1
|
Sakakibara N, Nozu K. Tubular proteinuria due to hereditary endocytic receptor disorder of the proximal tubule: Dent disease and chronic benign proteinuria. Pediatr Nephrol 2025:10.1007/s00467-025-06745-x. [PMID: 40163114 DOI: 10.1007/s00467-025-06745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025]
Abstract
The proximal tubule has a highly efficient endocytic pathway dedicated to reabsorbing albumin and low-molecular-weight proteins that have passed through the glomerular filtration barrier. This pathway is dependent on multi-ligand receptors: megalin and cubilin. Abnormalities in genes associated with endocytosis in the proximal tubule can lead to tubular proteinuria, where the urine contains albumin and low-molecular-weight proteins. Dent disease is a hereditary X-linked disorder characterized by low-molecular-weight proteinuria, hypercalciuria, nephrocalcinosis, nephrolithiasis, and progressive kidney dysfunction, often leading to CKD stage 5. CLCN5 is the gene responsible for Dent disease-1 and encodes the voltage-gated chloride channel ClC-5. Meanwhile, OCRL is the causative gene of Dent disease-2 and encodes phosphatidylinositol 4,5-bisphosphate 5-phosphatase, and its variants are also associated with Lowe syndrome. ClC-5 and OCRL are essential to the endocytic machinery, and their loss affects endosomal acidification and trafficking, resulting in disruption of megalin and cubilin recycling. CUBN, which encodes cubilin, was originally identified as the causative gene of Imerslund-Gräsbeck syndrome, a disorder of megaloblastic anemia associated with proteinuria. However, recently, a biallelic C-terminal variant of CUBN was shown to be responsible for isolated proteinuria without kidney dysfunction. This proteinuria is recognized as a new disease concept called chronic benign proteinuria (proteinuria, chronic benign: PROCHOB), which contradicts the common belief that proteinuria is harmful and ultimately leads to kidney damage. This article deepens the understanding of genetic tubular proteinuria and its origins, focusing on the role of megalin- and cubilin-mediated endocytosis in the proximal tubule.
Collapse
Affiliation(s)
- Nana Sakakibara
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan.
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan
| |
Collapse
|
2
|
Vo HVT, Kim N, Lee HJ. Vitamin Bs as Potent Anticancer Agents through MMP-2/9 Regulation. FRONT BIOSCI-LANDMRK 2025; 30:24072. [PMID: 39862072 DOI: 10.31083/fbl24072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 01/27/2025]
Abstract
In recent years, the role of coenzymes, particularly those from the vitamin B group in modulating the activity of metalloenzymes has garnered significant attention in cancer treatment strategies. Metalloenzymes play pivotal roles in various cellular processes, including DNA repair, cell signaling, and metabolism, making them promising targets for cancer therapy. This review explores the complex interplay between coenzymes, specifically vitamin Bs, and metalloenzymes in cancer pathogenesis and treatment. Vitamins are an indispensable part of daily life, essential for optimal health and well-being. Beyond their recognized roles as essential nutrients, vitamins have increasingly garnered attention for their multifaceted functions within the machinery of cellular processes. In particular, vitamin Bs have emerged as a pivotal regulator within this intricate network, exerting profound effects on the functionality of metalloenzymes. Their ability to modulate metalloenzymes involved in crucial cellular pathways implicated in cancer progression presents a compelling avenue for therapeutic intervention. Key findings indicate that vitamin Bs can influence the activity and expression of metalloenzymes, thereby affecting processes such as DNA repair and cell signaling, which are critical in cancer development and progression. Understanding the mechanisms by which these coenzymes regulate metalloenzymes holds great promise for developing novel anticancer strategies. This review summarizes current knowledge on the interactions between vitamin Bs and metalloenzymes, highlighting their potential as anticancer agents and paving the way for innovative, cell-targeted cancer treatments.
Collapse
Affiliation(s)
- Ha Vy Thi Vo
- Department of Chemistry Education, Kongju National University, 32588 Gongju, Chungcheongnam-do, Republic of Korea
| | - Namdoo Kim
- Department of Chemistry, Kongju National University, 32588 Gongju, Chungcheongnam-do, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry Education, Kongju National University, 32588 Gongju, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
3
|
Lee MH, Han A, Chang YH. Effect of inulin on structural, physicochemical, and in vitro gastrointestinal tract release properties of core-shell hydrogel beads as a delivery system for vitamin B12. Food Chem 2025; 463:141351. [PMID: 39332365 DOI: 10.1016/j.foodchem.2024.141351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/30/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
In this study, core-shell hydrogel beads were developed as a controlled-release delivery system for vitamin B12. Vitamin B12-loaded microgels (MG) were prepared using gellan gum (GG). Core-shell hydrogel beads were produced by incorporating MG into pea protein isolate (PPI) and sodium alginate (AL) matrix filled/coated with different concentrations (0 %, 1 %, 3 %, 5 %, and 10 %) of inulin (IN). Based on XRD analysis, MG was successfully incorporated into core-shell hydrogel beads. In FE-SEM and FT-IR analyses, the smoother surface and denser structure of the beads were observed as IN concentration increased due to hydrogen bonds between IN and the beads. The encapsulation efficiency increased from 68.64 % to 82.36 % as IN concentration increased from 0 % to 10 %, respectively. After exposure to simulated oral and gastric conditions, core-shell hydrogel beads exhibited a lower cumulative release than MG, and a more sustained release was observed as IN concentration increased in simulated intestinal conditions.
Collapse
Affiliation(s)
- Min Ho Lee
- Department of Food and Nutrition, and Bionanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Areum Han
- Department of Food and Nutrition, and Bionanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoon Hyuk Chang
- Department of Food and Nutrition, and Bionanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
4
|
Yan G, Pan M, Keller AM, Santiago AG, Lofgren M, Banerjee R, Chen P, Chen TY. Conformation-gated binding drives negative cooperativity in ATP:cob(I)alamin Adenosyltransferase for optimized cobalamin handling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631765. [PMID: 39829891 PMCID: PMC11741278 DOI: 10.1101/2025.01.07.631765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Vitamin B 12 (cobalamin) is a high-value yet scarce cofactor required for various metabolic processes, making its efficient handling important for maintaining metabolic homeostasis. While the involvement of ATP:cob(I)alamin adenosyltransferases (MMAB) in the synthesis, delivery, and repair of 5'-deoxyadenosylcobalamin (AdoCbl) is well established, the kinetic mechanisms that regulate this process, particularly its negative cooperativity, remain poorly understood. Understanding these mechanisms is key to clarifying how MMAB efficiently uses AdoCbl, prevents resource wastage, and supports bacterial survival in nutrient-limited environments. Using single-molecule relative fluorescence (SRF) spectroscopy, we found that conformation-gated binding is the driving force behind MMAB's preference for AdoCbl over hydroxocobalamin and is the underlying mechanism for negative cooperativity. This mechanism significantly slows down the binding of the second equivalent of AdoCbl, favoring the singly bound state. Our findings indicate that MMAB predominantly binds a single AdoCbl, optimizing the AdoCbl loading to methylmalonyl-CoA mutase. Additionally, our SRF approach also serves as a tool to explore other cofactor interactions, such as those between riboswitches and cobalamin derivatives, to provide insights into regulatory mechanisms of cobalamin sensing and gene regulation, which are crucial for bacterial adaptation to changing nutrient conditions. Significance Statement MMAB is important for B 12 -dependent propionate metabolism in bacteria. Our findings reveal that conformation-driven binding mechanism underlines the negative cooperativity of MMAB, as it favors the binding of the first AdoCbl while limiting further binding. The larger k on for the first site, combined with similar unbinding rates for both sites, could provide a solution for optimizing cobalamin handling and minimize unnecessary waste. Our single-molecule fluorescence approach offers a powerful tool for investigating other dynamic cofactor interactions, providing new insights into regulatory mechanisms in bacterial metabolism.
Collapse
|
5
|
Zhu J, Liao X, Du L, Lv P, Deng J. Associations of serum folate and vitamin B 12 levels with all-cause mortality among patients with metabolic dysfunction associated steatotic liver disease: a prospective cohort study. Front Endocrinol (Lausanne) 2024; 15:1426103. [PMID: 39703860 PMCID: PMC11655224 DOI: 10.3389/fendo.2024.1426103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/11/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction Serum folate and vitamin B12 levels correlate with the prevalence of fatty liver disease, but it is not clear how they affect mortality. Therefore, this study aimed to investigate the association of serum folate and vitamin B12 concentrations with all-cause mortality in individuals with metabolic dysfunction-associated steatotic liver disease (MASLD). Methods MASLD subjects were from the Third National Health and Nutrition Examination Survey (NHANES III) in the United States, and mortality follow-up data were obtained by linkage to death records from the National Death Index. Multivariable Cox proportional regression models and restricted cubic spline (RCS) models were used to evaluate the association of serum folate/vitamin B12 with all-cause mortality in the MASLD population. Results 3,636 and 2,125 MASLD individuals were included in the analyses related to serum folate and vitamin B12, respectively. During a follow-up period of more than 20 years, the RCS models demonstrated significant nonlinear associations of both serum folate (P <0.001) and vitamin B12 (P =0.016) with all-cause mortality in MASLD. When their serum concentrations were below the median level, the risk of all-cause mortality decreased with increasing concentration, reaching a lowest risk around the median level, and then leveled off. In the multivariable cox regression model, for vitamin B12, the risk of all-cause mortality was reduced by 42% and 28% in the third and fourth quartile groups, respectively, compared with the lowest quartile group (hazard ratio [HR]=0.58, 95% CI: 0.39-0.86, P =0.008; HR =0.72, 95% CI: 0.54-0.96, P=0.026, respectively). For folate, the risk of all-cause mortality was reduced by 28% in the third quartile compared with the lowest quartile (HR =0.72, 95% CI: 0.57-0.91, P =0.005). Conclusion This longitudinal cohort study suggests that low serum folate and vitamin B12 levels in patients with MASLD are significantly associated with an elevated risk of all-cause mortality.
Collapse
Affiliation(s)
- Jiaxin Zhu
- Department of Clinical Laboratory, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xinyi Liao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Du
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Pengju Lv
- Department of Clinical Laboratory, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Jian Deng
- Department of Thyroid Breast Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
6
|
Du C, Guo W, Wang M, Zhou Z, Zhou T, Liu M, Dong N, Wu Q. O-glycosylation is essential for cell surface expression of the transcobalamin receptor CD320. J Biol Chem 2024; 300:107997. [PMID: 39551142 DOI: 10.1016/j.jbc.2024.107997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024] Open
Abstract
CD320 is a cell surface receptor that mediates vitamin B12 uptake in most tissues. To date, the mechanisms that regulate CD320 expression on the cell surface are not fully understood. In this work, we studied CD320 expression in transfected human embryonic kidney (HEK) 293 and hepatoma HepG2 cells. By glycosidase and trypsin digestion, monensin and brefeldin treatment, western blotting, flow cytometry, and lectin binding, we found that CD320 underwent N- and O-glycosylation and sialylation, resulting in a ∼70-kDa band that formed a high-molecular-weight complex on the cell surface. Site-directed mutagenesis altering Asn126, Asn195, and Asn213 residues, individually or together, abolished N-glycosylation in CD320 but did not block its intracellular trafficking and expression on the cell surface in HEK293 and HepG2 cells. In contrast, treatment of the cells with Ben-gal, a structural analog of GalNAc-α-1-O-Ser/Thr, inhibited O-glycosylation and cell surface expression of CD320 and decreased vitamin B12 uptake. Analysis of CD320 deletion mutants indicated that O-glycosylation sites in a Ser/Thr-rich region near the transmembrane domain were important for CD320 expression on the cell surface. These results reveal an important role of O-glycans, but not N-glycans, in the intracellular trafficking and cell surface expression of CD320, providing new insights into the cellular mechanisms in regulating CD320 function and vitamin B12 metabolism.
Collapse
Affiliation(s)
- Chunyu Du
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University Suzhou Medical College, Suzhou, China; Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Wenjun Guo
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University Suzhou Medical College, Suzhou, China; Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Mengting Wang
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University Suzhou Medical College, Suzhou, China; Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Zibin Zhou
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tiantian Zhou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Ningzheng Dong
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University Suzhou Medical College, Suzhou, China; Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.
| |
Collapse
|
7
|
Moravcová M, Siatka T, Krčmová LK, Matoušová K, Mladěnka P. Biological properties of vitamin B 12. Nutr Res Rev 2024:1-33. [PMID: 39376196 DOI: 10.1017/s0954422424000210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Vitamin B12, cobalamin, is indispensable for humans owing to its participation in two biochemical reactions: the conversion of l-methylmalonyl coenzyme A to succinyl coenzyme A, and the formation of methionine by methylation of homocysteine. Eukaryotes, encompassing plants, fungi, animals and humans, do not synthesise vitamin B12, in contrast to prokaryotes. Humans must consume it in their diet. The most important sources include meat, milk and dairy products, fish, shellfish and eggs. Due to this, vegetarians are at risk to develop a vitamin B12 deficiency and it is recommended that they consume fortified food. Vitamin B12 behaves differently to most vitamins of the B complex in several aspects, e.g. it is more stable, has a very specific mechanism of absorption and is stored in large amounts in the organism. This review summarises all its biological aspects (including its structure and natural sources as well as its stability in food, pharmacokinetics and physiological function) as well as causes, symptoms, diagnosis (with a summary of analytical methods for its measurement), prevention and treatment of its deficiency, and its pharmacological use and potential toxicity.
Collapse
Affiliation(s)
- Monika Moravcová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Tomáš Siatka
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Lenka Kujovská Krčmová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
8
|
Stepanova M, Levit M, Egorova T, Nashchekina Y, Sall T, Demyanova E, Guryanov I, Korzhikova-Vlakh E. Poly(2-Deoxy-2-Methacrylamido-D-Glucose)-Based Complex Conjugates of Colistin, Deferoxamine and Vitamin B12: Synthesis and Biological Evaluation. Pharmaceutics 2024; 16:1080. [PMID: 39204425 PMCID: PMC11359296 DOI: 10.3390/pharmaceutics16081080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Growing resistance to traditional antibiotics poses a global threat to public health. In this regard, modification of known antibiotics, but with limited applications due to side effects, is one of the extremely promising approaches at present. In this study, we proposed the synthesis of novel complex polymeric conjugates of the peptide antibiotic colistin (CT). A biocompatible and water-soluble synthetic glycopolymer, namely, poly(2-deoxy-2-methacrylamido-D-glucose) (PMAG), was used as a polymer carrier. In addition to monoconjugates containing CT linked to PMAG by hydrolyzable and stable bonds, a set of complex conjugates also containing the siderophore deferoxamine (DFOA) and vitamin B12 was developed. The structures of the conjugates were confirmed by 1H NMR and FTIR-spectroscopy, while the compositions of conjugates were determined by UV-Vis spectrophotometry and HPLC analysis. The buffer media with pH 7.4, corresponding to blood or ileum pH, and 5.2, corresponding to the intestinal pH after ingestion or pH in the focus of inflammation, were used to study the release of CT. The resulting conjugates were examined for cytotoxicity and antimicrobial activity. All conjugates showed less cytotoxicity than free colistin. A Caco-2 cell permeability assay was carried out for complex conjugates to simulate the drug absorption in the intestine. In contrast to free CT, which showed very low permeability through the Caco-2 monolayer, the complex polymeric conjugates of vitamin B12 and CT provided significant transport. The antimicrobial activity of the conjugates depended on the conjugate composition. It was found that conjugates containing CT linked to the polymer by a hydrolyzable bond were found to be more active than conjugates with a non-hydrolyzable bond between CT and PMAG. Conjugates containing DFOA complexed with Fe3+ were characterized by enhanced antimicrobial activity against Pseudomonas aeruginosa compared to other conjugates.
Collapse
Affiliation(s)
- Mariia Stepanova
- Institute of Macromolecular Compounds of Russian Academy of Sciences, 199004 St. Petersburg, Russia; (M.S.); (M.L.)
| | - Mariia Levit
- Institute of Macromolecular Compounds of Russian Academy of Sciences, 199004 St. Petersburg, Russia; (M.S.); (M.L.)
| | - Tatiana Egorova
- Institute of Highly Pure Biopreparations, 197110 St. Petersburg, Russia; (T.E.); (E.D.)
| | - Yulia Nashchekina
- Institute of Cytology of Russian Academy of Sciences, 194064 St. Petersburg, Russia;
| | - Tatiana Sall
- Institute of Experimental Medicine, 197022 St. Petersburg, Russia;
| | - Elena Demyanova
- Institute of Highly Pure Biopreparations, 197110 St. Petersburg, Russia; (T.E.); (E.D.)
| | - Ivan Guryanov
- Institute of Chemistry, St. Petersburg State University, 198504 St. Petersburg, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds of Russian Academy of Sciences, 199004 St. Petersburg, Russia; (M.S.); (M.L.)
| |
Collapse
|
9
|
Msane S, Khathi A, Sosibo A. Therapeutic Potential of Various Intermittent Fasting Regimens in Alleviating Type 2 Diabetes Mellitus and Prediabetes: A Narrative Review. Nutrients 2024; 16:2692. [PMID: 39203828 PMCID: PMC11357349 DOI: 10.3390/nu16162692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/22/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Intermittent fasting has drawn significant interest in the clinical research community due to its potential to address metabolic complications such as obesity and type 2 diabetes mellitus. Various intermittent fasting regimens include alternate-day fasting (24 h of fasting followed by 24 h of eating), time-restricted fasting (fasting for 14 h and eating within a 10 h window), and the 5:2 diet (fasting for two days and eating normally for the other five days). Intermittent fasting is associated with a reduced risk of type 2 diabetes mellitus-related complications and can slow their progression. The increasing global prevalence of type 2 diabetes mellitus highlights the importance of early management. Since prediabetes is a precursor to type 2 diabetes mellitus, understanding its progression is essential. However, the long-term effects of intermittent fasting on prediabetes are not yet well understood. Therefore, this review aims to comprehensively compile existing knowledge on the therapeutic effects of intermittent fasting in managing type 2 diabetes mellitus and prediabetes.
Collapse
Affiliation(s)
| | - Andile Khathi
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa;
| | - Aubrey Sosibo
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa;
| |
Collapse
|
10
|
Pan X, Köberle M, Ghashghaeinia M. Vitamin C-Dependent Uptake of Non-Heme Iron by Enterocytes, Its Impact on Erythropoiesis and Redox Capacity of Human Erythrocytes. Antioxidants (Basel) 2024; 13:968. [PMID: 39199214 PMCID: PMC11352176 DOI: 10.3390/antiox13080968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
In the small intestine, nutrients from ingested food are absorbed and broken down by enterocytes, which constitute over 95% of the intestinal epithelium. Enterocytes demonstrate diet- and segment-dependent metabolic flexibility, enabling them to take up large amounts of glutamine and glucose to meet their energy needs and transfer these nutrients into the bloodstream. During glycolysis, ATP, lactate, and H+ ions are produced within the enterocytes. Based on extensive but incomplete glutamine oxidation large amounts of alanine or lactate are produced. Lactate, in turn, promotes hypoxia-inducible factor-1α (Hif-1α) activation and Hif-1α-dependent transcription of various proton channels and exchangers, which extrude cytoplasmic H+-ions into the intestinal lumen. In parallel, the vitamin C-dependent and duodenal cytochrome b-mediated conversion of ferric iron into ferrous iron progresses. Finally, the generated electrochemical gradient is utilized by the divalent metal transporter 1 for H+-coupled uptake of non-heme Fe2+-ions. Iron efflux from enterocytes, subsequent binding to the plasma protein transferrin, and systemic distribution supply a wide range of cells with iron, including erythroid precursors essential for erythropoiesis. In this review, we discuss the impact of vitamin C on the redox capacity of human erythrocytes and connect enterocyte function with iron metabolism, highlighting its effects on erythropoiesis.
Collapse
Affiliation(s)
- Xia Pan
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany
| | - Martin Köberle
- Department of Dermatology and Allergology, School of Medicine and Health, Technical University of Munich, Biedersteinerstr. 29, 80802 München, Germany
| | - Mehrdad Ghashghaeinia
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany
| |
Collapse
|
11
|
Mucha P, Kus F, Cysewski D, Smolenski RT, Tomczyk M. Vitamin B 12 Metabolism: A Network of Multi-Protein Mediated Processes. Int J Mol Sci 2024; 25:8021. [PMID: 39125597 PMCID: PMC11311337 DOI: 10.3390/ijms25158021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
The water-soluble vitamin, vitamin B12, also known as cobalamin, plays a crucial role in cellular metabolism, particularly in DNA synthesis, methylation, and mitochondrial functionality. Its deficiency can lead to hematological and neurological disorders; however, the manifestation of these clinical outcomes is relatively late. It leads to difficulties in the early diagnosis of vitamin B12 deficiency. A prolonged lack of vitamin B12 may have severe consequences including increased morbidity to neurological and cardiovascular diseases. Beyond inadequate dietary intake, vitamin B12 deficiency might be caused by insufficient bioavailability, blood transport disruptions, or impaired cellular uptake and metabolism. Despite nearly 70 years of knowledge since the isolation and characterization of this vitamin, there are still gaps in understanding its metabolic pathways. Thus, this review aims to compile current knowledge about the crucial proteins necessary to efficiently accumulate and process vitamin B12 in humans, presenting these systems as a multi-protein network. The epidemiological consequences, diagnosis, and treatment of vitamin B12 deficiency are also highlighted. We also discuss clinical warnings of vitamin B12 deficiency based on the ongoing test of specific moonlighting proteins engaged in vitamin B12 metabolic pathways.
Collapse
Affiliation(s)
- Patryk Mucha
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (P.M.); (F.K.); (R.T.S.)
| | - Filip Kus
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (P.M.); (F.K.); (R.T.S.)
- Laboratory of Protein Biochemistry, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | - Dominik Cysewski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (P.M.); (F.K.); (R.T.S.)
| | - Marta Tomczyk
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (P.M.); (F.K.); (R.T.S.)
| |
Collapse
|
12
|
Al Zoubi MS, Al-Oun MA, Abusahyoun FY, Abualarja MI, Al Smadi A, Al-Trad B, Awadin SA, Al-Batayneh K, Elaarag M, Al-Zoubi RM. Exploring the Impact of Cigarette Smoke Extracts on Vitamin B 12: Insights into the Transformation of Methylcobalamin and Hydroxycobalamin to Cyanocobalamin through In Vitro Evaluation. Biochem Res Int 2024; 2024:8827402. [PMID: 38665151 PMCID: PMC11045288 DOI: 10.1155/2024/8827402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/10/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Vitamin B12 (cobalamin) is a water-soluble molecule required for the proper functioning of metabolism, blood and DNA synthesis, and neurological development. Vitamin B12 exists in several forms: methylcobalamin (MeCbl), adenosylcobalamin (AdoCbl), hydroxycobalamin (OHCbl), and cyanocobalamin (CNCbl). This study aimed to evaluate the effect of cigarette smoke on the chemical structure of methylcobalamin and hydroxycobalamin forms of vitamin B12. MeCbl and OHCbl were markedly affected by exposure to cigarette smoke. The resemblance of the Rt between MeCbl and OHCbl and CNCbl indicates that exposure to cigarette smoke extracts chemically alters MeCbl and OHCbl to CNCbl, warranting in vivo research investigations.
Collapse
Affiliation(s)
- Mazhar Salim Al Zoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 211-63, Jordan
| | - Mus'aab A. Al-Oun
- Department of Biological Sciences, Faculty of Sciences, Yarmouk University, Irbid 211-63, Jordan
| | - Fatima Yacoub Abusahyoun
- Department of Biological Sciences, Faculty of Sciences, Yarmouk University, Irbid 211-63, Jordan
| | - Manal Issam Abualarja
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 211-63, Jordan
| | - Asmaa Al Smadi
- Department of Biological Sciences, Faculty of Sciences, Yarmouk University, Irbid 211-63, Jordan
| | - Bahaa Al-Trad
- Department of Biological Sciences, Faculty of Sciences, Yarmouk University, Irbid 211-63, Jordan
| | - Sura A. Awadin
- Department of Biological Sciences, Faculty of Sciences, Yarmouk University, Irbid 211-63, Jordan
| | - Khalid Al-Batayneh
- Department of Biological Sciences, Faculty of Sciences, Yarmouk University, Irbid 211-63, Jordan
| | - Mai Elaarag
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Raed M. Al-Zoubi
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
- Department of Chemistry, Jordan University of Science and Technology, Irbid 22110, Jordan
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha 2713, Qatar
| |
Collapse
|
13
|
Dubashynskaya NV, Bokatyi AN, Sall TS, Egorova TS, Demyanova EV, Dubrovskii YA, Murashko EA, Anufrikov YA, Shasherina AY, Vlasova EN, Skorik YA. Hyaluronan/B12-chitosan polyelectrolyte complex for oral colistin administration. Int J Biol Macromol 2024; 263:130177. [PMID: 38360229 DOI: 10.1016/j.ijbiomac.2024.130177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/25/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Polyelectrolyte complexes (PECs) based on polysaccharides, including hyaluronic acid (HA) and chitosan (CS), are promising delivery systems for antimicrobial agents, including oral administration of the peptide antibiotic colistin (CT). Modification of CS with different targeting ligands to improve intestinal permeability is a suitable way to improve the oral bioavailability of polyelectrolyte particles. This study describes the procedure for obtaining CT-containing PECs based on HA and CS modified with cyanocobalamin (vitamin B12). In this case, vitamin B12 is used as a targeting ligand because it is absorbed in the ileum via specific transporter proteins. The resulting PECs had a hydrodynamic size of about 284 nm and a positive ζ-potential of about 26 mV; the encapsulation efficiency was 88.2 % and the CT content was 42.2 μg/mg. The developed systems provided a two-phase drug release: about 50 % of the CT was released in 0.5-1 h, and about 60 % of the antibiotic was cumulatively released in 5 h. The antimicrobial activity of encapsulated CT was maintained at the same level as the pure drug for at least 24 h (minimum inhibitory concentration against Pseudomonas aeruginosa was 2 μg/mL for both). In addition, the apparent permeability coefficient of CT in the PEC formulation was 2.4 × 10-6 cm/s. Thus, the incorporation of CT into HA- and vitamin B12-modified CS-based PECs can be considered as a simple and convenient method to improve the oral delivery of CT.
Collapse
Affiliation(s)
- Natallia V Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russia
| | - Anton N Bokatyi
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russia
| | - Tatiana S Sall
- Institute of Experimental Medicine, Acad. Pavlov St. 12, Saint Petersburg 197376, Russia
| | - Tatiana S Egorova
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, St Petersburg 197110, Russia
| | - Elena V Demyanova
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, St Petersburg 197110, Russia
| | - Yaroslav A Dubrovskii
- Almazov National Medical Research Centre, Akkuratova 2, St. Petersburg 197341, Russian Federation
| | - Ekaterina A Murashko
- Almazov National Medical Research Centre, Akkuratova 2, St. Petersburg 197341, Russian Federation
| | - Yuri A Anufrikov
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, 198504 St. Petersburg, Russia
| | - Anna Y Shasherina
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, 198504 St. Petersburg, Russia
| | - Elena N Vlasova
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russia
| | - Yury A Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russia.
| |
Collapse
|
14
|
Mishra E, Thakur MK. Vitamin B 12-folic acid supplementation improves memory by altering mitochondrial dynamics, dendritic arborization, and neurodegeneration in old and amnesic male mice. J Nutr Biochem 2024; 124:109536. [PMID: 37981108 DOI: 10.1016/j.jnutbio.2023.109536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/28/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
Memory impairment during aging and amnesia is attributed to compromised mitochondrial dynamics and mitophagy and other mitochondrial quality control mechanisms. Mitochondrial dynamics involves the continuous process of fission and fusion of mitochondria within a cell and is a fundamental mechanism for regulating mitochondrial quality and function. An extensive range of potential nutritional supplements has been shown to improve mitochondrial health, synaptic plasticity, and cognitive functions. Previous findings revealed that supplementation of vitamin B12-folic acid reduces locomotor deficits and mitochondrial abnormalities but enhances mitochondrial and neuronal health. The present study aims to explore the impact of combined vitamin B12-folic acid supplementation on mitochondrial dynamics, neuronal health, and memory decline in old age and scopolamine-induced amnesia, which remains elusive. The results demonstrated that supplementation led to a noteworthy increase in recognition and spatial memory and expression of memory-related protein BDNF in old and amnesic mice. Moreover, the decrease in the fragmented mitochondrial number was validated by the downregulation of mitochondrial fission p-Drp1 (S616) protein and the increase in elongated mitochondria by the upregulation of mitochondrial fusion Mfn2 protein. The increased spine density and dendritic arborization in old and amnesic mice upon supplementation were confirmed by the enhanced expression level of PSD95 and synaptophysin. Furthermore, supplementation reduced ROS production, inhibited Caspase-3 activation, mitigated neurodegeneration, and enhanced mitochondrial membrane potential, ATP production, Vdac1 expression, myelination, in old and amnesic mice. Collectively, our findings imply that combined supplementation of vitamin B12-folic acid improves mitochondrial dynamics and neuronal health, and leads to recovery of memory during old age and amnesia.
Collapse
Affiliation(s)
- Ela Mishra
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi, India.
| | - Mahendra Kumar Thakur
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
15
|
Batulwar PS, Anjankar A. Individuals Diagnosed With Type 2 Diabetes Mellitus and the Status of Vitamin B12 Deficiency: A Review. Cureus 2024; 16:e55103. [PMID: 38558585 PMCID: PMC10978817 DOI: 10.7759/cureus.55103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder with a multifactorial etiology and a significant global burden. In recent years, emerging evidence has suggested a potential link between T2DM and vitamin B12 deficiency, raising concerns about its impact on disease progression, management, and associated complications. This comprehensive review critically examines the current understanding of the prevalence, risk factors, clinical implications, and management strategies related to vitamin B12 deficiency in individuals diagnosed with T2DM. The review begins by providing an overview of the epidemiology of T2DM and its associated complications, underscoring the need for comprehensive management approaches. Subsequently, it delves into the physiology of vitamin B12, including its sources, absorption mechanisms, and biological functions, laying the groundwork for understanding the potential implications of deficiency in T2DM. A thorough analysis of the literature is conducted to elucidate the prevalence and risk factors of vitamin B12 deficiency in individuals with T2DM, considering factors such as age, duration of diabetes, medication use (e.g., metformin), dietary patterns, and comorbidities. Special attention is given to the role of metformin, the first-line therapy for T2DM, in precipitating or exacerbating vitamin B12 deficiency through mechanisms involving alterations in the gut microbiota and intestinal absorption. The review further explores the clinical manifestations and diagnostic challenges associated with vitamin B12 deficiency in the context of T2DM, emphasizing the importance of recognizing subtle symptoms and implementing appropriate screening protocols. It discusses the potential implications of vitamin B12 deficiency on glycemic control, diabetic neuropathy, cognitive function, cardiovascular health, and overall quality of life in individuals with T2DM. In addressing the management of vitamin B12 deficiency in T2DM, the review examines various therapeutic strategies, including oral and parenteral supplementation, dietary modifications, and lifestyle interventions. It critically evaluates the evidence supporting routine screening for vitamin B12 deficiency in individuals with T2DM and discusses controversies surrounding optimal supplementation protocols, dosing regimens, and monitoring strategies. Furthermore, the review highlights gaps in current knowledge and identifies areas for future research, such as the long-term effects of vitamin B12 supplementation on clinical outcomes in T2DM, the impact of genetic factors on vitamin B12 metabolism, and the potential role of personalized interventions. Overall, this review consolidates existing evidence and provides insights into the complex relationship between T2DM and vitamin B12 deficiency, aiming to inform clinical practice, enhance patient care, and guide future research endeavors in this important area of metabolic medicine.
Collapse
Affiliation(s)
- Pratiksha S Batulwar
- Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ashish Anjankar
- Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
16
|
Jonnalagadda D, Kihara Y, Groves A, Ray M, Saha A, Ellington C, Lee-Okada HC, Furihata T, Yokomizo T, Quadros EV, Rivera R, Chun J. FTY720 requires vitamin B 12-TCN2-CD320 signaling in astrocytes to reduce disease in an animal model of multiple sclerosis. Cell Rep 2023; 42:113545. [PMID: 38064339 PMCID: PMC11066976 DOI: 10.1016/j.celrep.2023.113545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
Vitamin B12 (B12) deficiency causes neurological manifestations resembling multiple sclerosis (MS); however, a molecular explanation for the similarity is unknown. FTY720 (fingolimod) is a sphingosine 1-phosphate (S1P) receptor modulator and sphingosine analog approved for MS therapy that can functionally antagonize S1P1. Here, we report that FTY720 suppresses neuroinflammation by functionally and physically regulating the B12 pathways. Genetic and pharmacological S1P1 inhibition upregulates a transcobalamin 2 (TCN2)-B12 receptor, CD320, in immediate-early astrocytes (ieAstrocytes; a c-Fos-activated astrocyte subset that tracks with experimental autoimmune encephalomyelitis [EAE] severity). CD320 is also reduced in MS plaques. Deficiency of CD320 or dietary B12 restriction worsens EAE and eliminates FTY720's efficacy while concomitantly downregulating type I interferon signaling. TCN2 functions as a chaperone for FTY720 and sphingosine, whose complex induces astrocytic CD320 internalization, suggesting a delivery mechanism of FTY720/sphingosine via the TCN2-CD320 pathway. Taken together, the B12-TCN2-CD320 pathway is essential for the mechanism of action of FTY720.
Collapse
Affiliation(s)
- Deepa Jonnalagadda
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yasuyuki Kihara
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Aran Groves
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA; Neuroscience Graduate Program, School of Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Manisha Ray
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Arjun Saha
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Clayton Ellington
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hyeon-Cheol Lee-Okada
- Department of Biochemistry, Graduate School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tomomi Furihata
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Graduate School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Edward V Quadros
- Department of Medicine, SUNY-Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | - Richard Rivera
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
17
|
Eduin B, Roubille C, Badiou S, Cristol JP, Fesler P. Association between Elevated Plasma Vitamin B12 and Short-Term Mortality in Elderly Patients Hospitalized in an Internal Medicine Unit. Int J Clin Pract 2023; 2023:6652671. [PMID: 38146346 PMCID: PMC10749720 DOI: 10.1155/2023/6652671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/14/2023] [Accepted: 11/25/2023] [Indexed: 12/27/2023] Open
Abstract
Background The prognostic value of vitamin B12 blood levels remains controversial. An association between elevated vitamin B12 and mortality has been reported, particularly among elderly patients with cancers and liver or blood diseases. The present study explored the relationship between mortality and elevated vitamin B12 levels in a population of unscheduled inpatients in an internal medicine unit. Methods This retrospective observational analysis was conducted between August 2014 and December 2018. We compared 165 patients with elevated plasma vitamin B12 levels (>600 pmol/l) with a random sample of 165 patients with normal B12 levels who were hospitalized during the same period. Demographic, clinical, and biological characteristics were assessed during hospitalization. The primary endpoint was all-cause death at 1 year. Results Patients with elevated B12 were younger, with a lower body mass index and lower plasma albumin than those with normal B12 (75 ± 16 years vs 79 ± 13 years, p = 0.047; 23 ± 5 vs 26 ± 7 kg/m2, p < 0.001; and 33 ± 5 vs 35 ± 5 g/l, p < 0.001, respectively). The prevalence of auto-immune disease and referral from an intensive care unit was higher among patients with elevated B12 (11% vs 5%, p = 0.043 and 36% vs 10%, p < 0.001, respectively). After 1 year of follow-up, 64 (39%) patients with elevated B12 had died compared to 43 (26%) patients with normal B12 (p = 0.018). Multivariate analysis using the Cox proportional hazards regression model adjusted for age, gender, body mass index, intensive care unit hospitalization, albumin level, and the presence of solid cancer or autoimmune disease revealed elevated B12 to be associated with a significant risk of death in the first year of follow-up (hazard ratio: 1.71 [1.08-2.7], p = 0.022). Conclusion Elevated B12 is an early warning indicator of increased short-term mortality, such as independently of age, cancer, or comorbidities, in patients hospitalized in an internal medicine department.
Collapse
Affiliation(s)
- Benjamin Eduin
- Department of Internal Medicine, University Hospital of Montpellier, Montpellier, France
| | - Camille Roubille
- Department of Internal Medicine, University Hospital of Montpellier, Montpellier, France
- PhyMedExp, University of Montpellier, INSERM, CNRS, University Hospital of Montpellier, Montpellier, France
| | - Stéphanie Badiou
- PhyMedExp, University of Montpellier, INSERM, CNRS, University Hospital of Montpellier, Montpellier, France
- Department of Biochemistry and Hormonology, University Hospital of Montpellier, Montpellier, France
| | - Jean Paul Cristol
- PhyMedExp, University of Montpellier, INSERM, CNRS, University Hospital of Montpellier, Montpellier, France
- Department of Biochemistry and Hormonology, University Hospital of Montpellier, Montpellier, France
| | - Pierre Fesler
- Department of Internal Medicine, University Hospital of Montpellier, Montpellier, France
- PhyMedExp, University of Montpellier, INSERM, CNRS, University Hospital of Montpellier, Montpellier, France
| |
Collapse
|
18
|
Tscherner AK, McClatchie T, Macaulay AD, Baltz JM. Relationship of quantitative reverse transcription polymerase chain reaction (RT-PCR) to RNA Sequencing (RNAseq) transcriptome identifies mouse preimplantation embryo reference genes†. Biol Reprod 2023; 109:601-617. [PMID: 37669129 PMCID: PMC10651071 DOI: 10.1093/biolre/ioad107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/04/2023] [Accepted: 08/25/2023] [Indexed: 09/07/2023] Open
Abstract
Numerous reference genes for use with quantitative reverse transcription polymerase chain reaction (RT-qPCR) have been used for oocytes, eggs, and preimplantation embryos. However, none are actually suitable because of their large variations in expression between developmental stages. To address this, we produced a standardized and merged RNA sequencing (RNAseq) data set by combining multiple publicly available RNAseq data sets that spanned mouse GV oocytes, MII eggs, and 1-cell, 2-cell, 4-cell, 8-cell, morula, and blastocyst stage embryos to identify transcripts with essentially constant expression across all stages. Their expression was then measured using RT-qPCR, with which they did not exhibit constant expression but instead revealed a fixed quantitative relationship between measurements by the two techniques. From this, the relative amounts of total messenger RNA at each stage from the GV oocyte through blastocyst stages were calculated. The quantitative relationship between measurements by RNAseq and RT-qPCR was then used to find genes predicted to have constant expression across stages in RT-qPCR. Candidates were assessed by RT-qPCR to confirm constant expression, identifying Hmgb3 and Rb1cc1 or the geometric mean of those plus either Taf1d or Cd320 as suitable reference genes. This work not only identified transcripts with constant expression from mouse GV oocytes to blastocysts, but also determined a general quantitative relationship between expression measured by RNAseq and RT-qPCR across stages that revealed the relative levels of total mRNA at each stage. The standardized and merged RNA data set should also prove useful in determining transcript expression in mouse oocytes, eggs, and embryos.
Collapse
Affiliation(s)
- Allison K Tscherner
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Obstetrics and Gynecology, University of Ottawa Faculty of Medicine, Ottawa, ON, Canada
| | - Taylor McClatchie
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Obstetrics and Gynecology, University of Ottawa Faculty of Medicine, Ottawa, ON, Canada
| | | | - Jay M Baltz
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Obstetrics and Gynecology, University of Ottawa Faculty of Medicine, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa Faculty of Medicine, Ottawa, ON, Canada
| |
Collapse
|
19
|
Genchi G, Lauria G, Catalano A, Carocci A, Sinicropi MS. Prevalence of Cobalt in the Environment and Its Role in Biological Processes. BIOLOGY 2023; 12:1335. [PMID: 37887045 PMCID: PMC10604320 DOI: 10.3390/biology12101335] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/08/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023]
Abstract
Cobalt (Co) is an essential trace element for humans and other animals, but high doses can be harmful to human health. It is present in some foods such as green vegetables, various spices, meat, milk products, seafood, and eggs, and in drinking water. Co is necessary for the metabolism of human beings and animals due to its key role in the formation of vitamin B12, also known as cobalamin, the biological reservoir of Co. In high concentrations, Co may cause some health issues such as vomiting, nausea, diarrhea, bleeding, low blood pressure, heart diseases, thyroid damage, hair loss, bone defects, and the inhibition of some enzyme activities. Conversely, Co deficiency can lead to anorexia, chronic swelling, and detrimental anemia. Co nanoparticles have different and various biomedical applications thanks to their antioxidant, antimicrobial, anticancer, and antidiabetic properties. In addition, Co and cobalt oxide nanoparticles can be used in lithium-ion batteries, as a catalyst, a carrier for targeted drug delivery, a gas sensor, an electronic thin film, and in energy storage. Accumulation of Co in agriculture and humans, due to natural and anthropogenic factors, represents a global problem affecting water quality and human and animal health. Besides the common chelating agents used for Co intoxication, phytoremediation is an interesting environmental technology for cleaning up soil contaminated with Co. The occurrence of Co in the environment is discussed and its involvement in biological processes is underlined. Toxicological aspects related to Co are also examined in this review.
Collapse
Affiliation(s)
- Giuseppe Genchi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (G.G.); (G.L.); (M.S.S.)
| | - Graziantonio Lauria
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (G.G.); (G.L.); (M.S.S.)
| | - Alessia Catalano
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “A. Moro”, 70125 Bari, Italy;
| | - Alessia Carocci
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “A. Moro”, 70125 Bari, Italy;
| | - Maria Stefania Sinicropi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (G.G.); (G.L.); (M.S.S.)
| |
Collapse
|
20
|
Dutta AK, Jain A, Jearth V, Mahajan R, Panigrahi MK, Sharma V, Goenka MK, Kochhar R, Makharia G, Reddy DN, Kirubakaran R, Ahuja V, Berry N, Bhat N, Dutta U, Ghoshal UC, Jain A, Jalihal U, Jayanthi V, Kumar A, Nijhawan S, Poddar U, Ramesh GN, Singh SP, Zargar S, Bhatia S. Guidelines on optimizing the use of proton pump inhibitors: PPI stewardship. Indian J Gastroenterol 2023; 42:601-628. [PMID: 37698821 DOI: 10.1007/s12664-023-01428-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/10/2023] [Indexed: 09/13/2023]
Abstract
Proton pump inhibitors (PPIs) have been available for over three decades and are among the most commonly prescribed medications. They are effective in treating a variety of gastric acid-related disorders. They are freely available and based on current evidence, use of PPIs for inappropriate indications and duration appears to be common. Over the years, concerns have been raised on the safety of PPIs as they have been associated with several adverse effects. Hence, there is a need for PPI stewardship to promote the use of PPIs for appropriate indication and duration. With this objective, the Indian Society of Gastroenterology has formulated guidelines on the rational use of PPIs. The guidelines were developed using a modified Delphi process. This paper presents these guidelines in detail, including the statements, review of literature, level of evidence and recommendations. This would help the clinicians in optimizing the use of PPIs in their practice and promote PPI stewardship.
Collapse
Affiliation(s)
- Amit Kumar Dutta
- Department of Gastroenterology, Christian Medical College and Hospital, Vellore, 632 004, India.
| | | | - Vaneet Jearth
- Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Ramit Mahajan
- Dayanand Medical College and Hospital, Ludhiana, 141 001, India
| | | | - Vishal Sharma
- Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | | | | | - Govind Makharia
- All India Institute of Medical Sciences, New Delhi, 110 029, India
| | | | - Richard Kirubakaran
- Center of Biostatistics and Evidence Based Medicine, Vellore, 632 004, India
| | - Vineet Ahuja
- All India Institute of Medical Sciences, New Delhi, 110 029, India
| | - Neha Berry
- BLK Institute of Digestive and Liver Disease, New Delhi, 201 012, India
| | - Naresh Bhat
- Aster CMI Hospital, Bengaluru, 560 092, India
| | - Usha Dutta
- Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Uday Chand Ghoshal
- Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226 014, India
| | - Ajay Jain
- Choithram Hospital and Research Center, Indore, 452 014, India
| | | | - V Jayanthi
- Sri Ramachandra Medical College, Chennai, 600 116, India
| | - Ajay Kumar
- Institute of Digestive and Liver Diseases, BLK - Max Superspeciality Hospital, New Delhi, 201 012, India
| | | | - Ujjal Poddar
- Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226 014, India
| | | | - Shivram P Singh
- Kalinga Gastroenterology Foundation, Cuttack, 753 001, India
| | - Showkat Zargar
- Department of Gastroenterology, Sher-i-Kashmir Institute of Medical Sciences, Kashmir, 190 011, India
| | - Shobna Bhatia
- Sir H N Reliance Foundation Hospital, Mumbai, 400 004, India
| |
Collapse
|
21
|
Bianciardi S, Tesi G, Cerutti H, Cartocci A, Guerranti R, Silvestrini C, Gori S, Bandini T, Brogi A, Leoncini R. Validation, performance, and reliability of two automated tests for vitamin B12 and folate assay. J Public Health Res 2023; 12:22799036231217803. [PMID: 38108046 PMCID: PMC10722937 DOI: 10.1177/22799036231217803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023] Open
Abstract
Background Deficiency of Vitamin B12 and folate may determine hematological, neurological, and metabolic alterations; therefore, an accurate quantification of their serum levels is required, especially in the presence of symptoms that might suggest a deficiency. CHORUS VIT B12 and CHORUS FOLATE are two automated immunoassays, developed to quantify vitamin B12 and folate, respectively, in human serum. Design and methods This single-center, non-pharmacological, diagnostic study described the validation and characterization of CHORUS VIT B12 and CHORUS FOLATE, with a specific focus on performance, precision, and reliability. For each assay, 500 serum samples were analyzed. A comparison between CHORUS assays and commercially available kit was also performed. Results For CHORUS VIT B12 the lower limit of quantification (LLoQ) was 165.0 pg/mL and the upper LoQ (ULoQ) was 1846.8 pg/mL. The assay was linear within the calibration range (150-2000 pg/mL) and the accuracy was described with the International Standard Vitamin B12, Serum Folate, HOLO TC (NIBSC code: 03/178), with a mean recovery on two lots of 111%. For CHORUS FOLATE (calibration range of 2.0-20.0 ng/mL), LLoQ was 2.0 ng/mL and ULoQ 19.6 ng/mL. The linearity was demonstrated from 2.4 to 20.0 ng/mL; the accuracy was described with the International Standard mentioned above, achieving a mean recovery on three lots of 92%. The lowest and highest values of both CHORUS and COBAS kits were similar and the median values did not significantly vary. Conclusion CHORUS VIT B12 and CHORUS FOLATE performed well, accurately, and reliably in quantifying vitamin B12 and folate in human serum.
Collapse
Affiliation(s)
- Simone Bianciardi
- DIESSE Diagnostica Senese S.p.A. Società Benefit, Monteriggioni, Siena, Italy
| | - Giulia Tesi
- DIESSE Diagnostica Senese S.p.A. Società Benefit, Monteriggioni, Siena, Italy
| | - Helena Cerutti
- DIESSE Diagnostica Senese S.p.A. Società Benefit, Monteriggioni, Siena, Italy
| | | | - Roberto Guerranti
- Laboratorio Patologia Clinica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Caterina Silvestrini
- Laboratorio Patologia Clinica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Sabrina Gori
- Laboratorio Patologia Clinica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Tommaso Bandini
- DIESSE Diagnostica Senese S.p.A. Società Benefit, Monteriggioni, Siena, Italy
| | - Alessandra Brogi
- DIESSE Diagnostica Senese S.p.A. Società Benefit, Monteriggioni, Siena, Italy
| | - Roberto Leoncini
- Laboratorio Patologia Clinica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| |
Collapse
|
22
|
Sahoo OS, Mitra R, Bhattacharjee A, Kar S, Mukherjee O. Is Diabetes Mellitus a Predisposing Factor for Helicobacter pylori Infections? Curr Diab Rep 2023; 23:195-205. [PMID: 37213058 DOI: 10.1007/s11892-023-01511-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2023] [Indexed: 05/23/2023]
Abstract
PURPOSE OF REVIEW This review aims to analyse the consistency of reports suggesting the role of Diabetes Mellitus in the pathogenesis of Helicobacter pylori (H. pylori). RECENT FINDINGS There have been numerous controversies citing the prevalence of H. pylori infections in patients suffering from type 2 diabetes mellitus (T2DM). This review investigates the possible crosstalk between H. pylori infections and T2DM and also designs a meta-analysis to quantify the association. Subgroup analyses have also been conducted to deduce factors like geography and testing techniques, in playing a role in stratification analysis. Based on a scientific literature survey and meta-analysis of databases from 1996 to 2022, a trend towards more frequent H. pylori infections in patients with diabetes mellitus was observed. The highly diversified nature of H. pylori infections across age, gender, and geographical regions requires large interventional studies to evaluate its long-term association with diabetes mellitus. Further possible linkage of the prevalence of diabetes mellitus concomitant with that of H. pylori infected patients has also been delineated in the review.
Collapse
Affiliation(s)
- Om Saswat Sahoo
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India, 713209
| | - Rhiti Mitra
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India, 713209
| | - Arghyadeep Bhattacharjee
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India, 713209
- Department of Microbiology, Kingston College of Science, Beruanpukuria, Barasat, West Bengal, India, 700129
| | - Samarjit Kar
- Department of Mathematics, National Institute of Technology Durgapur, Durgapur, West Bengal, India, 713209
| | - Oindrilla Mukherjee
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India, 713209.
| |
Collapse
|
23
|
Dubashynskaya NV, Bokatyi AN, Sall TS, Egorova TS, Nashchekina YA, Dubrovskii YA, Murashko EA, Vlasova EN, Demyanova EV, Skorik YA. Cyanocobalamin-Modified Colistin-Hyaluronan Conjugates: Synthesis and Bioactivity. Int J Mol Sci 2023; 24:11550. [PMID: 37511308 PMCID: PMC10380726 DOI: 10.3390/ijms241411550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Polymeric drug delivery systems enhance the biopharmaceutical properties of antibiotics by increasing their bioavailability, providing programmable and controlled-release properties, and reducing toxicity. In addition, drug delivery systems are a promising strategy to improve the intestinal permeability of various antimicrobial agents, including colistin (CT). This study describes the modification of conjugates based on CT and hyaluronic acid (HA) with cyanocobalamin (vitamin B12). Vitamin B12 was chosen as a targeting ligand because it has its own absorption pathway in the small intestine. The resulting polysaccharide conjugates contained 95 μg/mg vitamin B12 and the CT content was 335 μg/mg; they consisted of particles of two sizes, 98 and 702 nm, with a ζ-potential of approximately -25 mV. An in vitro release test at pH 7.4 and pH 5.2 showed an ultra-slow release of colistin of approximately 1% after 10 h. The modified B12 conjugates retained their antimicrobial activity at the level of pure CT (minimum inhibitory concentration was 2 μg/mL). The resulting delivery systems also reduced the nephrotoxicity of CT by 30-40% (HEK 293 cell line). In addition, the modification of B12 improved the intestinal permeability of CT, and the apparent permeability coefficient of HA-CT-B12 conjugates was 3.5 × 10-6 cm/s, corresponding to an in vivo intestinal absorption of 50-100%. Thus, vitamin-B12-modified conjugates based on CT and HA may be promising oral delivery systems with improved biopharmaceutical properties.
Collapse
Affiliation(s)
- Natallia V Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russia
| | - Anton N Bokatyi
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russia
| | - Tatiana S Sall
- Institute of Experimental Medicine, Acad. Pavlov St. 12, St. Petersburg 197376, Russia
| | - Tatiana S Egorova
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, St. Petersburg 197110, Russia
| | - Yuliya A Nashchekina
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky 4, St. Petersburg 194064, Russia
| | - Yaroslav A Dubrovskii
- Almazov National Medical Research Centre, Akkuratova 2, St. Petersburg 197341, Russia
| | - Ekaterina A Murashko
- Almazov National Medical Research Centre, Akkuratova 2, St. Petersburg 197341, Russia
| | - Elena N Vlasova
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russia
| | - Elena V Demyanova
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, St. Petersburg 197110, Russia
| | - Yury A Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russia
| |
Collapse
|
24
|
Sayedali E, Yalin AE, Yalin S. Association between metformin and vitamin B12 deficiency in patients with type 2 diabetes. World J Diabetes 2023; 14:585-593. [PMID: 37273250 PMCID: PMC10236989 DOI: 10.4239/wjd.v14.i5.585] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 04/07/2023] [Indexed: 05/15/2023] Open
Abstract
Diabetes mellitus (DM) is still one of the most common diseases worldwide, and its prevalence is still increasing globally. According to the American and European recommendations, metformin is considered a first-line oral hypo-glycemic drug for controlling type 2 DM (T2DM) patients. Metformin is the ninth most often prescribed drug in the world, and at least 120 million diabetic people are estimated to receive the drug. In the last 20 years, there has been increasing evidence of vitamin B12 deficiency among metformin-treated diabetic patients. Many studies have reported that vitamin B12 deficiency is related to the ma-labsorption of vitamin B12 among metformin-treated T2DM patients. Vitamin B12 deficiency may have a very bad complication for the T2DM patient. In this review, we will focus on the effect of metformin on the absorption of vitamin B12 and on its proposed mechanisms in hindering vitamin B12 absorption. In addition, the review will describe the clinical outcomes of vitamin B12 deficiency in metformin-treated T2DM.
Collapse
Affiliation(s)
- Ehsan Sayedali
- Department of Biochemistry,Faculty of Pharmacy, Mersin University, Mersin 33169, Turkey
| | - Ali Erdinç Yalin
- Department of Biochemistry,Faculty of Pharmacy, Mersin University, Mersin 33169, Turkey
| | - Serap Yalin
- Department of Biochemistry,Faculty of Pharmacy, Mersin University, Mersin 33169, Turkey
| |
Collapse
|
25
|
Choudhury A, Jena A, Jearth V, Dutta AK, Makharia G, Dutta U, Goenka M, Kochhar R, Sharma V. Vitamin B12 deficiency and use of proton pump inhibitors: a systematic review and meta-analysis. Expert Rev Gastroenterol Hepatol 2023; 17:479-487. [PMID: 37060552 DOI: 10.1080/17474124.2023.2204229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
BACKGROUND Proton pump inhibitors (PPI) may impact the absorption of vitamin B12. We performed a systematic review to ascertain if PPI use increases risk of vitamin B12 deficiency. METHODS Electronic databases (Pubmed, Embase, Scopus) were searched on first of September 2022. We selected studies that compared the frequency of vitamin B12 deficiency in PPI users and non-users. Pooled Odds Ratio (OR) was calculated for the occurrence of vitamin B12 deficiency in PPI users compared to non-users. The risk of bias was assessed using the Newcastle Ottawa scale. RESULTS Twenty-five studies were included. The pooled OR of vitamin B12 deficiency among PPI users (2852 participants) was higher than non-users (28070 participants) (OR 1.42, 95% CI: 1.16-1.73; I2 = 54%). Overall risk of PPI use among vitamin B12 deficient individuals was higher than those without deficiency (OR 1.49, 1.20-1.85; I2 = 68%). Most studies found no difference between serum vitamin B12 levels among PPI users compared to non-users. CONCLUSION Although the pooled OR of vitamin B12 deficiency was slightly increased in PPI users, but there was significant heterogeneity, and the pooled OR was too low to imply an association clearly. Better-designed prospective studies in long-term users may clarify the issue. REGISTRATION This study was not registered on PROSPERO.
Collapse
Affiliation(s)
- Arup Choudhury
- Department of Medicine, Nagaon Medical College and Hospital, Assam, India
| | - Anuraag Jena
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vaneet Jearth
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit K Dutta
- Department of Gastroenterology, Christian Medical College, Vellore, India
| | - Govind Makharia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Science, Delhi, India
| | - Usha Dutta
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Mahesh Goenka
- Institute of Gastrosciences and Liver, Apollo Multispecialty Hospitals, Kolkata, India
| | - Rakesh Kochhar
- Director of Gastroenterology, Fortis Hospital, Mohali, Punjab, India
| | - Vishal Sharma
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
26
|
Huang Y, Tan Y, Wang L, Lan L, Luo J, Wang J, Zeng H, Shu W. Consumption of very low-mineral water may threaten cardiovascular health by increasing homocysteine in children. Front Nutr 2023; 10:1133488. [PMID: 36969809 PMCID: PMC10034051 DOI: 10.3389/fnut.2023.1133488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/17/2023] [Indexed: 03/11/2023] Open
Abstract
IntroductionHomocysteine (Hcy) is a critical factor for cardiovascular injury, and the elevation of Hcy in children will inevitably increase the risk of cardiovascular disease in adulthood. This study explored the effect of very low-mineral water on children’s Hcy and cardiovascular health.Materials and methodsThis was a retrospective cohort study that recruited two groups of 10–13-year-old children who had consumed direct drinking water (DDW) in school for 4 years. The control group (NW) (119 boys, 110 girls) consumed normal DDW (conductivity 345 μs/cm). The very low-mineral water consumption group (VLW) (223 boys, 208 girls) consumed very low-mineral DDW (conductivity 40.0 μs/cm). Serum Hcy, Hcy metabolites, cofactors of Hcy metabolism, and cardiovascular biomarkers were assessed and standardized by age- and sex-specific Z-scores, and the differences between the two groups were analyzed with independent t-test. The relationships between Hcy metabolism biomarkers and key factors, cardiovascular biomarkers, serum Ca, and mineral intake were analyzed with linear regression.ResultsCompared with the NW group, the VLW group had significantly higher serum Hcy, Apo-B, Apo-B/A1, and oxLDL, and lower serum 1,25,(OH)2D3, vitamin B6 and B12, 5-methyltetrahydrofolate, and Apo-A1. Serum Hcy was positively associated with serum Apo-B and Apo-B/A1, and negatively associated with Ca intake from water and serum 1,25,(OH)2D3.ConclusionThis study suggested that drinking very low-mineral water may increase Hcy level and oxidative stress, worsen lipid profile, and threaten the cardiovascular system in children. Reducing 1,25,(OH)2D3, and disordering of calcium metabolism might play important roles. This study first established an association between demineralized drinking water and cardiovascular health in children, suggesting a new environmental concern risk to cardiovascular health.
Collapse
Affiliation(s)
- Yujing Huang
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yao Tan
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lingqiao Wang
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lan Lan
- Department of Communicable Disease Prevention and Management, Chongqing Municipal Corps of Integrated Health Administrative Law Enforcement, Chongqing, China
| | - Jiaohua Luo
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jia Wang
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hui Zeng
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Weiqun Shu
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Weiqun Shu,
| |
Collapse
|
27
|
El-Sewify IM, Radwan A, Azzazy HMES. Multi-responsive paper chemosensors based on mesoporous silica nanospheres for quantitative sensing of heavy metals in water. RSC Adv 2023; 13:6433-6441. [PMID: 36845591 PMCID: PMC9947744 DOI: 10.1039/d3ra00369h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/04/2023] [Indexed: 02/25/2023] Open
Abstract
Exposure to low concentrations of heavy metal cations seriously harms living organisms, hence they are considered environmental toxins. Portable simple detection systems are required for field monitoring of multiple metal ions. In this report, paper-based chemosensors (PBCs) were prepared by adsorbing 1-(pyridin-2-yl diazenyl) naphthalen-2-ol (chromophore), which recognizes heavy metals, onto filter papers coated with mesoporous silica nano spheres (MSNs). The high density of the chromophore probe on the surface of PBCs resulted in ultra-sensitive optical detection of heavy metal ions and short response time. The concentration of metal ions was determined using digital image-based colorimetric analysis (DICA) and compared to spectrophotometry under optimal sensing conditions. The PBCs exhibited stability and short recovery times. The detection limits determined using DICA of Cd2+, Co2+, Ni2+ and Fe3+ were 0.22, 0.28, 0.44, and 0.54 μM; respectively. Additionally, the linear ranges for monitoring Cd2+, Co2+, Ni2+ and Fe3+ were 0.44-4.4, 0.16-4.2, 0.8-8.5, and 0.002-5.2 μM; respectively. The developed chemosensors showed high stability, selectivity, and sensitivity for sensing of Cd2+, Co2+, Ni2+ and Fe3+ in water under optimum conditions and hold potential for low cost, onsite sensing of toxic metals in water.
Collapse
Affiliation(s)
- Islam M. El-Sewify
- Department of Chemistry, Faculty of Science, Ain Shams University11566AbbassiaCairoEgypt,Department of Chemistry, School of Sciences & Engineering, The American University in CairoSSE, Rm #1194, P.O. Box 74New Cairo 11835Egypt
| | - Ahmed Radwan
- Department of Chemistry, Faculty of Science, Ain Shams University 11566 Abbassia Cairo Egypt.,Department of Chemistry, School of Sciences & Engineering, The American University in Cairo SSE, Rm #1194, P.O. Box 74 New Cairo 11835 Egypt
| | - Hassan Mohamed El-Said Azzazy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo SSE, Rm #1194, P.O. Box 74 New Cairo 11835 Egypt .,Department of Nanobiophotonics, Leibniz Institute for Photonic Technology Albert Einstein Str. 9 Jena 07745 Germany
| |
Collapse
|
28
|
Temova Rakuša Ž, Roškar R, Hickey N, Geremia S. Vitamin B 12 in Foods, Food Supplements, and Medicines-A Review of Its Role and Properties with a Focus on Its Stability. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010240. [PMID: 36615431 PMCID: PMC9822362 DOI: 10.3390/molecules28010240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Vitamin B12, also known as the anti-pernicious anemia factor, is an essential micronutrient totally dependent on dietary sources that is commonly integrated with food supplements. Four vitamin B12 forms-cyanocobalamin, hydroxocobalamin, 5'-deoxyadenosylcobalamin, and methylcobalamin-are currently used for supplementation and, here, we provide an overview of their biochemical role, bioavailability, and efficacy in different dosage forms. Since the effective quantity of vitamin B12 depends on the stability of the different forms, we further provide a review of their main reactivity and stability under exposure to various environmental factors (e.g., temperature, pH, light) and the presence of some typical interacting compounds (oxidants, reductants, and other water-soluble vitamins). Further, we explore how the manufacturing process and storage affect B12 stability in foods, food supplements, and medicines and provide a summary of the data published to date on the content-related quality of vitamin B12 products on the market. We also provide an overview of the approaches toward their stabilization, including minimization of the destabilizing factors, addition of proper stabilizers, or application of some (innovative) technological processes that could be implemented and contribute to the production of high-quality vitamin B12 products.
Collapse
Affiliation(s)
| | - Robert Roškar
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Neal Hickey
- Department of Chemical and Pharmaceutical Sciences, Centre of Excellence in Biocrystallography, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Silvano Geremia
- Department of Chemical and Pharmaceutical Sciences, Centre of Excellence in Biocrystallography, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
- Correspondence:
| |
Collapse
|
29
|
Wan Z, Zheng J, Zhu Z, Sang L, Zhu J, Luo S, Zhao Y, Wang R, Zhang Y, Hao K, Chen L, Du J, Kan J, He H. Intermediate role of gut microbiota in vitamin B nutrition and its influences on human health. Front Nutr 2022; 9:1031502. [PMID: 36583209 PMCID: PMC9792504 DOI: 10.3389/fnut.2022.1031502] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Vitamin B consists of a group of water-soluble micronutrients that are mainly derived from the daily diet. They serve as cofactors, mediating multiple metabolic pathways in humans. As an integrated part of human health, gut microbiota could produce, consume, and even compete for vitamin B with the host. The interplay between gut microbiota and the host might be a crucial factor affecting the absorbing processes of vitamin B. On the other hand, vitamin B supplementation or deficiency might impact the growth of specific bacteria, resulting in changes in the composition and function of gut microbiota. Together, the interplay between vitamin B and gut microbiota might systemically contribute to human health. In this review, we summarized the interactions between vitamin B and gut microbiota and tried to reveal the underlying mechanism so that we can have a better understanding of its role in human health.
Collapse
Affiliation(s)
- Zhijie Wan
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | | | | | - Lan Sang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Jinwei Zhu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Shizheng Luo
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Yixin Zhao
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Ruirui Wang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Yicui Zhang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Kun Hao
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Liang Chen
- Nutrilite Health Institute, Shanghai, China
| | - Jun Du
- Nutrilite Health Institute, Shanghai, China
| | - Juntao Kan
- Nutrilite Health Institute, Shanghai, China
| | - Hua He
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
30
|
Wei J, Wei Y, Huang M, Wang P, Jia S. Is metformin a possible treatment for diabetic neuropathy? J Diabetes 2022; 14:658-669. [PMID: 36117320 PMCID: PMC9574743 DOI: 10.1111/1753-0407.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 12/04/2022] Open
Abstract
Metformin is a hypoglycemic drug widely used in the treatment of type 2 diabetes. It has been proven to have analgesic and neuroprotective effects. Metformin can reverse pain in rodents, such as diabetic neuropathic pain, neuropathic pain caused by chemotherapy drugs, inflammatory pain and pain caused by surgical incision. In clinical use, however, metformin is associated with reduced plasma vitamin B12 levels, which can further neuropathy. In rodent diabetes models, metformin plays a neuroprotective and analgesic role by activating adenosine monophosphate-activated protein kinase, clearing methylgloxal, reducing insulin resistance, and neuroinflammation. This paper also summarized the neurological adverse reactions of metformin in diabetic patients. In addition, whether metformin has sexual dimorphism needs further study.
Collapse
Affiliation(s)
- Juechun Wei
- The Second Medical CollegeBinzhou Medical UniversityYantaiChina
| | - Yanling Wei
- Qingdao Dongheng Zhiyuan Automobile Service Co. LTDQingdaoChina
| | - Meiyan Huang
- The Second Medical CollegeBinzhou Medical UniversityYantaiChina
| | - Peng Wang
- The Second Medical CollegeBinzhou Medical UniversityYantaiChina
| | - Shushan Jia
- Yantai Affiliated Hospital of Binzhou Medical UniversityYantaiChina
| |
Collapse
|
31
|
Choy C, Lim LY, Chan LW, Cui Z, Mao S, Wong TW. Exploring Intestinal Surface Receptors in Oral Nanoinsulin Delivery. Pharmacol Rev 2022; 74:962-983. [PMID: 36779351 DOI: 10.1124/pharmrev.122.000631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/01/2022] [Accepted: 06/24/2022] [Indexed: 11/22/2022] Open
Abstract
Subcutaneous and inhaled insulins are associated with needle phobia, lipohypertrophy, lipodystrophy, and cough in diabetes treatment. Oral nanoinsulin has been developed, reaping the physiologic benefits of peroral administration. This review profiles intestinal receptors exploitable in targeted delivery of oral nanoinsulin. Intestinal receptor targeting improves oral insulin bioavailability and sustains blood glucose-lowering response. Nonetheless, these studies are conducted in small animal models with no optimization of insulin dose, targeting ligand type and content, and physicochemical and molecular biologic characteristics of nanoparticles against the in vivo/clinical diabetes responses as a function of the intestinal receptor population characteristics with diabetes progression. The interactive effects between nanoinsulin and antidiabetic drugs on intestinal receptors, including their up-/downregulation, are uncertain. Sweet taste receptors upregulate SGLT-1, and both have an undefined role as new intestinal targets of nanoinsulin. Receptor targeting of oral nanoinsulin represents a viable approach that is relatively green, requiring an in-depth development of the relationship between receptors and their pathophysiological profiles with physicochemical attributes of the oral nanoinsulin. SIGNIFICANCE STATEMENT: Intestinal receptor targeting of oral nanoinsulin improves its bioavailability with sustained blood glucose-lowering response. Exploring new intestinal receptor and tailoring the design of oral nanoinsulin to the pathophysiological state of diabetic patients is imperative to raise the insulin performance to a comparable level as the injection products.
Collapse
Affiliation(s)
- Carlynne Choy
- Department of Pharmacy, Faculty of Science, National University of Singapore, Republic of Singapore (C.C., L.W.C., T.W.W.); Pharmacy, School of Allied Health, The University of Western Australia, 35 Stirling Highway, Crawley WA, Australia (L.Y.L.); School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China (Z.C., S.M.); Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia (T.W.W.); and Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia (T.W.W.)
| | - Lee Yong Lim
- Department of Pharmacy, Faculty of Science, National University of Singapore, Republic of Singapore (C.C., L.W.C., T.W.W.); Pharmacy, School of Allied Health, The University of Western Australia, 35 Stirling Highway, Crawley WA, Australia (L.Y.L.); School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China (Z.C., S.M.); Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia (T.W.W.); and Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia (T.W.W.)
| | - Lai Wah Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Republic of Singapore (C.C., L.W.C., T.W.W.); Pharmacy, School of Allied Health, The University of Western Australia, 35 Stirling Highway, Crawley WA, Australia (L.Y.L.); School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China (Z.C., S.M.); Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia (T.W.W.); and Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia (T.W.W.)
| | - Zhixiang Cui
- Department of Pharmacy, Faculty of Science, National University of Singapore, Republic of Singapore (C.C., L.W.C., T.W.W.); Pharmacy, School of Allied Health, The University of Western Australia, 35 Stirling Highway, Crawley WA, Australia (L.Y.L.); School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China (Z.C., S.M.); Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia (T.W.W.); and Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia (T.W.W.)
| | - Shirui Mao
- Department of Pharmacy, Faculty of Science, National University of Singapore, Republic of Singapore (C.C., L.W.C., T.W.W.); Pharmacy, School of Allied Health, The University of Western Australia, 35 Stirling Highway, Crawley WA, Australia (L.Y.L.); School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China (Z.C., S.M.); Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia (T.W.W.); and Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia (T.W.W.)
| | - Tin Wui Wong
- Department of Pharmacy, Faculty of Science, National University of Singapore, Republic of Singapore (C.C., L.W.C., T.W.W.); Pharmacy, School of Allied Health, The University of Western Australia, 35 Stirling Highway, Crawley WA, Australia (L.Y.L.); School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China (Z.C., S.M.); Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia (T.W.W.); and Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia (T.W.W.)
| |
Collapse
|
32
|
Suzuki A, Shirakata C, Anzai H, Sumiyama D, Suzuki M. Vitamin B 12 biosynthesis of Cetobacterium ceti isolated from the intestinal content of captive common bottlenose dolphins ( Tursiops truncatus). MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36178719 DOI: 10.1099/mic.0.001244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In comparison with terrestrial mammals, dolphins require a large amount of haemoglobin in blood and myoglobin in muscle to prolong their diving time underwater and increase the depth they can dive. The genus Cetobacterium is a common gastrointestinal bacterium in dolphins and includes two species: C. somerae and C. ceti. Whilst the former produces vitamin B12, which is essential for the biosynthesis of haem, a component of haemoglobin and myoglobin, but not produced by mammals, the production ability of the latter remains unknown. The present study aimed to isolate C. ceti from dolphins and reveal its ability to biosynthesize vitamin B12. Three strains of C. ceti, identified by phylogenetic analyses with 16S rRNA gene and genome-based taxonomy assignment and biochemical features, were isolated from faecal samples collected from two captive common bottlenose dolphins (Tursiops truncatus). A microbioassay using Lactobacillus leichmannii ATCC 7830 showed that the average concentration of vitamin B12 produced by the three strains was 11 (standard deviation: 2) pg ml-1. The biosynthesis pathway of vitamin B12, in particular, adenosylcobalamin, was detected in the draft genome of the three strains using blastKOALA. This is the first study to isolate C. ceti from common bottlenose dolphins and reveal its ability of vitamin B12 biosynthesis, and our findings emphasize the importance of C. ceti in supplying haemoglobin and myoglobin to dolphins.
Collapse
Affiliation(s)
- Akihiko Suzuki
- Laboratory of Aquatic Animal Physiology, Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880 Japan
- National Institute for Environmental Studies, Tsukuba, Ibaraki, 305-8506 Japan
| | - Chika Shirakata
- Enoshima Aquarium, Fujisawa, Kanagawa, 251-0035 Japan
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-0054 Japan
| | - Hiroshi Anzai
- Laboratory of Biotechnology in Dairy Life, Department of Bioscience in Dairy Life, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880 Japan
| | - Daisuke Sumiyama
- Laboratory of Biotechnology in Dairy Life, Department of Bioscience in Dairy Life, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880 Japan
| | - Miwa Suzuki
- Laboratory of Aquatic Animal Physiology, Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880 Japan
| |
Collapse
|
33
|
Poyatos-Racionero E, Pérez-Esteve É, Medaglia S, Aznar E, Barat JM, Martínez-Máñez R, Marcos MD, Bernardos A. Gated Organonanoclays for Large Biomolecules: Controlled Release Triggered by Surfactant Stimulus. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2694. [PMID: 35957126 PMCID: PMC9370449 DOI: 10.3390/nano12152694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/29/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The low toxicity and high adsorption capacities of clay minerals make them attractive for controlled delivery applications. However, the number of controlled-release studies in the literature using clay minerals is still scarce. In this work, three different clays from the smectite group (Kunipia F, montmorillonite; Sumecton SA, saponite; and Sumecton SWN, hectorite) were successfully loaded with rhodamine B dye and functionalized with oleic acid as a gatekeeper to produce organonanoclays for active and controlled payload-release. Moreover, hematin and cyanocobalamin have also been encapsulated in hectorite gated clay. These organonanoclays were able to confine the entrapped cargos in an aqueous environment, and effectively release them in the presence of surfactants (as bile salts). A controlled delivery of 49 ± 6 μg hematin/mg solid and 32.7 ± 1.5 μg cyanocobalamin/mg solid was reached. The cargo release profiles of all of the organonanoclays were adjusted to three different release-kinetic models, demonstrating the Korsmeyer-Peppas model with release dependence on (i) the organic-inorganic hybrid system, and (ii) the nature of loaded molecules and their interaction with the support. Furthermore, in vitro cell viability assays were carried out with Caco-2 cells, demonstrating that the organonanoclays are well tolerated by cells at particle concentrations of ca. 50 μg/mL.
Collapse
Affiliation(s)
- Elisa Poyatos-Racionero
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Édgar Pérez-Esteve
- Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Serena Medaglia
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Instituto de Investigación Sanitaria La Fe, Universitat Politècnica de València, 46026 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, 46012 Valencia, Spain
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - José M. Barat
- Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Instituto de Investigación Sanitaria La Fe, Universitat Politècnica de València, 46026 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, 46012 Valencia, Spain
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Maria Dolores Marcos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Instituto de Investigación Sanitaria La Fe, Universitat Politècnica de València, 46026 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, 46012 Valencia, Spain
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Andrea Bernardos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, 46012 Valencia, Spain
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
34
|
Wilcox MD, Chater PI, Stanforth KJ, Williams R, Brownlee IA, Pearson JP. A Pilot Pre and Post 4 Week Intervention Evaluating the Effect of a Proprietary, Powdered, Plant Based Food on Micronutrient Status, Dietary Intake, and Markers of Health in a Healthy Adult Population. Front Nutr 2022; 9:945622. [PMID: 35903454 PMCID: PMC9315961 DOI: 10.3389/fnut.2022.945622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/22/2022] [Indexed: 11/25/2022] Open
Abstract
Background A "balanced, adequate, and varied diet" is recommended as the basis of nutritionally sound diet by the World Health Organisation and national public health agencies. Huel is a proprietary, on-the-go, powdered, plant based food, providing all 26 essential vitamins and minerals, protein, essential fats, carbohydrate, fibre, and phytonutrients. Objectives Assessing the effect of solely consuming Huel on micronutrient status, dietary intake and markers of health was achieved through a 4-week intervention of solely Huel powder. Methods Habitual energy intake was assessed through a one-week lead in period with healthy adult participants (aged 18 or over) logging their food intake, after which only Huel was consumed for 4 weeks. Blood samples and body composition was assessed before and after the lead in week as well the end of the intervention. Thirty participants were recruited with 20 (11 females, median age 31, range 22-44) completing the study, 19 sets of blood samples were collected. 22 blood markers were analysed along with weight, BMI, waist circumference, visceral adipose tissue (VAT), and body composition. All blood micronutrients, except for Thyroid Stimulating Hormone and choline were sent to Royal Victoria Infirmary NHS, Newcastle Laboratory (Newcastle upon Tyne, United Kingdom) for analysis. Results Fourteen of the parameters significantly changed over the course of the study with circulating haemoglobin, iron, vitamins B12 and D as well as selenium significantly increasing (p < 0.05). HbA1c, total and non-HDL cholesterol, vitamins A and E, potassium, BMI, VAT, and waist circumference all significantly decreased (p < 0.05) post intervention. Conclusion Although energy intake decreased during the intervention period, the adherence to recommended micronutrient intake, as quantified by the dietary Total Adherence Score, significantly increased which tallies with the preservation or improvement of micronutrient status. This study potentially demonstrates that consuming only Huel for 4 weeks does not negatively affect micronutrient status.
Collapse
Affiliation(s)
- Matthew D. Wilcox
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom,Aelius Biotech Ltd., The Biosphere, Newcastle upon Tyne, United Kingdom,*Correspondence: Matthew D. Wilcox,
| | - Peter I. Chater
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom,Aelius Biotech Ltd., The Biosphere, Newcastle upon Tyne, United Kingdom
| | - Kyle J. Stanforth
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom,Aelius Biotech Ltd., The Biosphere, Newcastle upon Tyne, United Kingdom
| | | | - Iain A. Brownlee
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Jeffrey P. Pearson
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom,Aelius Biotech Ltd., The Biosphere, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
35
|
Ge Y, Zadeh M, Mohamadzadeh M. Vitamin B12 Regulates the Transcriptional, Metabolic, and Epigenetic Programing in Human Ileal Epithelial Cells. Nutrients 2022; 14:nu14142825. [PMID: 35889782 PMCID: PMC9321803 DOI: 10.3390/nu14142825] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/22/2022] Open
Abstract
Vitamin B12 (VB12) is a micronutrient that is essential for DNA synthesis and cellular energy production. We recently demonstrated that VB12 oral supplementation coordinates ileal epithelial cells (iECs) and gut microbiota functions to resist pathogen colonization in mice, but it remains unclear whether VB12 directly modulates the cellular homeostasis of iECs derived from humans. Here, we integrated transcriptomic, metabolomic, and epigenomic analyses to identify VB12-dependent molecular and metabolic pathways in human iEC microtissue cultures. RNA sequencing (RNA-seq) revealed that VB12 notably activated genes involved in fatty acid metabolism and epithelial cell proliferation while suppressing inflammatory responses in human iECs. Untargeted metabolite profiling demonstrated that VB12 facilitated the biosynthesis of amino acids and methyl groups, particularly S-adenosylmethionine (SAM), and supported the function of the mitochondrial carnitine shuttle and TCA cycle. Further, genome-wide DNA methylation analysis illuminated a critical role of VB12 in sustaining cellular methylation programs, leading to differential CpG methylation of genes associated with intestinal barrier function and cell proliferation. Together, these findings suggest an essential involvement of VB12 in directing the fatty acid and mitochondrial metabolisms and reconfiguring the epigenome of human iECs to potentially support cellular oxygen utilization and cell proliferation.
Collapse
|
36
|
Huang HH, Cohen AA, Gaudreau P, Auray-Blais C, Allard D, Boutin M, Reid I, Turcot V, Presse N. Vitamin B-12 Intake from Dairy but Not Meat Is Associated with Decreased Risk of Low Vitamin B-12 Status and Deficiency in Older Adults from Quebec, Canada. J Nutr 2022; 152:2483-2492. [PMID: 36774114 PMCID: PMC9644171 DOI: 10.1093/jn/nxac143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/26/2022] [Accepted: 06/19/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Vitamin B-12 deficiency can result in irreversible neurologic damages. It is most prevalent among older adults (∼5%-15%), mainly due to impaired absorption. Vitamin B-12 bioavailability varies between food sources, so their importance in preventing deficiency may also vary. OBJECTIVES Using the NuAge Database and Biobank, we examined the associations between vitamin B-12 intake (total and by specific food groups) and low vitamin B-12 status and deficiency in older adults. METHODS NuAge-the Quebec Longitudinal Study on Nutrition and Successful Aging-included 1753 adults aged 67-84 y who were followed 4 y. Analytic samples comprised 1230-1463 individuals. Dietary vitamin B-12 intake was assessed annually using three 24-h dietary recalls. Vitamin B-12 status was assessed annually as low serum vitamin B-12 (<221 pmol/L), elevated urinary methylmalonic acid (MMA)/creatinine ratio (>2 μmol/mmol), and a combination of both (deficiency). Vitamin B-12 supplement users were excluded. Multilevel logistic regressions, adjusted for relevant confounders, were used. RESULTS Across all study years, 21.8%-32.5% of participants had low serum vitamin B-12, 12.5%-17.0% had elevated urine MMA/creatinine, and 10.1%-12.7% had deficiency. Median (IQR) total vitamin B-12 intake was 3.19 μg/d (2.31-4.37). Main sources were "dairy" and "meat, poultry, and organ meats." The ORs (95% CIs) in the fifth quintile compared with the first of total vitamin B-12 intake were as follows: for low serum vitamin B-12, 0.52 (0.37, 0.75; P-trend < 0.0001); for elevated urine MMA/creatinine, 0.63 (0.37, 1.08; P-trend = 0.091); and for vitamin B-12 deficiency, 0.38 (0.18, 0.79; P-trend = 0.006). Similarly, ORs (95% CIs) in the fourth quartile compared with the first of dairy-derived vitamin B-12 intake were 0.46 (0.32, 0.66; P-trend < 0.0001), 0.51 (0.30, 0.87; P-trend = 0.006), and 0.35 (0.17, 0.73; P-trend = 0.003), respectively. No associations were observed with vitamin B-12 from "meat, poultry, and organ meats." CONCLUSIONS Higher dietary vitamin B-12 intake, especially from dairy, was associated with decreased risk of low vitamin B-12 status and deficiency in older adults. Food groups might contribute differently at reducing risk of deficiency in older populations.
Collapse
Affiliation(s)
- He Helen Huang
- Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada,Research Centre on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada
| | - Alan A Cohen
- Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada,Research Centre on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada,Centre hospitalier universitaire de Sherbrooke Research Center, CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada
| | - Pierrette Gaudreau
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada,Centre hospitalier de l'Université de Montréal Research Center, Montreal, Quebec, Canada
| | - Christiane Auray-Blais
- Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada,Centre hospitalier universitaire de Sherbrooke Research Center, CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada
| | - David Allard
- Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Michel Boutin
- Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada,Centre hospitalier universitaire de Sherbrooke Research Center, CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada
| | - Isabelle Reid
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal, CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Quebec, Canada
| | - Valérie Turcot
- Research Centre on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada
| | - Nancy Presse
- Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada; Research Centre on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada; Centre de recherche de l'Institut universitaire de gériatrie de Montréal, CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Quebec, Canada.
| |
Collapse
|
37
|
Čorejová A, Fazekaš T, Jánošíková D, Repiský J, Pospíšilová V, Miková M, Rauová D, Ostatníková D, Kyselovič J, Hrabovská A. Improvement of the Clinical and Psychological Profile of Patients with Autism after Methylcobalamin Syrup Administration. Nutrients 2022; 14:2035. [PMID: 35631176 PMCID: PMC9144375 DOI: 10.3390/nu14102035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/30/2022] [Accepted: 05/07/2022] [Indexed: 12/04/2022] Open
Abstract
(1) Background: Autism, also known as autism-spectrum disorder, is a pervasive developmental disorder affecting social skills and psychological status in particular. The complex etiopathogenesis of autism limits efficient therapy, which leads to problems with the normal social integration of the individual and causes severe family distress. Injectable methylcobalamin was shown to improve the clinical status of patients via enhanced cell oxidative status and/or methylation capacity. Here we tested the efficiency of a syrup form of methylcobalamin in treating autism. (2) Methods: Methylcobalamin was administered daily at 500 µg dose to autistic children and young adults (n = 25) during a 200-day period. Clinical and psychological status was evaluated by parents and psychologists and plasma levels of reduced and oxidized glutathione, vitamin B12, homocysteine, and cysteine were determined before the treatment, and at day 100 and day 200 of the treatment. (3) Results: Good patient compliance was reported. Methylcobalamin treatment gradually improved the overall clinical and psychological status, with the highest impact in the social domain, followed by the cognitive, behavioral and communication characteristics. Changes in the clinical and psychological status were strongly associated with the changes in the level of reduced glutathione and reduced/oxidized glutathione ratio. (4) Conclusion: A high dose of methylcobalamin administered in syrup form ameliorates the clinical and psychological status of autistic individuals, probably due to the improved oxidative status.
Collapse
Affiliation(s)
- Adela Čorejová
- Department of Pharmacology, Faculty of Medicine, Slovak Medical University in Bratislava, 833 03 Bratislava, Slovakia
| | - Tomáš Fazekaš
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, 832 32 Bratislava, Slovakia;
| | - Daniela Jánošíková
- Department of Psychology, Faculty of Philosophy and Arts, Trnava University, 918 43 Trnava, Slovakia; (D.J.); (J.R.)
| | - Juraj Repiský
- Department of Psychology, Faculty of Philosophy and Arts, Trnava University, 918 43 Trnava, Slovakia; (D.J.); (J.R.)
| | | | - Maria Miková
- Autism Center FRANCESCO in Prešov, 080 01 Prešov, Slovakia;
| | - Drahomíra Rauová
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, 832 32 Bratislava, Slovakia;
| | - Daniela Ostatníková
- Institute of Physiology, Faculty of Medicine, Comenius University Bratislava, 813 72 Bratislava, Slovakia;
| | - Ján Kyselovič
- Clinical Research Unit, 5th Department of Internal Medicine, Department of Pharmacology and Toxicology, Faculty of Medicine, Comenius University Bratislava, 813 72 Bratislava, Slovakia;
| | - Anna Hrabovská
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, 832 32 Bratislava, Slovakia
| |
Collapse
|
38
|
Konuksever D, Yücel SP. Evaluation of correlation between vitamin D with vitamin B12 and folate in children. Nutrition 2022; 99-100:111683. [DOI: 10.1016/j.nut.2022.111683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/23/2022] [Accepted: 04/02/2022] [Indexed: 02/07/2023]
|
39
|
Kozyraki R, Verroust P, Cases O. Cubilin, the intrinsic factor-vitamin B12 receptor. VITAMINS AND HORMONES 2022; 119:65-119. [PMID: 35337634 DOI: 10.1016/bs.vh.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cubilin (CUBN), the intrinsic factor-vitamin B12 receptor is a large endocytic protein involved in various physiological functions: vitamin B12 uptake in the gut; reabsorption of albumin and maturation of vitamin D in the kidney; nutrient delivery during embryonic development. Cubilin is an atypical receptor, peripherally associated to the plasma membrane. The transmembrane proteins amnionless (AMN) and Lrp2/Megalin are the currently known molecular partners contributing to plasma membrane transport and internalization of Cubilin. The role of Cubilin/Amn complex in the handling of vitamin B12 in health and disease has extensively been studied and so is the role of the Cubilin-Lrp2 tandem in renal pathophysiology. Accumulating evidence strongly supports a role of Cubilin in some developmental defects including impaired closure of the neural tube. Are these defects primarily caused by the dysfunction of a specific Cubilin ligand or are they secondary to impaired vitamin B12 or protein uptake? We will present the established Cubilin functions, discuss the developmental data and provide an overview of the emerging implications of Cubilin in the field of cardiovascular disease and cancer pathogenesis.
Collapse
Affiliation(s)
- Renata Kozyraki
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France.
| | - Pierre Verroust
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France
| | - Olivier Cases
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France
| |
Collapse
|
40
|
Chen Y, Gu X, Zhang Y, Zhang X, Zhang C, Liu M, Sun S, Dong N, Wu Q. CD320 expression and apical membrane targeting in renal and intestinal epithelial cells. Int J Biol Macromol 2022; 201:85-92. [PMID: 34998874 DOI: 10.1016/j.ijbiomac.2021.12.158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023]
Abstract
Vitamin B12 is an essential nutrient acquired via dietary intake. Receptor-mediated endocytosis is a key mechanism in vitamin B12 absorption, cellular uptake, and reabsorption. CD320 is a type I transmembrane protein responsible for cellular uptake of vitamin B12 in peripheral tissues. In this study, we examined segmental distribution and cellular expression of CD320 in mouse kidneys and intestines. We show that CD320 is expressed on the luminal surface in the small intestine and in proximal tubules in the kidney, suggesting that, in addition to its role in vitamin B12 uptake in peripheral tissues, CD320 may participate in vitamin B12 absorption in the small intestine and reabsorption in the kidney. Moreover, we show that an amino acid motif, DSSDE, in the second low-density lipoprotein receptor class A domain of CD320 is a key apical membrane targeting signal in both renal and intestinal epithelial cells. Mutations or deletion of this motif abolish the specific apical membrane expression of CD320 in polarized Madin-Darby canine kidney cells and human colon cancer-derived Caco-2 cells. In short-hairpin RNA-based gene knockdown experiments, we show that the apical membrane targeting of CD320 is mediated by a Rab11a-dependent mechanism. These results extend our knowledge regarding the cell biology of CD320 and its role in vitamin B12 metabolism.
Collapse
Affiliation(s)
- Yue Chen
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou 215123, China
| | - Xiabing Gu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou 215123, China; MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yikai Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou 215123, China; MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xianrui Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou 215123, China; MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Ce Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou 215123, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou 215123, China
| | - Shijin Sun
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou 215123, China; MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou 215123, China; MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou 215123, China.
| |
Collapse
|
41
|
Rout J, Swain BC, Subadini S, Mishra PP, Sahoo H, Tripathy U. Spectroscopic and computational insight into the conformational dynamics of hemoglobin in the presence of vitamin B12. Int J Biol Macromol 2021; 189:306-315. [PMID: 34419543 DOI: 10.1016/j.ijbiomac.2021.08.096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 01/05/2023]
Abstract
Protein-ligand interactions play a significant role in all living organisms, thereby affecting the design and application of drugs and other biomaterials. The current study reports the binding of vitamin B12 to hemoglobin, employing optical spectroscopy and computational methods. It is observed that vitamin B12 quenched the intrinsic fluorescence of hemoglobin. The nature of quenching appears to be static according to the steady-state and time-resolved fluorescence measurements. The conformational changes of hemoglobin caused by vitamin B12 interactions were studied by synchronous fluorescence spectroscopy and protein secondary structure analyses. The synchronous fluorescence spectra indicate the tryptophan residue microenvironment change while no secondary structural change is observed from circular dichroism spectra and molecular dynamics (MD) simulation study. The computational molecular docking elucidated the probable binding of vitamin B12 at the active site of hemoglobin, whereas the stability of the hemoglobin-vitamin B12 complex was studied by MD simulation. The study might be helpful for the treatment of pernicious anemia, hereditary transcobalamin deficiency, and performance enhancement of elite athletes.
Collapse
Affiliation(s)
- Janmejaya Rout
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Bikash Chandra Swain
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Suchismita Subadini
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Padmaja Prasad Mishra
- Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, West Bengal, India
| | - Harekrushna Sahoo
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Umakanta Tripathy
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India.
| |
Collapse
|
42
|
Domingo-Gallego A, Pybus M, Madariaga L, Piñero-Fernández JA, González-Pastor S, López-González M, Simarro-Rueda E, Quintanilla-Mata ML, Matoses-Ruipérez ML, Ejarque-Vila L, Gall ECL, Guirado L, Torra R, Ariceta G, Ars E. Clinical and genetic characterization of a cohort of proteinuric patients with biallelic CUBN variants. Nephrol Dial Transplant 2021; 37:1906-1915. [PMID: 34610128 DOI: 10.1093/ndt/gfab285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Proteinuria is a well-known risk factor for progressive kidney impairment. Recently, C-terminal cubilin (CUBN) variants have been associated with isolated proteinuria without progression of kidney disease. METHODS Genetic testing of 347 families with proteinuria of suspected monogenic cause was performed by next-generation sequencing of a custom-designed kidney disease gene panel. Families with CUBN biallelic proteinuria-causing variants were studied at the clinical, genetic, laboratory, and pathologic levels. RESULTS Twelve families (15 patients) bearing homozygous or compound heterozygous proteinuria-causing variants in the C-terminal CUBN gene were identified, representing 3.5% of the total cohort. We identified 14 different sequence variants, five of which were novel. The median age at diagnosis of proteinuria was 4 years (range 9 months to 44 years), and in most cases proteinuria was detected incidentally. Thirteen patients had moderate-severe proteinuria at diagnosis without nephrotic syndrome. These patients showed lack of response to angiotensin-converting enzyme inhibitor (ACEi) and angiotensin receptor blocker (ARB) treatment, normal kidney biopsy, and preservation of normal kidney function over time. The two remaining patients presented a more severe phenotype, likely caused by associated comorbidities. CONCLUSIONS Identification of C-terminal pathogenic CUBN variants is diagnostic of an entity characterized by glomerular proteinuria, normal kidney histology, and lack of response to ACEi/ARB treatment. This study adds evidence and increases awareness about albuminuria caused by C-terminal variants in the CUBN gene, which is a benign condition usually diagnosed in childhood with preserved renal function until adulthood.
Collapse
Affiliation(s)
- Andrea Domingo-Gallego
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Barcelona, Catalonia, Spain.,Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Medicine Department, REDinREN, Barcelona, Catalonia, Spain
| | - Marc Pybus
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Barcelona, Catalonia, Spain.,Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Medicine Department, REDinREN, Barcelona, Catalonia, Spain
| | - Leire Madariaga
- Pediatric Nephrology Department, Cruces University Hospital, Instituto de Investigación Sanitaria Biocruces-Bizkaia, CIBERER, CIBERDEM, Universidad del País Vasco UPV/EHU, Barakaldo, Spain
| | | | - Sara González-Pastor
- Pediatric Nephrology Department, Hospital Universitario Germans Trias i Pujol, Barcelona, Catalonia, Spain
| | - Mercedes López-González
- Pediatric Nephrology Department, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Catalonia, Spain
| | - Esther Simarro-Rueda
- Clinical Analysis Department, Hospital General Universitario de Albacete, Castilla-La Mancha, Spain
| | | | | | - Laia Ejarque-Vila
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Barcelona, Catalonia, Spain
| | - Emilie Cornec-Le Gall
- Service de Néphrologie, Hémodialyse et Transplantation Rénale, Centre Hospitalier Universitaire, Brest, France; UMR1078 Génétique, Génomique Fonctionnelle et Biotechnologies, INSERM, Université de Brest, Brest, France; Université de Bretagne Occidentale, Brest, France
| | - Lluís Guirado
- Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Medicine Department, REDinREN, Barcelona, Catalonia, Spain
| | - Roser Torra
- Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Medicine Department, REDinREN, Barcelona, Catalonia, Spain
| | - Gema Ariceta
- Pediatric Nephrology Department, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Catalonia, Spain
| | - Elisabet Ars
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Barcelona, Catalonia, Spain.,Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Medicine Department, REDinREN, Barcelona, Catalonia, Spain
| |
Collapse
|
43
|
Danzeisen R, Williams DL, Viegas V, Dourson M, Verberckmoes S, Burzlaff A. Bioelution, Bioavailability, and Toxicity of Cobalt Compounds Correlate. Toxicol Sci 2021; 174:311-325. [PMID: 32058562 PMCID: PMC7098370 DOI: 10.1093/toxsci/kfz249] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Based on the wide use of cobalt substances in a range of important technologies, it has become important to predict the toxicological properties of new or lesser-studied substances as accurately as possible. We studied a group of 6 cobalt substances with inorganic ligands, which were tested for their bioaccessibility (surrogate measure of bioavailability) through in vitro bioelution in simulated gastric and intestinal fluids. Representatives of the group also underwent in vivo blood kinetics and mass balance tests, and both oral acute and repeated dose toxicity (RDT) testing. We were able to show a good correlation between high in vitro bioaccessibility with high in vivo bioavailability and subsequent high in vivo toxicity; consequently, low in vitro bioaccessibility correlated well with low in vivo bioavailability and low in vivo toxicity. In vitro bioelution in simulated gastric fluid was the most precise predictor of the difference in the oral RDT lowest observed adverse effect levels of 2 compounds representing the highly and poorly bioaccessible subset of substances. The 2 compounds cobalt dichloride hexahydrate and tricobalt tetraoxide differed by a factor of 440 in their in vitro bioaccessibility and by a factor of 310 in their RDT lowest observed adverse effect level. In summary, this set of studies shows that solubility, specifically in vitro bioelution in simulated gastric fluid, is a good, yet conservative, predictor of in vivo bioavailability and oral systemic toxicity of inorganic cobalt substances. Bioelution data are therefore an invaluable tool for grouping and read across of cobalt substances for hazard and risk assessment.
Collapse
Affiliation(s)
| | | | | | - Michael Dourson
- Toxicology Excellence for Risk Assessment, Cincinnati, Ohio 45102
| | | | | |
Collapse
|
44
|
Elzi DJ, Bauta WE, Sanchez JR, Das T, Mogare S, Zannes Fatland P, Iza M, Pertsemlidis A, Rebel VI. Identification of a novel mechanism for meso-tetra (4-carboxyphenyl) porphyrin (TCPP) uptake in cancer cells. FASEB J 2021; 35:e21427. [PMID: 33629776 DOI: 10.1096/fj.202000197r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 01/13/2021] [Accepted: 01/22/2021] [Indexed: 01/23/2023]
Abstract
Porphyrins are used for cancer diagnostic and therapeutic applications, but the mechanism of how porphyrins accumulate in cancer cells remains elusive. Knowledge of how porphyrins enter cancer cells can aid the development of more accurate cancer diagnostics and therapeutics. To gain insight into porphyrin uptake mechanisms in cancer cells, we developed a flow cytometry assay to quantify cellular uptake of meso-tetra (4-carboxyphenyl) porphyrin (TCPP), a porphyrin that is currently being developed for cancer diagnostics. We found that TCPP enters cancer cells through clathrin-mediated endocytosis. The LDL receptor, previously implicated in the cellular uptake of other porphyrins, only contributes modestly to uptake. We report that TCPP instead binds strongly ( K D = 42 nM ) to CD320, the cellular receptor for cobalamin/transcobalamin II (Cbl/TCN2). Additionally, TCPP competes with Cbl/TCN2 for CD320 binding, suggesting that CD320 is a novel receptor for TCPP. Knockdown of CD320 inhibits TCPP uptake by up to 40% in multiple cancer cell lines, including lung, breast, and prostate cell lines, which supports our hypothesis that CD320 both binds to and transports TCPP into cancer cells. Our findings provide some novel insights into why porphyrins concentrate in cancer cells. Additionally, our study describes a novel function for the CD320 receptor which has been reported to transport only Cbl/TCN2 complexes.
Collapse
Affiliation(s)
- David J Elzi
- BioAffinity Technologies, Inc., San Antonio, TX, USA
| | | | | | - Trisha Das
- BioAffinity Technologies, Inc., San Antonio, TX, USA
| | - Shweta Mogare
- BioAffinity Technologies, Inc., San Antonio, TX, USA
| | | | - Moises Iza
- BioAffinity Technologies, Inc., San Antonio, TX, USA
| | - Alexander Pertsemlidis
- Department of Pediatrics, The University of Texas Health Science Center, San Antonio, TX, USA.,Department of Cell Systems & Anatomy, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Mays Cancer Center, UT Health San Antonio MD Anderson, San Antonio, TX, USA
| | - Vivienne I Rebel
- BioAffinity Technologies, Inc., San Antonio, TX, USA.,Department of Cell Systems & Anatomy, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
45
|
Elshinawy M, Gao HH, Al-Nabhani DM, Al-Thihli KA. Clinical and molecular characteristics of imerslund-gräsbeck syndrome: First report of a novel Frameshift variant in Exon 11 of AMN gene. Int J Lab Hematol 2021; 43:1009-1015. [PMID: 33491342 DOI: 10.1111/ijlh.13473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/06/2020] [Accepted: 12/30/2020] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Imerslund-Gräsbeck syndrome (IGS) is a rare autosomal-recessive disorder characterized by selective vitamin B12 malabsorption, megaloblastic anemia, and proteinuria. The precise incidence of this disorder is unknown in the Middle East and Arab countries. The disease is caused by a homozygous variant in either AMN or CUBN genes. In addition, some compound heterozygous variants are reported. METHODS Clinical and laboratory data of patients diagnosed with IGS in Oman were retrospectively collected. Mutation analysis for all genes involved in vitamin B12/folic acid metabolism and megaloblastic anemia was conducted using next-generation sequencing (NGS). RESULTS Three siblings (2 girls and a boy) have been diagnosed with the condition. They exhibit a phenotypic variability with different age of presentation and different spectrum of disease. All patients harbor a novel biallelic frameshift mutation in exon 11 of AMN gene (p.Pro409Glyfs*), which was not reported previously in the literature. Both parents are heterozygotes for the same variant. All patients responded well to vitamin B12 parenteral therapy, but proteinuria persisted. CONCLUSION In communities with high incidence of consanguinity, cases of early-onset vitamin B12 deficiency should be thoroughly investigated to explore the possibility of Imerslund-Gräsbeck syndrome and other vitamin B12-related hereditary disorders. Further local and regional studies are highly recommended.
Collapse
Affiliation(s)
- Mohamed Elshinawy
- Department of Child Health, Pediatric Hematology/Oncology, Sultan Qaboos University Hospital, Muscat, Oman.,Department of Pediatrics, Pediatric Hematology/Oncology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | | | - Dana M Al-Nabhani
- Department of Nephrology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Khalid A Al-Thihli
- Genetic and developmental Medicine Department, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
46
|
Circulatory and Urinary B-Vitamin Responses to Multivitamin Supplement Ingestion Differ between Older and Younger Adults. Nutrients 2020; 12:nu12113529. [PMID: 33212933 PMCID: PMC7698360 DOI: 10.3390/nu12113529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 11/23/2022] Open
Abstract
Multivitamin and mineral (MVM) supplements are frequently used amongst older populations to improve adequacy of micronutrients, including B-vitamins, but evidence for improved health outcomes are limited and deficiencies remain prevalent. Although this may indicate poor efficacy of supplements, this could also suggest the possibility for altered B-vitamin bioavailability and metabolism in older people. This open-label, single-arm acute parallel study, conducted at the Liggins Institute Clinical Research Unit in Auckland, compared circulatory and urinary B-vitamer responses to MVM supplementation in older (70.1 ± 2.7 y, n = 10 male, n = 10 female) compared to younger (24.2 ± 2.8 y, n = 10 male, n = 10 female) participants for 4 h after the ingestion of a single dose of a commercial MVM supplement and standardized breakfast. Older adults had a lower area under the curve (AUC) of postprandial plasma pyridoxine (p = 0.02) and pyridoxal-5′phosphate (p = 0.03) forms of vitamin B6 but greater 4-pyridoxic acid AUC (p = 0.009). Urinary pyridoxine and pyridoxal excretion were higher in younger females than in older females (time × age × sex interaction, p < 0.05). Older adults had a greater AUC increase in plasma thiamine (p = 0.01), riboflavin (p = 0.009), and pantothenic acid (p = 0.027). In older adults, there was decreased plasma responsiveness of the ingested (pyridoxine) and active (pyridoxal-5′phosphate) forms of vitamin B6, which indicated a previously undescribed alteration in either absorption or subsequent metabolic interconversion. While these findings cannot determine whether acute B6 responsiveness is adequate, this difference may have potential implications for B6 function in older adults. Although this may imply higher B vitamin substrate requirements for older people, further work is required to understand the implications of postprandial differences in availability.
Collapse
|
47
|
Jackson T, Vedantam S, Bradshaw R, Cho E, Lim J, Nagatomo K, Osman H, Jeyarajah DR. Unrecognized anemia after whipple - should we learn from gastric bypass? Expert Rev Gastroenterol Hepatol 2020; 14:1119-1123. [PMID: 32772584 DOI: 10.1080/17474124.2020.1808459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Several pathophysiologic changes after the Whipple procedure have been well described, but anemia has not. Post-surgical changes can impede micronutrient absorption. We hypothesize that patients post-pancreatoduodenectomy suffer from iron deficiency anemia. METHODS Patients who underwent a pancreatoduodenectomy from 2016 to 2018 were retrospectively evaluated. Preoperative, intraoperative, and postoperative data, including hemoglobin (Hb) levels and mean corpuscular volume (MCV) as well as therapies with chemoradiation, iron, and/or B12 were collected at 1-, 3-, 6-, and 12-months after surgery. RESULTS The dataset included 74 patients (median age: 64 years). Mean preoperative Hb and MCV were 11.7 ± 1.9 g/dl and 90.1 ± 7.3 fl, respectively. Significant changes in Hb were noted at 1 and 6 months (11.7 vs 10.9, p = 0.01 and 11.7 vs 11.3, p = 0.003, respectively), and in MCV were noted at 6 and 12 months (90.1 vs 94.6, p = 0.008 and 90.1 vs. 93.7, p = 0.02, respectively). CONCLUSIONS All patients remained anemic after pancreatoduodenectomy. This was not linked to chemotherapy. Iron and vitamin B12 supplementation, given in a minority, did not ameliorate the anemia. Future studies should investigate this lack of aid, as nutrient supplementation may be an important change in the standard of care of these patients.
Collapse
Affiliation(s)
| | - Shyam Vedantam
- University of North Texas Health Science Center-Texas College of Osteopathic Medicine, Fort Worth, Texas
| | | | - Edward Cho
- Richardson Methodist Medical Center, Richardson, Texas
| | - Joseph Lim
- University of North Texas Health Science Center-Texas College of Osteopathic Medicine, Fort Worth, Texas
| | - Kei Nagatomo
- Richardson Methodist Medical Center, Richardson, Texas
| | - Houssam Osman
- Richardson Methodist Medical Center, Richardson, Texas
| | - D Rohan Jeyarajah
- Richardson Methodist Medical Center, Richardson, Texas.,University of North Texas Health Science Center-Texas College of Osteopathic Medicine, Fort Worth, Texas
| |
Collapse
|
48
|
Rzepka Z, Maszczyk M, Wrześniok D. Biological function of cobalamin: causes and effects of
hypocobalaminemia at the molecular, cellular, tissue
and organism level. POSTEP HIG MED DOSW 2020. [DOI: 10.5604/01.3001.0014.4741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cobalamin (vitamin B12) is a complex compound, which is classified as a water-soluble
vitamin. Absorption of cobalamin in the gut and its transport to cells is a unique process,
in which many proteins are involved. The loss of function of these proteins causes serious
cell homeostasis disturbance, which may result in the dysfunction of many tissues and
organs. Vitamin B12, a cofactor of methionine synthase, provides methylation process and
nucleic acid synthesis. Cobalamin is also necessary for methylmalonyl-CoA mutase activity.
The enzyme synthesizes succinyl-CoA, an intermediate in tricarboxylic acid cycle.
Vitamin B12 deficiency is an important and current health problem. It may be caused by
insufficient dietary intake, age, or disease-related malabsorption and genetic defects of
mechanisms involved in the absorption, transport and metabolism of cobalamin. Hypocobalaminemia can also result from long-term pharmacotherapy with medicines:
metformin, proton pump inhibitors (e.g. omeprazole) and H2-receptor antagonists
(e.g. ranitidine).
Significant clinical symptoms of cobalamin deficiency include hematological abnormalities,
mainly megaloblastic anemia, as well as neurological disorders resulting from degeneration
within the nervous system. Early diagnosis and starting treatment with vitamin B12 increase
chances for a complete cure. Therefore, the diagnostically important symptom of hypocobalaminemia
may be skin manifestations, mainly hyperpigmentations, but also premature
graying of hair.
The aim of this review article was to summarize the current state of knowledge on the
biological function of cobalamin, as well as the causes and consequences of its deficiency
at the molecular, cellular, tissue and organism level.
Collapse
Affiliation(s)
- Zuzanna Rzepka
- Katedra i Zakład Chemii i Analizy Leków, Wydział Nauk Farmaceutycznych w Sosnowcu, Śląski Uniwersytet Medyczny w Katowicach
| | - Mateusz Maszczyk
- Katedra i Zakład Chemii i Analizy Leków, Wydział Nauk Farmaceutycznych w Sosnowcu, Śląski Uniwersytet Medyczny w Katowicach
| | - Dorota Wrześniok
- Katedra i Zakład Chemii i Analizy Leków, Wydział Nauk Farmaceutycznych w Sosnowcu, Śląski Uniwersytet Medyczny w Katowicach
| |
Collapse
|
49
|
Chen Y, Miller PG, Ding X, Stowell CET, Kelly KM, Wang Y. Chelation Crosslinking of Biodegradable Elastomers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003761. [PMID: 32964586 DOI: 10.1002/adma.202003761] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Widely present in nature and in manufactured goods, elastomers are network polymers typically crosslinked by strong covalent bonds. Elastomers crosslinked by weak bonds usually exhibit more plastic deformation. Here, chelation as a mechanism to produce biodegradable elastomers is reported. Polycondensation of sebacic acid, 1,3-propanediol, and a Schiff-base (2-[[(2-hydroxyphenyl) methylene]amino]-1,3-propanediol) forms a block copolymer that binds several biologically relevant metal ions. Chelation offers a unique advantage unseen in conventional elastomer design because one ligand binds multiple metal ions, yielding bonds of different strengths. Therefore, one polymeric ligand coordinated with different metal ions produces elastomers with vastly different characteristics. Mixing different metal ions in one polymer offers another degree of control on material properties. The density of the ligands in the block copolymer further regulates the mechanical properties. Moreover, a murine model reveals that Fe3+ crosslinked foam displays higher compatibility with subcutaneous tissues than the widely used biomaterial-polycaprolactone. The implantation sites restore to their normal architecture with little fibrosis upon degradation of the implants. The versatility of chelation-based design has already shown promise in hydrogels and highly stretchy nondegradable polymers. The biodegradable elastomers reported here would enable new materials and new possibilities in biomedicine and beyond.
Collapse
Affiliation(s)
- Ying Chen
- Meinig School of Biomedical Engineering, College of Engineering, Cornell University, 277 Kimball Hall, 134 Hollister Drive, Ithaca, NY, 14853, USA
| | - Paula G Miller
- Meinig School of Biomedical Engineering, College of Engineering, Cornell University, 277 Kimball Hall, 134 Hollister Drive, Ithaca, NY, 14853, USA
| | - Xiaochu Ding
- Meinig School of Biomedical Engineering, College of Engineering, Cornell University, 277 Kimball Hall, 134 Hollister Drive, Ithaca, NY, 14853, USA
| | - Chelsea E T Stowell
- Meinig School of Biomedical Engineering, College of Engineering, Cornell University, 277 Kimball Hall, 134 Hollister Drive, Ithaca, NY, 14853, USA
| | - Katie M Kelly
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Yadong Wang
- Meinig School of Biomedical Engineering, College of Engineering, Cornell University, 277 Kimball Hall, 134 Hollister Drive, Ithaca, NY, 14853, USA
| |
Collapse
|
50
|
Lyon P, Strippoli V, Fang B, Cimmino L. B Vitamins and One-Carbon Metabolism: Implications in Human Health and Disease. Nutrients 2020; 12:E2867. [PMID: 32961717 PMCID: PMC7551072 DOI: 10.3390/nu12092867] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022] Open
Abstract
Vitamins B9 (folate) and B12 are essential water-soluble vitamins that play a crucial role in the maintenance of one-carbon metabolism: a set of interconnected biochemical pathways driven by folate and methionine to generate methyl groups for use in DNA synthesis, amino acid homeostasis, antioxidant generation, and epigenetic regulation. Dietary deficiencies in B9 and B12, or genetic polymorphisms that influence the activity of enzymes involved in the folate or methionine cycles, are known to cause developmental defects, impair cognitive function, or block normal blood production. Nutritional deficiencies have historically been treated with dietary supplementation or high-dose parenteral administration that can reverse symptoms in the majority of cases. Elevated levels of these vitamins have more recently been shown to correlate with immune dysfunction, cancer, and increased mortality. Therapies that specifically target one-carbon metabolism are therefore currently being explored for the treatment of immune disorders and cancer. In this review, we will highlight recent studies aimed at elucidating the role of folate, B12, and methionine in one-carbon metabolism during normal cellular processes and in the context of disease progression.
Collapse
Affiliation(s)
- Peter Lyon
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (P.L.); (V.S.); (B.F.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Victoria Strippoli
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (P.L.); (V.S.); (B.F.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Byron Fang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (P.L.); (V.S.); (B.F.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Luisa Cimmino
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (P.L.); (V.S.); (B.F.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|