1
|
Li T, Liu L, Li L, Yao X, Hu X, Cheng J, Chen Z, Guo J, Li R, Ge C, Lin MCM, Yao H. HGFK1 Enhances the Anti-Tumor Effects of Angiogenesis Inhibitors via Inhibition of CD90+ CSCs in Hepatocellular Carcinoma. Pharmaceuticals (Basel) 2024; 17:645. [PMID: 38794215 PMCID: PMC11125149 DOI: 10.3390/ph17050645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The combination of anti-angiogenesis agents with immune-checkpoint inhibitors is a promising treatment for patients with advanced hepatocellular carcinoma (HCC); however, therapeutic resistance caused by cancer stem cells present in tumor microenvironments remains to be overcome. In this study, we report for the first time that the Kringle 1 domain of human hepatocyte growth-factor α chain (HGFK1), a previously described anti-angiogenesis peptide, repressed the sub-population of CD90+ cancer stem cells (CSCs) and promoted their differentiation and chemotherapy sensitivity mainly through downregulation of pre-Met protein expression and inhibition of Wnt/β-catenin and Notch pathways. Furthermore, we showed that the i.p. injection of PH1 (a tumor-targeted and biodegradable co-polymer), medicated plasmids encoding Endostatin (pEndo), HGFK1 genes (pEndo), and a combination of 50% pEndo + 50% pHGFK1 all significantly suppressed tumor growth and prolonged the survival of the HCC-bearing mice. Importantly, the combined treatment produced a potent synergistic effect, with 25% of the mice showing the complete clearance of the tumor via a reduction in the microvessel density (MVD) and the number of CD90+ CSCs in the tumor tissues. These results suggest for the first time that HGFK1 inhibits the CSCs of HCC. Furthermore, the combination of two broad-spectrum anti-angiogenic factors, Endo and HGFK1, is the optimal strategy for the development of effective anti-HCC drugs.
Collapse
Affiliation(s)
- Tao Li
- Cancer Biotherapy Center & Cancer Research Institute, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650106, China; (T.L.)
| | - Ling Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China
| | - Li Li
- Cancer Biotherapy Center & Cancer Research Institute, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650106, China; (T.L.)
| | - Xiaoxuan Yao
- Cancer Biotherapy Center & Cancer Research Institute, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650106, China; (T.L.)
| | - Xiaoyuan Hu
- Cancer Biotherapy Center & Cancer Research Institute, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650106, China; (T.L.)
| | - Jiaxing Cheng
- Cancer Biotherapy Center & Cancer Research Institute, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650106, China; (T.L.)
| | - Zhenpu Chen
- Cancer Biotherapy Center & Cancer Research Institute, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650106, China; (T.L.)
| | - Jiyin Guo
- Cancer Biotherapy Center & Cancer Research Institute, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650106, China; (T.L.)
| | - Ruilei Li
- Cancer Biotherapy Center & Cancer Research Institute, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650106, China; (T.L.)
| | - Chunlei Ge
- Cancer Biotherapy Center & Cancer Research Institute, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650106, China; (T.L.)
| | - Marie Chia-Mi Lin
- Cancer Biotherapy Center & Cancer Research Institute, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650106, China; (T.L.)
| | - Hong Yao
- Cancer Biotherapy Center & Cancer Research Institute, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650106, China; (T.L.)
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China
| |
Collapse
|
2
|
Li J, Lu Z, Xu L, Wang J, Qian S, Hu Q, Ge Y. Poly(ethylenimine)-Cyclodextrin-Based Cationic Polymer Mediated HIF-1α Gene Delivery for Hindlimb Ischemia Treatment. ACS APPLIED BIO MATERIALS 2024; 7:1081-1094. [PMID: 38294873 DOI: 10.1021/acsabm.3c01020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Hindlimb ischemia is a common disease worldwide featured by the sudden decrease in limb perfusion, which usually causes a potential threat to limb viability and even amputation or death. Revascularization has been defined as the gold-standard therapy for hindlimb ischemia. Considering that vascular injury recovery requires cellular adaptation to the hypoxia, hypoxia-inducible factor 1 α (HIF-1α) is a potential gene for tissue restoration and angiogenesis. In this manuscript, effective gene delivery vector PEI-β-CD (PC) was reported for the first application in the hindlimb ischemia treatment to deliver HIF-1α plasmid in vitro and in vivo. Our in vitro finding demonstrated that PC/HIF-1α-pDNA could be successfully entered into the cells and mediated efficient gene transfection with good biocompatibility. More importantly, under hypoxic conditions, PC/HIF-1α-pDNA could up-regulate the HUEVC cell viability. In addition, the mRNA levels of VEGF, Ang-1, and PDGF were upregulated, and transcriptome results also demonstrated that the cell-related function of response to hypoxia was enhanced. The therapeutic effect of PC/HIF-1α-pDNA was further estimated in a murine acute hindlimb ischemia model, which demonstrated that intramuscular injection of PC/HIF-1α-pDNA resulted in significantly increased blood perfusion and alleviation in tissue damage, such as tissue fibrosis and inflammation. The results provide a rationale that HIF-1α-mediated gene therapy might be a practical strategy for the treatment of limb ischemia.
Collapse
Affiliation(s)
- Jingyu Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhuoting Lu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Liwang Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jing Wang
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 314408, China
| | - Shaojie Qian
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 314408, China
| | - Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yunfen Ge
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 314408, China
| |
Collapse
|
3
|
Hu D, Feng G, Xu M, Wang C, Li Y. Tailoring the performance of composite PEI nanofiltration membranes via incorporating activated cyclodextrins. CHEMOSPHERE 2023; 342:140180. [PMID: 37714471 DOI: 10.1016/j.chemosphere.2023.140180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Cyclodextrins (CDs) with unique cavity structures have been used as materials for nanofiltration membrane fabrications. In the present work, the activated CD (O-CD), oxidated by NaIO4, and polyethyleneimine (PEI) were co-deposited on a hydrolyzed polyacrylonitrile support, post-treated by glycerol protection and heating treatment, to prepare nanofiltration membranes with low molecular weight cut-off (MWCO). As the cavities in CD present and the aldehyde groups introduced after oxidation, the O-CDs were expected to crosslink the PEI layer and provide extra permeating channels. The filtration experiments showed that the incorporation of O-CDs improved the permeances of the O-CD-PEI/HPAN nanofiltration membranes. The performance can be tailored by the control of the loading or the oxidation degree of the O-CD. At optimal conditions, the permeance increment was nearly double (from 9.2 to 21.1 Lm-2·h-1·bar-1). While the selectivity was without significant sacrifice, the rejection of PEG 200 remained around 90%. Meanwhile, the membrane stability was demonstrated by pro-longed filtratiing a PEG 200 aqueous solution. The constant permeance and rejection confirmed the O-CD-PEI/HPAN membranes were stable. The incorporation of activated CD in PEI offers a facile strategy to promote the permeance of PEI-based membranes.
Collapse
Affiliation(s)
- Dujuan Hu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Guoying Feng
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072, China; School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, China
| | - Man Xu
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, Wuhan, Hubei, China
| | - Cunwen Wang
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Yanbo Li
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072, China; Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Gao X, Jiang P, Wei X, Zhang W, Zheng J, Sun S, Yao H, Liu X, Zhang Q. Novel fusion protein PK5-RL-Gal-3C inhibits hepatocellular carcinoma via anti-angiogenesis and cytotoxicity. BMC Cancer 2023; 23:154. [PMID: 36793021 PMCID: PMC9930235 DOI: 10.1186/s12885-023-10608-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Galectin-3 (Gal-3), the only chimeric β-galactosides-binding lectin, consists of Gal-3N (N-terminal regulatory peptide) and Gal-3C (C-terminal carbohydrate-recognition domain). Interestingly, Gal-3C could specifically inhibit endogenous full-length Gal-3 to exhibit anti-tumor activity. Here, we aimed to further improve the anti-tumor activity of Gal-3C via developing novel fusion proteins. METHODS PK5 (the fifth kringle domain of plasminogen) was introduced to the N-terminus of Gal-3C via rigid linker (RL) to generate novel fusion protein PK5-RL-Gal-3C. Then, we investigated the anti-tumor activity of PK5-RL-Gal-3C in vivo and in vitro by using several experiments, and figured out their molecular mechanisms in anti-angiogenesis and cytotoxicity to hepatocellular carcinoma (HCC). RESULTS Our results show that PK5-RL-Gal-3C can inhibit HCC both in vivo and in vitro without obvious toxicity, and also significantly prolong the survival time of tumor-bearing mice. Mechanically, we find that PK5-RL-Gal-3C inhibits angiogenesis and show cytotoxicity to HCC. In detail, HUVEC-related and matrigel plug assays indicate that PK5-RL-Gal-3C plays an important role in inhibiting angiogenesis by regulating HIF1α/VEGF and Ang-2 both in vivo and in vitro. Moreover, PK5-RL-Gal-3C induces cell cycle arrest at G1 phase and apoptosis with inhibition of Cyclin D1, Cyclin D3, CDK4, and Bcl-2, but activation of p27, p21, caspase-3, -8 and -9. CONCLUSION Novel fusion protein PK5-RL-Gal-3C is potent therapeutic agent by inhibiting tumor angiogenesis in HCC and potential antagonist of Gal-3, which provides new strategy for exploring novel antagonist of Gal-3 and promotes their application in clinical treatment.
Collapse
Affiliation(s)
- Xiaoge Gao
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,Nanjing International Hospital Co., Ltd., Nanjing, Jiangsu Province 210000 People’s Republic of China
| | - Pin Jiang
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,Medical Oncology of Huangmei People’s Hospital, Huanggang, Hubei Province 435500 People’s Republic of China
| | - Xiaohuan Wei
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,Nanjing International Hospital Co., Ltd., Nanjing, Jiangsu Province 210000 People’s Republic of China
| | - Wei Zhang
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,Nanjing International Hospital Co., Ltd., Nanjing, Jiangsu Province 210000 People’s Republic of China
| | - Jiwei Zheng
- grid.417303.20000 0000 9927 0537Department of Oral Medicine, School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004 People’s Republic of China
| | - Shishuo Sun
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,Nanjing International Hospital Co., Ltd., Nanjing, Jiangsu Province 210000 People’s Republic of China
| | - Hong Yao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China. .,Department of Cancer Biotherapy Center, Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650118, People's Republic of China.
| | - Xiangye Liu
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China.
| | - Qing Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China. .,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China. .,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China. .,Nanjing International Hospital Co., Ltd., Nanjing, Jiangsu Province, 210000, People's Republic of China.
| |
Collapse
|
5
|
Gao D, Xu X, Liu L, Liu L, Zhang X, Liang X, Cen L, Liu Q, Yuan X, Yu Z. Combination of Peglated-H1/HGFK1 Nanoparticles and TAE in the Treatment of Hepatocellular Carcinoma. Appl Biochem Biotechnol 2023; 195:505-518. [PMID: 36094649 PMCID: PMC9832107 DOI: 10.1007/s12010-022-04153-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/14/2023]
Abstract
Transarterial embolization (TAE) constitutes the gold standard for the treatment of hepatocellular carcinoma. The effect of combination of TAE and peglated-H1/HGFK1 nanoparticles was explored on hepatocellular carcinoma. MTT and Annexin V-FITC were used to determine the cell viability and apoptosis of HepG2, ml-1, LO2, and VX2 cells after the treatment of HGFK1. Next, the orthotopic rabbit was selected to establish the in situ models of VX2 hepatocellular carcinoma. Nanoparticles were synthesized with peglated-PH1 and used to deliver HGFK1 overexpressing plasmids. MRI was performed to monitor tumor volume after being treated with TAE. The protein expression levels of CD31, CD90, and Ki67 were determined by immunohistochemistry. H&E and TUNEL staining were used to determine the necrosis and apoptosis in vivo. HGFK1 significantly inhibited the proliferation and increased the apoptosis of HepG2 and ml-1 cells (P < 0.05). MRI on 14 days after modeling suggested that the tumor showed ring enhancement. MRI on 7 days and 14 days after interventional therapy showed that tumor volume was significantly inhibited after the treatment with TAE and HGFK1 (P < 0.05). The immunohistochemical results 7 days after interventional therapy indicated that the expressions of CD31, CD90, and Ki67 were significantly lower after treatment with TAE and HGFK1 (P < 0.05). TAE and HGFK1 all extended the survival period of rabbits (P < 0.05). PH1/HGFK1 nanoparticle is an innovative and effective embolic agent, which could limit angiogenesis post-TAE treatment. The combination of TAE with PH1/HGFK1 is a promising strategy and might alter the way that surgeons manage hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Dazhi Gao
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210029 China ,Department of Interventional Therapy, Jinling Hospital Affiliated to Nanjing University, Nanjing, 210002 China
| | - Xiangxian Xu
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029 China
| | - Ling Liu
- Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 China
| | - Li Liu
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210029 China
| | - Xiang Zhang
- Medical Imaging College, Xuzhou Medical University, Xuzhou, 221004 China
| | - Xianxian Liang
- Medical Imaging College, Xuzhou Medical University, Xuzhou, 221004 China
| | - Lanqi Cen
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Qian Liu
- Department of Pharmacy, Xuzhou Infectious Disease Hospital, Xuzhou, 221004 China
| | - Xiaoli Yuan
- Department of Psychiatry, Jinling Hospital Affiliated to Nanjing University, No. 305 Zhongshan East Road, Nanjing, 210002 Jiangsu Province China
| | - Zhenghong Yu
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210029 China ,Department of Oncology, Jinling Hospital Affiliated to Nanjing University, No. 305 Zhongshan East Road, Nanjing, 210029 Jiangsu Province China
| |
Collapse
|
6
|
Le HV, Le Cerf D. Colloidal Polyelectrolyte Complexes from Hyaluronic Acid: Preparation and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204283. [PMID: 36260830 DOI: 10.1002/smll.202204283] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Hyaluronic acid (HA) is a naturally occurring polysaccharide which has been extensively exploited in biomedical fields owing to its outstanding biocompatibility. Self-assembly of HA and polycations through electrostatic interactions can generate colloidal polyelectrolyte complexes (PECs), which can offer a wide range of applications while being relatively simple to prepare with rapid and "green" processes. The advantages of colloidal HA-based PECs stem from the combined benefits of nanomedicine, green chemistry, and the inherent properties of HA, namely high biocompatibility, biodegradability, and biological targeting capability. Accordingly, colloidal PECs from HA have received increasing attention in the recent years as high-performance materials for biomedical applications. Considering their potential, this review is aimed to provide a comprehensive understanding of colloidal PECs from HA in complex with polycations, from the most fundamental aspects of the preparation process to their various biomedical applications, notably as nanocarriers for delivering small molecule drugs, nucleic acids, peptides, proteins, and bioimaging agents or the construction of multifunctional platforms.
Collapse
Affiliation(s)
- Huu Van Le
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS UMR 6270, Rouen, 76000, France
| | - Didier Le Cerf
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS UMR 6270, Rouen, 76000, France
| |
Collapse
|
7
|
Stimulus-responsive drug/gene delivery system based on polyethylenimine cyclodextrin nanoparticles for potential cancer therapy. Carbohydr Polym 2022; 276:118747. [PMID: 34823779 DOI: 10.1016/j.carbpol.2021.118747] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 12/13/2022]
Abstract
Combination therapy through simultaneous delivery of anti-cancer drugs and genes with nano-assembled structure has been proved to be a simple and effective approach for treating breast cancer. In this study, redox-sensitive folate-appended-polyethylenimine-β-cyclodextrin (roFPC) host-guest supramolecular nanoparticles (HGSNPs) were developed as a targeted co-delivery system of doxorubicin (Dox) and Human telomerase reverse transcriptase-small interfering RNA) hTERT siRNA) for potential cancer therapy. The nanotherapeutic system was prepared by loading adamantane-conjugated doxorubicin (Ad-Dox) into roFPC through the supramolecular assembly, followed by electrostatically-driven self-assembly between hTERT siRNA and roFPC/Ad-Dox. The roFPC' host-guest structures allow pH-dependent intracellular drug release in a sustained manner, as well as simultaneous and effective gene transfection. This co-delivery vector displayed combined anti-tumor properties of the Dox-enhanced gene transfection, good water-solubility, and biocompatibility, possesses considerably enhanced hemocompatibility, and especially targets folate receptor-positive cells only at low N/P levels to prompt effective cell apoptosis for cancer treatment.
Collapse
|
8
|
Sun H, Li J, Hu W, Yan Y, Guo Z, Zhang Z, Chen Y, Yao X, Teng L, Wang X, Li L, Chai D, Zheng J, Wang G. Co-immunizing with HMGB1 enhances anti-tumor immunity of B7H3 vaccine in renal carcinoma. Mol Immunol 2021; 139:184-192. [PMID: 34560414 DOI: 10.1016/j.molimm.2021.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/16/2021] [Accepted: 09/02/2021] [Indexed: 11/27/2022]
Abstract
Metastatic renal carcinoma is a kind of tumor with high degree of malignancy, but there are no effective treatment methods and strategies at present. In this study, we designed a folate-grafted PEI600-CyD (H1) nanoparticle-mediated DNA vaccine containing an adjuvant of high mobility group box 1 protein (HMGB1) and a tumor-specific antigen of B7H3 (CD276) for renal carcinoma therapy. Mice bearing subcutaneous human B7H3 (hB7H3)-Renca tumor were immunized with H1-pHMGB1/pB7H3, H1-pB7H3, H1-pHMGB1, or Mock vaccine. Compared to other control groups, the growth of the tumor was significantly inhibited in H1-pHMGB1/pB7H3 vaccine group. The increased proportion and mature of CD11c+ DCs were observed in the spleen of H1-pHMGB1/pB7H3 treated mice. Likewise, HMGB1 promoted B7H3 vaccine to induce tumor-specific CD8+ T cell proliferation and CTL responses. Beyond that, H1-pHMGB1/pB7H3 vaccine strengthened the induction of functional CD8+ T cells. With the depletion of CD8+ T cells, the anti-tumor effect of H1-pHMGB1/pB7H3 also disappeared, indicating that CD8+ T cells are the key factor of the anti-tumor activity of the vaccine. So, to sum up, H1-pHMGB1/pB7H3 vaccine could achieve the desired anti-tumor effect by enhancing the response of tumor-specific functional CD8+ T cell responses. H1 nanoparticle-based vaccines may have great potential and prospect in the treatment of primary solid tumors.
Collapse
Affiliation(s)
- Huanyou Sun
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Juan Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Wenwen Hu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Yinan Yan
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Zengli Guo
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Zichun Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Yuxin Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Xuefan Yao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Ling Teng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Xinyuan Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Liantao Li
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China.
| | - Junnian Zheng
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China.
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China.
| |
Collapse
|
9
|
Haley RM, Gottardi R, Langer R, Mitchell MJ. Cyclodextrins in drug delivery: applications in gene and combination therapy. Drug Deliv Transl Res 2021; 10:661-677. [PMID: 32077052 DOI: 10.1007/s13346-020-00724-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gene therapy is a powerful tool against genetic disorders and cancer, targeting the source of the disease rather than just treating the symptoms. While much of the initial success of gene delivery relied on viral vectors, non-viral vectors are emerging as promising gene delivery systems for efficacious treatment with decreased toxicity concerns. However, the delivery of genetic material is still challenging, and there is a need for vectors with enhanced targeting, reduced toxicity, and controlled release. In this article, we highlight current work in gene therapy which utilizes the cyclic oligosaccharide molecule cyclodextrin (CD). With a number of unique abilities, such as hosting small molecule drugs, acting as a linker or modular component, reducing immunogenicity, and disrupting membranes, CD is a valuable constituent in many delivery systems. These carriers also demonstrate great promise in combination therapies, due to the ease of assembling macromolecular structures and wide variety of chemical derivatives, which allow for customizable delivery systems and co-delivery of therapeutics. The use of combination and personalized therapies can result in improved patient health-modular systems, such as those which incorporate CD, are more conducive to these therapy types. Graphical abstract.
Collapse
Affiliation(s)
- Rebecca M Haley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Riccardo Gottardi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.,Fondazione Ri.MED, Palermo, Italy
| | - Robert Langer
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Petitjean M, García-Zubiri IX, Isasi JR. History of cyclodextrin-based polymers in food and pharmacy: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:3465-3476. [PMID: 33907537 PMCID: PMC8062835 DOI: 10.1007/s10311-021-01244-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 04/13/2021] [Indexed: 05/08/2023]
Abstract
Cyclodextrins are glucose macrocycles whose inclusional capabilities towards non-polar solutes can be modulated with the help of other macrostructures. The incorporation of cyclodextrin moieties into larger structures produces five types of new materials: crosslinked networks, functionalized chains, amphiphilic cyclodextrins, polyrotaxanes and nanocomposites. This review presents crosslinking and grafting to prepare covalently-attached cyclodextrins, and applications in the food and pharmaceutical sectors, from an historical point of view. In food science, applications include debittering of juices, retention of aromas and release of preservatives from packaging. In biomedical science, cyclodextrin polymers are applied classically to drug release, and more recently to gene delivery and regenerative medicine. The remarkable points are: 1) epichlorohydrin and diisocyanates have been extensively used as crosslinkers since the 1960s, but during the last two decades more complex cyclodextrin polymeric structures have been designed. 2) The evolution of cyclodextrin polymers matches that of macromolecular materials with regard to complexity, functionality and capabilities. 3) The use of cyclodextrin polymers as sorbents in the food sector came first, but smart packaging is now an active challenge. Cyclodextrins have also been recently used to design treatments against the coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Max Petitjean
- Departamento de Química, Facultad de Ciencias, Universidad de Navarra, c/ Irunlarrea 1, 31008 Pamplona, Spain
| | | | - José Ramón Isasi
- Departamento de Química, Facultad de Ciencias, Universidad de Navarra, c/ Irunlarrea 1, 31008 Pamplona, Spain
| |
Collapse
|
11
|
Xu C, Yu B, Qi Y, Zhao N, Xu F. Versatile Types of Cyclodextrin-Based Nucleic Acid Delivery Systems. Adv Healthc Mater 2021; 10:e2001183. [PMID: 32935932 DOI: 10.1002/adhm.202001183] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/23/2020] [Indexed: 12/16/2022]
Abstract
Nowadays, nucleic acid therapy has become a promising way for the treatment of various malignant diseases. Cyclodextrin (CD)-based nucleic acid delivery systems have attracted widespread attention due to the favorable chemical structures and excellent biological properties of CD. Recently, a variety of CD-based nucleic acid delivery systems has been designed according to the different functions of CD for flexible gene therapies. In this review, the construction strategies and biomedical applications of CD-based nucleic acid delivery systems are mainly focused on. The review begins with an introduction to the synthesis and properties of simple CD-grafted polycations. Thereafter, CD-related supramolecular assemblies based on different guest components are discussed in detail. Finally, different CD-based organic/inorganic nanohybrids and their relevant functions are demonstrated. It is hoped that this brief review will motivate the delicate design of CD-based nucleic acid delivery systems for potential clinical applications.
Collapse
Affiliation(s)
- Chen Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology Ministry of Education) Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 China
| | - Bingran Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology Ministry of Education) Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 China
| | - Yu Qi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology Ministry of Education) Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 China
| | - Nana Zhao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology Ministry of Education) Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 China
| | - Fu‐Jian Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology Ministry of Education) Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
12
|
Liu N, Ji J, Qiu H, Shao Z, Wen X, Chen A, Yao S, Zhang X, Yao H, Zhang L. Improving radio-chemotherapy efficacy of prostate cancer by co-deliverying docetaxel and dbait with biodegradable nanoparticles. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:305-314. [PMID: 31858836 DOI: 10.1080/21691401.2019.1703726] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Combining DNA damage repair inhibitors and chemotherapeutic agents is an emerging strategy in cancer treatment. In this study, we engineered the polycation nanoparticle (NP), which co-encapsulated DNA damage repair inhibitor Dbait and chemotherapeutic drug Docetaxel (Dtxl), using H1 nanopolymer (folate--polyethylenimine600-cyclodextrin), and the size of H1/Dbait/Dtxl was about 117 nm. We demonstrated that H1/Dbait/Dtxl enhanced the efficiency of radio-chemotherapy in prostate cancer cells by CCK-8 assay and colony-forming assay. Importantly, the improvement of radio-chemotherapy of H1/Dbait/Dtxl in prostate cancer was also validated in vivo, and the NP did not have a high toxicity profile. The results of immunohistochemistry and western blot supported that the improved therapeutic efficacy was through inhibiting DNA damage repair signalling pathway. Our study supports further investigations using NP to co-deliver DNA damage repair inhibitors and chemotherapeutics to improve the therapeutic efficacy of cancer.
Collapse
Affiliation(s)
- Nianli Liu
- Cancer Institute of Xuzhou Medical University, Xuzhou, China
| | - Jiayin Ji
- Department of Internal Medicine, NO.731 Hospital of CASIC, Beijing, China
| | - Hui Qiu
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhiying Shao
- Department of Interventional Ultrasound, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xin Wen
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Aoxing Chen
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Senbang Yao
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xingying Zhang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hong Yao
- Cancer Institute of Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou, China
| | - Longzhen Zhang
- Cancer Institute of Xuzhou Medical University, Xuzhou, China.,Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou, China
| |
Collapse
|
13
|
Li J, Shen M, Shi X. Poly(amidoamine) Dendrimer-Gold Nanohybrids in Cancer Gene Therapy: A Concise Overview. ACS APPLIED BIO MATERIALS 2020; 3:5590-5605. [DOI: 10.1021/acsabm.0c00863] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jin Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
- CQM-Centro de Quimica da Madeira, Universidade da Madeira, Campus da Penteada, Funchal 9020-105, Portugal
| |
Collapse
|
14
|
Gharbavi M, Sharafi A, Ghanbarzadeh S. Mesenchymal Stem Cells: A New Generation of Therapeutic Agents as Vehicles in Gene Therapy. Curr Gene Ther 2020; 20:269-284. [PMID: 32515309 DOI: 10.2174/1566523220666200607190339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/26/2022]
Abstract
In recent years, mesenchymal stem cells (MSCs) as a new tool for therapeutic gene delivery in clinics have attracted much attention. Their advantages cover longer lifespan, better isolation, and higher transfection efficiency and proliferation rate. MSCs are the preferred approach for cell-based therapies because of their in vitro self-renewal capacity, migrating especially to tumor tissues, as well as anti-inflammatory and immunomodulatory properties. Therefore, they have considerable efficiency in genetic engineering for future clinical applications in cancer gene therapy and other diseases. For improving therapeutic efficiency, targeted therapy of cancers can be achieved through the sustained release of therapeutic agents and functional gene expression induction to the intended tissues. The development of a new vector in gene therapy can improve the durability of a transgene expression. Also, the safety of the vector, if administered systemically, may resolve several problems, such as durability of expression and the host immune response. Currently, MSCs are prominent candidates as cell vehicles for both preclinical and clinical trials due to the secretion of therapeutic agents in several cancers. In the present study, we discuss the status of gene therapy in both viral and non-viral vectors along with their limitations. Throughout this study, the use of several nano-carriers for gene therapy is also investigated. Finally, we critically discuss the promising advantages of MSCs in targeted gene delivery, tumor inhibition and their utilization as the gene carriers in clinical situations.
Collapse
Affiliation(s)
- Mahmoud Gharbavi
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan,
Iran,Cancer Gene Therapy Research Center, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan,
Iran,Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Sharafi
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran,Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saeed Ghanbarzadeh
- Cancer Gene Therapy Research Center, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan,
Iran,Zanjan Pharmaceutical Nanotechnology Research Center and Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
15
|
Mao J, Wang J, Tang G, Chu PK, Bai H. A zipped-up tunable metal coordinated cationic polymer for nanomedicine. J Mater Chem B 2020; 8:1350-1358. [PMID: 32039417 DOI: 10.1039/c9tb02965f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Incorporating metal elements into polymers is a feasible means to fabricate new materials with multiple functionalities. In this work, a metal coordinated cationic polymer (MCCP) was developed. Ferric ions were incorporated into the polyethyleneimine-β-cyclodextrin (PC) polymer chain via coordination to produce a zipped-up polymer with a micro-ordered and macro-disordered topological structure. By varying the metal concentration, a tunable superstructure could be formed on the nano-templates via the "zipping" effect. In addition, the physicochemical properties of the assembly of MCCPs and nucleic acids were tailored by tuning the composition of the metal ions and polymers. The loading efficiency of Rhodamine-B by MCCPs was enhanced. The in vitro and in vivo results showed that the hybrid materials could be adjusted to deliver nucleic acids or small molecules with good performance and acquired the capacity of generating reactive oxygen species in tumor cells. Thus, the tunable and multifunctional MCCP system has great potential in nanomedicine and biomaterial science.
Collapse
Affiliation(s)
- Jianming Mao
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Jianwei Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China and Department of Physics, Department of Materials Science and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Guping Tang
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China and Department of Physics, Department of Materials Science and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Hongzhen Bai
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China and Department of Physics, Department of Materials Science and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
16
|
Construction of magnetic bifunctional β-cyclodextrin nanocomposites for adsorption and degradation of persistent organic pollutants. Carbohydr Polym 2020; 230:115564. [DOI: 10.1016/j.carbpol.2019.115564] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/03/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022]
|
17
|
Muhammad K, Zhao J, Ullah I, Guo J, Ren XK, Feng Y. Ligand targeting and peptide functionalized polymers as non-viral carriers for gene therapy. Biomater Sci 2020; 8:64-83. [DOI: 10.1039/c9bm01112a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ligand targeting and peptide functionalized polymers serve as gene carriers for efficient gene delivery.
Collapse
Affiliation(s)
- Khan Muhammad
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Jing Zhao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Ihsan Ullah
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Jintang Guo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Xiang-kui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| |
Collapse
|
18
|
Gao X, Jiang P, Zhang Q, Liu Q, Jiang S, Liu L, Guo M, Cheng Q, Zheng J, Yao H. Peglated-H1/pHGFK1 nanoparticles enhance anti-tumor effects of sorafenib by inhibition of drug-induced autophagy and stemness in renal cell carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:362. [PMID: 31426831 PMCID: PMC6699135 DOI: 10.1186/s13046-019-1348-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 07/29/2019] [Indexed: 12/19/2022]
Abstract
Background Tumor targeting small molecular inhibitors are the most popular treatments for many malignant diseases, including cancer. However, the lower clinical response and drug resistance still limit their clinical efficacies. HGFK1, the first kringle domain of hepatocyte growth factor, has been defined as a potent anti-angiogenic factor. Here, we aimed to develop and identify novel nanoparticles—PH1/pHGFK1 as potential therapeutic agents for the treatment of renal cell carcinoma (RCC). Methods We produced a novel cationic polymer—PH1 and investigated the anti-tumor activity of PH1/pHGFK1 nanoparticle alone and its combination therapy with sorafenib in RCC cell line xenografted mice model. Then, we figured out its molecular mechanisms in human RCC cell lines in vitro. Results We firstly demonstrated that intravenous injection of PH1/pHGFK1 nanoparticles significantly inhibited tumor growth and prolonged the survival time of tumor-bearing mice, as well as synergistically enhanced anti-tumor activities of sorafenib. Furthermore, we elucidated that recombinant HGFK1 improved sorafenib-induced cell apoptosis and arrested cell cycle. In addition, HGFK1 could also decrease sorafenib-induced autophagy and stemness via blockading NF-κB signaling pathway in RCC both in vitro and in vivo. Conclusions HGFK1 could inhibit tumor growth, synergistically enhance anti-tumor activities of sorafenib and reverse its drug resistance evolution in RCC. Our results provide rational basis for clinical application of sorafenib and HGFK1 combination therapy in RCC patients. Electronic supplementary material The online version of this article (10.1186/s13046-019-1348-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoge Gao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, People's Republic of China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, People's Republic of China
| | - Pin Jiang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, People's Republic of China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, People's Republic of China
| | - Qian Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, People's Republic of China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, People's Republic of China
| | - Qian Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, People's Republic of China
| | - Shuangshuang Jiang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, People's Republic of China
| | - Ling Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, People's Republic of China
| | - Maomao Guo
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, People's Republic of China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, People's Republic of China
| | - Qian Cheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, People's Republic of China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, People's Republic of China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, People's Republic of China. .,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, People's Republic of China.
| | - Hong Yao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, People's Republic of China. .,Department of Cancer Biotherapy Center, Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650118, People's Republic of China.
| |
Collapse
|
19
|
Zagami R, Rapozzi V, Piperno A, Scala A, Triolo C, Trapani M, Xodo LE, Monsù Scolaro L, Mazzaglia A. Folate-Decorated Amphiphilic Cyclodextrins as Cell-Targeted Nanophototherapeutics. Biomacromolecules 2019; 20:2530-2544. [PMID: 31241900 DOI: 10.1021/acs.biomac.9b00306] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nowadays, active targeting of nanotherapeutics is a challenging issue. Here, we propose a rational design of a ternary nanoassembly (SAP) composed of nonionic amphiphilic β-cyclodextrins (amphiphilic CD) incorporating pheophorbide (Pheo) as a phototherapeutic and an adamantanyl-folic acid conjugate (Ada-FA) to target tumor cells overexpressing α-folate receptor (FR-α(+)). Dynamic light scattering and ζ-potential pointed out the presence of nanoassemblies bearing a negative surface charge (ζ = -51 mV). Morphology of SAP was investigated by atomic force microscopy and microphotoluminescence, indicating the presence of highly emissive near-spherical assemblies of about 280 nm in size. Complementary spectroscopic techniques such as ROESY-NMR, UV/vis and steady-state fluorescence revealed that the folic acid protrudes out of amphiphilic CD rims, prone for recognition with FR-α. Pheo was strongly loaded in the nanoassembly mostly in monomeric form, thus generating singlet oxygen (1O2) and consequentely showing phototherapeutic action. SAP remained stable until 2 weeks in aqueous solutions. Stability studies in biologically relevant media pointed out the ability of SAP to interact with serum proteins by means of the oligoethylenglycole fringe, without destabilization. Release experiments demonstrated the sustained release of Pheo from SAP in environments mimiking physiological conditions (∼20% within 1 week), plausibly suggesting low Pheo leaking and high integrity of the assembly within 24 h, time spent on average to reach the target sites. Cellular uptake of SAP was confirmed by confocal microscopy, pointing out that SAP was internalized into the tumoral cells expressing FR-α more efficiently than SP. SAP showed improved phototoxicity in human breast MCF-7 cancer cells FR-α(+) (IC50 = 270 nM) with respect to human prostate carcinoma PC3 cells (IC50 = 700 nM) that express a low level of that receptor (FR-α(-)). Finally, an improved phototoxicity in FR-α(+) MCF-7 cells (IC50 = 270 nM) was assessed after treatment with SAP vs SP (IC50 = 600 nM) which was designed without Ada-FA as a targeting unit.
Collapse
Affiliation(s)
- Roberto Zagami
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali dell' Università di Messina , Viale F. Stagno d'Alcontres 31 , Messina 98166 , Italy
| | - Valentina Rapozzi
- Dipartimento di Area Medica , Università di Udine , P.le Kolbe 4 , Udine 33100 , Italy
| | - Anna Piperno
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali , Università di Messina , Viale F. Stagno d'Alcontres 31 , Messina 98166 , Italy
| | - Angela Scala
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali , Università di Messina , Viale F. Stagno d'Alcontres 31 , Messina 98166 , Italy
| | - Claudia Triolo
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra , Università di Messina , Viale F. Stagno d'Alcontres, 31 , 98166 Messina , Italy
| | - Mariachiara Trapani
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali dell' Università di Messina , Viale F. Stagno d'Alcontres 31 , Messina 98166 , Italy
| | - Luigi E Xodo
- Dipartimento di Area Medica , Università di Udine , P.le Kolbe 4 , Udine 33100 , Italy
| | - Luigi Monsù Scolaro
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali , Università di Messina , Viale F. Stagno d'Alcontres 31 , Messina 98166 , Italy
| | - Antonino Mazzaglia
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali dell' Università di Messina , Viale F. Stagno d'Alcontres 31 , Messina 98166 , Italy
| |
Collapse
|
20
|
Chai D, Shan H, Wang G, Zhang Q, Li H, Fang L, Song J, Liu N, Zhang Q, Yao H, Zheng J. Combining DNA Vaccine and AIM2 in H1 Nanoparticles Exert Anti-Renal Carcinoma Effects via Enhancing Tumor-Specific Multi-functional CD8 + T-cell Responses. Mol Cancer Ther 2018; 18:323-334. [PMID: 30401695 DOI: 10.1158/1535-7163.mct-18-0832] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/02/2018] [Accepted: 10/31/2018] [Indexed: 11/16/2022]
Abstract
Renal carcinoma presents a rapid progression in patients with high metastasis with no effective therapeutic strategy. In this study, we designed a folate-grafted PEI600-CyD (H1) nanoparticle-mediated DNA vaccine containing an adjuvant of absent in melanoma 2 (AIM2) and a tumor-specific antigen of carbonic anhydrase IX (CAIX) for renal carcinoma therapy. Mice bearing subcutaneous human CAIX (hCAIX)-Renca tumor were intramuscularly immunized with H1-pAIM2/pCAIX, H1-pCAIX, H1-pAIM2, or Mock vaccine, respectively. The tumor growth of hCAIX-Renca was significantly inhibited in H1-pAIM2/pCAIX vaccine group compared with the control group. The vaccine activated CAIX-specific CD8+ T-cell proliferation and CTL responses, and enhanced the induction of multi-functional CD8+ T cells (expressing TNF-α, IL-2, and IFN-γ). CD8+ T-cell depletion resulted in the loss of anti-tumor activity of H1-pAIM2/pCAIX vaccine, suggesting that the efficacy of the vaccine was dependent on CD8+ T-cell responses. Lung metastasis of renal carcinoma was also suppressed by H1-pAIM2/pCAIX vaccine treatment accompanied with the increased percentages of CAIX-specific multi-functional CD8+ T cells in the spleen, tumor, and bronchoalveolar lavage as compared with H1-pCAIX vaccine. Similarly, the vaccine enhanced CAIX-specific CD8+ T-cell proliferation and CTL responses. Therefore, these results indicated that H1-pAIM2/pCAIX vaccine exhibits the therapeutic efficacy of anti-renal carcinoma by enhancing tumor-specific multi-functional CD8+ T-cell responses. This vaccine strategy could be a potential and promising approach for the therapy of primary solid or metastasis tumors.
Collapse
Affiliation(s)
- Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongjian Shan
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qing Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Huizhong Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lin Fang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jingyuan Song
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Nianli Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qian Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hong Yao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
21
|
Zhu J, Li H, Xiong Z, Shen M, Conti PS, Shi X, Chen K. Polyethyleneimine-Coated Manganese Oxide Nanoparticles for Targeted Tumor PET/MR Imaging. ACS APPLIED MATERIALS & INTERFACES 2018; 10:34954-34964. [PMID: 30234287 PMCID: PMC7469916 DOI: 10.1021/acsami.8b12355] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A Mn3O4 nanoparticle (NP)-based dual-modality probe has been developed for tumor positron emission tomography (PET)/magnetic resonance (MR) imaging. The dual-modality imaging probe was constructed by modifying multifunctional polyethyleneimine (PEI)-coated Mn3O4 NPs with folic acid (FA), followed with the radiolabeling with 64Cu. The formed imaging probe was utilized for PET/MR imaging of human cervical cancer mouse xenografts, which overexpress folate receptor (FR). The PEI-coated Mn3O4 NPs were synthesized using a solvothermal approach via decomposition of acetylacetone manganese. Multifunctional groups, including fluorescein isothiocyanate (FI), PEGylated FA, and NOTA chelator, were then sequentially loaded onto the surface of the amine groups of the Mn3O4 NPs. The remaining PEI amines were neutralized by the acetylation reaction. The resulting NOTA-FA-FI-PEG-PEI-Ac-Mn3O4 NPs were fully characterized and evaluated in vitro and successfully radiolabeled with 64Cu for tumor PET/MR imaging in small animals. In vivo blocking experiments were performed to determine the FR binding specificity of NPs. PET imaging results demonstrated that 64Cu-labeled Mn3O4 NPs display good tracer uptake in the FR-expressing HeLa tumors (tumor-to-muscle (T/M) ratio: 5.35 ± 0.31 at 18 h postinjection (pi)) and substantially reduced tracer uptake in the FR-blocked HeLa tumors (T/M ratio: 2.78 ± 0.68 at 18 h pi). The ex vivo data, including PET imaging and biodistribution, further confirmed the tumor binding specificity of the 64Cu-labeled Mn3O4 NPs. Moreover, the FR-targeted Mn3O4 NPs exhibited efficient T1-weighted MR imaging (MRI), leading to the precise tumor MRI at 18 h pi. PET/MR imaging with the 64Cu-NOTA-FA-FI-PEG-PEI-Ac-Mn3O4 NPs may offer a new quantitative approach to precisely measure the FR in tumors. The strategy of incorporating PEI nanotechnology into the construction of new biomaterials may be applied for the construction of novel nanoplatforms for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Jingyi Zhu
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hongsheng Li
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Zhijuan Xiong
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Mingwu Shen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Peter S. Conti
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
- Corresponding Authors:. Tel: +86-21-67792656. Fax: +86-21-67792306 804 (X.S.)., . Tel: +1-323-442-3858. Fax: +1-323-442-3253 (K.C.)
| | - Kai Chen
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
- Corresponding Authors:. Tel: +86-21-67792656. Fax: +86-21-67792306 804 (X.S.)., . Tel: +1-323-442-3858. Fax: +1-323-442-3253 (K.C.)
| |
Collapse
|
22
|
Zhu J, Wang G, Alves CS, Tomás H, Xiong Z, Shen M, Rodrigues J, Shi X. Multifunctional Dendrimer-Entrapped Gold Nanoparticles Conjugated with Doxorubicin for pH-Responsive Drug Delivery and Targeted Computed Tomography Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:12428-12435. [PMID: 30251859 DOI: 10.1021/acs.langmuir.8b02901] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Novel theranostic nanocarriers exhibit a desirable potential to treat diseases based on their ability to achieve targeted therapy while allowing for real-time imaging of the disease site. Development of such theranostic platforms is still quite challenging. Herein, we present the construction of multifunctional dendrimer-based theranostic nanosystem to achieve cancer cell chemotherapy and computed tomography (CT) imaging with targeting specificity. Doxorubicin (DOX), a model anticancer drug, was first covalently linked onto the partially acetylated poly(amidoamine) dendrimers of generation 5 (G5) prefunctionalized with folic acid (FA) through acid-sensitive cis-aconityl linkage to form G5·NHAc-FA-DOX conjugates, which were then entrapped with gold (Au) nanoparticles (NPs) to create dendrimer-entrapped Au NPs (Au DENPs). We demonstrate that the prepared DOX-Au DENPs possess an Au core size of 2.8 nm, have 9.0 DOX moieties conjugated onto each dendrimer, and are colloid stable under different conditions. The formed DOX-Au DENPs exhibit a pH-responsive release profile of DOX because of the cis-aconityl linkage, having a faster DOX release rate under a slightly acidic pH condition than under a physiological pH. Importantly, because of the coexistence of targeting ligand FA and Au core NPs as a CT imaging agent, the multifunctional DOX-loaded Au DENPs afford specific chemotherapy and CT imaging of FA receptor-overexpressing cancer cells. The constructed DOX-conjugated Au DENPs hold a promising potential to be utilized for simultaneous chemotherapy and CT imaging of various types of cancer cells.
Collapse
Affiliation(s)
- Jingyi Zhu
- Cancer Center , Shanghai Tenth People's Hospital, Tongji University School of Medicine , Shanghai 200072 , People's Republic of China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
- State Key Laboratory of Material-Oriented Chemical Engineering, School of Pharmaceutical Sciences , Nanjing Tech University , Nanjing 211816 , People's Republic of China
| | - Guoying Wang
- CQM-Centro de Química da Madeira, MMRG , Universidade da Madeira , Campus Universitário da Penteada , 9020-105 Funchal , Portugal
| | - Carla S Alves
- CQM-Centro de Química da Madeira, MMRG , Universidade da Madeira , Campus Universitário da Penteada , 9020-105 Funchal , Portugal
| | - Helena Tomás
- CQM-Centro de Química da Madeira, MMRG , Universidade da Madeira , Campus Universitário da Penteada , 9020-105 Funchal , Portugal
| | - Zhijuan Xiong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - João Rodrigues
- CQM-Centro de Química da Madeira, MMRG , Universidade da Madeira , Campus Universitário da Penteada , 9020-105 Funchal , Portugal
- School of Materials Science and Engineering/Center for Nano Energy Materials , Northwestern Polytechnical University , Xi'an 710072 , People's Republic of China
| | - Xiangyang Shi
- Cancer Center , Shanghai Tenth People's Hospital, Tongji University School of Medicine , Shanghai 200072 , People's Republic of China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
- CQM-Centro de Química da Madeira, MMRG , Universidade da Madeira , Campus Universitário da Penteada , 9020-105 Funchal , Portugal
| |
Collapse
|
23
|
Kasprzak A, Gunka K, Fronczak M, Bystrzejewski M, Poplawska M. Folic Acid-Navigated and β-Cyclodextrin-Decorated Carbon-Encapsulated Iron Nanoparticles as the Nanotheranostic Platform for Controlled Release of 5-Fluorouracil. ChemistrySelect 2018. [DOI: 10.1002/slct.201802318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Artur Kasprzak
- Faculty of Chemistry; Warsaw University of Technology, Noakowskiego Str. 3; 00-664 Warsaw Poland
| | - Katarzyna Gunka
- Faculty of Chemistry; Warsaw University of Technology, Noakowskiego Str. 3; 00-664 Warsaw Poland
| | - Maciej Fronczak
- Faculty of Chemistry, University of Warsaw; Pasteura Str. 1 02-093 Warsaw Poland
| | - Michał Bystrzejewski
- Faculty of Chemistry, University of Warsaw; Pasteura Str. 1 02-093 Warsaw Poland
| | - Magdalena Poplawska
- Faculty of Chemistry; Warsaw University of Technology, Noakowskiego Str. 3; 00-664 Warsaw Poland
| |
Collapse
|
24
|
Zhu J, Wang G, Alves CS, Tomás H, Xiong Z, Shen M, Rodrigues J, Shi X. Multifunctional Dendrimer-Entrapped Gold Nanoparticles Conjugated with Doxorubicin for pH-Responsive Drug Delivery and Targeted Computed Tomography Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018. [DOI: https://doi.org/10.1021/acs.langmuir.8b02901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jingyi Zhu
- Cancer Center, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, People’s Republic of China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
- State Key Laboratory of Material-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People’s Republic of China
| | - Guoying Wang
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Carla S. Alves
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Helena Tomás
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Zhijuan Xiong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - João Rodrigues
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- School of Materials Science and Engineering/Center for Nano Energy Materials, Northwestern Polytechnical University, Xi’an 710072, People’s Republic of China
| | - Xiangyang Shi
- Cancer Center, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, People’s Republic of China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
25
|
Liu L, Zong ZM, Liu Q, Jiang SS, Zhang Q, Cen LQ, Gao J, Gao XG, Huang JD, Liu Y, Yao H. A novel galactose-PEG-conjugated biodegradable copolymer is an efficient gene delivery vector for immunotherapy of hepatocellular carcinoma. Biomaterials 2018; 184:20-30. [PMID: 30195802 DOI: 10.1016/j.biomaterials.2018.08.064] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 12/20/2022]
Abstract
Successful immunogene therapy depends not only on the therapeutic gene but also on the gene delivery vector. In this study, we synthesized a novel copolymer consisting of low-molecular-weight polyethylenimine (PEI) cross-linked by myo-inositol (INO) and conjugated with a galactose-grafted PEG chain, named LA-PegPI. We characterized the chemical structure and molecular weight of the copolymer and particle properties of LA-PegPI/pDNA. Furthermore, we showed that LA-PegPI/pDNA polyplexes possessed excellent stability in physiological salt solution, low cytotoxicity, and high transfection efficiency in the asialoglycoprotein receptor (ASGPR)-positive liver cells in vitro. Importantly, we also showed that through intraperitoneal injection of LA-PegPI/pDNA nanoparticles, the reporter gene was forcefully expressed in the liver hepatocytes of mice. Finally, we documented that intraperitoneal injection of LA-PegPI/pIL15 nanoparticles effectively suppressed tumor growth and prolonged survival time of tumor-bearing mice via activation of CD8+ T cells and NK cells and upregulation of the cytokines IFN-γ, TNF, and IL12 in an orthotopic hepatocellular carcinoma mouse model. Interestingly, LA-PegPI/pluc nanoparticles could effectively stimulate the proliferation of NK cells and inhibit tumor growth in this model. In summary, LA-PegPI is a useful gene vector for immunogene therapy of hepatocellular carcinoma, and its potential for clinical application warrants further study.
Collapse
Affiliation(s)
- Ling Liu
- Key Laboratory of Coal Processing and Efficient Utilization, Ministry of Education, China University of Mining & Technology, Xuzhou, Jiangsu 221116, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Zhi-Min Zong
- Key Laboratory of Coal Processing and Efficient Utilization, Ministry of Education, China University of Mining & Technology, Xuzhou, Jiangsu 221116, PR China.
| | - Qian Liu
- Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Shuang-Shuang Jiang
- Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Qian Zhang
- Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Lan-Qi Cen
- Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Jian Gao
- Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Xiao-Ge Gao
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Jian-Dong Huang
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, PR China; Department of Biochemistry and Shenzhen Institute of Research and Innovation, University of Hong Kong, 999077, Hong Kong, China
| | - Yi Liu
- Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Hong Yao
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, PR China.
| |
Collapse
|
26
|
Chai D, Liu N, Li H, Wang G, Song J, Fang L, Lu Z, Yao H, Zheng J. H1/pAIM2 nanoparticles exert anti-tumour effects that is associated with the inflammasome activation in renal carcinoma. J Cell Mol Med 2018; 22:5670-5681. [PMID: 30160343 PMCID: PMC6201339 DOI: 10.1111/jcmm.13842] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 12/20/2022] Open
Abstract
Renal cell carcinoma (RCC) is a high metastasis tumour with less effective treatment available currently. Absent in melanoma 2 (AIM2) as a tumour suppressor might be used as a potential therapeutic target for RCC treatment. Here, we found that AIM2 expression was significantly decreased in RCC patient specimens and renal carcinoma cell lines (786‐O and OSRC‐2). To establish a safe and effective AIM2 gene delivery system, we formed the nanoparticles consisting of a folate grafted PEI600‐CyD (H1) nanoparticle‐mediated AIM2 gene (H1/pAIM2) as an effective delivery agent. Delivery of H1/pAIM2 in renal carcinoma cells could remarkably increase the expression of AIM2, and subsequently decrease cell proliferation, migration, and invasion as well as enhance cell apoptosis. In order to evaluate the therapeutic efficacy of AIM2 in vivo, H1/pAIM2 nanoparticles were injected intratumorally into 786‐O‐xenograft mice. Administration of H1/pAIM2 nanoparticles could inhibit the tumour growth as evidenced by reduced tumour volume and weight. Furthermore, Blockade of inflammasome activation triggered by H1/pAIM2 nanoparticles using inflammasome inhibitor YVAD‐CMK abrogated the anti‐tumoral activities of H1/AIM2. These results indicated the therapeutic effect of H1/pAIM2 nanoparticles was mainly attributable to its capability to enhance the inflammasome activation. H1/AIM2 nanoparticles might act as an efficient therapeutic approach for RCC treatment.
Collapse
Affiliation(s)
- Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Nianli Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Huizhong Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Jingyuan Song
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Lin Fang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Zheng Lu
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Hong Yao
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
27
|
H1/pHGFK1 nanoparticles exert anti-tumoural and radiosensitising effects by inhibition of MET in glioblastoma. Br J Cancer 2018; 118:522-533. [PMID: 29348487 PMCID: PMC5830599 DOI: 10.1038/bjc.2017.461] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 11/23/2017] [Accepted: 11/23/2017] [Indexed: 12/20/2022] Open
Abstract
Background: The therapeutic resistance to ionising radiation (IR) and anti-angiogenesis mainly impair the prognosis of patients with glioblastoma. The primary and secondary MET aberrant activation is one crucial factor for these resistances. The kringle 1 domain of hepatocyte growth factor (HGFK1), an angiogenic inhibitor, contains a high-affinity binding domain of MET; however, its effects on glioblastoma remain elusive. Methods: We formed the nanoparticles consisting of a folate receptor-targeted nanoparticle-mediated HGFK1 gene (H1/pHGFK1) and studied its anti-tumoural and radiosensitive activities in both subcutaneous and orthotopic human glioma cell-xenografted mouse models. We then elucidated its molecular mechanisms in human glioblastoma cell lines in vitro. Results: We demonstrated for the first time that peritumoural injection of H1/pHGFK1 nanoparticles significantly inhibited tumour growth and prolonged survival in tumour-bearing mice, as well as enhanced the anti-tumoural efficacies of IR in vivo by reducing Ki-67 expression, enhancing TUNEL staining-indicated apoptotic indexes, reducing microvascular intensity and reversing IR-induced MET overexpression in tumour tissues. Furthermore, we showed that HGFK1 suppressed the proliferation and induced cell apoptosis and enhanced sensitivity to IR in glioblastoma cell lines, mainly by suppressing the activities of MET receptor, down-regulating ATM-Chk2 axis but up-regulating Chk1. Conclusions: H1/pHGFK1 exerts anti-tumoural and radiosensitive activities mainly through the inhibition and reversal of IR-induced MET and ATM–Chk2 axis activities in glioblastoma. H1/pHGFK1 nanoparticles are a potential radiosensitiser and angiogenic inhibitor for glioblastoma treatment.
Collapse
|
28
|
Kasprzak A, Grudzinski IP, Bamburowicz-Klimkowska M, Parzonko A, Gawlak M, Poplawska M. New Insight into the Synthesis and Biological Activity of the Polymeric Materials Consisting of Folic Acid and β-Cyclodextrin. Macromol Biosci 2017; 18. [DOI: 10.1002/mabi.201700289] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/30/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Artur Kasprzak
- Faculty of Chemistry; Warsaw University of Technology; Noakowskiego 3 Str. Warsaw 00-664 Poland
| | | | | | - Andrzej Parzonko
- Faculty of Pharmacy; Medical University of Warsaw; Banacha 1 Str. Warsaw 02-097 Poland
| | - Maciej Gawlak
- Faculty of Pharmacy; Medical University of Warsaw; Banacha 1 Str. Warsaw 02-097 Poland
| | - Magdalena Poplawska
- Faculty of Chemistry; Warsaw University of Technology; Noakowskiego 3 Str. Warsaw 00-664 Poland
| |
Collapse
|
29
|
Engineering intranasal mRNA vaccines to enhance lymph node trafficking and immune responses. Acta Biomater 2017; 64:237-248. [PMID: 29030308 DOI: 10.1016/j.actbio.2017.10.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/08/2017] [Accepted: 10/09/2017] [Indexed: 12/14/2022]
Abstract
Intranasal mRNA vaccination provides immediate immune protection against pandemic diseases. Recent studies have shown that diverse forms of polyethyleneimine (PEI) have potent mucosal adjuvant activity, which could significantly facilitate the delivery of intranasal mRNA vaccines. Nevertheless, optimizing the chemical structure of PEI to maximize its adjuvanticity and decrease its toxicity remains a challenge. Here we show that the chemical structure of PEI strongly influences how well nanocomplexes of PEI and mRNA migrate to the lymph nodes and elicit immune responses. Conjugating cyclodextrin (CD) with PEI600 or PEI2k yielded CP (CD-PEI) polymers with different CD/PEI ratios. We analyzed the delivery efficacy of CP600, CP2k, and PEI25k as intranasal mRNA vaccine carriers by evaluating the lymph nodes migration and immune responses. Among these polymers, CP2k/mRNA showed significantly higher in vitro transfection efficiency, stronger abilities to migrate to lymph nodes and stimulate dendritic cells maturation in vivo, which further led to potent humoral and cellular immune responses, and showed lower local and systemic toxicity than PEI25k/mRNA. These results demonstrate the potential of CD-PEI2k/mRNA nanocomplex as a self-adjuvanting vaccine delivery vehicle that traffics to lymph nodes with high efficiency. STATEMENT OF SIGNIFICANCE As we face outbreaks of pandemic diseases such as Zika virus, intranasal mRNA vaccination provides instant massive protection against highly variant viruses. Various polymer-based delivery systems have been successfully applied in intranasal vaccine delivery. However, the influence of molecular structure of the polymeric carriers on the lymph node trafficking and dendritic cell maturation is seldom studied for intranasal vaccination. Therefore, engineering polymer-based vaccine delivery system and elucidating the relationship between molecular structure and the intranasal delivery efficiency are essential for maximizing the immune responses. We hereby construct self-adjuvanting polymer-based intranasal mRNA vaccines to enhance lymph node trafficking and further improve immune responses.
Collapse
|
30
|
Ceborska M. Folate appended cyclodextrins for drug, DNA, and siRNA delivery. Eur J Pharm Biopharm 2017; 120:133-145. [DOI: 10.1016/j.ejpb.2017.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/01/2017] [Accepted: 09/08/2017] [Indexed: 12/11/2022]
|
31
|
Folate receptor targeted bufalin/β-cyclodextrin supramolecular inclusion complex for enhanced solubility and anti-tumor efficiency of bufalin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:609-618. [DOI: 10.1016/j.msec.2017.04.094] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/14/2017] [Accepted: 04/16/2017] [Indexed: 11/20/2022]
|
32
|
Liu Y, Xu CF, Iqbal S, Yang XZ, Wang J. Responsive Nanocarriers as an Emerging Platform for Cascaded Delivery of Nucleic Acids to Cancer. Adv Drug Deliv Rev 2017; 115:98-114. [PMID: 28396204 DOI: 10.1016/j.addr.2017.03.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 12/19/2022]
Abstract
Cascades of systemic and intracellular obstacles, including low stability in blood, little tumor accumulation, weak tumor penetration, poor cellular uptake, inefficient endosomal escape and deficient disassembly in the cytoplasm, must be overcome in order to deliver nucleic acid drugs for cancer therapy. Nanocarriers that are sensitive to a variety of physiological stimuli, such as pH, redox status, and cell enzymes, are substantially changing the landscape of nucleic acid drug delivery by helping to overcome cascaded systemic and intracellular barriers. This review discusses nucleic acid-based therapeutics, systemic and intracellular barriers to efficient nucleic acid delivery, and nanocarriers responsive to extracellular and intracellular biological stimuli to overcome individual barriers. In particular, responsive nanocarriers for the cascaded delivery of nucleic acids in vivo are highlighted. Developing novel cascaded nanocarriers that transform their physicochemical properties in response to various stimuli in a timely and spatially controlled manner for nucleic acid drug delivery holds great potential for translating the promise of nucleic acid drugs and achieving clinically successful cancer therapy.
Collapse
|
33
|
Li Y, Li J, Woo YM, Shen Z, Yao H, Cai Y, Lin MCM, Poon WS. Enhanced expression of Vastatin inhibits angiogenesis and prolongs survival in murine orthotopic glioblastoma model. BMC Cancer 2017; 17:126. [PMID: 28193190 PMCID: PMC5307880 DOI: 10.1186/s12885-017-3125-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 02/08/2017] [Indexed: 12/31/2022] Open
Abstract
Background Antiangiogenic therapies are considered promising for the treatment of glioblastoma (GB). The non-collagenous C-terminal globular NC1 domain of type VIII collagen a1 chain, Vastatin, is an endogenous antiangiogenic polypeptide. Sustained enhanced expression of Vastatin was shown to inhibit tumour growth and metastasis in murine hepatocellular carcinoma models. In this study, we further explored the efficacy of Vastatin in the treatment of GB xenografts. Method Treatment of Vastatin was carried out using a nanopolymer gene vector PEI600-CyD-Folate (H1). Antiangiogenic effect of Vastatin was tested in vitro by using co-culture system and conditioned medium. An orthotopic GB murine model was established to examine the in vivo therapeutic effect of Vastatin alone treatment and its combination with temozolomide. Results Vastatin gene transfection mediated by H1 could target tumour cells specifically and suppress the proliferation of microvessel endothelial cells (MECs) through a paracrine inhibition manner. Enhancing Vastatin expression by intracerebral injection of H1-Vastatin significantly prolonged animal survival from 48 to 75 days in GB murine model, which was comparable to the effect of Endostatin, the most studied endogenous antiangiogenic polypeptide. The diminished presence of CD34 positive cells in the GB xenografts suggested that Vastatin induced significant antiangiogenesis. Moreover, a synergistic effect in extending survival was detected when H1-Vastatin was administered with temozolomide (TMZ) in GB chemoresistant murine models. Conclusion Our results suggest, for the first time, that Vastatin is an antiangiogenic polypeptide with significant potential therapeutic benefit for GB. H1-Vastatin gene therapy may have important implications in re-sensitizing recurrent GB to standard chemotherapeutic agents.
Collapse
Affiliation(s)
- Yi Li
- Brain Tumor Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Li
- Brain Tumor Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Yat Ming Woo
- Department of Neurosurgery, Kwong Wah Hospital, Hong Kong, China
| | - Zan Shen
- Department of Oncology, Affiliated 6th People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Hong Yao
- Jiangsu Eng. Lab of Cancer Biotherapy, Xuzhou Medical College, Xuzhou, China
| | - Yijun Cai
- Brain Tumor Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Marie Chia-Mi Lin
- Brain Tumor Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai Sang Poon
- Brain Tumor Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
34
|
Folate-targeted nanoparticle delivery of androgen receptor shRNA enhances the sensitivity of hormone-independent prostate cancer to radiotherapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1309-1321. [PMID: 28185938 DOI: 10.1016/j.nano.2017.01.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 01/21/2017] [Accepted: 01/28/2017] [Indexed: 12/15/2022]
Abstract
Androgen receptor (AR) plays a crucial role in the development and progression of prostate cancer (PCa). PCa patients typically receive androgen deprivation therapy; nonetheless, these patients eventually develop castration and radiation resistance. We hypothesized that we could further improve radiotherapeutic efficacy of hormone-independent PCa (HIPC) by silencing AR. In this study, nanoparticle (NP) AR-shRNA was formulated using folate-targeted H1 nanopolymer. We demonstrated that NP AR-shRNA enhances PCa radiosensitivity as indicated by the inhibition of cell growth, increased apoptosis, and increased cell cycle arrest in AR-dependent HIPC in vitro. The radiosensitizing effect of NP AR-shRNA could be validated in vivo, as NP AR-shRNA significantly suppressed tumor growth and prolonged the survival of HIPC tumor-bearing mice. Analysis at the molecular level revealed that NP AR-shRNA inhibits DNA damage repair signaling pathways. Our study supports further investigation of NP AR-shRNA for the improvement of radiotherapy efficacy in HIPC.
Collapse
|
35
|
Utsuno K, Kono H, Tanaka E, Jouna N, Kojima Y, Uludağ H. Low Molecular Weight Branched PEI Binding to Linear DNA. Chem Pharm Bull (Tokyo) 2017; 64:1484-1491. [PMID: 27725501 DOI: 10.1248/cpb.c16-00454] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polyethylenimine (PEI) is one of the most versatile non-viral vectors used in gene therapy, especially for delivering plasmid DNA to human cells. However, a good understanding of PEI binding to DNA, the fundamental basis for the functioning of PEI as a vector, has been missing in the literature. In this study, PEI (branched, 600 Da) binding to DNA was examined by isothermal titration calorimetry (ITC), quartz crystal microbalance (QCM) and a complementary set of analysis tools. We demonstrated that a separation between the binding heat and the condensation heat is needed and that the excluded site model should be used for PEI binding stage in the ITC analysis. The equilibrium constant for PEI binding to DNA was determined to be 2.5×105 M-1 from the ITC analysis, and as 2.3×105 M-1 from the QCM analysis. Additionally, we suggested that the 600 Da branched PEI binds to the major groove of DNA and the rearrangement of PEI on DNA may be difficult to occur because of the small dissociation rate. The binding analysis presented here can be employed to improve our understanding of the functioning of PEI and PEI-like non-viral vectors.
Collapse
Affiliation(s)
- Kuniharu Utsuno
- Department of Science & Engineering for Materials, National Institute of Technology, Tomakomai College
| | | | | | | | | | | |
Collapse
|
36
|
Kong L, Shi X. Functional Dendrimer-Based Vectors for Gene Delivery Applications. SUPRAMOLECULAR CHEMISTRY OF BIOMIMETIC SYSTEMS 2017:285-309. [DOI: 10.1007/978-981-10-6059-5_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
37
|
Yao H, Qiu H, Shao Z, Wang G, Wang J, Yao Y, Xin Y, Zhou M, Wang AZ, Zhang L. Nanoparticle formulation of small DNA molecules, Dbait, improves the sensitivity of hormone-independent prostate cancer to radiotherapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2261-2271. [PMID: 27389144 DOI: 10.1016/j.nano.2016.06.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 06/07/2016] [Accepted: 06/19/2016] [Indexed: 12/30/2022]
Abstract
Intensification of radiotherapy has been shown to improve prostate cancer (PCa) outcomes. We hypothesized that we could further improve radiotherapy efficacy through the use DNA repair inhibitors. In this study, we evaluated the use of a new class of DNA damage repair inhibitor, nanoparticle (NP) Dbait, in radiosensitization of PCa. NP Dbait was formulated using H1 nanopolymer (folate-polyethylenimine600-cyclodextrin). We demonstrated that NP Dbait was a potent radiosensitizer in vitro by colony forming assay using PCa cell lines. The result was validated in vivo using mouse xenograft models of PCa and we showed that NP Dbait significantly suppressed tumor growth and prolonged survival. Western blot, immunofluorescence and immunohistochemistry showed that NP Dbait inhibited DNA damage repair signaling pathways by mimicking DNA double-strand breaks. Our study supports further investigations of NP Dbait in improving the therapeutic efficacy of cancer radiotherapy.
Collapse
Affiliation(s)
- Hong Yao
- Cancer Institute of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Hui Qiu
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Zhiying Shao
- Cancer Institute of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Gang Wang
- Cancer Institute of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Jianshe Wang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Yuanhu Yao
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Yong Xin
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Min Zhou
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Andrew Z Wang
- Cancer Institute of Xuzhou Medical College, Xuzhou, Jiangsu, China; Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Laboratory of Nano- and Translational Medicine, Department of Radiation Oncology, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Longzhen Zhang
- Cancer Institute of Xuzhou Medical College, Xuzhou, Jiangsu, China; Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China.
| |
Collapse
|
38
|
Fan G, Fan M, Wang Q, Jiang J, Wan Y, Gong T, Zhang Z, Sun X. Bio-inspired polymer envelopes around adenoviral vectors to reduce immunogenicity and improve in vivo kinetics. Acta Biomater 2016; 30:94-105. [PMID: 26546972 DOI: 10.1016/j.actbio.2015.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 10/27/2015] [Accepted: 11/03/2015] [Indexed: 10/22/2022]
Abstract
Adenoviral vectors have attracted substantial interest for systemic tumor gene therapy, but further work is needed to reduce their immunogenicity and alter their biodistribution before they can be used in the clinic. Here we describe a bio-inspired, cleavable PEGylated β-cyclodextrin-polyethyleneimine conjugate (CDPCP) that spontaneously coats adenovirus in solution. This cleavable PEG coating reduces the innate and adaptive immunogenicity of adenovirus particles, as well as improves their biodistribution away from the liver and into the tumor. Insertion of a matrix metalloproteinase substrate sequence into the conjugate allows PEG cleavage at the tumor site, simultaneously reducing liver biodistribution and increasing transgene expression in tumors, thereby avoiding the "PEG dilemma". Cationic β-cyclodextrin-PEI not only provides electrostatic attraction to promote envelope attachment to the viral capsid, but it also improves vector internalization and transduction after PEG cleavage. These results suggest that CDPCP may help expand the use of adenoviral vectors in cancer gene therapy. STATEMENT OF SIGNIFICANCE The synthesized β-cyclodextrin-PEI-MMP-cleavable-PEG polymer (CDPCP), held great potential for gene therapy when applied for adenovirus coating. The β-cyclodextrin-PEI provided a powerful electrostatic attraction to attach the whole polymer onto the viral capsid, while the MMPs-cleavable PEG reduced innate and adaptive immunogenicity and improved the biodistribution of adenovirus vectors due to the tumor-specific enzyme triggered PEG cleavage. More importantly, an ingenious cooperation between the two components could solve the PEG dilemma. The CDPCP/Ad complexes exhibited a comprehensive and valued profile to be a candidate vector for future tumor gene therapy, we believe the current investigation on this kind of biomaterial may be of particular interest to the readership of Acta biomaterialia.
Collapse
|
39
|
Qiu J, Kong L, Cao X, Li A, Tan H, Shi X. Dendrimer-entrapped gold nanoparticles modified with β-cyclodextrin for enhanced gene delivery applications. RSC Adv 2016. [DOI: 10.1039/c6ra03839e] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Dendrimer-entrapped gold nanoparticles modified with β-cyclodextrin can be synthesized and used as a non-viral vector for enhanced gene delivery applications.
Collapse
Affiliation(s)
- Jieru Qiu
- College of Chemistry, Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- People's Republic of China
| | - Lingdan Kong
- College of Chemistry, Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- People's Republic of China
| | - Xueyan Cao
- College of Chemistry, Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- People's Republic of China
| | - Aijun Li
- College of Chemistry, Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- People's Republic of China
| | - Hongru Tan
- College of Chemistry, Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- People's Republic of China
| | - Xiangyang Shi
- College of Chemistry, Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- People's Republic of China
| |
Collapse
|
40
|
Du B, Gu X, Zhao W, Liu Z, Li D, Wang E, Wang J. Hybrid of gold nanostar and indocyanine green for targeted imaging-guided diagnosis and phototherapy using low-density laser irradiation. J Mater Chem B 2016; 4:5842-5849. [DOI: 10.1039/c6tb01375a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A general strategy was used to design APP–ICG with the following functions: target ability, synergistic therapy, near-infrared and thermal imaging.
Collapse
Affiliation(s)
- Baoji Du
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Xiaoxiao Gu
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Wenjing Zhao
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Zuojia Liu
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Dan Li
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Jin Wang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| |
Collapse
|
41
|
Zhu J, Zhao L, Cheng Y, Xiong Z, Tang Y, Shen M, Zhao J, Shi X. Radionuclide (131)I-labeled multifunctional dendrimers for targeted SPECT imaging and radiotherapy of tumors. NANOSCALE 2015; 7:18169-18178. [PMID: 26477402 DOI: 10.1039/c5nr05585g] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report the synthesis, characterization, and utilization of radioactive (131)I-labeled multifunctional dendrimers for targeted single-photon emission computed tomography (SPECT) imaging and radiotherapy of tumors. In this study, amine-terminated poly(amidoamine) dendrimers of generation 5 (G5·NH2) were sequentially modified with 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO) and folic acid (FA) linked with polyethylene glycol (PEG), followed by acetylation modification of the dendrimer remaining surface amines and labeling of radioactive iodine-131 ((131)I). The generated multifunctional (131)I-G5·NHAc-HPAO-PEG-FA dendrimers were characterized via different methods. We show that prior to (131)I labeling, the G5·NHAc-HPAO-PEG-FA dendrimers conjugated with approximately 9.4 HPAO moieties per dendrimer are noncytotoxic at a concentration up to 20 μM and are able to target cancer cells overexpressing FA receptors (FAR), thanks to the modified FA ligands. In the presence of a phenol group, radioactive (131)I is able to be efficiently labeled onto the dendrimer platform with good stability and high radiochemical purity, and render the platform with an ability for targeted SPECT imaging and radiotherapy of an FAR-overexpressing xenografted tumor model in vivo. The designed strategy to use the facile dendrimer nanotechnology may be extended to develop various radioactive theranostic nanoplatforms for targeted SPECT imaging and radiotherapy of different types of cancer.
Collapse
Affiliation(s)
- Jingyi Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China.
| | - Yongjun Cheng
- Department of Nuclear Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China.
| | - Zhijuan Xiong
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China.
| | - Yueqin Tang
- Experiment Center, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China
| | - Mingwu Shen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China.
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China.
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China and College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China.
| |
Collapse
|
42
|
Liao R, Yi S, Liu M, Jin W, Yang B. Folic-Acid-Targeted Self-Assembling Supramolecular Carrier for Gene Delivery. Chembiochem 2015; 16:1622-8. [DOI: 10.1002/cbic.201500208] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Indexed: 12/27/2022]
|
43
|
Yin JJ, Zhou ZW, Zhou SF. Cyclodextrin-based targeting strategies for tumor treatment. Drug Deliv Transl Res 2015; 3:364-74. [PMID: 25788282 DOI: 10.1007/s13346-013-0140-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The efficacy and applicability of anticancer drugs are greatly restricted by severe systemic toxicities and drug resistance. Targeting drug delivery strategies have been developed to prevent the shortcomings of chemotherapy. Among various approaches to specifically target drug-loaded carrier systems to the required pathological sites, ligand-attached cyclodextrin-based targeting complexes are a promising drug delivery system, which is achieved mainly through specific molecular interactions between the drugs and cell surface receptors. The principal targeting tactics include conjugation of cyclodextrin with targeting moieties or encapsulation drugs in cyclodextrins. The cyclodextrin-based supramolecules, polymers, or nanoparticles bearing bioactive substances such as folate, estrogens, carbohydrates, peptides, etc. have been reviewed.
Collapse
Affiliation(s)
- Juan-Juan Yin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, 33612, USA
| | | | | |
Collapse
|
44
|
Polymeric complex micelles with double drug-loading strategies for folate-mediated paclitaxel delivery. Colloids Surf B Biointerfaces 2015; 131:191-201. [PMID: 25988283 DOI: 10.1016/j.colsurfb.2015.04.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/15/2015] [Accepted: 04/27/2015] [Indexed: 02/07/2023]
Abstract
Drug loading is a key procedure in the preparation of drug-loaded nano-carriers. In this study, the paclitaxel (PTX)-loaded polymeric complex micelles (FA-P123-PTX/PTX micelles) with double drug-loading strategies were designed and prepared to improve the drug loading percentage of carriers and its anti-tumor efficiency. PTX was simultaneously conjugated to pluronic P123 (P123) polymer and encapsulated inside the P123 complex micelle. Folate (FA) was linked to the surface of micelles for the active target delivery of micelles to tumor cells. The FA-P123-PTX/PTX micelles showed spherical shaped with high drug loading of 18.08±0.64%. The results of cellular uptake studies suggested that FA could promote the internalization of micelles into the FR positive cells. FA-P123-PTX/PTX micelles showed significant higher anti-tumor activity against FR positive tumor cells compared to Taxol(®) (p<0.05). Moreover, the FA-P123-PTX/PTX micelles exhibited higher anti-tumor efficacy in B16 bearing mice with better safety property compared with Taxol(®). These results suggested that FA-P123-PTX/PTX micelles with double drug-loading strategies showed great potential for targeted delivery of anti-cancer drugs.
Collapse
|
45
|
Li JM, Zhang W, Su H, Wang YY, Tan CP, Ji LN, Mao ZW. Reversal of multidrug resistance in MCF-7/Adr cells by codelivery of doxorubicin and BCL2 siRNA using a folic acid-conjugated polyethylenimine hydroxypropyl-β-cyclodextrin nanocarrier. Int J Nanomedicine 2015; 10:3147-62. [PMID: 25960653 PMCID: PMC4412489 DOI: 10.2147/ijn.s67146] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Systemic administration of chemotherapy for cancer often faces drug resistance, limiting its applications in cancer therapy. In this study, we developed a simple multifunctional nanocarrier based on polyethylenimine (PEI) to codeliver doxorubicin (DOX) and BCL2 small interfering RNA (siRNA) for overcoming multidrug resistance (MDR) and enhancing apoptosis in MCF-7/Adr cancer cells by combining chemotherapy and RNA interference (RNAi) therapy. The low-molecular-weight branch PEI was used to conjugate hydroxypropyl-β-cyclodextrin (HP-β-CD) and folic acid (FA), forming the codelivery nanocarrier (FA-HP-β-CD-PEI) to encapsulate DOX with the cavity HP-β-CD and bind siRNA with the positive charge of PEI for tumor-targeting codelivering drugs. The drug-loaded nanocomplexes (FA-HP-β-CD-PEI/DOX/siRNA) showed uniform size distribution, high cellular uptake, and significant gene suppression of BCL2, displaying the potential of overcoming MDR for enhancing the effect of anticancer drugs. Furthermore, the nanocomplexes achieved significant cell apoptosis through a mechanism of downregulating the antiapoptotic protein BCL2, resulted in improving therapeutic efficacy of the coadministered DOX by tumor targeting and RNA interference. Our study indicated that combined RNAi therapy and chemotherapy using our functional codelivery nanocarrier could overcome MDR and enhance apoptosis in MDR cancer cells for a potential application in treating MDR cancers.
Collapse
Affiliation(s)
- Jin-Ming Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wei Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hua Su
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yuan-Yuan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Liang-Nian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
46
|
Song Y, Zhang T, Song X, Zhang L, Zhang C, Xing J, Liang XJ. Polycations with excellent gene transfection ability based on PVP-g-PDMAEMA with random coil and micelle structures as non-viral gene vectors. J Mater Chem B 2015; 3:911-918. [DOI: 10.1039/c4tb01754d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PVP-g-PDMAEMA formed random coils in water and PVP-g-PDMAEMA-b-PMMA self-assembled into spherical core–shell micelles. Both displayed excellent pDNA compacting abilities at an extremely low N/P ratio, with PVP-g-PDMAEMA-b-PMMA also showing excellent gear transfection efficiency.
Collapse
Affiliation(s)
- Yuhua Song
- Department of Polymer Science and Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- China
| | - Tingbin Zhang
- Department of Polymer Science and Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- China
| | - Xiaoyan Song
- College of Material Science and Engineering
- Tianjin Polytechnic University
- Tianjin
- China
| | - Ling Zhang
- Department of Polymer Science and Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- China
| | - Chunqiu Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology of China
- Beijing
- China
| | - Jinfeng Xing
- Department of Polymer Science and Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology of China
- Beijing
- China
| |
Collapse
|
47
|
Zhu J, Xiong Z, Shen M, Shi X. Encapsulation of doxorubicin within multifunctional gadolinium-loaded dendrimer nanocomplexes for targeted theranostics of cancer cells. RSC Adv 2015; 5:30286-30296. [DOI: 10.1039/c5ra01215e] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Multifunctional gadolinium-loaded dendrimer nanocomplexes can be used to encapsulate doxorubicin for targeted magnetic resonance imaging and chemotherapy of cancer cells.
Collapse
Affiliation(s)
- Jingyi Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- People's Republic of China
| | - Zhijuan Xiong
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- People's Republic of China
| | - Mingwu Shen
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- People's Republic of China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- People's Republic of China
| |
Collapse
|
48
|
Jain S, Kumar S, Agrawal AK, Thanki K, Banerjee UC. Hyaluronic acid–PEI–cyclodextrin polyplexes: implications for in vitro and in vivo transfection efficiency and toxicity. RSC Adv 2015. [DOI: 10.1039/c5ra03283k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present study reveals novel HA–PEI–CyD polyplexes as non-viral vectors for gene delivery.
Collapse
Affiliation(s)
- S. Jain
- Centre for Pharmaceutical Nanotechnology
- Department of Pharmaceutics
- National Institute of Pharmaceutical Education and Research (NIPER)
- Mohali
- India
| | - S. Kumar
- Centre for Pharmaceutical Nanotechnology
- Department of Pharmaceutics
- National Institute of Pharmaceutical Education and Research (NIPER)
- Mohali
- India
| | - A. K. Agrawal
- Centre for Pharmaceutical Nanotechnology
- Department of Pharmaceutics
- National Institute of Pharmaceutical Education and Research (NIPER)
- Mohali
- India
| | - K. Thanki
- Centre for Pharmaceutical Nanotechnology
- Department of Pharmaceutics
- National Institute of Pharmaceutical Education and Research (NIPER)
- Mohali
- India
| | - U. C. Banerjee
- Department of Pharmaceutical Technology
- National Institute of Pharmaceutical Education and Research (NIPER)
- Mohali
- India
| |
Collapse
|
49
|
Loh XJ, Wu YL. Cationic star copolymers based on β-cyclodextrins for efficient gene delivery to mouse embryonic stem cell colonies. Chem Commun (Camb) 2015; 51:10815-8. [DOI: 10.1039/c5cc03686k] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A cationic star copolymer with a β-cyclodextrin core was developed for nonviral gene transfer to mouse embryonic stem cells (mESCs).
Collapse
Affiliation(s)
- Xian Jun Loh
- Institute of Materials Research and Engineering
- A*STAR (Agency for Science, Technology and Research)
- Singapore 117602
- Singapore
- Department of Materials Science and Engineering
| | - Yun-Long Wu
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- P. R. China
| |
Collapse
|
50
|
Lai WF, Jung HS. Cell transfection with a β-cyclodextrin-PEI-propane-1,2,3-triol nanopolymer. PLoS One 2014; 9:e100258. [PMID: 24956480 PMCID: PMC4067318 DOI: 10.1371/journal.pone.0100258] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/22/2014] [Indexed: 12/13/2022] Open
Abstract
Successful gene therapy necessitates safe and efficient gene transfer. This article describes the use of a cationic polymer, which was synthesized by cross-linking low molecular weight branched poly(ethylenimine) (PEI) with both β-cyclodextrin and propane-1,2,3-triol, for efficient and safe non-viral gene delivery. Experimentation demonstrated that the polymer had a pH buffering capacity and DNA condensing ability comparable to those of PEI 25 kDa. In B16-F0 cells, the polymer increased the transfection efficiency of naked DNA by 700-fold and yielded better transfection efficiencies than Fugene HD (threefold higher) and PEI 25 kDa (fivefold higher). The high transfection efficiency of the polymer was not affected by the presence of serum during transfection. In addition to B16-F0 cells, the polymer enabled efficient transfection of HepG2 and U87 cells with low cytotoxicity. Our results indicated that our polymer is a safe and efficient transfection reagent that warrants further development for in vitro, in vivo and clinical applications.
Collapse
Affiliation(s)
- Wing-Fu Lai
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
- Oral Biosciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR
- * E-mail:
| |
Collapse
|