzi
- Department of Clinical and Experimental Medicine, Section of Forensic Pathology, Ospedale Colonnello D'Avanzo, University of Foggia, Viale degli Aviatori 1, 71100 Foggia, Italy
| |
Collapse
|
47
|
Walker 256 Tumor Growth Suppression by Crotoxin Involves Formyl Peptide Receptors and Lipoxin A₄. Mediators Inflamm 2016; 2016:2457532. [PMID: 27190493 PMCID: PMC4844889 DOI: 10.1155/2016/2457532] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/15/2016] [Indexed: 02/06/2023] Open
Abstract
We investigated the effects of Crotoxin (CTX), the main toxin of South American rattlesnake (Crotalus durissus terrificus) venom, on Walker 256 tumor growth, the pain symptoms associated (hyperalgesia and allodynia), and participation of endogenous lipoxin A4. Treatment with CTX (s.c.), daily, for 5 days reduced tumor growth at the 5th day after injection of Walker 256 carcinoma cells into the plantar surface of adult rat hind paw. This observation was associated with inhibition of new blood vessel formation and decrease in blood vessel diameter. The treatment with CTX raised plasma concentrations of lipoxin A4 and its natural analogue 15-epi-LXA4, an effect mediated by formyl peptide receptors (FPRs). In fact, the treatment with Boc-2, an inhibitor of FPRs, abolished the increase in plasma levels of these mediators triggered by CTX. The blockage of these receptors also abolished the inhibitory action of CTX on tumor growth and blood vessel formation and the decrease in blood vessel diameter. Together, the results herein presented demonstrate that CTX increases plasma concentrations of lipoxin A4 and 15-epi-LXA4, which might inhibit both tumor growth and formation of new vessels via FPRs.
Collapse
|
48
|
Garg AD, Galluzzi L, Apetoh L, Baert T, Birge RB, Bravo-San Pedro JM, Breckpot K, Brough D, Chaurio R, Cirone M, Coosemans A, Coulie PG, De Ruysscher D, Dini L, de Witte P, Dudek-Peric AM, Faggioni A, Fucikova J, Gaipl US, Golab J, Gougeon ML, Hamblin MR, Hemminki A, Herrmann M, Hodge JW, Kepp O, Kroemer G, Krysko DV, Land WG, Madeo F, Manfredi AA, Mattarollo SR, Maueroder C, Merendino N, Multhoff G, Pabst T, Ricci JE, Riganti C, Romano E, Rufo N, Smyth MJ, Sonnemann J, Spisek R, Stagg J, Vacchelli E, Vandenabeele P, Vandenberk L, Van den Eynde BJ, Van Gool S, Velotti F, Zitvogel L, Agostinis P. Molecular and Translational Classifications of DAMPs in Immunogenic Cell Death. Front Immunol 2015; 6:588. [PMID: 26635802 PMCID: PMC4653610 DOI: 10.3389/fimmu.2015.00588] [Citation(s) in RCA: 316] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/02/2015] [Indexed: 12/22/2022] Open
Abstract
The immunogenicity of malignant cells has recently been acknowledged as a critical determinant of efficacy in cancer therapy. Thus, besides developing direct immunostimulatory regimens, including dendritic cell-based vaccines, checkpoint-blocking therapies, and adoptive T-cell transfer, researchers have started to focus on the overall immunobiology of neoplastic cells. It is now clear that cancer cells can succumb to some anticancer therapies by undergoing a peculiar form of cell death that is characterized by an increased immunogenic potential, owing to the emission of the so-called “damage-associated molecular patterns” (DAMPs). The emission of DAMPs and other immunostimulatory factors by cells succumbing to immunogenic cell death (ICD) favors the establishment of a productive interface with the immune system. This results in the elicitation of tumor-targeting immune responses associated with the elimination of residual, treatment-resistant cancer cells, as well as with the establishment of immunological memory. Although ICD has been characterized with increased precision since its discovery, several questions remain to be addressed. Here, we summarize and tabulate the main molecular, immunological, preclinical, and clinical aspects of ICD, in an attempt to capture the essence of this phenomenon, and identify future challenges for this rapidly expanding field of investigation.
Collapse
Affiliation(s)
- Abhishek D Garg
- Cell Death Research and Therapy Laboratory, Department of Cellular Molecular Medicine, KU Leuven - University of Leuven , Leuven , Belgium
| | - Lorenzo Galluzzi
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers , Paris , France ; U1138, INSERM , Paris , France ; Université Paris Descartes, Sorbonne Paris Cité , Paris , France ; Université Pierre et Marie Curie , Paris , France ; Gustave Roussy Comprehensive Cancer Institute , Villejuif , France
| | - Lionel Apetoh
- U866, INSERM , Dijon , France ; Faculté de Médecine, Université de Bourgogne , Dijon , France ; Centre Georges François Leclerc , Dijon , France
| | - Thais Baert
- Department of Gynaecology and Obstetrics, UZ Leuven , Leuven , Belgium ; Laboratory of Gynaecologic Oncology, Department of Oncology, Leuven Cancer Institute, KU Leuven , Leuven , Belgium
| | - Raymond B Birge
- Department of Microbiology, Biochemistry, and Molecular Genetics, University Hospital Cancer Center, Rutgers Cancer Institute of New Jersey, New Jersey Medical School , Newark, NJ , USA
| | - José Manuel Bravo-San Pedro
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers , Paris , France ; U1138, INSERM , Paris , France ; Université Paris Descartes, Sorbonne Paris Cité , Paris , France ; Université Pierre et Marie Curie , Paris , France ; Gustave Roussy Comprehensive Cancer Institute , Villejuif , France
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel , Jette , Belgium
| | - David Brough
- Faculty of Life Sciences, University of Manchester , Manchester , UK
| | - Ricardo Chaurio
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nurnberg , Erlangen , Germany
| | - Mara Cirone
- Department of Experimental Medicine, Sapienza University of Rome , Rome , Italy
| | - An Coosemans
- Department of Gynaecology and Obstetrics, UZ Leuven , Leuven , Belgium ; Laboratory of Gynaecologic Oncology, Department of Oncology, Leuven Cancer Institute, KU Leuven , Leuven , Belgium
| | - Pierre G Coulie
- de Duve Institute, Université Catholique de Louvain , Brussels , Belgium
| | - Dirk De Ruysscher
- Department of Radiation Oncology, University Hospitals Leuven, KU Leuven - University of Leuven , Leuven , Belgium
| | - Luciana Dini
- Department of Biological and Environmental Science and Technology, University of Salento , Salento , Italy
| | - Peter de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven , Leuven , Belgium
| | - Aleksandra M Dudek-Peric
- Cell Death Research and Therapy Laboratory, Department of Cellular Molecular Medicine, KU Leuven - University of Leuven , Leuven , Belgium
| | | | - Jitka Fucikova
- SOTIO , Prague , Czech Republic ; Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University , Prague , Czech Republic
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen , Erlangen , Germany
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw , Warsaw , Poland
| | | | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital , Boston, MA , USA
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Transplantation Laboratory, Haartman Institute, University of Helsinki , Helsinki , Finland ; Helsinki University Hospital Comprehensive Cancer Center , Helsinki , Finland ; TILT Biotherapeutics Ltd. , Helsinki , Finland
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nurnberg , Erlangen , Germany
| | - James W Hodge
- Recombinant Vaccine Group, Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA
| | - Oliver Kepp
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers , Paris , France ; U1138, INSERM , Paris , France ; Université Paris Descartes, Sorbonne Paris Cité , Paris , France ; Université Pierre et Marie Curie , Paris , France ; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute , Villejuif , France
| | - Guido Kroemer
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers , Paris , France ; U1138, INSERM , Paris , France ; Université Paris Descartes, Sorbonne Paris Cité , Paris , France ; Université Pierre et Marie Curie , Paris , France ; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute , Villejuif , France ; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP , Paris , France ; Department of Women's and Children's Health, Karolinska University Hospital , Stockholm , Sweden
| | - Dmitri V Krysko
- Molecular Signaling and Cell Death Unit, Inflammation Research Center, VIB , Ghent , Belgium ; Department of Biomedical Molecular Biology, Ghent University , Ghent , Belgium
| | - Walter G Land
- Molecular ImmunoRheumatology, INSERM UMRS1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz , Graz , Austria ; BioTechMed Graz , Graz , Austria
| | - Angelo A Manfredi
- IRRCS Istituto Scientifico San Raffaele, Università Vita-Salute San Raffaele , Milan , Italy
| | - Stephen R Mattarollo
- Translational Research Institute, University of Queensland Diamantina Institute, University of Queensland , Wooloongabba, QLD , Australia
| | - Christian Maueroder
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nurnberg , Erlangen , Germany
| | - Nicolò Merendino
- Laboratory of Cellular and Molecular Nutrition, Department of Ecological and Biological Sciences, Tuscia University , Viterbo , Italy
| | - Gabriele Multhoff
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München , Munich , Germany
| | - Thomas Pabst
- Department of Medical Oncology, University Hospital , Bern , Switzerland
| | - Jean-Ehrland Ricci
- INSERM, U1065, Université de Nice-Sophia-Antipolis, Centre Méditerranéen de Médecine Moléculaire (C3M), Équipe "Contrôle Métabolique des Morts Cellulaires" , Nice , France
| | - Chiara Riganti
- Department of Oncology, University of Turin , Turin , Italy
| | - Erminia Romano
- Cell Death Research and Therapy Laboratory, Department of Cellular Molecular Medicine, KU Leuven - University of Leuven , Leuven , Belgium
| | - Nicole Rufo
- Cell Death Research and Therapy Laboratory, Department of Cellular Molecular Medicine, KU Leuven - University of Leuven , Leuven , Belgium
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Insitute , Herston, QLD , Australia ; School of Medicine, University of Queensland , Herston, QLD , Australia
| | - Jürgen Sonnemann
- Department of Paediatric Haematology and Oncology, Children's Clinic, Jena University Hospital , Jena , Germany
| | - Radek Spisek
- SOTIO , Prague , Czech Republic ; Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University , Prague , Czech Republic
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Institut du Cancer de Montréal, Faculté de Pharmacie, Université de Montréal , Montreal, QC , Canada
| | - Erika Vacchelli
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers , Paris , France ; U1138, INSERM , Paris , France ; Université Paris Descartes, Sorbonne Paris Cité , Paris , France ; Université Pierre et Marie Curie , Paris , France ; Gustave Roussy Comprehensive Cancer Institute , Villejuif , France
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, Inflammation Research Center, VIB , Ghent , Belgium ; Department of Biomedical Molecular Biology, Ghent University , Ghent , Belgium
| | - Lien Vandenberk
- Laboratory of Pediatric Immunology, Department of Microbiology and Immunology, KU Leuven - University of Leuven , Leuven , Belgium
| | - Benoit J Van den Eynde
- Ludwig Institute for Cancer Research, de Duve Institute, Université Catholique de Louvain , Brussels , Belgium
| | - Stefaan Van Gool
- Laboratory of Pediatric Immunology, Department of Microbiology and Immunology, KU Leuven - University of Leuven , Leuven , Belgium
| | - Francesca Velotti
- Department of Ecological and Biological Sciences, Tuscia University , Viterbo , Italy
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute , Villejuif , France ; University of Paris Sud , Le Kremlin-Bicêtre , France ; U1015, INSERM , Villejuif , France ; Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 507 , Villejuif , France
| | - Patrizia Agostinis
- Cell Death Research and Therapy Laboratory, Department of Cellular Molecular Medicine, KU Leuven - University of Leuven , Leuven , Belgium
| |
Collapse
|
49
|
Zhu Y, Dai B, Li Y, Peng H. C5a and toll-like receptor 4 crosstalk in retinal pigment epithelial cells. Mol Vis 2015; 21:1122-9. [PMID: 26487798 PMCID: PMC4588711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 09/26/2015] [Indexed: 11/02/2022] Open
Abstract
PURPOSE To investigate the effect of the complement activation product C5a on toll-like receptor (TLR) 4-induced responses in RPE cells. METHODS Confluent cultures of human RPE cells (ARPE-19) were stimulated with C5a, lipopolysaccharide (LPS), or a combination of the two. The expression of TLR4 was determined by real-time PCR and flow cytometry. Cytokine profiles were determined by real-time PCR and enzyme-linked immunosorbent assay (ELISA). The phosphorylation of p38, ERK 1/2, and JNK was measured by flow cytometry. RESULTS C5a stimulation enhanced the expression of TLR4 in a dose- and time-dependent manner. C5a was able to stimulate the production of TLR4-induced IL-6 and IL-8 by ARPE-19 cells. Blocking experiments showed that the effect of C5a on cytokine production was mediated via C5aR. ERK1/2, but not JNK or p38, were involved in the production of IL-6 and IL-8. CONCLUSIONS The results indicate that C5a can induce the TLR4 expression and enhance the production of TLR4-induced IL-6 and IL-8 by ARPE-19. The effect of C5a on cytokine production was mediated by C5aR and the phosphorylation of ERK1/2.
Collapse
Affiliation(s)
- Yi Zhu
- The People’s Hospital of Kai County, Chongqing, China
| | - Bingling Dai
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Yongguo Li
- Chongqing Medical University, Chongqing, China
| | - Hui Peng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| |
Collapse
|
50
|
Penna A, Stutzin A. KCa3.1-Dependent Hyperpolarization Enhances Intracellular Ca2+ Signaling Induced by fMLF in Differentiated U937 Cells. PLoS One 2015; 10:e0139243. [PMID: 26418693 PMCID: PMC4587941 DOI: 10.1371/journal.pone.0139243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 09/10/2015] [Indexed: 12/29/2022] Open
Abstract
Formylated peptides are chemotactic agents generated by pathogens. The most relevant peptide is fMLF (formyl-Met-Leu-Phe) which participates in several immune functions, such as chemotaxis, phagocytosis, cytokine release and generation of reactive oxygen species. In macrophages fMLF-dependent responses are dependent on both, an increase in intracellular calcium concentration and on a hyperpolarization of the membrane potential. However, the molecular entity underlying this hyperpolarization remains unknown and it is not clear whether changes in membrane potential are linked to the increase in intracellular Ca2+. In this study, differentiated U937 cells, as a macrophage-like cell model, was used to characterize the fMLF response using electrophysiological and Ca2+ imaging techniques. We demonstrate by means of pharmacological and molecular biology tools that fMLF induces a Ca2+-dependent hyperpolarization via activation of the K+ channel KCa3.1 and thus, enhancing fMLF-induced intracellular Ca2+ increase through an amplification of the driving force for Ca2+ entry. Consequently, enhanced Ca2+ influx would in turn lengthen the hyperpolarization, operating as a positive feedback mechanism for fMLF-induced Ca2+ signaling.
Collapse
Affiliation(s)
- Antonello Penna
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 838–0453, Santiago, Chile
| | - Andrés Stutzin
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 838–0453, Santiago, Chile
- * E-mail:
| |
Collapse
|