1
|
Fernández J, Chaves W, Vargas-Diaz D, Petras D, Lomonte B. Top-down proteomics of venoms from five Micrurus species from Costa Rica: Comparative composition of phospholipase A 2-rich vs three-finger toxin-rich phenotypes. Toxicon 2024; 252:108187. [PMID: 39579878 DOI: 10.1016/j.toxicon.2024.108187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 11/25/2024]
Abstract
Coralsnakes of the genus Micrurus include more than 80 species distributed in the American continent. They produce potent neurotoxic venoms acting at the neuromuscular junction and potentially leading to respiratory paralysis and death. The vast majority of proteins in coralsnake venoms belong to the three-finger toxin (3FTx) and the group I phospholipase A2 (PLA2) families. Previous studies using 'bottom-up' proteomic strategies have revealed a compositional dichotomy of toxin expression by which different Micrurus species display a predominance of either 3FTx or PLA2 proteins in their venoms, possibly linked to the phylogeographic structure of the genus radiation. 'Top-down' proteomics (TDP) allows the direct analysis of intact proteins in a high resolution mass spectrometer, circumventing the limitations of the 'peptide-to-protein inference problem' inherent to the bottom-up approach. Here, we analyzed the venoms of five out of the six Micrurus species that inhabit Costa Rica, by using a TDP approach. Results unveil venom proteoforms that are shared between these species, and provide additional insights into the variable compositional complexity of these venoms and relationships to their 3FTx/PLA2 dichotomy.
Collapse
Affiliation(s)
- Julián Fernández
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| | - Walter Chaves
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| | - David Vargas-Diaz
- Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| | - Daniel Petras
- Department of Biochemistry, University of California Riverside, 169 Aberdeen 17 Dr, Riverside, CA, 92507, USA; Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Auf der Morgenstelle 24, 72076, Tuebingen, Germany
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica.
| |
Collapse
|
2
|
Pereañez JA, Preciado LM, Rey-Suárez P. Knowledge about Snake Venoms and Toxins from Colombia: A Systematic Review. Toxins (Basel) 2023; 15:658. [PMID: 37999521 PMCID: PMC10675826 DOI: 10.3390/toxins15110658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Colombia encompasses three mountain ranges that divide the country into five natural regions: Andes, Pacific, Caribbean, Amazon, and Orinoquia. These regions offer an impressive range of climates, altitudes, and landscapes, which lead to a high snake biodiversity. Of the almost 300 snake species reported in Colombia, nearly 50 are categorized as venomous. This high diversity of species contrasts with the small number of studies to characterize their venom compositions and natural history in the different ecoregions. This work reviews the available information about the venom composition, isolated toxins, and potential applications of snake species found in Colombia. Data compilation was conducted according to the PRISMA guidelines, and the systematic literature search was carried out in Pubmed/MEDLINE. Venom proteomes from nine Viperidae and three Elapidae species have been described using quantitative analytical strategies. In addition, venoms of three Colubridae species have been studied. Bioactivities reported for some of the venoms or isolated components-such as antibacterial, cytotoxicity on tumoral cell lines, and antiplasmodial properties-may be of interest to develop potential applications. Overall, this review indicates that, despite recent progress in the characterization of venoms from several Colombian snakes, it is necessary to perform further studies on the many species whose venoms remain essentially unexplored, especially those of the poorly known genus Micrurus.
Collapse
Affiliation(s)
- Jaime Andrés Pereañez
- Research Group in Toxinology, Pharmaceutical, and Food Alternatives, Pharmaceutical and Food Sciences Faculty, University of Antioquia, Medellín 50010, Colombia; (L.M.P.); (P.R.-S.)
- Research Group in Pharmaceutical Promotion and Prevention, University of Antioquia, Medellín 50010, Colombia
| | - Lina María Preciado
- Research Group in Toxinology, Pharmaceutical, and Food Alternatives, Pharmaceutical and Food Sciences Faculty, University of Antioquia, Medellín 50010, Colombia; (L.M.P.); (P.R.-S.)
| | - Paola Rey-Suárez
- Research Group in Toxinology, Pharmaceutical, and Food Alternatives, Pharmaceutical and Food Sciences Faculty, University of Antioquia, Medellín 50010, Colombia; (L.M.P.); (P.R.-S.)
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O’Higgins, Santiago 8320000, Chile
| |
Collapse
|
3
|
Rodríguez-Vargas A, Franco-Vásquez AM, Bolívar-Barbosa JA, Vega N, Reyes-Montaño E, Arreguín-Espinosa R, Carbajal-Saucedo A, Angarita-Sierra T, Ruiz-Gómez F. Unveiling the Venom Composition of the Colombian Coral Snakes Micrurus helleri, M. medemi, and M. sangilensis. Toxins (Basel) 2023; 15:622. [PMID: 37999485 PMCID: PMC10674450 DOI: 10.3390/toxins15110622] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 11/25/2023] Open
Abstract
Little is known of the biochemical composition and functional features of the venoms of poorly known Colombian coral snakes. Here, we provide a preliminary characterization of the venom of two Colombian endemic coral snake species, Micrurus medemi and M. sangilensis, as well as Colombian populations of M. helleri. Electrophoresis and RP-HPLC techniques were used to identify venom components, and assays were conducted to detect enzyme activities, including phospholipase A2, hyaluronidase, and protease activities. The median lethal dose was determined using murine models. Cytotoxic activities in primary cultures from hippocampal neurons and cancer cell lines were evaluated. The venom profiles revealed similarities in electrophoretic separation among proteins under 20 kDa. The differences in chromatographic profiles were significant, mainly between the fractions containing medium-/large-sized and hydrophobic proteins; this was corroborated by a proteomic analysis which showed the expected composition of neurotoxins from the PLA2 (~38%) and 3FTx (~17%) families; however, a considerable quantity of metalloproteinases (~12%) was detected. PLA2 activity and protease activity were higher in M. helleri venom according to qualitative and quantitative assays. M. medemi venom had the highest lethality. All venoms decreased cell viability when tested on tumoral cell cultures, and M. helleri venom had the highest activity in neuronal primary culture. These preliminary studies shed light on the venoms of understudied coral snakes and broaden the range of sources that could be used for subsequent investigations of components with applications to specific diseases. Our findings also have implications for the clinical manifestations of snake envenoming and improvements in its medical management.
Collapse
Affiliation(s)
- Ariadna Rodríguez-Vargas
- Grupo de Investigación en Proteínas, Departamento de Química, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 11001, Colombia (N.V.); (E.R.-M.)
- Grupo de Investigación en Animales Ponzoñosos y sus Venenos, Dirección de Producción, Instituto Nacional de Salud, Bogotá 111321, Colombia; (T.A.-S.); (F.R.-G.)
| | - Adrián Marcelo Franco-Vásquez
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico (R.A.-E.)
| | - Janeth Alejandra Bolívar-Barbosa
- Grupo de Investigación en Proteínas, Departamento de Química, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 11001, Colombia (N.V.); (E.R.-M.)
| | - Nohora Vega
- Grupo de Investigación en Proteínas, Departamento de Química, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 11001, Colombia (N.V.); (E.R.-M.)
| | - Edgar Reyes-Montaño
- Grupo de Investigación en Proteínas, Departamento de Química, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 11001, Colombia (N.V.); (E.R.-M.)
| | - Roberto Arreguín-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico (R.A.-E.)
| | - Alejandro Carbajal-Saucedo
- Laboratorio de Herpetología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66450, Mexico;
| | - Teddy Angarita-Sierra
- Grupo de Investigación en Animales Ponzoñosos y sus Venenos, Dirección de Producción, Instituto Nacional de Salud, Bogotá 111321, Colombia; (T.A.-S.); (F.R.-G.)
- Grupo de investigación Biodiversidad para la Sociedad, Escuela de pregrados, Dirección Académica, Universidad Nacional de Colombia sede de La Paz, Cesar 22010, Colombia
| | - Francisco Ruiz-Gómez
- Grupo de Investigación en Animales Ponzoñosos y sus Venenos, Dirección de Producción, Instituto Nacional de Salud, Bogotá 111321, Colombia; (T.A.-S.); (F.R.-G.)
| |
Collapse
|
4
|
Antibodies against a single fraction of Micrurus dumerilii venom neutralize the lethal effect of whole venom. Toxicol Lett 2023; 374:77-84. [PMID: 36528173 DOI: 10.1016/j.toxlet.2022.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
The coralsnake Micrurus dumerilii (Elapidae) is reported to cause envenomings of medical importance. Previous studies characterized the protein composition of its venom, with phospholipase A2 (PLA2) proteins the most abundant. However, it is unknown which venom components are responsible for its lethal toxicity. Fractionation of M. dumerilii venom from Colombia was carried out using RP-HPLC and each fraction was screened for lethal effect in mice at a dose of 20 μg by intraperitoneal route. Results showed that only one fraction, F9, was lethal. This fraction displayed PLA2 activity, induced indirect hemolysis in vitro, as well as edema and myotoxicity in vivo. SDS-PAGE of unreduced F9 evidenced two bands of 8 and 15 kDa, respectively, consistent with the detection of proteins with masses of 13,217.77 Da, 7144.06 Da, and 7665.55 Da. Tryptic digestion of F9 followed by nESI-MS/MS revealed peptide sequences matching proteins of the three-finger toxin (3FTx) and PLA2 families. Immunization of a rabbit with F9 proteins elicited antibody titers up to 1:10,000 by ELISA. After serum fractionation with caprylic acid, the obtained IgG was able to neutralize the lethal effect of the complete venom of M. dumerilii using a challenge of 2 ×LD50 at the IgG/venom ratio of 50:1 (w/w). In conclusion, present results show that the lethal effect of M. dumerilii venom in mice is mainly driven by one fraction which contains 3FTx and PLA2 proteins. The antibodies produced against this fraction cross-recognized other PLA2s and neutralized the lethal effect of whole M. dumerilii venom, pointing out to the potential usefulness of F9 as a relevant antigen for improving current coral snake antivenoms.
Collapse
|
5
|
Corrêa-Netto C, Strauch MA, Monteiro-Machado M, Teixeira-Araújo R, Fonseca JG, Leitão-Araújo M, Machado-Alves ML, Sanz L, Calvete JJ, Melo PA, Zingali RB. Monoclonal-Based Antivenomics Reveals Conserved Neutralizing Epitopes in Type I PLA 2 Molecules from Coral Snakes. Toxins (Basel) 2022; 15:toxins15010015. [PMID: 36668835 PMCID: PMC9863321 DOI: 10.3390/toxins15010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
For over a century, polyclonal antibodies have been used to treat snakebite envenoming and are still considered by the WHO as the only scientifically validated treatment for snakebites. Nevertheless, moderate innovations have been introduced to this immunotherapy. New strategies and approaches to understanding how antibodies recognize and neutralize snake toxins represent a challenge for next-generation antivenoms. The neurotoxic activity of Micrurus venom is mainly due to two distinct protein families, three-finger toxins (3FTx) and phospholipases A2 (PLA2). Structural conservation among protein family members may represent an opportunity to generate neutralizing monoclonal antibodies (mAbs) against family-conserved epitopes. In this work, we sought to produce a set of monoclonal antibodies against the most toxic components of M. altirostris venom. To this end, the crude venom was fractionated, and its major toxic proteins were identified and used to generate a panel of five mAbs. The specificity of these mAbs was characterized by ELISA and antivenomics approaches. Two of the generated mAbs recognized PLA2 epitopes. They inhibited PLA2 catalytic activity and showed paraspecific neutralization against the myotoxicity from the lethal effect of Micrurus and Naja venoms' PLA2s. Epitope conservation among venom PLA2 molecules suggests the possibility of generating pan-PLA2 neutralizing antibodies.
Collapse
Affiliation(s)
- Carlos Corrêa-Netto
- Instituto Vital Brazil, Rio de Janeiro 24230-410, RJ, Brazil
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Correspondence: (C.C.-N.); (R.B.Z.); Tel.: +55-213-938-6782 (R.B.Z.)
| | - Marcelo A. Strauch
- Instituto Vital Brazil, Rio de Janeiro 24230-410, RJ, Brazil
- Programa de Farmacologia e Química Medicinal-UFRJ, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-902, RJ, Brazil
| | - Marcos Monteiro-Machado
- Programa de Farmacologia e Química Medicinal-UFRJ, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-902, RJ, Brazil
| | - Ricardo Teixeira-Araújo
- Instituto Vital Brazil, Rio de Janeiro 24230-410, RJ, Brazil
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | | | - Moema Leitão-Araújo
- Fundação Zoobotânica do Rio Grande do Sul, Museu de Ciências Naturais, Núcleo Regional de Ofiologia de Porto Alegre, Porto Alegre 90690-000, RS, Brazil
| | - Maria Lúcia Machado-Alves
- Fundação Zoobotânica do Rio Grande do Sul, Museu de Ciências Naturais, Núcleo Regional de Ofiologia de Porto Alegre, Porto Alegre 90690-000, RS, Brazil
| | - Libia Sanz
- Laboratorio de Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, 46010 Valencia, Spain
| | - Juan J. Calvete
- Laboratorio de Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, 46010 Valencia, Spain
| | - Paulo A. Melo
- Programa de Farmacologia e Química Medicinal-UFRJ, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-902, RJ, Brazil
| | - Russolina Benedeta Zingali
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Correspondence: (C.C.-N.); (R.B.Z.); Tel.: +55-213-938-6782 (R.B.Z.)
| |
Collapse
|
6
|
Romero-Giraldo LE, Pulido S, Berrío MA, Flórez MF, Rey-Suárez P, Nuñez V, Pereañez JA. Heterologous Expression and Immunogenic Potential of the Most Abundant Phospholipase A 2 from Coral Snake Micrurus dumerilii to Develop Antivenoms. Toxins (Basel) 2022; 14:toxins14120825. [PMID: 36548722 PMCID: PMC9788014 DOI: 10.3390/toxins14120825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Micrurus dumerilii is a coral snake of clinic interest in Colombia. Its venom is mainly composed of phospholipases A2 being MdumPLA2 the most abundant protein. Nevertheless, Micrurus species produce a low quantity of venom, which makes it difficult to produce anticoral antivenoms. Therefore, in this work, we present the recombinant expression of MdumPLA2 to evaluate its biological activities and its immunogenic potential to produce antivenoms. For this, a genetic construct rMdumPLA2 was cloned into the pET28a vector and expressed heterologously in bacteria. His-rMdumPLA2 was extracted from inclusion bodies, refolded in vitro, and isolated using affinity and RP-HPLC chromatography. His-rMdumPLA2 was shown to have phospholipase A2 activity, a weak anticoagulant effect, and induced myonecrosis and edema. The anti-His-rMdumPLA2 antibodies produced in rabbits recognized native PLA2, the complete venom of M. dumerilii, and a phospholipase from another species of the Micrurus genus. Antibodies neutralized 100% of the in vitro phospholipase activity of the recombinant toxin and a moderate percentage of the myotoxic activity of M. dumerilii venom in mice. These results indicate that His-rMdumPLA2 could be used as an immunogen to improve anticoral antivenoms development. This work is the first report of an M. dumerilii functional recombinant PLA2.
Collapse
Affiliation(s)
- Luz E. Romero-Giraldo
- Research Group in Toxinology, Pharmaceutical, and Food Alternatives, Pharmaceutical and Food Sciences Faculty, University of Antioquia, Medellín 50010, Colombia
| | - Sergio Pulido
- Tropical Disease Study and Control Program—PECET, University of Antioquia, Medellín 50010, Colombia
- LifeFactors Zona Franca SAS, Rionegro 54047, Colombia
| | - Mario A. Berrío
- Tropical Disease Study and Control Program—PECET, University of Antioquia, Medellín 50010, Colombia
| | - María F. Flórez
- Tropical Disease Study and Control Program—PECET, University of Antioquia, Medellín 50010, Colombia
| | - Paola Rey-Suárez
- Research Group in Toxinology, Pharmaceutical, and Food Alternatives, Pharmaceutical and Food Sciences Faculty, University of Antioquia, Medellín 50010, Colombia
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O’Higgins, Santiago 8320000, Chile
| | - Vitelbina Nuñez
- Research Group in Toxinology, Pharmaceutical, and Food Alternatives, Pharmaceutical and Food Sciences Faculty, University of Antioquia, Medellín 50010, Colombia
- Microbiology School, University of Antioquia, Medellín 50010, Colombia
| | - Jaime A. Pereañez
- Research Group in Toxinology, Pharmaceutical, and Food Alternatives, Pharmaceutical and Food Sciences Faculty, University of Antioquia, Medellín 50010, Colombia
- Correspondence:
| |
Collapse
|
7
|
Casais-E-Silva LL, da Cruz-Hofling MA, Teixeira CFP. The edematogenic effect of Micrurus lemniscatus venom is dependent on venom phospholipase A 2 activity and modulated by non-neurogenic factors. Toxicol Lett 2022; 369:12-21. [PMID: 35970279 DOI: 10.1016/j.toxlet.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/14/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Coral snakes mainly cause neurotoxic symptoms in human envenomation, but experimental studies have already demonstrated several pharmacological activities in addition to these effects. This investigation was carried out with the aim of evaluating (1) non-neurogenic mechanisms involved in the inflammatory response induced by Micrurus lemniscatus venom (MLV) in rat hind paws, (2) participation of PLA2 in this response, and (3) neutralizing efficiency of commercial anti-elapid antivenom on edema. MLV promoted a rapid, significant increase in vascular permeability, influx of leukocytes, and disorganization of collagen bundles, as demonstrated by histological analysis. Several pretreatments were applied to establish the involvement of inflammatory mediators in MLV-induced edema (5 µg/paw). Treatment of animals with chlorpromazine reduced MLV-induced edema, indicating participation of TNF-α. However, the inefficiency of other pharmacological treatments suggests that eicosanoids, leukotrienes, and nitric oxide have no role in this type of edema formation. In contrast, PAF negatively modulates this venom-induced effect. MLV was recognized by anti-elapid serum, but this antivenom did not neutralize edema formation. Chemical modification of MLV with p-bromophenacyl bromide abrogated the phospholipase activity and markedly reduced edema, demonstrating PLA2 participation in MLV-induced edema. In conclusion, the non-neurogenic inflammatory profile of MLV is characterized by TNF-α-mediated edema, participation of PLA2 activity, and down-regulation by PAF. MLV induces an influx of leukocytes and destruction of collagen fibers at the site of its injection.
Collapse
Affiliation(s)
- Luciana L Casais-E-Silva
- Laboratory of Neuroimmunoendocrinology and Toxinology, Department of Bioregulation, Institute of Health Sciences (ICS), Federal University of Bahia (UFBA), Salvador, BA, Brazil.
| | - Maria Alice da Cruz-Hofling
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | |
Collapse
|
8
|
Silva-Carvalho R, Gaspar MZ, Quadros LHB, Lobo LGG, Giuffrida R, Santarém CL, Silva EO, Gerez JR, Silva NJ, Hyslop S, Lomonte B, Floriano RS. Partial efficacy of a Brazilian coralsnake antivenom and varespladib in neutralizing distinct toxic effects induced by sublethal Micrurus dumerilii carinicauda envenoming in rats. Toxicon 2022; 213:99-104. [PMID: 35489427 DOI: 10.1016/j.toxicon.2022.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/31/2022] [Accepted: 04/20/2022] [Indexed: 11/26/2022]
Abstract
In this work, we report the efficacy of a combination of Brazilian therapeutic coralsnake antivenom (CAV) and varespladib (phospholipase A2 inhibitor - VPL) in partially neutralizing selected toxic effects of Micrurus dumerilii carinicauda coralsnake venom in rats. Venom caused local myonecrosis and systemic neurotoxicity, nephrotoxicity, and hepatotoxicity within 2 h of injection. CAV and VPL administered separately failed to prevent most of these alterations. However, a combination of CAV plus VPL offered variable protection against venom-induced coagulation disturbances, leukocytosis, and renal and hepatic morphological alterations.
Collapse
Affiliation(s)
- Rosimeire Silva-Carvalho
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo, Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil
| | - Matheus Z Gaspar
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo, Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil
| | - Luiz H B Quadros
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo, Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil
| | - Luís G G Lobo
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo, Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil
| | - Rogério Giuffrida
- Graduate Program in Animal Sciences, University of Western São Paulo, Rodovia Raposo Tavares Km 572, 19067-175, Presidente Prudente, SP, Brazil
| | - Cecília L Santarém
- Graduate Program in Animal Sciences, University of Western São Paulo, Rodovia Raposo Tavares Km 572, 19067-175, Presidente Prudente, SP, Brazil
| | - Elisangela O Silva
- Graduate Program in Animal Sciences, University of Western São Paulo, Rodovia Raposo Tavares Km 572, 19067-175, Presidente Prudente, SP, Brazil
| | - Juliana R Gerez
- Department of Histology, State University of Londrina (UEL), Rodovia Celso Garcia Cid Km 380, 86057-970, Londrina, PR, Brazil
| | - Nelson J Silva
- Graduate Program in Environmental Sciences and Health, School of Medical, Pharmaceutical and Biomedical Sciences, Pontifical Catholic University of Goiás (PUC-Goiás), 74605-140, Goiânia, GO, Brazil
| | - Stephen Hyslop
- Section of Pharmacology, Department of Translational Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, 13083-887, Campinas, SP, Brazil
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, 11501, San José, Costa Rica.
| | - Rafael S Floriano
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo, Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil.
| |
Collapse
|
9
|
Cardona-Ruda A, Rey-Suárez P, Núñez V. Anti-Neurotoxins from Micrurus mipartitus in the Development of Coral Snake Antivenoms. Toxins (Basel) 2022; 14:265. [PMID: 35448874 PMCID: PMC9027008 DOI: 10.3390/toxins14040265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
In Colombia, the genus Micrurus includes 30 species, of which M. mipartitus and M. dumerilii are the most widely distributed. Micrurus causes less than 3% of the approximately 5000 cases of snakebite per year. The elapid envenomation caused by the snakes from the Micrurus genus, are characterized by the severity of their clinical manifestations, due to the venom neurotoxic components such as three-finger toxins (3FTx) and phospholipases (PLA2). The treatment for snakebites is the administration of specific antivenoms, however, some of them have limitations in their neutralizing ability. A strategy proposed to improve antivenoms is to produce antibodies against the main components of the venom. The aim of this work was to produce an antivenom, using an immunization protocol including the main 3FTx and PLA2 responsible for M. mipartitus lethality. The antibody titers were determined by ELISA in rabbits' serum. The immunized animals elicited a response against toxins and whole venom. The Immunoglobulin G (IgGs) obtained were able to neutralize the lethal effect of their homologous toxins. A combination of antivenom from M. mipartitus with antitoxins improved their neutralizing ability. In the same way, a mixture of anti 3FTx and PLA2 protected the mice from a 1.5 median lethal dose (LD50) of M. mipartitus venom. The results showed that this might be a way to improve antibody titers specificity against the relevant toxins in M. mipartitus venom and indicated that there is a possibility to develop and use recombinant 3FTx and PLA2 toxins as immunogens to produce antivenoms. Additionally, this represents an alternative to reduce the amount of venom used in anti-coral antivenom production.
Collapse
Affiliation(s)
- Ana Cardona-Ruda
- Grupo de Investigación en Toxinología, Alternativas Terapéuticas y Alimentarias, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellin 1226, Colombia; (A.C.-R.); (P.R.-S.)
| | - Paola Rey-Suárez
- Grupo de Investigación en Toxinología, Alternativas Terapéuticas y Alimentarias, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellin 1226, Colombia; (A.C.-R.); (P.R.-S.)
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O’Higgins, Santiago 8320000, Chile
| | - Vitelbina Núñez
- Grupo de Investigación en Toxinología, Alternativas Terapéuticas y Alimentarias, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellin 1226, Colombia; (A.C.-R.); (P.R.-S.)
- Escuela de Microbiología, Universidad de Antioquia, Medellin 1226, Colombia
| |
Collapse
|
10
|
Dashevsky D, Bénard-Valle M, Neri-Castro E, Youngman NJ, Zdenek CN, Alagón A, Portes-Junior JA, Frank N, Fry BG. Anticoagulant Micrurus venoms: Targets and neutralization. Toxicol Lett 2020; 337:91-97. [PMID: 33197555 DOI: 10.1016/j.toxlet.2020.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 11/26/2022]
Abstract
Snakebite is a neglected tropical disease with a massive global burden of injury and death. The best current treatments, antivenoms, are plagued by a number of logistical issues that limit supply and access in remote or poor regions. We explore the anticoagulant properties of venoms from the genus Micrurus (coral snakes), which have been largely unstudied, as well as the effectiveness of antivenom and a small-molecule phospholipase inhibitor-varespladib-at counteracting these effects. Our in vitro results suggest that these venoms likely interfere with the formation or function of the prothrombinase complex. We find that the anticoagulant potency varies widely across the genus and is especially pronounced in M. laticollaris. This variation does not appear to correspond to previously described patterns regarding the relative expression of the three-finger toxin and phospholipase A2 (PLA2) toxin families within the venoms of this genus. The coral snake antivenom Coralmyn, is largely unable to ameliorate these effects except for M. ibiboboca. Varespladib on the other hand completely abolished the anticoagulant activity of every venom. This is consistent with the growing body of results showing that varespladib may be an effective treatment for a wide range of toxicity caused by PLA2 toxins from many different snake species. Varespladib is a particularly attractive candidate to help alleviate the burden of snakebite because it is an approved drug that possesses several logistical advantages over antivenom including temperature stability and oral availability.
Collapse
Affiliation(s)
- Daniel Dashevsky
- Toxin Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072 Australia; Australian National Insect Collection, Commonwealth Science and Industry Research Organization, Canberra, ACT 2601 Australia
| | - Melisa Bénard-Valle
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologa, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, Mexico
| | - Edgar Neri-Castro
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologa, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, Mexico
| | - Nicholas J Youngman
- Toxin Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072 Australia
| | - Christina N Zdenek
- Toxin Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072 Australia
| | - Alejandro Alagón
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologa, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, Mexico
| | - José A Portes-Junior
- Laboratório de Coleções Zoológicas, Instituto Butantan, São Paulo 05503-900, Brazil
| | | | - Bryan G Fry
- Toxin Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072 Australia.
| |
Collapse
|
11
|
Rey-Suárez P, Lomonte B. Immunological cross-recognition and neutralization studies of Micrurus mipartitus and Micrurus dumerilii venoms by two therapeutic equine antivenoms. Biologicals 2020; 68:40-45. [PMID: 32928631 DOI: 10.1016/j.biologicals.2020.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/13/2020] [Accepted: 08/29/2020] [Indexed: 11/16/2022] Open
Abstract
New world Coral snakes comprise 82 species of medical importance distributed from southeastern United States to Argentina. In Colombia, Micrurus mipartitus and M. dumerilii are responsible for most coral snakebite accidents. Although infrequent, the severity of these envenomings, as well as the limited information available on the neutralizing coverage of commercially available antivenoms, underscores the need to perform studies to assess the cross-neutralizing ability of these life-saving immunobiologicals. In the present work, we evaluated the cross-recognition and neutralization ability of two equine therapeutic antivenoms: PROBIOL and SAC-ICP. PROBIOL antivenom showed cross-recognition towards both M. mipartitus and M. dumerilii venoms, with a significantly higher binding to the latter in both whole-venom ELISA and fractionated-venom immunoprofiling. In contrast, SAC-ICP antivenom cross-recognized M. dumerilii venom, but not that of M. mipartitus. Lethality of M. dumerilii venom was neutralized by both antivenoms, with a slightly higher potency for the SAC-ICP antivenom. However, the lethality of M. mipartitus venom was not neutralized by any of the two antivenoms. Results uncover the need to include M. mipartitus venom, or its most relevant toxins, in the production of coral snake antivenoms to be used in Colombia, to assure the neutralizing coverage for this species.
Collapse
Affiliation(s)
- Paola Rey-Suárez
- Programa de Ofidismo y Escorpionismo, Universidad de Antioquia, Medellín, Colombia.
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
12
|
Bolívar-Barbosa JA, Rodríguez-Vargas AL. Actividad neurotóxica del veneno de serpientes del género Micrurus y métodos para su análisis. Revisión de la literatura. REVISTA DE LA FACULTAD DE MEDICINA 2020. [DOI: 10.15446/revfacmed.v68n3.75992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introducción. Las serpientes del género Micrurus son animales de hábitos fosoriales, de temperamento pasivo y escasa producción de un potente veneno con características neurotóxicas que bloquean la transmisión sináptica en la placa neuromuscular.Objetivo. Presentar un panorama general de la neurotoxicidad del veneno de las serpientes Micrurus y su caracterización funcional mediante métodos de análisis ex vivo.Materiales y métodos. Se realizó una revisión de la literatura en MedLine y ScienceDirect usando términos específicos y sus combinaciones. Estrategia de búsqueda: tipo de estudios: artículos sobre la neurotoxicidad del veneno de serpientes Micrurus y técnicas para determinar su actividad neurotóxica mediante modelos in vitro, in vivo y ex vivo; periodo de publicación: sin limite inicial a junio de 2018; idiomas: inglés y español.Resultados. De los 88 estudios identificados en la búsqueda inicial, se excluyeron 28 por no cumplir los criterios de inclusión (basándose en la lectura de títulos y resúmenes); además, se incluyeron 8 documentos adicionales (libros e informes), que, a criterio de los autores, complementaban la información reportada por las referencias seleccionadas. Los estudios incluidos en la revisión (n=68) correspondieron a las siguientes tipologías: investigaciones originales (n=44), artículos de revisión (n=16) y capítulos de libros, informes, guías y consultas en internet (n=8).Conclusiones. Los estudios que describen el uso de preparaciones ex vivo de músculo y nervio para evaluar el efecto de neurotoxinas ofrecen un buen modelo para la caracterización del efecto presináptico y postsináptico del veneno producido por las serpientes Micrurus.
Collapse
|
13
|
Hashmi SU, Alvi A, Munir I, Perveen M, Fazal A, Jackson TNW, Ali SA. Functional venomics of the Big-4 snakes of Pakistan. Toxicon 2020; 179:60-71. [PMID: 32173354 DOI: 10.1016/j.toxicon.2020.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/29/2020] [Accepted: 03/09/2020] [Indexed: 11/19/2022]
Abstract
In South Asia, the "Big-4" venomous snakes Naja naja, Bungarus caeruleus, Daboia russelii, and Echis carinatus are so-called because they are the most medically important snakes in the region. Antivenom is the only effective treatment option for snakebite envenoming but antivenom is not produced domestically in Pakistan making the country reliant on polyvalent products imported from India and Saudi Arabia. The present study investigated the toxin composition and activity of the venoms of Pakistani specimens by means of proteomic and physio/pharmacological experiments. To evaluate the composition of venoms, 1D/2D-PAGE of crude venoms and RP-HPLC followed by SDS-PAGE were performed. Enzymatic, hemolytic, coagulant and platelet aggregating activities of crude venoms were assayed and were concordant with expectations based on the abundance of protein species in each. Neutralization assays were performed using Bharat polyvalent antivenom (BPAV), a product raised against venoms from Big-4 specimens from southern India. BPAV exhibited cross-reactivity against the Pakistani venoms, however, neutralization of clinically relevant activities was variable and rarely complete. Cumulatively, the presented data not only highlight geographical variations present in the venoms of the Big-4 snakes of South Asia, but also demonstrate the neutralization potential of Indian polyvalent against the venom of Pakistani specimens. Given the partial neutralization observed, it is clear that whilst BPAV is a life-saving product in Pakistan, in future it is hoped that a region-specific product might be manufactured domestically, using venoms of local snakes in the immunising mixture.
Collapse
Affiliation(s)
- Syeda U Hashmi
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Areej Alvi
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Iqra Munir
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Mehvish Perveen
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Amaila Fazal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Timothy N W Jackson
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Australia
| | - Syed A Ali
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
14
|
Rodrigues JP, Vasconcelos Azevedo FVP, Zoia MAP, Maia LP, Correia LIV, Costa-Cruz JM, de Melo Rodrigues V, Goulart LR. The Anthelmintic Effect on Strongyloides venezuelensis Induced by BnSP- 6, a Lys49-phospholipase A2 Homologue from Bothrops pauloensis Venom. Curr Top Med Chem 2019; 19:2032-2040. [DOI: 10.2174/1568026619666190723152520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/20/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022]
Abstract
Background:
Phospholipases A2 (PLA2) from snake venoms have a broad potential as
pharmacological tools on medicine. In this context, strongyloidiasis is a neglected parasitic disease
caused by helminths of the genus Strongyloides. Currently, ivermectin is the drug of choice for treatment,
however, besides its notable toxicity, therapeutic failures and cases of drug resistance have been
reported. BnSP-6, from Bothorps pauloensis snake venom, is a PLA2 with depth biochemical characterization,
reporting effects against tumor cells and bacteria.
Objective:
The aim of this study is to demonstrate for the first time the action of the PLA2 on Strongyloides
venezuelensis.
Methods:
After 72 hours of treatment with BnSP-6 mortality of the infective larvae was assessed by motility
assay. Cell and parasite viability was evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl
tetrazolium bromide (MTT) assay. Furthermore, autophagic vacuoles were labeled with Monodansylcadaverine
(MDC) and nuclei of apoptotic cells were labeled with Propidium Iodide (PI). Tissue degeneration
of the parasite was highlighted by Transmission Electron Microscopy (TEM).
Results:
The mortality index demonstrated that BnSP-6 abolishes the motility of the parasite. In addition,
the MTT assay attested the cytotoxicity of BnSP-6 at lower concentrations when compared with
ivermectin, while autophagic and apoptosis processes were confirmed. Moreover, the anthelmintic effect
was demonstrated by tissue degeneration observed by TEM. Furthermore, we report that BnSP-6
showed low cytotoxicity on human intestinal cells (Caco-2).
Conclusion:
Altogether, our results shed light on the potential of BNSP-6 as an anthelmintic agent,
which can lead to further investigations as a tool for pharmaceutical discoveries.
Collapse
Affiliation(s)
- Jéssica Peixoto Rodrigues
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas s/n, Campus Umuarama BL-2E, SL-248, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Fernanda Van Petten Vasconcelos Azevedo
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas s/n, Campus Umuarama BL-2E, SL-227, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Mariana Alves Pereira Zoia
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas s/n, Campus Umuarama BL-2E, SL-248, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Larissa Prado Maia
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas s/n, Campus Umuarama BL-2E, SL-248, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Lucas Ian Veloso Correia
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas s/n, Campus Umuarama BL-2E, SL-227, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Julia Maria Costa-Cruz
- Laboratory of Parasitological Diagnostics, Institute of Biomedical Sciences, Federal University of Uberlandia, Campus Umuarama BL-4C, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Veridiana de Melo Rodrigues
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas s/n, Campus Umuarama BL-2E, SL-227, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas s/n, Campus Umuarama BL-2E, SL-248, Uberlândia, Minas Gerais, 38400-902, Brazil
| |
Collapse
|
15
|
Lomonte B, Camacho E, Fernández J, Salas M, Zavaleta A. Three-finger toxins from the venom of Micrurus tschudii tschudii (desert coral snake): Isolation and characterization of tschuditoxin-I. Toxicon 2019; 167:144-151. [DOI: 10.1016/j.toxicon.2019.06.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/08/2019] [Accepted: 06/14/2019] [Indexed: 11/29/2022]
|
16
|
Cloning, purification and characterization of nigrelysin, a novel actinoporin from the sea anemone Anthopleura nigrescens. Biochimie 2018; 156:206-223. [PMID: 30036605 DOI: 10.1016/j.biochi.2018.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/19/2018] [Indexed: 12/15/2022]
Abstract
Actinoporins constitute a unique class of pore-forming toxins found in sea anemones that being secreted as soluble monomers are able to bind and permeabilize membranes leading to cell death. The interest in these proteins has risen due to their high cytotoxicity that can be properly used to design immunotoxins against tumor cells and antigen-releasing systems to cell cytosol. In this work we describe a novel actinoporin produced by Anthopleura nigrescens, an anemone found in the Central American Pacific Ocean. Here we report the amino acid sequence of an actinoporin as deduced from cDNA obtained from total body RNA. The synthetic DNA sequence encoding for one cytolysin variant was expressed in BL21 Star (DE3) Escherichia coli and the protein purified by chromatography on CM Sephadex C-25 with more than 97% homogeneity as verified by MS-MS and HPLC analyses. This actinoporin comprises 179 amino acid residues, consistent with its observed isotope-averaged molecular mass of 19 661 Da. The toxin lacks Cys and readily permeabilizes erythrocytes, as well as L1210 cells. CD spectroscopy revealed that its secondary structure is dominated by beta structure (58.5%) with 5.5% of α-helix, and 35% of random structure. Moreover, binding experiments to lipidic monolayers and to liposomes, as well as permeabilization studies in vesicles, revealed that the affinity of this toxin for sphingomyelin-containing membranes is quite similar to sticholysin II (StII). Comparison by spectroscopic techniques and modeling the three-dimensional structure of nigrelysin (Ng) showed a high homology with StII but several differences were also detectable. Taken together, these results reinforce the notion that Ng is a novel member of the actinoporin pore-forming toxin (PFT) family with a HA as high as that of StII, the most potent actinoporin so far described, but with peculiar structural characteristics contributing to expand the understanding of the structure-function relationship in this protein family.
Collapse
|
17
|
Calcines-Cruz C, Olvera A, Castro-Acosta RM, Zavala G, Alagón A, Trujillo-Roldán MA, Valdez-Cruz NA. Recombinant-phospholipase A2 production and architecture of inclusion bodies are affected by pH in Escherichia coli. Int J Biol Macromol 2018; 108:826-836. [DOI: 10.1016/j.ijbiomac.2017.10.178] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022]
|
18
|
da Silva IM, Bernal JC, Gonçalves Bisneto PF, Tavares AM, de Moura VM, Monteiro-Junior CS, Raad R, Bernarde PS, Sachett JDAG, Monteiro WM. Snakebite by Micrurus averyi (Schmidt, 1939) in the Brazilian Amazon basin: Case report. Toxicon 2018; 141:51-54. [DOI: 10.1016/j.toxicon.2017.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/20/2017] [Accepted: 11/23/2017] [Indexed: 11/16/2022]
|
19
|
Valdez-Cruz NA, Reynoso-Cereceda GI, Pérez-Rodriguez S, Restrepo-Pineda S, González-Santana J, Olvera A, Zavala G, Alagón A, Trujillo-Roldán MA. Production of a recombinant phospholipase A2 in Escherichia coli using resonant acoustic mixing that improves oxygen transfer in shake flasks. Microb Cell Fact 2017; 16:129. [PMID: 28743267 PMCID: PMC5526256 DOI: 10.1186/s12934-017-0746-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/20/2017] [Indexed: 01/02/2023] Open
Abstract
Background Shake flasks are widely used during the development of bioprocesses for recombinant proteins. Cultures of recombinant Escherichia coli with orbital mixing (OM) have an oxygen limitation negatively affecting biomass growth and recombinant-protein production. With the aim to improve mixing and aeration in shake flask cultures, we analyzed cultures subjected to OM and the novel resonant acoustic mixing (RAM) by applying acoustic energy to E. coli BL21-Gold (DE3): a producer of recombinant phospholipase A2 (rPLA2) from Micrurus laticollaris snake venom. Results Comparing OM with RAM (200 rpm vs. 7.5g) at the same initial volumetric oxygen transfer coefficient (kLa ≈ 80 h−1) ~69% less biomass was obtained with OM compared with RAM. We analyzed two more conditions increasing agitation until maximal speed (12.5 and 20g), and ~1.6- and ~1.4-fold greater biomass was obtained as compared with cultures at 7.5g. Moreover, the specific growth rate was statistically similar in all cultures carried out in RAM, but ~1.5-fold higher than that in cultures carried out under OM. Almost half of the glucose was consumed in OM, whereas between 80 and 100% of the glucose was consumed in RAM cultures, doubling biomass per glucose yields. Differential organic acid production was observed, but acetate production was prevented at the maximal RAM (20g). The amount of rPLA2 in both, OM and RAM cultures, represented 38 ± 5% of the insoluble protein. A smaller proportion of α-helices and β-sheet of purified inclusion bodies (IBs) were appreciated by ATR-FTIR from cultures carried out under OM, than those from RAM. At maximal agitation by RAM, internal E. coli localization patterns of protein aggregation changed, as well as, IBs proteolytic degradation, in conjunction with the formation of small external vesicles, although these changes did not significantly affect the cell survival response. Conclusions In moderate-cell-density recombinant E. coli BL21-Gold (DE3) cultures, the agitation increases in RAM (up to the maximum) was not enough to avoid the classical oxygen limitation that happens in OM shake flasks. However, RAM presents a decrease of oxygen limitation, resulting in a favorable effect on biomass growth and volumetric rPLA2 production. While under OM a higher recombinant protein yield was obtained. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0746-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Norma A Valdez-Cruz
- Programa de Investigación de Producción de Biomoléculas, Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP 04510, Mexico City, Mexico.
| | - Greta I Reynoso-Cereceda
- Programa de Investigación de Producción de Biomoléculas, Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP 04510, Mexico City, Mexico
| | - Saumel Pérez-Rodriguez
- Programa de Investigación de Producción de Biomoléculas, Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP 04510, Mexico City, Mexico
| | - Sara Restrepo-Pineda
- Programa de Investigación de Producción de Biomoléculas, Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP 04510, Mexico City, Mexico
| | - Jesus González-Santana
- Programa de Investigación de Producción de Biomoléculas, Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP 04510, Mexico City, Mexico
| | - Alejandro Olvera
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor, Mexico
| | - Guadalupe Zavala
- Unidad de Microscopía, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor, Mexico
| | - Alejandro Alagón
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor, Mexico
| | - Mauricio A Trujillo-Roldán
- Programa de Investigación de Producción de Biomoléculas, Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP 04510, Mexico City, Mexico
| |
Collapse
|