1
|
Yeo RYZ, Chin BH, Hil Me MF, Chia JF, Pham HT, Othman AR, Mohammad AW, Ang WL, Lim SS. Rapid Surface Modification of Stainless Steel 304L Electrodes for Microbial Electrochemical Sensor Application. ACS Biomater Sci Eng 2023; 9:6034-6044. [PMID: 37846081 DOI: 10.1021/acsbiomaterials.3c00453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Electrogenic microorganisms serve as important biocatalysts for microbial electrochemical sensors (MESes). The electrical signal produced is based on the rate of electron transfer between the microbes and electrodes, which represents the biotoxicity of water. However, existing MESes require complex and sophisticated fabrication methods. Here, several low-cost and rapid surface modification strategies (carbon powder-coated, flame-oxidized, and acid-bleached) have been demonstrated and studied for biosensing purposes. Surface-modified MESe bioanodes were successfully applied to detect multiple model pollutants including sodium acetate, ethanol, thinner, and palm oil mill effluent under three different testing sequences, namely, pollutant incremental, pollutant dumping, and water dilution tests. The carbon powder-coated bioanode showed the most responsive signal profile for all the three tests, which is in line with the average roughness values (Ra) when tested with atomic force microscopy. The carbon powder-coated electrode possessed a Ra value of 0.844, while flame-oxidized, acid-bleached, and control samples recorded 0.323, 0.336, and 0.264, respectively. The higher roughness was caused by the carbon coating and provided adhesive sites for microbial attachment and growth. The accuracy of MESe was also verified by correlating with chemical oxygen demand (COD) results. Similar to the sensitivity test, the carbon powder-coated bioanode obtained the highest R2 value of 0.9754 when correlated with COD results, indicating a high potential of replacing conventional water quality analysis methods. The reported work is of great significance to showcase facile surface modification techniques for MESes, which are cost-effective and sustainable while retaining the biocompatibility toward the microbial community with carbon-based coatings.
Collapse
Affiliation(s)
- Ryan Yow Zhong Yeo
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Bin Hou Chin
- Department of Applied Physics, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | | | - Jan Feng Chia
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Hai The Pham
- Department of Microbiology and Center for Life Science Research (CELIFE), Faculty of Biology, VNU University of Science, Vietnam National University, Nguyen Trai 334, Thanh Xuan, Hanoi, Vietnam
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Abdul Wahab Mohammad
- Chemical and Water Desalination Program, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Wei Lun Ang
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Swee Su Lim
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| |
Collapse
|
2
|
Noori MT, Min B. Fundamentals and recent progress in bioelectrochemical system-assisted biohythane production. BIORESOURCE TECHNOLOGY 2022; 361:127641. [PMID: 35863600 DOI: 10.1016/j.biortech.2022.127641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Biohythane, a balanced mixture of 10%-30% v/v of hydrogen and 70%-90% v/v of methane, could be the backbone of an all-purpose future energy supply. Recently, bioelectrochemical systems (BES) became a new sensation among environmental biotechnology processes with the potential to sustainably generate biohythane. Therefore, to unleash its full potential for scaling up, researchers are consistently improving microbial metabolic pathways, novel reactors, and electrode designs. This review presents a detailed analysis of recently discovered fundamental mechanisms and science and engineering intervention of different strategies to improve the biohythane composition and production rate from BES. However, several milestones are to be achieved, for instance, improving electrode kinetics using efficient catalysts, engineered microbial communities, and improved reactor configurations, for commercializing this sustainable technology. Thus, a future perspective section is included to recommend novel research lines, mainly focusing on the microbial communities and the efficient electrocatalysts, to enhance reactor performance.
Collapse
Affiliation(s)
- Md Tabish Noori
- Department of Environmental Science and Engineering, Kyung Hee University - Global Campus, Yongin-Si, Republic of Korea
| | - Booki Min
- Department of Environmental Science and Engineering, Kyung Hee University - Global Campus, Yongin-Si, Republic of Korea.
| |
Collapse
|
3
|
Cao H, Sun J, Wang K, Zhu G, Li X, Lv Y, Wang Z, Feng Q, Feng J. Performance of bioelectrode based on different carbon materials in bioelectrochemical anaerobic digestion for methanation of maize straw. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154997. [PMID: 35381255 DOI: 10.1016/j.scitotenv.2022.154997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
The performance of the bioelectrochemical anaerobic digestion (BEAD) reactor was investigated with different carbon material-modified electrodes for the methanation of maize straw. The carbon material-modified electrodes used titanium (Ti) mesh modified with carbon nanotube (CNT), carbon black (CB), and activated carbon (AC). The maximum cumulative methane production obtained in the Ti-CNT reactor was (616.4 ± 9.3) mL/g VS, while the maximum methane production rate in the Ti-AC reactor was (61.9 ± 1.0) mL/g VS.d.The electroactive bacteria were well enriched by the different electrodes, and the enriched electroactive bacteria further facilitate the direct interspecies electron transfer (DIET) for methane production. Additionally, we found the phylum Firmicutes showed a linear relationship to methanogenic performance, as well as the Genus Proteiniborus. The Ti-CNT electrode shows better performance by the electrochemical analysis. These findings provide critical knowledge for the large-scale use of the BEAD process and the treatment of maize straw.
Collapse
Affiliation(s)
- Hongrui Cao
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jin Sun
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Keqiang Wang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Guanyu Zhu
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiaoxiang Li
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yaowei Lv
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zejie Wang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Qing Feng
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Jie Feng
- School of Rehabilitation, Shandong University of Traditional Chinese Medicine, Jinan 250353, China
| |
Collapse
|
4
|
Scarabotti F, Bühler K, Schmidt M, Harnisch F. Thickness and roughness of transparent gold-palladium anodes have no impact on growth kinetics and yield coefficients of early-stage Geobacter sulfurreducens biofilms. Bioelectrochemistry 2022; 144:108043. [PMID: 34959027 DOI: 10.1016/j.bioelechem.2021.108043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/24/2021] [Accepted: 12/13/2021] [Indexed: 01/05/2023]
Abstract
Geobacter sulfurreducens is the model organism for electroactive microorganisms performing direct extracellular electron transfer and forming thick mature biofilm electrodes. Although numerous physiological properties of mature biofilm electrodes are deciphered, there is an extensive gap of knowledge on the early-stage biofilm formation. We have shown recently that transparent gold-palladium (AuPd) electrodes allow for analysis of early-stage biofilm formation using confocal laser scanning microscopy. Here we analysed the influence of thickness (ranging from 12.5 to 200 nm) and roughness of AuPd electrodes on physiological parameters of G. sulfurreducens early-stage biofilms. We show that when grown potentiostatically at -200 mV vs. Ag/ AgCl sat. KCl neither maximum current density (jmax of ∼ 80-150 µA cm-2) nor lag time (lag t of ∼ 0.2-0.4 days) or single cell yield coefficients (YNe of 1.43 × 1012 cells mole--1) of the biofilms are influenced by the electrode preparation. This confirms the robustness of the experimental approach, which is an inevitable prerequisite for obtaining reliable results in follow-up experiments.
Collapse
Affiliation(s)
- Francesco Scarabotti
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Katja Bühler
- Department Solar Materials, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Matthias Schmidt
- Department of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Falk Harnisch
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany.
| |
Collapse
|
5
|
Ratheesh A, Elias L, Aboobakar Shibli SM. Tuning of Electrode Surface for Enhanced Bacterial Adhesion and Reactions: A Review on Recent Approaches. ACS APPLIED BIO MATERIALS 2021; 4:5809-5838. [PMID: 35006924 DOI: 10.1021/acsabm.1c00362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The study of bacterial adhesion and its consequences has great significance in different fields such as marine science, renewable energy sectors, soil and plant ecology, food industry, and the biomedical field. Generally, the adverse effects of microbial surface interactions have attained wide visibility. However, herein, we present distinct approaches to highlight the beneficial aspects of microbial surface interactions for various applications rather than deal with the conventional negative aspects or prevention strategies. The surface microbial reactions can be tuned for useful biochemical or bio-electrochemical applications, which are otherwise unattainable through conventional routes. In this context, the present review is a comprehensive approach to highlight the basic principles and signature parameters that are responsible for the useful microbial-electrode interactions. It also proposes various surface tuning strategies, which are useful for tuning the electrode characteristics particularly suitable for the enhanced bacterial adhesion and reactions. The tuning of surface characteristics of electrodes is discussed with a special reference to the Microbial Fuel Cell as an example.
Collapse
Affiliation(s)
- Anjana Ratheesh
- Department of Biotechnology, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| | - Liju Elias
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| | - Sheik Muhammadhu Aboobakar Shibli
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India.,Centre for Renewable Energy and Materials, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| |
Collapse
|
6
|
Azimzade Y, Saberi AA. Geometrically regulating evolutionary dynamics in biofilms. Phys Rev E 2021; 103:L050401. [PMID: 34134254 DOI: 10.1103/physreve.103.l050401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/21/2021] [Indexed: 11/07/2022]
Abstract
The theoretical understanding of evolutionary dynamics in spatially structured populations often relies on nonspatial models. Biofilms are among such populations where a more accurate understanding is of theoretical interest and can reveal new solutions to existing challenges. Here, we studied how the geometry of the environment affects the evolutionary dynamics of expanding populations, using the Eden model. Our results show that fluctuations of subpopulations during range expansion in two- and three-dimensional environments are not Brownian. Furthermore, we found that the substrate's geometry interferes with the evolutionary dynamics of populations that grow upon it. Inspired by these findings, we propose a periodically wedged pattern on surfaces prone to develop biofilms. On such patterned surfaces, natural selection becomes less effective and beneficial mutants would have a harder time establishing. Additionally, this modification accelerates genetic drift and leads to less diverse biofilms. Both interventions are highly desired for biofilms.
Collapse
Affiliation(s)
- Youness Azimzade
- Department of Physics, University of Tehran, Tehran 14395-547, Iran
| | - Abbas Ali Saberi
- Department of Physics, University of Tehran, Tehran 14395-547, Iran.,Institut für Theoretische Physik, Universitat zu Köln, Zülpicher Strasse 77, 50937 Köln, Germany
| |
Collapse
|
7
|
Kim ES, Ha JH, Choi J. Biological fixed-film systems. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:491-501. [PMID: 32866339 DOI: 10.1002/wer.1445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/23/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
The technical papers published in 2019 regarding wastewater treatment and microbial films were classified into two categories: biofilm and biofilm reactors. The biofilm category includes biofilm formation, biofilm consortia, bacterial signals, biofouling, extracellular polymeric substances, and biofilm membrane bioreactors. The biofilm reactors category provides recent information on rotating biological contactors, fluidized-bed biofilm reactors, integrated fixed-film activated sludge, moving-bed biofilm reactors, packed-bed biofilm reactors, sequencing biofilm batch reactors, and trickling filters.
Collapse
Affiliation(s)
- Eun-Sik Kim
- Department of Environmental System Engineering, Chonnam National University, Yeosu, Korea
| | - Jae-Hoon Ha
- Department of Environmental Engineering, Korea National University of Transportation, Chungju, Korea
| | - Jeongdong Choi
- Department of Environmental Engineering, Korea National University of Transportation, Chungju, Korea
| |
Collapse
|
8
|
Li Z, Zhang P, Qiu Y, Zhang Z, Wang X, Yu Y, Feng Y. Biosynthetic FeS/BC hybrid particles enhanced the electroactive bacteria enrichment in microbial electrochemical systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143142. [PMID: 33168253 DOI: 10.1016/j.scitotenv.2020.143142] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/08/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Modifying the surface of an anode can improve electroactive bacteria (EAB) enrichment, thereby enhancing the performance of the associated microbial electrochemical systems (MESs). In this study, biosynthetic FeS nanoparticles were used to modify the anode in MESs. The experimental results demonstrated that the stable maximum voltage of the FeS composited biochar (FeS/BC)-modified anode reached 0.72 V, which is 20% higher than that of the control. The maximum power density with the FeS/BC anode was 793 mW/m2, which is 46.31% higher than that obtained with the control (542 mW/m2). According to cyclic voltammetry (CV) analysis, FeS/BC facilitates the direct electron transfer between bacteria and the electrode. The biomass protein concentration of the FeS/BC anode was 841.75 μg/cm2, which is almost 1.5 times higher than that of the carbon cloth anode (344.25 μg/cm2); hence, FeS/BC modification can promote biofilm formation. The composition of Geobacter species on the FeS/BC anode (75.16%) was much higher than that on the carbon cloth anode (4.81%). All the results demonstrated that the use of the biosynthetic FeS/BC anode is an environmentally friendly and efficient strategy for enhancing the electroactive biofilm formation and EAB enrichment in MESs.
Collapse
Affiliation(s)
- Zeng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Peng Zhang
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, PR China
| | - Ye Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Zhaohan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Xin Wang
- College of Environmental Science & Engineering, Nankai University, Tianjin, 300071, PR China
| | - Yanling Yu
- School of Chemistry & Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| |
Collapse
|
9
|
Anode Modification as an Alternative Approach to Improve Electricity Generation in Microbial Fuel Cells. ENERGIES 2020. [DOI: 10.3390/en13246596] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sustainable production of electricity from renewable sources by microorganisms is considered an attractive alternative to energy production from fossil fuels. In recent years, research on microbial fuel cells (MFCs) technology for electricity production has increased. However, there are problems with up-scaling MFCs due to the fairly low power output and high operational costs. One of the approaches to improving energy generation in MFCs is by modifying the existing anode materials to provide more electrochemically active sites and improve the adhesion of microorganisms. The aim of this review is to present the effect of anode modification with carbon compounds, metallic nanomaterials, and polymers and the effect that these modifications have on the structure of the microbiological community inhabiting the anode surface. This review summarizes the advantages and disadvantages of individual materials as well as possibilities for using them for environmentally friendly production of electricity in MFCs.
Collapse
|
10
|
Pinck S, Ostormujof LM, Teychené S, Erable B. Microfluidic Microbial Bioelectrochemical Systems: An Integrated Investigation Platform for a More Fundamental Understanding of Electroactive Bacterial Biofilms. Microorganisms 2020; 8:E1841. [PMID: 33238493 PMCID: PMC7700166 DOI: 10.3390/microorganisms8111841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/31/2022] Open
Abstract
It is the ambition of many researchers to finally be able to close in on the fundamental, coupled phenomena that occur during the formation and expression of electrocatalytic activity in electroactive biofilms. It is because of this desire to understand that bioelectrochemical systems (BESs) have been miniaturized into microBES by taking advantage of the worldwide development of microfluidics. Microfluidics tools applied to bioelectrochemistry permit even more fundamental studies of interactions and coupled phenomena occurring at the microscale, thanks, in particular, to the concomitant combination of electroanalysis, spectroscopic analytical techniques and real-time microscopy that is now possible. The analytical microsystem is therefore much better suited to the monitoring, not only of electroactive biofilm formation but also of the expression and disentangling of extracellular electron transfer (EET) catalytic mechanisms. This article reviews the details of the configurations of microfluidic BESs designed for selected objectives and their microfabrication techniques. Because the aim is to manipulate microvolumes and due to the high modularity of the experimental systems, the interfacial conditions between electrodes and electrolytes are perfectly controlled in terms of physicochemistry (pH, nutrients, chemical effectors, etc.) and hydrodynamics (shear, material transport, etc.). Most of the theoretical advances have been obtained thanks to work carried out using models of electroactive bacteria monocultures, mainly to simplify biological investigation systems. However, a huge virgin field of investigation still remains to be explored by taking advantage of the capacities of microfluidic BESs regarding the complexity and interactions of mixed electroactive biofilms.
Collapse
Affiliation(s)
| | | | | | - Benjamin Erable
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31432 Toulouse, France; (S.P.); (L.M.O.); (S.T.)
| |
Collapse
|
11
|
Moß C, Jarmatz N, Heinze J, Scholl S, Schröder U. Optimal Geometric Parameters for 3D Electrodes in Bioelectrochemical Systems: A Systematic Approach. CHEMSUSCHEM 2020; 13:5119-5129. [PMID: 32659033 PMCID: PMC7540030 DOI: 10.1002/cssc.202001232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/28/2020] [Indexed: 06/11/2023]
Abstract
In this study, the performance of electroactive bacteria (EAB), cultivated inside tubular electrode ducts, is systematically investigated to derive predictions on the behavior of EAB under conditions limited by electrochemical losses. A modeling approach is applied to assess the influence of the electrochemical losses on the electrochemical performance and scaling characteristics of complex 3D structures, such as sponges and foams. A modular flow reactor is designed that provides laminar and reproducible flow conditions as a platform for the systematic electrochemical and bioelectrochemical characterization of 3D electrodes in bioelectrochemical systems (BES). The bioelectrochemical experiments are carried out in a set of reactors incorporating cylindrical electrodes exhibiting ducts of 1 cm length and different diameters ranging from 0.1 cm up to 1 cm. Single duct calculations are extrapolated to three dimensions through geometrical considerations; trends in 3D bioanode performance are demonstrated using the resulting simplified 3D structure. The combined experimental and modeling approach constitutes a framework for future studies on systematic electrode design.
Collapse
Affiliation(s)
- Christopher Moß
- Institute of Environmental and Sustainable ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Niklas Jarmatz
- Institute for Chemical and Thermal Process EngineeringTechnische Universität BraunschweigLanger Kamp 738106BraunschweigGermany
| | - Janina Heinze
- Institute for Chemical and Thermal Process EngineeringTechnische Universität BraunschweigLanger Kamp 738106BraunschweigGermany
| | - Stephan Scholl
- Institute for Chemical and Thermal Process EngineeringTechnische Universität BraunschweigLanger Kamp 738106BraunschweigGermany
| | - Uwe Schröder
- Institute of Environmental and Sustainable ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| |
Collapse
|
12
|
Moß C, Behrens A, Schröder U. The Limits of Three-Dimensionality: Systematic Assessment of Effective Anode Macrostructure Dimensions for Mixed-Culture Electroactive Biofilms. CHEMSUSCHEM 2020; 13:582-589. [PMID: 31743607 PMCID: PMC7027515 DOI: 10.1002/cssc.201902923] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Indexed: 05/11/2023]
Abstract
This study analyzes the biofilm growth and long-term current production of mixed-culture, electrochemically active biofilms (EABs) on macrostructured electrodes under low-shear-force conditions. The channel dimensions were altered systematically in the range 400 μm to 2 mm, and the channel heights were varied between 1 and 4 mm to simulate macrostructures of different scales. Electrodes with finer-structured surfaces produced higher current densities in the short term owing to their large surface area but were outperformed in the long term because the accumulation of biomass led to limitations of mass transfer into the structures. The best long-term performance was observed for electrodes with channel dimensions of 1×4 mm, which showed no significant decrease in performance in the long term. Channels with a diameter of 400 μm were overgrown by the biofilm, which led to a transition from 3 D to 2 D behavior, indicating that structures of this scale might not be suitable for long-term operation under low-shear-stress conditions.
Collapse
Affiliation(s)
- Christopher Moß
- Institute of Environmental and Sustainable ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Andreas Behrens
- Institute of Environmental and Sustainable ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Uwe Schröder
- Institute of Environmental and Sustainable ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| |
Collapse
|