1
|
Wang C, Zhou G, Guo X, Zhang W, Wu C. Electrical Stimulation Promotes Endocytosis of Magnetic Nanoparticles by Cancer Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403381. [PMID: 39126240 DOI: 10.1002/smll.202403381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Indexed: 08/12/2024]
Abstract
Nanomaterials are increasingly used in biomedical imaging and cancer therapy, and how to improve the endocytosis of nanomaterials by cells is a key issue. The application of alternating current (AC) electrical stimulation to osteosarcoma cells (MG-63) here can increase the cellular endocytosis of Fe3O4 nanoparticles (diameter: 50 nm) by 52.46% via macropinocytosis. This can be ascribed to the decrease in F-actin content and the increase in intracellular Ca2+ concentration. Transmission electron microscope, immunofluorescence staining, western blot, flow cytometry, and inductively coupled plasma emission spectrometer analyses support this interpretation. The application of electrical stimulation decreases the cell viability in magnetic hyperthermia by 47.6% and increases the signal intensity of magnetic resonance imaging by 29%. Similar enhanced endocytosis is observed for breast cancer cells (MCF-7), glioblastoma cells (U-87 MG), melanoma cells (A-375), and bladder cancer cells (TCCSUP), and also for Fe3O4 nanoparticles with the diameters of 20 and 100 nm, and Zn0.54Co0.46Cr0.65Fe1.35O4 nanoparticles with the diameter of 70 nm. It seems the electrical stimulation has the potential to improve the diagnostic and therapeutic effects of magnetic nanoparticles by promoting endocytosis.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Guanlin Zhou
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xu Guo
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Wei Zhang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Chengwei Wu
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
2
|
Gharatape A, Sadeghi-Abandansari H, Seifalian A, Faridi-Majidi R, Basiri M. Nanocarrier-based gene delivery for immune cell engineering. J Mater Chem B 2024; 12:3356-3375. [PMID: 38505950 DOI: 10.1039/d3tb02279j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Clinical advances in genetically modified immune cell therapies, such as chimeric antigen receptor T cell therapies, have raised hope for cancer treatment. The majority of these biotechnologies are based on viral methods for ex vivo genetic modification of the immune cells, while the non-viral methods are still in the developmental phase. Nanocarriers have been emerging as materials of choice for gene delivery to immune cells. This is due to their versatile physicochemical properties such as large surface area and size that can be optimized to overcome several practical barriers to successful gene delivery. The in vivo nanocarrier-based gene delivery can revolutionize cell-based cancer immunotherapies by replacing the current expensive autologous cell manufacturing with an off-the-shelf biomaterial-based platform. The aim of this research is to review current advances and strategies to overcome the challenges in nanoparticle-based gene delivery and their impact on the efficiency, safety, and specificity of the process. The main focus is on polymeric and lipid-based nanocarriers, and their recent preclinical applications for cancer immunotherapy.
Collapse
Affiliation(s)
- Alireza Gharatape
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hamid Sadeghi-Abandansari
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd, Nanoloom Ltd, & Liberum Health Ltd), London BioScience Innovation Centre, London, UK
| | - Reza Faridi-Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology and Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
- T Cell Therapeutics Research Labs, Cellular Immunotherapy Center, Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
3
|
Mao K, Wang J, Xie Q, Yang YG, Shen S, Sun T, Wang J. Cationic nanoparticles-based approaches for immune tolerance induction in vivo. J Control Release 2024; 366:425-447. [PMID: 38154540 DOI: 10.1016/j.jconrel.2023.12.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/04/2023] [Accepted: 12/25/2023] [Indexed: 12/30/2023]
Abstract
The development of autoimmune diseases and the rejection of transplanted organs are primarily caused by an exaggerated immune response to autoantigens or graft antigens. Achieving immune tolerance is crucial for the effective treatment of these conditions. However, traditional therapies often have limited therapeutic efficacy and can result in systemic toxic effects. The emergence of nanomedicine offers a promising avenue for addressing immune-related diseases. Among the various nanoparticle formulations, cationic nanoparticles have demonstrated significant potential in inducing immune tolerance. In this review, we provide an overview of the underlying mechanism of autoimmune disease and organ transplantation rejection. We then highlight the recent advancements and advantages of utilizing cationic nanoparticles for inducing immune tolerance in the treatment of autoimmune diseases and the prevention of transplant rejection.
Collapse
Affiliation(s)
- Kuirong Mao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; International Center of Future Science, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Jialiang Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Qianyue Xie
- Huafu International Department, Affiliated High School of South China Normal University, Guangzhou, Guangdong, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; International Center of Future Science, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Song Shen
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; International Center of Future Science, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China; State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China.
| | - Jun Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, China; Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovatiion Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Shen Q, Yu C. Advances in superparamagnetic iron oxide nanoparticles modified with branched polyethyleneimine for multimodal imaging. Front Bioeng Biotechnol 2024; 11:1323316. [PMID: 38333548 PMCID: PMC10851169 DOI: 10.3389/fbioe.2023.1323316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/18/2023] [Indexed: 02/10/2024] Open
Abstract
Multimodal imaging are approaches which combines multiple imaging techniques to obtain multi-aspect information of a target through different imaging modalities, thereby greatly improve the accuracy and comprehensiveness of imaging. Superparamagnetic iron oxide nanoparticles (SPIONs) modified with branched polyethyleneimine have revealed good biocompatibility and stability, high drug loading capacity and nucleic acid transfection efficiency. SPIONs have been developed as functionalized platforms which can be further modified to enhance their functionalities. Those further modifications facilitate the application of SPIONs in multimodal imaging. In this review, we discuss the methods, advantages, applications, and prospects of BPEI-modified SPIONs in multimodal imaging.
Collapse
Affiliation(s)
- Qiaoling Shen
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Chunjing Yu
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Zhang C, Li X, Lu J, Li C, Wang Y, Xu X, Yang X. Enhanced electron beam and X-ray beam therapy by applying nanoparticle heterojunctions: A Monte Carlo simulation. Appl Radiat Isot 2023; 199:110869. [PMID: 37267775 DOI: 10.1016/j.apradiso.2023.110869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/02/2023] [Accepted: 05/20/2023] [Indexed: 06/04/2023]
Abstract
Cancer has become one of the major diseases that seriously threaten human health. In order to improve the therapeutic gain ratio (TGF) of conventional X-ray and electron beams, we studied the dose enhancement effect and secondary electrons emission of Au-Fe nanoparticle heterostructures by Monte Carlo method. Under the irradiation of 6 MeV photon and 6 MeV electron beams, the Au-Fe mixture has a dose enhancement effect. For this reason, we explored the secondary electrons production that leads to dose enhancement. For 6 MeV electron beam irradiation, Au-Fe nanoparticle heterojunctions have an higher electrons emission than Au and Fe nanoparticles. When cubic, spherical and cylindrical heterogeneous structures are considered, the electron emission of the columnar Au-Fe nanoparticles is the highest, with a maximum value of 0.00024. For 6 MV X-ray beam irradiation, Au nanoparticle and Au-Fe nanoparticle heterojunction have similar electrons emission, while Fe nanoparticle has the lowest one. When cubic, spherical and cylindrical heterogeneous structures are considered, the electron emission of the columnar Au-Fe nanoparticles is the highest, with a maximum value of 0.000118. This study contributes to improve the tumor-killing effect of conventional X-ray radiotherapy treatment and has guiding significance for the research of new nanoparticles.
Collapse
Affiliation(s)
- Chuhan Zhang
- College of Physics, Jilin University, Changchun 130012, China
| | - Xiaoyi Li
- College of Physics, Jilin University, Changchun 130012, China
| | - Jingbin Lu
- College of Physics, Jilin University, Changchun 130012, China.
| | - Chengqian Li
- College of Physics, Jilin University, Changchun 130012, China
| | - Yu Wang
- College of Physics, Jilin University, Changchun 130012, China
| | - Xu Xu
- College of Physics, Jilin University, Changchun 130012, China
| | - Xiangshan Yang
- College of Public Health, Jilin University, Changchun 130012, China
| |
Collapse
|
6
|
Abstract
Gene therapy makes it possible to engineer chimeric antigen receptors (CARs) to create T cells that target specific diseases. However, current approaches require elaborate and expensive protocols to manufacture engineered T cells ex vivo, putting this therapy beyond the reach of many patients who might benefit. A solution could be to program T cells in vivo. Here, we evaluate the clinical need for in situ CAR T cell programming, compare competing technologies, review current progress, and provide a perspective on the long-term impact of this emerging and rapidly flourishing biotechnology field.
Collapse
Affiliation(s)
- Neha N Parayath
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Matthias T Stephan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington 98195, USA;
| |
Collapse
|
7
|
Lin X, O'Reilly Beringhs A, Lu X. Applications of Nanoparticle-Antibody Conjugates in Immunoassays and Tumor Imaging. AAPS J 2021; 23:43. [PMID: 33718979 PMCID: PMC7956929 DOI: 10.1208/s12248-021-00561-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Modern diagnostic technologies rely on both in vitro and in vivo modalities to provide a complete understanding of the clinical state of a patient. Nanoparticle-antibody conjugates have emerged as promising systems to confer increased sensitivity and accuracy for in vitro diagnostics (e.g., immunoassays). Meanwhile, in vivo applications have benefited from the targeting ability of nanoparticle-antibody conjugates, as well as payload flexibility and tailored biodistribution. This review provides an encompassing overview of nanoparticle-antibody conjugates, from chemistry to applications in medical immunoassays and tumor imaging, highlighting the underlying principles and unique features of relevant preclinical applications employing commonly used imaging modalities (e.g., optical/photoacoustics, positron-emission tomography, magnetic resonance imaging, X-ray computed tomography).
Collapse
Affiliation(s)
- Xinhao Lin
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | | | - Xiuling Lu
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA.
| |
Collapse
|
8
|
Dragar Č, Kralj S, Kocbek P. Bioevaluation methods for iron-oxide-based magnetic nanoparticles. Int J Pharm 2021; 597:120348. [DOI: 10.1016/j.ijpharm.2021.120348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/21/2021] [Accepted: 01/31/2021] [Indexed: 12/26/2022]
|
9
|
Potential role of diacylglycerol kinases in immune-mediated diseases. Clin Sci (Lond) 2021; 134:1637-1658. [PMID: 32608491 DOI: 10.1042/cs20200389] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/08/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
The mechanism promoting exacerbated immune responses in allergy and autoimmunity as well as those blunting the immune control of cancer cells are of primary interest in medicine. Diacylglycerol kinases (DGKs) are key modulators of signal transduction, which blunt diacylglycerol (DAG) signals and produce phosphatidic acid (PA). By modulating lipid second messengers, DGK modulate the activity of downstream signaling proteins, vesicle trafficking and membrane shape. The biological role of the DGK α and ζ isoforms in immune cells differentiation and effector function was subjected to in deep investigations. DGK α and ζ resulted in negatively regulating synergistic way basal and receptor induced DAG signals in T cells as well as leukocytes. In this way, they contributed to keep under control the immune response but also downmodulate immune response against tumors. Alteration in DGKα activity is also implicated in the pathogenesis of genetic perturbations of the immune function such as the X-linked lymphoproliferative disease 1 and localized juvenile periodontitis. These findings suggested a participation of DGK to the pathogenetic mechanisms underlying several immune-mediated diseases and prompted several researches aiming to target DGK with pharmacologic and molecular strategies. Those findings are discussed inhere together with experimental applications in tumors as well as in other immune-mediated diseases such as asthma.
Collapse
|
10
|
Yu B, Dong B, He J, Huang H, Huang J, Wang Y, Liang J, Zhang J, Qiu Y, Shen J, Shuai X, Tao J, Xia W. Bimodal Imaging-Visible Nanomedicine Integrating CXCR4 and VEGFa Genes Directs Synergistic Reendothelialization of Endothelial Progenitor Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001657. [PMID: 33344118 PMCID: PMC7740091 DOI: 10.1002/advs.202001657] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/08/2020] [Indexed: 06/01/2023]
Abstract
A major challenge to treat vascular endothelial injury is the restoration of endothelium integrity in which endothelial progenitor cells (EPCs) plays a central role. Transplantation of EPCs as a promising therapeutic means is subject to two interrelated processes, homing and differentiation of EPCs in vivo, and thus a lack of either one may greatly affect the outcome of EPC-based therapy. Herein, a polymeric nanocarrier is applied for the codelivery of CXCR4 and VEGFa genes to simultaneously promote the migration and differentiation of EPCs. Moreover, MRI T2 contrast agent SPION and NIR dye Cy7.5 are also loaded into the nanocarrier in order to track EPCs in vivo. Based on the synergistic effect of the two codelivered genes, an improved reendothelialization of EPCs is achieved in a rat carotid denuded model. The results show the potential of this bimodal imaging-visible nanomedicine to improve the performance of EPCs in repairing arterial injury, which may push forward the stem cell-based therapy of cardiovascular disease.
Collapse
Affiliation(s)
- Bingbo Yu
- Department of Hypertension and Vascular DiseaseThe First Affiliated Hospital of Sun Yat‐sen UniversityNational‐Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular DiseasesKey Laboratory on Assisted CirculationMinistry of HealthGuangzhou510080China
| | - Bing Dong
- Department of Hypertension and Vascular DiseaseThe First Affiliated Hospital of Sun Yat‐sen UniversityNational‐Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular DiseasesKey Laboratory on Assisted CirculationMinistry of HealthGuangzhou510080China
| | - Jiang He
- Department of Hypertension and Vascular DiseaseThe First Affiliated Hospital of Sun Yat‐sen UniversityNational‐Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular DiseasesKey Laboratory on Assisted CirculationMinistry of HealthGuangzhou510080China
| | - Hui Huang
- Department of CardiovascularThe Eighth Affiliated Hospital of Sun Yat‐sen UniversityShenzhen518000China
| | - Jinsheng Huang
- PCFM Lab of Ministry of EducationSchool of Material Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Yong Wang
- PCFM Lab of Ministry of EducationSchool of Material Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Jianwen Liang
- Department of CardiovascularThe Eighth Affiliated Hospital of Sun Yat‐sen UniversityShenzhen518000China
| | - Jianning Zhang
- Department of Hypertension and Vascular DiseaseThe First Affiliated Hospital of Sun Yat‐sen UniversityNational‐Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular DiseasesKey Laboratory on Assisted CirculationMinistry of HealthGuangzhou510080China
| | - Yumin Qiu
- Department of Hypertension and Vascular DiseaseThe First Affiliated Hospital of Sun Yat‐sen UniversityNational‐Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular DiseasesKey Laboratory on Assisted CirculationMinistry of HealthGuangzhou510080China
| | - Jun Shen
- Department of RadiologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Xintao Shuai
- Department of Hypertension and Vascular DiseaseThe First Affiliated Hospital of Sun Yat‐sen UniversityNational‐Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular DiseasesKey Laboratory on Assisted CirculationMinistry of HealthGuangzhou510080China
- PCFM Lab of Ministry of EducationSchool of Material Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Jun Tao
- Department of Hypertension and Vascular DiseaseThe First Affiliated Hospital of Sun Yat‐sen UniversityNational‐Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular DiseasesKey Laboratory on Assisted CirculationMinistry of HealthGuangzhou510080China
| | - Wenhao Xia
- Department of Hypertension and Vascular DiseaseThe First Affiliated Hospital of Sun Yat‐sen UniversityNational‐Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular DiseasesKey Laboratory on Assisted CirculationMinistry of HealthGuangzhou510080China
| |
Collapse
|
11
|
Memari E, Maghsoudi A, Yazdian F, Yousefi M, Mohammadi M. Synthesis of PHB-co-PEI nanoparticles as gene carriers for miR-128-encoding plasmid delivery to U87 glioblastoma cells. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
12
|
Liao D, Zhong L, Yin J, Zeng C, Wang X, Huang X, Chen J, Zhang H, Zhang R, Guan XY, Shuai X, Sui J, Gao S, Deng W, Zeng YX, Shen JN, Chen J, Kang T. Chromosomal translocation-derived aberrant Rab22a drives metastasis of osteosarcoma. Nat Cell Biol 2020; 22:868-881. [PMID: 32483387 DOI: 10.1038/s41556-020-0522-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/16/2020] [Indexed: 01/04/2023]
Abstract
Osteosarcoma is a type of aggressive malignant bone tumour that frequently metastasizes to lungs, resulting in poor prognosis. However, the molecular mechanisms of lung metastasis of osteosarcoma remain poorly understood. Here we identify exon-intron fusion genes in osteosarcoma cell lines and tissues. These fusion genes are derived from chromosomal translocations that juxtapose the coding region for amino acids 1-38 of Rab22a (Rab22a1-38) with multiple inverted introns and untranslated regions of chromosome 20. The resulting translation products, designated Rab22a-NeoFs, acquire the ability to drive lung metastasis of osteosarcoma. The Rab22a1-38 moiety governs the function of Rab22a-NeoFs by binding to SmgGDS-607, a GTP-GDP exchange factor of RhoA. This association facilitates the release of GTP-bound RhoA from SmgGDS-607, which induces increased activity of RhoA and promotes metastasis. Disrupting the interaction between Rab22a-NeoF1 and SmgGDS-607 with a synthetic peptide prevents lung metastasis in an orthotopic model of osteosarcoma. Our findings may provide a promising strategy for a subset of osteosarcoma patients with lung metastases.
Collapse
Affiliation(s)
- Dan Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Junqiang Yin
- Department of Musculoskeletal Oncology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Cuiling Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xin Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | | | - Jinna Chen
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Hong Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ruhua Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xin-Yuan Guan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Xintao Shuai
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jianhua Sui
- National Institute of Biological Sciences, Beijing, China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wuguo Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing-Nan Shen
- Department of Musculoskeletal Oncology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Jian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, China.
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
13
|
Shi Y, Lei G, Li Y, Zhang X, Peng R, Hu J, Yuan Z, Liu Y, Shen X, Sun N, Wang M, He Y, Wang J, Du J, Zhou L, Zhu X. In situ preparation of non-viral gene vectors with folate/magnetism dual targeting by hyperbranched polymers. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Cai Z, Wu C, Yang L, Wang D, Ai H. Assembly-Controlled Magnetic Nanoparticle Clusters as MRI Contrast Agents. ACS Biomater Sci Eng 2020; 6:2533-2542. [PMID: 33463262 DOI: 10.1021/acsbiomaterials.9b01198] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Zhongyuan Cai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Changqiang Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- Sichuan Key Laboratory of Medical Imaging and School of Medical Imaging, North Sichuan Medical College, Fujiang Road 234, Nanchong, Sichuan 637000, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Dan Wang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
15
|
In Situ Preparation of Amphibious ZnO Quantum Dots with Blue Fluorescence Based on Hyperbranched Polymers and their Application in Bio-Imaging. Polymers (Basel) 2020; 12:polym12010144. [PMID: 31935952 PMCID: PMC7023060 DOI: 10.3390/polym12010144] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/24/2019] [Accepted: 01/01/2020] [Indexed: 01/27/2023] Open
Abstract
A new strategy for preparing amphibious ZnO quantum dots (QDs) with blue fluorescence within hyper-branched poly(ethylenimine)s (HPEI) was proposed in this paper. By changing [Zn2+]/[OH-] molar ratio and heating time, ZnO QDs with a quantum yields (QY) of 30% in ethanol were obtained. Benefiting from the amphibious property of HPEI, the ZnO/HPEI nanocomposites in ethanol could be dissolved in chloroform and water, acquiring a QY of 53%, chloroform and 11% in water. By this strategy, the ZnO/HPEI nano-composites could be applied in not only in optoelectronics, but also biomedical fields (such as bio-imaging and gene transfection). The bio-imaging application of water-soluble ZnO/HPEI nanocomposites was investigated and it was found that they could easily be endocytosed by the COS-7 cells, without transfection reagent, and they exhibited excellent biological imaging behavior.
Collapse
|
16
|
Duman FD, Akkoc Y, Demirci G, Bavili N, Kiraz A, Gozuacik D, Acar HY. Bypassing pro-survival and resistance mechanisms of autophagy in EGFR-positive lung cancer cells by targeted delivery of 5FU using theranostic Ag 2S quantum dots. J Mater Chem B 2019; 7:7363-7376. [PMID: 31696188 DOI: 10.1039/c9tb01602c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Targeted drug delivery systems that combine imaging and therapeutic functions in a single structure have become very popular in nanomedicine. Near-infrared (NIR) emitting Ag2S quantum dots (QDs) are excellent candidates for this task. Here, we have developed PEGylated Ag2S QDs functionalized with Cetuximab (Cet) antibody and loaded with an anticancer drug, 5-fluorouracil (5FU). These theranostic QDs were used for targeted NIR imaging and treatment of lung cancer using low (H1299) and high (A549) Epidermal Growth Factor Receptor (EGFR) overexpressing cell lines. The Cet conjugated QDs effectively and selectively delivered 5FU to A549 cells and provided significantly enhanced cell death associated with apoptosis. Interestingly, while treatment of cells with free 5FU activated autophagy, a cellular mechanism conferring resistance to cell death, these EGFR targeting multimodal QDs significantly overcame drug resistance compared to 5FU treatment alone. The improved therapeutic outcome of 5FU delivered to A549 cells by Cet conjugated Ag2S QDs is suggested as the synergistic outcome of enhanced receptor mediated uptake of nanoparticles, and hence the drug, coupled with suppressed autophagy even in the absence of addition of an autophagy suppressor.
Collapse
Affiliation(s)
| | - Yunus Akkoc
- Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Programs, 34956 Istanbul, Turkey.
| | - Gozde Demirci
- Koc University, Graduate School of Materials Science and Engineering, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Nima Bavili
- Koc University, Department of Physics, Rumelifeneri Yolu, Sarıyer, 34450 Istanbul, Turkey
| | - Alper Kiraz
- Koc University, Graduate School of Materials Science and Engineering, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey and Koc University, Department of Physics, Rumelifeneri Yolu, Sarıyer, 34450 Istanbul, Turkey
| | - Devrim Gozuacik
- Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Programs, 34956 Istanbul, Turkey. and Sabanci University, Center of Excellence for Functional Surfaces and Interfaces for NanoDiagnostics (EFSUN), 34956 Istanbul, Turkey
| | - Havva Yagci Acar
- Koc University, Department of Chemistry, 34450 Istanbul, Turkey. and Koc University, Graduate School of Materials Science and Engineering, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey and KUYTAM, Koc University Surface Science and Technology Center, 34450 Istanbul, Turkey
| |
Collapse
|
17
|
Ke X, Howard GP, Tang H, Cheng B, Saung MT, Santos JL, Mao HQ. Physical and chemical profiles of nanoparticles for lymphatic targeting. Adv Drug Deliv Rev 2019; 151-152:72-93. [PMID: 31626825 DOI: 10.1016/j.addr.2019.09.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/03/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022]
Abstract
Nanoparticles (NPs) have been gaining prominence as delivery vehicles for modulating immune responses to improve treatments against cancer and autoimmune diseases, enhancing tissue regeneration capacity, and potentiating vaccination efficacy. Various engineering approaches have been extensively explored to control the NP physical and chemical properties including particle size, shape, surface charge, hydrophobicity, rigidity and surface targeting ligands to modulate immune responses. This review examines a specific set of physical and chemical characteristics of NPs that enable efficient delivery targeted to secondary lymphoid tissues, specifically the lymph nodes and immune cells. A critical analysis of the structure-property-function relationship will facilitate further efforts to engineer new NPs with unique functionalities, identify novel utilities, and improve the clinical translation of NP formulations for immunotherapy.
Collapse
|
18
|
Scheetz L, Park KS, Li Q, Lowenstein PR, Castro MG, Schwendeman A, Moon JJ. Engineering patient-specific cancer immunotherapies. Nat Biomed Eng 2019; 3:768-782. [PMID: 31406259 PMCID: PMC6783331 DOI: 10.1038/s41551-019-0436-x] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 07/03/2019] [Indexed: 02/06/2023]
Abstract
Research into the immunological processes implicated in cancer has yielded a basis for the range of immunotherapies that are now considered the fourth pillar of cancer treatment (alongside surgery, radiotherapy and chemotherapy). For some aggressive cancers, such as advanced non-small-cell lung carcinoma, combination immunotherapies have resulted in unprecedented treatment efficacy for responding patients, and have become frontline therapies. Individualized immunotherapy, enabled by the identification of patient-specific mutations, neoantigens and biomarkers, and facilitated by advances in genomics and proteomics, promises to broaden the responder patient population. In this Perspective, we give an overview of immunotherapies leveraging engineering approaches, including the design of biomaterials, delivery strategies and nanotechnology solutions, for the realization of individualized cancer treatments such as nanoparticle vaccines customized with neoantigens, cell therapies based on patient-derived dendritic cells and T cells, and combinations of theranostic strategies. Developments in precision cancer immunotherapy will increasingly rely on the adoption of engineering principles.
Collapse
Affiliation(s)
- Lindsay Scheetz
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Kyung Soo Park
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Qiao Li
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
19
|
Genetic programming of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers. Nat Commun 2019; 10:3974. [PMID: 31481662 PMCID: PMC6722139 DOI: 10.1038/s41467-019-11911-5] [Citation(s) in RCA: 316] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 08/09/2019] [Indexed: 12/16/2022] Open
Abstract
Tumor-associated macrophages (TAMs) usually express an M2 phenotype, which enables them to perform immunosuppressive and tumor-promoting functions. Reprogramming these TAMs toward an M1 phenotype could thwart their pro-cancer activities and unleash anti-tumor immunity, but efforts to accomplish this are nonspecific and elicit systemic inflammation. Here we describe a targeted nanocarrier that can deliver in vitro-transcribed mRNA encoding M1-polarizing transcription factors to reprogram TAMs without causing systemic toxicity. We demonstrate in models of ovarian cancer, melanoma, and glioblastoma that infusions of nanoparticles formulated with mRNAs encoding interferon regulatory factor 5 in combination with its activating kinase IKKβ reverse the immunosuppressive, tumor-supporting state of TAMs and reprogram them to a phenotype that induces anti-tumor immunity and promotes tumor regression. We further establish that these nanoreagents are safe for repeated dosing. Implemented in the clinic, this immunotherapy could enable physicians to obviate suppressive tumors while avoiding systemic treatments that disrupt immune homeostasis.
Collapse
|
20
|
CY C, GY L, L Z, XH H, D C, SC W, CZ X, JH Z, L X. MicroRNA delivery mediated by PEGylated polyethylenimine for prostate cancer therapy. OPEN CHEM 2018. [DOI: 10.1515/chem-2018-0138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractA microRNA (miRNA) nanomedicine PEG-PEI/miR-221/222 was synthesized based on PEGylated polyethylenimine PEG-PEI and used to transfect prostate cancer cells (PC-3) in vitro. Gel retardation assay confirmed the formation of nanomedicine, of which the zeta potential and particle size were determined by dynamic light scattering. Its cytotoxicity was analyzed by CCK-8 assay-while its transfection efficiency was analyzed by flow cytometry. Cell uptake and intracellular distribution of nanoparticles were evaluated using laser confocal microscopy. RT-PCR and western-blot assays were conducted to verify the regulation of SIRT1 target gene. We found that the properties of the nanocomplexes of miRNA and PEG-PEI depended on N/P ratios. At higher N/P ratio, accompanied by higher zeta potential and higher cytotoxicity, PEG-PEI is needed to completely condense the miRNA into small particles with uniform size distribution. Under an N/P ratio of 20, high transfection efficiency and low carrier cytotoxicity were obtained simultaneously in PC-3 cells in vitro. Consequently, the SIRT1 expression was up-regulated due to the nanoparticle-delivered miR-221/222, which resulted in effective inhibition of PC-3 cells. Our study revealed the PEG-PEI/miR-221/222 nanomedicine as a prospective alternative for treatment of advanced prostate cancer and also lays a foundation for future in vivo investigation.
Collapse
Affiliation(s)
- Chen CY
- Longgang District People’s Hospital of Shenzhen, Guangdong518000, China
| | - Li GY
- Longgang District People’s Hospital of Shenzhen, Guangdong518000, China
| | - Zhang L
- School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou510275, China
| | - Huang XH
- Longgang District People’s Hospital of Shenzhen, Guangdong518000, China
| | - Cheng D
- School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou510275, China
| | - Wu SC
- School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou510275, China
| | - Xu CZ
- School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou510275, China
| | - Zhou JH
- Longgang District People’s Hospital of Shenzhen, Guangdong518000, China
| | - Xun L
- Longgang District People’s Hospital of Shenzhen, Guangdong518000, China
| |
Collapse
|
21
|
Nanomedicines reveal how PBOV1 promotes hepatocellular carcinoma for effective gene therapy. Nat Commun 2018; 9:3430. [PMID: 30143633 PMCID: PMC6109108 DOI: 10.1038/s41467-018-05764-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 07/26/2018] [Indexed: 02/07/2023] Open
Abstract
There exists an urgent medical demand at present to develop therapeutic strategies which can improve the treatment outcome of hepatocellular carcinoma (HCC). Here, we explore the biological functions and clinical significance of PBOV1 in HCC in order to push forward the diagnosis and treatment of HCC. Using theranostical nanomedicines, PBOV1 is verified to be a key oncogene which greatly promotes HCC proliferation, epithelial-to-mesenchymal transition, and stemness by activating the Wnt/β-catenin signaling pathway. Therefore, single-chain antibody for epidermal growth factor receptor (scAb-EGFR)-targeted nanomedicine effectively silencing the PBOV1 gene exhibits potent anticancer effects. In vivo HCC-targeting siRNA delivery mediated by the theranostical nanomedicine remarkably inhibits the tumor growth and metastasis. In addition, the superparamagnetic iron oxide nanocrystals (SPION)-encapsulated nanomedicines possess high MRI detection sensitivity, which endows them with the potential for MRI diagnosis of HCC. This study shows that PBOV1 represents a prognostic biomarker and therapeutic target for HCC.
Collapse
|
22
|
Patil RM, Thorat ND, Shete PB, Bedge PA, Gavde S, Joshi MG, Tofail SA, Bohara RA. Comprehensive cytotoxicity studies of superparamagnetic iron oxide nanoparticles. Biochem Biophys Rep 2018; 13:63-72. [PMID: 29349357 PMCID: PMC5766481 DOI: 10.1016/j.bbrep.2017.12.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 11/20/2022] Open
Abstract
Recently lots of efforts have been taken to develop superparamagnetic iron oxide nanoparticles (SPIONs) for biomedical applications. So it is utmost necessary to have in depth knowledge of the toxicity occurred by this material. This article is designed in such way that it covers all the associated toxicity issues of SPIONs. It mainly emphasis on toxicity occurred at different levels including cellular alterations in the form of damage to nucleic acids due to oxidative stress and altered cellular response. In addition focus is been devoted for in vitro and in vivo toxicity of SPIONs, so that a better therapeutics can be designed. At the end the time dependent nature of toxicity and its ultimate faith inside the body is being discussed.
Collapse
Affiliation(s)
- Rakesh M. Patil
- Directorate of Forensic Science Laboratory, Govt. of Maharashtra Kalina, Mumbai, India
- Centre for Interdisciplinary Research, D.Y.Patil University, Kolhapur, India
| | - Nanasaheb D. Thorat
- Material and Surface Science Institute, Bernal Institute, University of Limerick, Ireland
| | - Prajkta B. Shete
- Centre for Interdisciplinary Research, D.Y.Patil University, Kolhapur, India
| | - Poonam A. Bedge
- Department of Stem Cells and Regenerative Medicine, D.Y.Patil University, Kolhapur, India
| | - Shambala Gavde
- Centre for Interdisciplinary Research, D.Y.Patil University, Kolhapur, India
| | - Meghnad G. Joshi
- Department of Stem Cells and Regenerative Medicine, D.Y.Patil University, Kolhapur, India
| | - Syed A.M. Tofail
- Material and Surface Science Institute, Bernal Institute, University of Limerick, Ireland
| | - Raghvendra A. Bohara
- Centre for Interdisciplinary Research, D.Y.Patil University, Kolhapur, India
- Department of Stem Cells and Regenerative Medicine, D.Y.Patil University, Kolhapur, India
- Research and Innovations for Comprehensive Health (RICH), Cell D.Y.Patil University, Kolhapur, India
| |
Collapse
|
23
|
Guo Z, Chen J, Lin L, Guan X, Sun P, Chen M, Tian H, Chen X. pH Triggered Size Increasing Gene Carrier for Efficient Tumor Accumulation and Excellent Antitumor Effect. ACS APPLIED MATERIALS & INTERFACES 2017; 9:15297-15306. [PMID: 28425284 DOI: 10.1021/acsami.7b02734] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
High efficiency and serum resistant capacity are important for gene carrier in vivo usage. In this study, transfection efficiency and cell toxicity of polyethylenimine (PEI) (branched, Mw = 25K) was remarkably improved, when mixed with polyanion (polyethylene glycol-polyglutamic acid (PEG-PLG) or polyglutamic acid (PLG)). Different composite orders of PEI, polyanion, and gene, for example, PEI is first complexed with DNA, and then with polyanion, or PEI is first complexed with polyanion, and then with DNA, were studied. Results showed that only the polyanion/PEI complexes exhibited additional properties, such as decreased pH, resulting in increased particle size, as well as enhanced serum resistance capability and improved tumor accumulation. The prepared gene carrier showed excellent antitumor effect, with no damage on major organs, which is suitable for in vivo gene antitumor therapy.
Collapse
Affiliation(s)
- Zhaopei Guo
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Taipa, Macao 999078, China
| | - Jie Chen
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, China
| | - Lin Lin
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, China
| | - Xiuwen Guan
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Pingjie Sun
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Taipa, Macao 999078, China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, China
| |
Collapse
|
24
|
Ansari AS, Santerre PJ, Uludağ H. Biomaterials for polynucleotide delivery to anchorage-independent cells. J Mater Chem B 2017; 5:7238-7261. [DOI: 10.1039/c7tb01833a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Comparison of various chemical vectors used for polynucleotide delivery to mammalian anchorage-independent cells.
Collapse
Affiliation(s)
- Aysha S. Ansari
- Department of Chemical & Materials Engineering
- Faculty of Engineering
- University of Alberta
- Edmonton
- Canada
| | - Paul J. Santerre
- Institute of Biomaterials & Biomedical Engineering
- University of Toronto
- Toronto
- Canada
| | - Hasan Uludağ
- Department of Chemical & Materials Engineering
- Faculty of Engineering
- University of Alberta
- Edmonton
- Canada
| |
Collapse
|
25
|
Hu Y, Zhou Y, Zhao N, Liu F, Xu FJ. Multifunctional pDNA-Conjugated Polycationic Au Nanorod-Coated Fe3 O4 Hierarchical Nanocomposites for Trimodal Imaging and Combined Photothermal/Gene Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:2459-68. [PMID: 26996155 DOI: 10.1002/smll.201600271] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/10/2016] [Indexed: 05/23/2023]
Abstract
It is very desirable to design multifunctional nanocomposites for theranostic applications via flexible strategies. The synthesis of one new multifunctional polycationic Au nanorod (NR)-coated Fe3 O4 nanosphere (NS) hierarchical nanocomposite (Au@pDM/Fe3 O4 ) based on the ternary assemblies of negatively charged Fe3 O4 cores (Fe3 O4 -PDA), polycation-modified Au nanorods (Au NR-pDM), and polycations is proposed. For such nanocomposites, the combined near-infrared absorbance properties of Fe3 O4 -PDA and Au NR-pDM are applied to photoacoustic imaging and photothermal therapy. Besides, Fe3 O4 and Au NR components allow the nanocomposites to serve as MRI and CT contrast agents. The prepared positively charged Au@pDM/Fe3 O4 also can complex plasmid DNA into pDNA/Au@pDM/Fe3 O4 and efficiently mediated gene therapy. The multifunctional applications of pDNA/Au@pDM/Fe3 O4 nanocomposites in trimodal imaging and combined photothermal/gene therapy are demonstrated using a xenografted rat glioma nude mouse model. The present study demonstrates that the proper assembly of different inorganic nanoparticles and polycations is an effective strategy to construct new multifunctional theranostic systems.
Collapse
Affiliation(s)
- Yang Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Beijing University of Chemical Technology, Ministry of Education, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yiqiang Zhou
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing, 100050, China
| | - Nana Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Beijing University of Chemical Technology, Ministry of Education, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing, 100050, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Beijing University of Chemical Technology, Ministry of Education, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
26
|
Guo Y, Wang J, Zhang L, Shen S, Guo R, Yang Y, Chen W, Wang Y, Chen G, Shuai X. Theranostical nanosystem-mediated identification of an oncogene and highly effective therapy in hepatocellular carcinoma. Hepatology 2016; 63:1240-55. [PMID: 26680504 DOI: 10.1002/hep.28409] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 12/09/2015] [Indexed: 12/24/2022]
Abstract
UNLABELLED Because the primary surgical treatment options for hepatocellular carcinoma (HCC)-including hepatic resection and liver transplantation-often fail due to recurrence and metastasis, identifying early prognostic biomarkers and therapeutic targets for HCC is of great importance. This study shows that transducin β-like protein 1-related protein (TBLR1) is a key HCC oncogene that plays important roles in HCC proliferation, antiapoptosis, and angiogenesis by regulating the Wnt/β-catenin pathway. The folate-targeted theranostic small interfering RNA (siRNA) nanomedicine Fa-PEG-g-PEI-SPION/psiRNA-TBLR1 effectively silences the TBLR1 gene in different human HCC cell lines in vitro and in human HCC samples in vivo, resulting in the simultaneous suppression of HCC cell proliferation, antiapoptosis, and angiogenesis. Because of its multi-anticancer functions against HCC, intravenous injection of the folate-targeted siRNA nanomedicine into nude mice bearing intrahepatic or subcutaneous xenografts of human HCC has a significant therapeutic effect. Tumor growth in those animals was almost completely inhibited by treatment with Fa-PEG-g-PEI-SPION/psiRNA-TBLR1. Moreover, the SPION-encapsulated polyplexes possess high magnetic resonance imaging (MRI) detection sensitivity, which makes tumor-targeted siRNA delivery easily trackable using the clinical MRI technique. CONCLUSION The theranostic siRNA nanomedicine examined here possesses great theranostic potential for combined gene therapy and MRI diagnosis of HCC.
Collapse
Affiliation(s)
- Yu Guo
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- PCFM Lab of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, China
- Experimental Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jing Wang
- Experimental Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lu Zhang
- PCFM Lab of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Shunli Shen
- Experimental Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruomi Guo
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yang Yang
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenjie Chen
- Hepatology Laboratory, Hospital for Liver Disease, Sun Yat-Sen University, Guangzhou, China
| | - Yiru Wang
- PCFM Lab of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Guihua Chen
- Hepatology Laboratory, Hospital for Liver Disease, Sun Yat-Sen University, Guangzhou, China
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
27
|
Glasgow MDK, Chougule MB. Recent Developments in Active Tumor Targeted Multifunctional Nanoparticles for Combination Chemotherapy in Cancer Treatment and Imaging. J Biomed Nanotechnol 2016; 11:1859-98. [PMID: 26554150 DOI: 10.1166/jbn.2015.2145] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nanotechnology and combination therapy are two major fields that show great promise in the treatment of cancer. The delivery of drugs via nanoparticles helps to improve drug's therapeutic effectiveness while reducing adverse side effects associated wifh high dosage by improving their pharmacokinetics. Taking advantage of molecular markers over-expressing on tumor tissues compared to normal cells, an "active" molecular marker targeted approach would be-beneficial for cancer therapy. These actively targeted nanoparticles would increase drug concentration at the tumor site, improving efficacy while further reducing chemo-resistance. The multidisciplinary approach may help to improve the overall efficacy in cancer therapy. This review article summarizes recent developments of targeted multifunctional nanoparticles in the delivery, of various drugs for a combinational chemotherapy approach to cancer treatment and imaging.
Collapse
|
28
|
Shi Y, Zhao J, Zhou L, Li T, Liu M, Liu L. Blue-emitting and amphibious metal (Cu, Ni, Pt, Pd) nanodots prepared within supramolecular polymeric micelles for cellular imaging applications. RSC Adv 2016. [DOI: 10.1039/c6ra06116h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We propose a new method for the preparation of blue-emitting and amphibious metal (Cu, Ni, Pt, Pd) nanodots using supramolecular polymeric micelle nanoreactors for cellular imaging applications.
Collapse
Affiliation(s)
- Yunfeng Shi
- School of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang 455000
- People's Republic of China
- Department of Bioengineering
| | - Junhong Zhao
- School of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang 455000
- People's Republic of China
| | - Linzhu Zhou
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- People's Republic of China
| | - Ting Li
- School of Education
- Anyang Normal University
- Anyang 455000
- People's Republic of China
| | - Mei Liu
- School of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang 455000
- People's Republic of China
| | - Leilei Liu
- School of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang 455000
- People's Republic of China
| |
Collapse
|
29
|
Amjad MW, Amin MCIM, Katas H, Butt AM, Kesharwani P, Iyer AK. In Vivo Antitumor Activity of Folate-Conjugated Cholic Acid-Polyethylenimine Micelles for the Codelivery of Doxorubicin and siRNA to Colorectal Adenocarcinomas. Mol Pharm 2015; 12:4247-58. [DOI: 10.1021/acs.molpharmaceut.5b00827] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Muhammad Wahab Amjad
- Center
for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Mohd Cairul Iqbal Mohd Amin
- Center
for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Haliza Katas
- Center
for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Adeel Masood Butt
- Center
for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Prashant Kesharwani
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, Michigan 48201, United States
| | - Arun K. Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, Michigan 48201, United States
| |
Collapse
|
30
|
Serum resistant and enhanced transfection of plasmid DNA by PEG-stabilized polyplex nanoparticles of L-histidine substituted polyethyleneimine. Macromol Res 2015. [DOI: 10.1007/s13233-015-3074-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Oral O, Cıkım T, Zuvin M, Unal O, Yagci-Acar H, Gozuacik D, Koşar A. Effect of Varying Magnetic Fields on Targeted Gene Delivery of Nucleic Acid-Based Molecules. Ann Biomed Eng 2015; 43:2816-26. [DOI: 10.1007/s10439-015-1331-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 05/02/2015] [Indexed: 12/14/2022]
|
32
|
Abstract
Nucleic acids show immense potential to treat cancer, acquired immune deficiency syndrome, neurological diseases and other incurable human diseases. Upon systemic administration, they encounter a series of barriers and hence barely reach the site of action, the cell. Intracellular delivery of nucleic acids is facilitated by nanovectors, both viral and non-viral. A major advantage of non-viral vectors over viral vectors is safety. Nanovectors evaluated specifically for nucleic acid delivery include polyplexes, lipoplexes and other cationic carrier-based vectors. However, more recently there is an increased interest in inorganic nanovectors for nucleic acid delivery. Nevertheless, there is no comprehensive review on the subject. The present review would cover in detail specific properties and types of inorganic nanovectors, their preparation techniques and various biomedical applications as therapeutics, diagnostics and theranostics. Future prospects are also suggested.
Collapse
|
33
|
Kim YD, Park TE, Singh B, Maharjan S, Choi YJ, Choung PH, Arote RB, Cho CS. Nanoparticle-mediated delivery of siRNA for effective lung cancer therapy. Nanomedicine (Lond) 2015; 10:1165-88. [DOI: 10.2217/nnm.14.214] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Lung cancer is one of the most lethal diseases worldwide, and the survival rate is less than 15% even after the treatment. Unfortunately, chemotherapeutic treatments for lung cancer are accompanied by severe side effects, lack of selectivity and multidrug resistance. In order to overcome the limitations of conventional chemotherapy, nanoparticle-mediated RNA interference drugs represent a potential new approach due to selective silencing effect of oncogenes and multidrug resistance related genes. In this review, we provide recent advancements on nanoparticle-mediated siRNA delivery strategies including lipid system, polymeric system and rigid nanoparticles for lung cancer therapies. Importantly, codelivery of siRNA with conventional anticancer drugs and recent theranostic agents that offer great potential for lung cancer therapy is covered.
Collapse
Affiliation(s)
- Young-Dong Kim
- Department of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Tae-Eun Park
- Department of Agricultural Biotechnology & Research Institute for Agriculture & Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Bijay Singh
- Department of Agricultural Biotechnology & Research Institute for Agriculture & Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Sushila Maharjan
- Department of Agricultural Biotechnology & Research Institute for Agriculture & Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology & Research Institute for Agriculture & Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Pill-Hoon Choung
- Department of Oral & Maxillofacial Surgery & Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Rohidas B. Arote
- Department of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Chong-Su Cho
- Department of Agricultural Biotechnology & Research Institute for Agriculture & Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| |
Collapse
|
34
|
Effective suppression of the Kirsten rat sarcoma viral oncogene in pancreatic tumor cells via targeted small interfering RNA delivery using nanoparticles. Pancreas 2015; 44:250-9. [PMID: 25401377 DOI: 10.1097/mpa.0000000000000241] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The objective of this study was to establish an efficient carrier for small interfering RNA (siRNA) delivery targeting pancreatic tumor cells. METHODS A copolymer consisting of a single-chain variable fragment targeted to human CD44 variant 6 (scFv(CD44v6)) functional group conjugated to polyethylene glycol-poly-L-lysine was synthesized and assembled into micelles encapsulating the siRNAs. Flow cytometry and Western blot assays were performed to evaluate the transfection efficiency and gene-silencing effect of the siRNAs. Afterward, (4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, Transwell, soft agar colony formation, and enzyme-linked immunosorbent assays were performed to evaluate the biological functions of PANC-1 cells after Kirsten rat sarcoma viral oncogene knockdown. In vivo assays were performed using a BALB/c (nu/nu) mouse model subcutaneously injected with PANC-1 xenografts. Real-time in vivo fluorescence imaging was used to monitor the tumor homing of the nanoparticles. RESULTS The scFv(CD44v6) enabled more efficient delivery of siRNAs and exhibited enhanced gene silencing compared with nontargeted nanoparticles. Furthermore, targeted delivery of the siRNAs induced a potent inhibitory effect on cell proliferation, colony formation, invasion, and vascular endothelial growth factor production. The animal assays revealed that single-chain variable fragment nanoparticles accumulated in the tumor tissue and enhanced the inhibition of tumor growth in vivo. CONCLUSIONS The scFv(CD44v6)-conjugated nanocarriers provide a highly efficient and safe platform for systemic gene therapy for pancreatic cancer.
Collapse
|
35
|
Wang J, Ren L, Li J, Huang J, Cheng D, Shuai X. Effective siRNA therapy of hepatoma mediated by a nonviral vector with MRI-visibility and biodegradability. RSC Adv 2015. [DOI: 10.1039/c4ra16870d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A biodegradable nanocarrier, PLI-SPION, was used to simultaneously deliver survivin-specific siRNA and MRI contrast agent SPIO.
Collapse
Affiliation(s)
- Jin Wang
- Department of Radiology
- The Third Affiliated Hospital of Sun Yat-sen University
- Guangzhou 510630
- China
| | - Linglan Ren
- Department of Radiology
- The Third Affiliated Hospital of Sun Yat-sen University
- Guangzhou 510630
- China
- PCFM Lab of Ministry of Education
| | - Jingguo Li
- PCFM Lab of Ministry of Education
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Jinsheng Huang
- PCFM Lab of Ministry of Education
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Du Cheng
- PCFM Lab of Ministry of Education
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Xintao Shuai
- PCFM Lab of Ministry of Education
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| |
Collapse
|
36
|
Multifunctional Polymeric Nano-Carriers in Targeted Drug Delivery. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1007/978-3-319-11355-5_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
37
|
Lim EK, Kim T, Paik S, Haam S, Huh YM, Lee K. Nanomaterials for Theranostics: Recent Advances and Future Challenges. Chem Rev 2014; 115:327-94. [DOI: 10.1021/cr300213b] [Citation(s) in RCA: 916] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Eun-Kyung Lim
- Department
of Radiology, Yonsei University, Seoul 120-752, Korea
- BioNanotechnology
Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | - Taekhoon Kim
- Department
of Chemistry, Korea University, Seoul 136-701, Korea
- Electronic
Materials Laboratory, Samsung Advanced Institute of Technology, Mt. 14-1,
Nongseo-Ri, Giheung-Eup, Yongin-Si, Gyeonggi-Do 449-712, Korea
| | - Soonmyung Paik
- Severance
Biomedical Research Institute, Yonsei University College of Medicine, Seoul 120-749, Korea
- Division
of Pathology, NSABP Foundation, Pittsburgh, Pennsylvania 15212, United States
| | - Seungjoo Haam
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, Korea
| | - Yong-Min Huh
- Department
of Radiology, Yonsei University, Seoul 120-752, Korea
| | - Kwangyeol Lee
- Department
of Chemistry, Korea University, Seoul 136-701, Korea
| |
Collapse
|
38
|
Yang H, Li Y, Li T, Xu M, Chen Y, Wu C, Dang X, Liu Y. Multifunctional core/shell nanoparticles cross-linked polyetherimide-folic acid as efficient Notch-1 siRNA carrier for targeted killing of breast cancer. Sci Rep 2014; 4:7072. [PMID: 25400232 PMCID: PMC4233336 DOI: 10.1038/srep07072] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/29/2014] [Indexed: 12/13/2022] Open
Abstract
In gene therapy, how genetic therapeutics can be efficiently and safely delivered into target tissues/cells remains a major obstacle to overcome. To address this issue, nanoparticles consisting of non-covalently coupled polyethyleneimine (PEI) and folic acid (FA) to the magnetic and fluorescent core/shell of Fe3O4@SiO2(FITC) was tested for their ability to deliver Notch-1 shRNA. Our results showed that Fe3O4@SiO2(FITC)/PEI-FA/Notch-1 shRNA nanoparticles are 64 nm in diameter with well dispersed and superparamagnetic. These nanoparticles with on significant cytotoxicity are capable of delivering Notch-1 shRNA into human breast cancer MDA-MB-231 cells with high efficiency while effectively protected shRNA from degradation by exogenous DNaseI and nucleases. Magnetic resonance (MR) imaging and fluorescence microscopy showed significant preferential uptake of Fe3O4@SiO2(FITC)/PEI-FA/Notch-1 shRNA nanocomplex by MDA-MB-231 cells. Transfected MDA-MB-231 cells exhibited significantly decreased expression of Notch-1, inhibited cell proliferation, and increased cell apoptosis, leading to the killing of MDA-MB-231 cells. In light of the magnetic targeting capabilities of Fe3O4@SiO2(FITC)/PEI-FA, our results show that by complexing with a second molecular targeting therapeutic, such as Notch-1 shRNA in this report, Fe3O4@SiO2(FITC)/PEI-FA can be exploited as a novel, non-viral, and concurrent targeting delivery system for targeted gene therapy as well as for MR imaging in cancer diagnosis.
Collapse
Affiliation(s)
- Hong Yang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P.R. China
| | - Ying Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P.R. China
| | - Tingting Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P.R. China
| | - Min Xu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P.R. China
| | - Yin Chen
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P.R. China
| | - Chunhui Wu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P.R. China
| | - Xitong Dang
- Division of Trauma, Surgical Critical Care and Burns, University of California San Diego, CA 92103, USA
| | - Yiyao Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P.R. China
| |
Collapse
|
39
|
Chen X, Tian H, Guan X. Polymeric Gene Carriers. BIOINSPIRED AND BIOMIMETIC POLYMER SYSTEMS FOR DRUG AND GENE DELIVERY 2014:171-202. [DOI: 10.1002/9783527672752.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
40
|
Sojka B, Kuricova M, Liskova A, Bartusova M, Banski M, Misiewicz J, Dusinska M, Horvathova M, Jahnova E, Ilavska S, Szabova M, Rollerova E, Podhorodecki A, Tulinska J. Hydrophobic sodium fluoride-based nanocrystals doped with lanthanide ions: assessment of in vitro toxicity to human blood lymphocytes and phagocytes. J Appl Toxicol 2014; 34:1220-5. [PMID: 25179008 DOI: 10.1002/jat.3050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/10/2014] [Accepted: 06/21/2014] [Indexed: 01/06/2023]
Abstract
In vitro immunotoxicity of hydrophobic sodium fluoride-based nanocrystals (NCs) doped with lanthanide ions was examined in this study. Although there is already a significant amount of optical and structural data on NaYF4 NCs, data on safety assessment are missing. Therefore, peripheral whole blood from human volunteers was used to evaluate the effect of 25 and 30 nm hydrophobic NaYF4 NCs dissolved in cyclohexane (CH) on lymphocytes, and of 10 nm NaYF4 NCs on phagocytes. In the concentration range 0.12-75 µg cm(-2) (0.17-106 µg ml(-1) ), both 25 and 30nm NaYF4 NCs did not induce cytotoxicity when measured as incorporation of [(3) H]-thymidine into DNA. Assessment of lymphocyte function showed significant suppression of the proliferative activity of T-lymphocytes and T-dependent B-cell response in peripheral blood cultures (n = 7) stimulated in vitro with mitogens phytohemagglutinin (PHA) and pokeweed (PWM) (PHA > PWM). No clear dose-response effect was observed. Phagocytic activity and respiratory burst of leukocytes (n = 5-8) were generally less affected. A dose-dependent suppression of phagocytic activity of granulocytes in cultures treated with 25 nm NCs was observed (vs. medium control). A decrease in phagocytic activity of monocytes was found in cells exposed to higher doses of 10 and 30 nm NCs. The respiratory burst of phagocytes was significantly decreased by exposure to the middle dose of 30 nm NCs only. In conclusion, our results demonstrate immunotoxic effects of hydrophobic NaYF4 NCs doped with lanthanide ions to lymphocytes and to lesser extent to phagocytes. Further research needs to be done, particularly faze transfer of hydrophobic NCs to hydrophilic ones, to eliminate the solvent effect.
Collapse
Affiliation(s)
- Bartlomiej Sojka
- Institute of Physics, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wu C, Li J, Pang P, Liu J, Zhu K, Li D, Cheng D, Chen J, Shuai X, Shan H. Polymeric vector-mediated gene transfection of MSCs for dual bioluminescent and MRI tracking in vivo. Biomaterials 2014; 35:8249-60. [PMID: 24976241 DOI: 10.1016/j.biomaterials.2014.06.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/05/2014] [Indexed: 12/22/2022]
Abstract
MSC's transplantation is a promising cell-based therapy for injuries in regenerative medicine, and in vivo visualization of transplanted MSCs with noninvasive technique is essential for the tracking of cell infusion and homing. A new cationic polymer, poly(ethylene glycol)-block-poly(l-aspartic acid)-grafted polyethylenimine functionalized with superparamagnetic iron oxide nanoparticles (PAI/SPION), was constructed as a magnetic resonance imaging (MRI)-visible non-viral vector for the delivery of plasmids DNA (pDNA) encoding for luciferase and red fluorescence protein (RFP) as reporter genes into MSCs. As a result, the MSCs were labeled with SPION and reporter genes. The PAI/SPION complexes exhibited high transfection efficiency in transferring pDNA into MSCs, which resulted in efficient luciferase and RFP co-expression. Furthermore, the complexes did not significantly affect the viability and multilineage differentiation capacity of MSCs. After the labeled MSCs were transplanted into the rats with acute liver injury via the superior mesenteric vein (SMV) injection, the migration behavior and organ-specific accumulation of the cells could be effectively monitored using the in vivo imaging system (IVIS) and MRI, respectively. The immunohistochemical analysis further confirmed that the transplanted MSCs were predominantly distributed in the liver parenchyma. Our results indicate that the PAI/SPION is a MRI-visible gene delivery agent which can effectively label MSCs to provide the basis for bimodal bioluminescence and MRI tracking in vivo.
Collapse
Affiliation(s)
- Chun Wu
- Molecular Imaging Lab, Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Interventional Radiology Institute, Sun Yat-sen University, Guangzhou 510630, China
| | - Jingguo Li
- PCFM Lab of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Pengfei Pang
- Molecular Imaging Lab, Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Interventional Radiology Institute, Sun Yat-sen University, Guangzhou 510630, China
| | - Jingjing Liu
- Molecular Imaging Lab, Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Kangshun Zhu
- Molecular Imaging Lab, Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Interventional Radiology Institute, Sun Yat-sen University, Guangzhou 510630, China
| | - Dan Li
- Molecular Imaging Lab, Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Du Cheng
- PCFM Lab of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Junwei Chen
- Molecular Imaging Lab, Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Interventional Radiology Institute, Sun Yat-sen University, Guangzhou 510630, China
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Hong Shan
- Molecular Imaging Lab, Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Interventional Radiology Institute, Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
42
|
Liu J, Wang L, Cao J, Huang Y, Lin Y, Wu X, Wang Z, Zhang F, Xu X, Liu G. Functional investigations on embryonic stem cells labeled with clinically translatable iron oxide nanoparticles. NANOSCALE 2014; 6:9025-33. [PMID: 24969040 DOI: 10.1039/c4nr01004c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Stem cell based therapies offer significant potential in the field of regenerative medicine. The development of superparamagnetic iron oxide (SPIO) nanoparticle labeling and magnetic resonance imaging (MRI) have been increasingly used to track the transplanted cells, enabling in vivo determination of cell fate. However, the impact of SPIO-labeling on the cell phenotype and differentiation capacity of embryonic stem cells (ESCs) remains unclear. In this study, we wrapped SPIO nanoparticles with stearic acid grafted PEI600, termed as Stearic-LWPEI-SPIO, to generate efficient and non-toxic ESC labeling tools. Our results showed that efficient labeling of ESCs at an optimized low dosage of Stearic-LWPEI-SPIO nanoparticles did not alter the differentiation and self-renewal properties of ESCs. The localization of the transplanted ESCs observed by MRI correlated well with histological studies. These findings demonstrate that Stearic-LWPEI-SPIO nanoparticles have potential to be clinically translatable MRI probes and may enable non-invasive in vivo tracking of ESCs in experimental and clinical settings during cell-based therapies.
Collapse
Affiliation(s)
- Jing Liu
- Institute of Stem Cell and Regenerative Medicine, Medical College, Xiamen University, Xiamen, 361102, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wang Z, Liu G, Zheng H, Chen X. Rigid nanoparticle-based delivery of anti-cancer siRNA: challenges and opportunities. Biotechnol Adv 2014; 32:831-843. [PMID: 24013011 PMCID: PMC3947394 DOI: 10.1016/j.biotechadv.2013.08.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/21/2013] [Accepted: 08/29/2013] [Indexed: 01/03/2023]
Abstract
Gene therapy is a promising strategy to treat various genetic and acquired diseases. Small interfering RNA (siRNA) is a revolutionary tool for gene therapy and the analysis of gene function. However, the development of a safe, efficient, and targetable non-viral siRNA delivery system remains a major challenge in gene therapy. An ideal delivery system should be able to encapsulate and protect the siRNA cargo from serum proteins, exhibit target tissue and cell specificity, penetrate the cell membrane, and release its cargo in the desired intracellular compartment. Nanomedicine has the potential to deal with these challenges faced by siRNA delivery. The unique characteristics of rigid nanoparticles mostly inorganic nanoparticles and allotropes of carbon nanomaterials, including high surface area, facile surface modification, controllable size, and excellent magnetic/optical/electrical properties, make them promising candidates for targeted siRNA delivery. In this review, recent progresses on rigid nanoparticle-based siRNA delivery systems will be summarized.
Collapse
Affiliation(s)
- Zhiyong Wang
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China; Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Gang Liu
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; MOE key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
44
|
Guo Z, Tian H, Lin L, Chen J, He C, Tang Z, Chen X. Hydrophobic Polyalanine Modified Hyperbranched Polyethylenimine as High Efficient pDNA and siRNA Carrier. Macromol Biosci 2014; 14:1406-14. [DOI: 10.1002/mabi.201400044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/16/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Zhaopei Guo
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 China
| | - Lin Lin
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 China
| | - Jie Chen
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 China
| | - Chaoliang He
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 China
| |
Collapse
|
45
|
PEGylated block copolymers containing tertiary amine side-chains cleavable via acid-labile ortho ester linkages for pH-triggered release of DNA. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.04.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
46
|
Laurent S, Saei AA, Behzadi S, Panahifar A, Mahmoudi M. Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges. Expert Opin Drug Deliv 2014; 11:1449-70. [PMID: 24870351 DOI: 10.1517/17425247.2014.924501] [Citation(s) in RCA: 267] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Bearing in mind that many promising drug candidates have the problem of reaching their target site, the concept of advanced drug delivery can play a significant complementary role in shaping modern medicine. Among other nanoscale drug carriers, superparamagnetic iron oxide nanoparticles (SPIONs) have shown great potential in nanomedicine. The intrinsic properties of SPIONs, such as inherent magnetism, broad safety margin and the availability of methods for fabrication and surface engineering, pave the way for diverse biomedical applications. SPIONs can achieve the highest drug targeting efficiency among carriers, since an external magnetic field locally applied to the target organ enhances the accumulation of magnetic nanoparticles in the drug site of action. Moreover, theranostic multifunctional SPIONs make simultaneous delivery and imaging possible. In spite of these favorable qualities, there are some toxicological concerns, such as oxidative stress, unpredictable cellular responses and induction of signaling pathways, alteration in gene expression profiles and potential disturbance in iron homeostasis, that need to be carefully considered. Besides, the protein corona at the surface of the SPIONs may induce few shortcomings such as reduction of SPIONs targeting efficacy. AREAS COVERED In this review, we will present recent developments of SPIONs as theranostic agents. The article will further address some barriers on drug delivery using SPIONs. EXPERT OPINION One of the major success determinants in targeted in vivo drug delivery using SPIONs is the adequacy of magnetic gradient. This can be partially achieved by using superconducting magnets, local implantation of magnets and application of magnetic stents. Other issues that must be considered include the pharmacokinetics and in vivo fate of SPIONs, their biodegradability, biocompatibility, potential side effects and the crucial impact of protein corona on either drug release profile or mistargeting. Surface modification of SPIONs can open up the possibility of drug delivery to intracellular organelles, drug delivery across the blood-brain barrier, modifying metabolic diseases and a variety of other multimodal and/or theranostic applications.
Collapse
Affiliation(s)
- Sophie Laurent
- University of Mons, Avenue Maistriau, NMR and Molecular Imaging Laboratory, Department of General, Organic, and Biomedical Chemistry , 19, B-7000 Mons , Belgium
| | | | | | | | | |
Collapse
|
47
|
LONG LING, WANG WEIWEI, CAI XIADONG, CHENG DU, SHUAI XINTAO, PENG YING. PinX1-siRNA/mPEG-PEI-SPION combined with doxorubicin enhances the inhibition of glioma growth. Exp Ther Med 2014; 7:1170-1176. [PMID: 24940406 PMCID: PMC3991531 DOI: 10.3892/etm.2014.1586] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 02/19/2014] [Indexed: 01/08/2023] Open
Abstract
Resistance to chemotherapy and the side effects of anticancer drugs are the major obstacles for glioma treatment. The aim of the present study was to develop a novel approach for the treatment of gliomas that improved the therapeutic effect; the anticancer drug, doxorubicin (DOX), was combined with short interfering (si)RNA and monomethoxy polyethylene glycol polyethylenimine superparamagnetic iron oxide nanoparticle (mPEG-PEI-SPION), a magnetic resonance imaging (MRI)-visible nanoparticle. Specific siRNA molecules, delivered by mPEG-PEI-SPION, were employed to knockdown the PIN2-interacting protein 1 (PinX1) gene in C6 glioma cells. PinX1 is a nucleolar protein associated with telomere and telomerase. C6 cells were treated with DOX and/or PinX1-siRNA. The results of the transfection experiments revealed that siRNA/mPEG-PEI-SPION was transfected into C6 cells with high efficiency. PinX1-siRNA was unable to inhibit C6 cells, while in the PinX1-siRNA + DOX group, the same dose of DOX caused an increased loss of cell viability. Therefore, mPEG-PEI-SPION was shown to be viable for siRNA delivery into C6 cells and coadministration of DOX with PinX1-siRNA may be a potential therapeutic method for inhibiting gliomas.
Collapse
Affiliation(s)
- LING LONG
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - WEIWEI WANG
- Center of Biomedical Engineering, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510275, P.R. China
| | - XIA-DONG CAI
- Department of Neurology, The Sixth Affiliated Hospital (Guangdong Gastrointestinal and Anal Hospital), Sun Yat-Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - DU CHENG
- Center of Biomedical Engineering, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510275, P.R. China
| | - XINTAO SHUAI
- Center of Biomedical Engineering, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510275, P.R. China
| | - YING PENG
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
48
|
Multi-armed poly(L-glutamic acid)-graft-polypropyleneinime as effective and serum resistant gene delivery vectors. Int J Pharm 2014; 465:444-54. [PMID: 24576809 DOI: 10.1016/j.ijpharm.2014.02.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/23/2014] [Accepted: 02/23/2014] [Indexed: 02/07/2023]
Abstract
A new series of multi-armed MP-g-PPI dendrimers were synthesized by polymerization of BLG-NCA using G2.0PPI as macromolecular initiator and subsequent aminolysis with G1.0PPI or G2.0PPI. The chemical structure and composition of the MP-g-PPI dendrimers were characterized by Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance spectroscopy ((1)H NMR). The MP-g-PPI showed a great ability to combine with pDNA to form complexes, which protect the pDNA from nuclease degradation. Dynamic light scattering (DLS) measurement illustrated that the sizes of complexes were in range of 111-219 nm. The transmission electron microscope (TEM) and atomic force microscope (AFM) observation showed that the morphology of these complexes was spherical. The MTT assay demonstrated that cytotoxicity of the MP-g-PPI was lower than that of PEI 25K. The in vitro transfection test indicated that MP-g-PPI gene vectors displayed relative high transfection efficiency than that of PEI 25K and Lipofectamine 2000 in serum-containing medium. Furthermore, MP-g-PPI at the weight ratio of 7.5 displayed better serum-resistant capability than that of PEI 25K and Lipofectamine 2000. The above facts revealed that multi-armed MP-g-PPI dendrimers may be promising gene vectors with low cytotoxicity, high transfection efficiency and serum-resistant ability.
Collapse
|
49
|
A dual ligand targeted nanoprobe with high MRI sensitivity for diagnosis of breast cancer. CHINESE JOURNAL OF POLYMER SCIENCE 2014. [DOI: 10.1007/s10118-014-1399-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
50
|
Wang P, Moore A. Theranostic MRI: the future for Type 1 diabetes management? ACTA ACUST UNITED AC 2014. [DOI: 10.2217/iim.13.67] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|