1
|
Roser SM, Munarin F, Polucha C, Minor AJ, Choudhary G, Coulombe KLK. Customized Heparinized Alginate and Collagen Hydrogels for Tunable, Local Delivery of Angiogenic Proteins. ACS Biomater Sci Eng 2025; 11:1612-1628. [PMID: 39945764 DOI: 10.1021/acsbiomaterials.4c01823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2025]
Abstract
Therapeutic protein delivery has ushered in a promising new generation of disease treatment, garnering more recognition for its clinical potential than ever. However, proteins' limited stability, extremely short average half-lives, and evidenced toxicity following systemic delivery continue to undercut their efficacy. Biomaterial-based protein delivery, however, demonstrates the potential to overcome these obstacles. To this end, we have developed a heparinized alginate and collagen hydrogel for the local, sustained delivery of therapeutic proteins. In an effort to match this ubiquitous application of protein delivery to various disease states and target tissues with sufficient versatility, we identified three distinct delivery modes as design targets. A shear-thinning, low-viscosity injectable for minimal tissue damage, a higher-viscosity gel plug for subcutaneous injection, and a submillimeter-thickness film for solid-form implantation were optimized and characterized in this work. In vitro assessments confirmed feasible injection control, mechanical stability for up to 6 h of unsubmerged storage, and isotropic early collagen fibril assembly. Release kinetics were assessed both in vitro and in vivo, demonstrating up to 14 days of functional vascular endothelial growth factor delivery. Rodent models of pulmonary hypertension, subcutaneous injection, and myocardial infarction, three promising applications of protein therapeutics, were used to assess the feasible delivery and biocompatibility of the injectable gel, gel plug, and film, respectively. Histological evaluation of the delivered materials and surrounding tissue showed high biocompatibility with cell and blood vessel infiltration, remodeling, and integration with the host tissue. Our successful customization of the biomaterial to heterogeneous delivery modes demonstrates its versatile capacity for the local, sustained delivery of therapeutic proteins for a diverse array of regenerative medicine applications.
Collapse
Affiliation(s)
- Stephanie M Roser
- School of Engineering, Institute for Biology, Engineering, and Medicine, Brown University, Providence, Rhode Island 02912, United States
| | - Fabiola Munarin
- School of Engineering, Institute for Biology, Engineering, and Medicine, Brown University, Providence, Rhode Island 02912, United States
| | - Collin Polucha
- School of Engineering, Institute for Biology, Engineering, and Medicine, Brown University, Providence, Rhode Island 02912, United States
| | - Alicia J Minor
- School of Engineering, Institute for Biology, Engineering, and Medicine, Brown University, Providence, Rhode Island 02912, United States
| | - Gaurav Choudhary
- Division of Cardiology, Providence VA Medical Center, Providence, Rhode Island 02908, United States
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island 02903, United States
| | - Kareen L K Coulombe
- School of Engineering, Institute for Biology, Engineering, and Medicine, Brown University, Providence, Rhode Island 02912, United States
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island 02903, United States
| |
Collapse
|
2
|
Waldmann M, Bohner M, Baghnavi A, Riedel B, Seidenstuecker M. Release kinetics of growth factors loaded into β-TCP ceramics in an in vitro model. Front Bioeng Biotechnol 2024; 12:1441547. [PMID: 39398641 PMCID: PMC11466813 DOI: 10.3389/fbioe.2024.1441547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction β-TCP ceramics are bone replacement materials that have recently been tested as a drug delivery system that can potentially be applied to endogenous substances like growth factors found in blood platelets to facilitate positive attributes. Methods In this work, we used flow chamber loading to load β-TCP dowels with blood suspensions of platelet-rich plasma (PRP), platelet-poor plasma (PPP), or buffy coat (BC) character. PRP and BC platelet counts were adjusted to the same level by dilution. Concentrations of TGF-β1, PDGF-AB, and IGF-1 from dowel-surrounding culture medium were subsequently determined using ELISA over 5 days. The influence of alginate was additionally tested to modify the release. Results Concentrations of TGF-β1 and PDGF-AB increased and conclusively showed a release from platelets in PRP and BC compared to PPP. The alginate coating reduced the PDGF-AB release but did not reduce TGF-β1 and instead even increased TGF-β1 in the BC samples. IGF-1 concentrations were highest in PPP, suggesting circulating levels rather than platelet release as the driving factor. Alginate samples tended to have lower IGF-1 concentrations, but the difference was not shown to be significant. Discussion The release of growth factors from different blood suspensions was successfully demonstrated for β-TCP as a drug delivery system with release patterns that correspond to PRP activation after Ca2+-triggered activation. The release pattern was partially modified by alginate coating.
Collapse
Affiliation(s)
- Marco Waldmann
- G.E.R.N. Tissue Replacement, Regeneration and Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | | | - Anna Baghnavi
- G.E.R.N. Tissue Replacement, Regeneration and Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Bianca Riedel
- G.E.R.N. Tissue Replacement, Regeneration and Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Michael Seidenstuecker
- G.E.R.N. Tissue Replacement, Regeneration and Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
3
|
Khodayari H, Khodayari S, Rezaee M, Rezaeiani S, Alipour Choshali M, Erfanian S, Muhammadnejad A, Nili F, Pourmehran Y, Pirjani R, Rajabi S, Aghdami N, Nebigil-Désaubry C, Wang K, Mahmoodzadeh H, Pahlavan S. Promotion of cardiac microtissue assembly within G-CSF-enriched collagen I-cardiogel hybrid hydrogel. Regen Biomater 2024; 11:rbae072. [PMID: 38974665 PMCID: PMC11226883 DOI: 10.1093/rb/rbae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Tissue engineering as an interdisciplinary field of biomedical sciences has raised many hopes in the treatment of cardiovascular diseases as well as development of in vitro three-dimensional (3D) cardiac models. This study aimed to engineer a cardiac microtissue using a natural hybrid hydrogel enriched by granulocyte colony-stimulating factor (G-CSF), a bone marrow-derived growth factor. Cardiac ECM hydrogel (Cardiogel: CG) was mixed with collagen type I (ColI) to form the hybrid hydrogel, which was tested for mechanical and biological properties. Three cell types (cardiac progenitor cells, endothelial cells and cardiac fibroblasts) were co-cultured in the G-CSF-enriched hybrid hydrogel to form a 3D microtissue. ColI markedly improved the mechanical properties of CG in the hybrid form with a ratio of 1:1. The hybrid hydrogel demonstrated acceptable biocompatibility and improved retention of encapsulated human foreskin fibroblasts. Co-culture of three cell types in G-CSF enriched hybrid hydrogel, resulted in a faster 3D structure shaping and a well-cellularized microtissue with higher angiogenesis compared to growth factor-free hybrid hydrogel (control). Immunostaining confirmed the presence of CD31+ tube-like structures as well as vimentin+ cardiac fibroblasts and cTNT+ human pluripotent stem cells-derived cardiomyocytes. Bioinformatics analysis of signaling pathways related to the G-CSF receptor in cardiovascular lineage cells, identified target molecules. The in silico-identified STAT3, as one of the major molecules involved in G-CSF signaling of cardiac tissue, was upregulated in G-CSF compared to control. The G-CSF-enriched hybrid hydrogel could be a promising candidate for cardiac tissue engineering, as it facilitates tissue formation and angiogenesis.
Collapse
Affiliation(s)
- Hamid Khodayari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 19395-4644, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran 13145-871, Iran
| | - Saeed Khodayari
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| | - Malihe Rezaee
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 19395-4644, Iran
| | - Siamak Rezaeiani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 19395-4644, Iran
| | - Mahmoud Alipour Choshali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 19395-4644, Iran
| | - Saiedeh Erfanian
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 19395-4644, Iran
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 19395-4644, Iran
| | - Ahad Muhammadnejad
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| | - Fatemeh Nili
- Department of Pathology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| | - Yasaman Pourmehran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 19395-4644, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran 13145-871, Iran
| | - Reihaneh Pirjani
- Obstetrics and Gynecology Department, Arash Women’s Hospital, Tehran University of Medical Sciences, Tehran 1653915981, Iran
| | - Sarah Rajabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 19395-4644, Iran
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 19395-4644, Iran
| | - Naser Aghdami
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran 19395-4644, Iran
| | - Canan Nebigil-Désaubry
- Institute National de le santé et de la recherce médicale, INSERM, University of Strasbourg, UMR 1260-Regenerative Nanomedicine, CRBS, Central of Research in biomedicine of Strasbourg, Strasbourg 90032, France
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Habibollah Mahmoodzadeh
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 19395-4644, Iran
| |
Collapse
|
4
|
Peng J. Alginate-gelatin hydrogel promotes the neurogenic differentiation potential of bone marrow CD117 + hematopoietic stem cells. Regen Ther 2024; 26:1030-1036. [PMID: 39569341 PMCID: PMC11576937 DOI: 10.1016/j.reth.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/22/2024] Open
Abstract
People still hold the concept of using cell-based treatments to regenerate missing neurons in high esteem. CD117+ cells are considered favorable stem cells for regenerative medicine. The objective of this research was to examine the impact of Alginate-Gelatin (Alg-Gel) hydrogel on the process of neurogenic differentiation of CD117+ cells utilizing a cytokines secretion test conducted in a laboratory setting. To achieve this objective, bone marrow-CD117+ cells were isolated using the MACS technique and then transformed into neuron cells using a neurogenic differentiation medium. The characterization of enriched CD117+ cells has been done with flow cytometry as well as immunocytochemistry. Next, the cells underwent western blotting assay to evaluate the signaling pathways. Subsequently, the culture media was obtained from both groups in order to determine cytokine levels. The study revealed that the Alg-Gel hydrogel had a notable impact on enhancing the protein expression of neuron markers such as β-tubulin and Wnt/catenin signaling pathway components in CD117+ neurogenic differentiated cells. Furthermore, the cultured medium from the experimental group exhibited a notable abundance of IL-6 and IL-10 in comparison to the control group. The observed in vitro effects of Alg-Gel hydrogel on neurogenic differentiation of CD117+ cells are likely to be caused by the cytokines that are released.
Collapse
Affiliation(s)
- Jinshan Peng
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, No.5 Yiheyuan Road, Haidian, Beijing, 100871, China
| |
Collapse
|
5
|
Xu Q, Xiao Z, Yang Q, Yu T, Deng X, Chen N, Huang Y, Wang L, Guo J, Wang J. Hydrogel-based cardiac repair and regeneration function in the treatment of myocardial infarction. Mater Today Bio 2024; 25:100978. [PMID: 38434571 PMCID: PMC10907859 DOI: 10.1016/j.mtbio.2024.100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/22/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024] Open
Abstract
A life-threatening illness that poses a serious threat to human health is myocardial infarction. It may result in a significant number of myocardial cells dying, dilated left ventricles, dysfunctional heart function, and ultimately cardiac failure. Based on the development of emerging biomaterials and the lack of clinical treatment methods and cardiac donors for myocardial infarction, hydrogels with good compatibility have been gradually applied to the treatment of myocardial infarction. Specifically, based on the three processes of pathophysiology of myocardial infarction, we summarized various types of hydrogels designed for myocardial tissue engineering in recent years, including natural hydrogels, intelligent hydrogels, growth factors, stem cells, and microRNA-loaded hydrogels. In addition, we also describe the heart patch and preparation techniques that promote the repair of MI heart function. Although most of these hydrogels are still in the preclinical research stage and lack of clinical trials, they have great potential for further application in the future. It is expected that this review will improve our knowledge of and offer fresh approaches to treating myocardial infarction.
Collapse
Affiliation(s)
- Qiaxin Xu
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou, 510630, China
| | - Qianzhi Yang
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Tingting Yu
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Xiujiao Deng
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Nenghua Chen
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Yanyu Huang
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Lihong Wang
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- Department of Endocrinology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jun Guo
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jinghao Wang
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| |
Collapse
|
6
|
Itzhar A, Yosef G, Eilon-Ashkenazy M, Shmidov Y, Gil H, Lacham-Hartman S, Elyagon S, Etzion S, Bitton R, Cohen S, Etzion Y, Papo N. Potent inhibition of MMP-9 by a novel sustained-release platform attenuates left ventricular remodeling following myocardial infarction. J Control Release 2023; 364:246-260. [PMID: 37879441 DOI: 10.1016/j.jconrel.2023.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/03/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Sustained drug-release systems prolong the retention of therapeutic drugs within target tissues to alleviate the need for repeated drug administration. Two major caveats of the current systems are that the release rate and the timing cannot be predicted or fine-tuned because they rely on uncontrolled environmental conditions and that the system must be redesigned for each drug and treatment regime because the drug is bound via interactions that are specific to its structure and composition. We present a controlled and universal sustained drug-release system, which comprises minute spherical particles in which a therapeutic protein is affinity-bound to alginate sulfate (AlgS) through one or more short heparin-binding peptide (HBP) sequence repeats. Employing post-myocardial infarction (MI) heart remodeling as a case study, we show that the release of C9-a matrix metalloproteinase-9 (MMP-9) inhibitor protein that we easily bound to AlgS by adding one, two, or three HBP repeats to its sequence-can be directly controlled by modifying the number of HBP repeats. In an in vivo study, we directly injected AlgS particles, which were bound to C9 through three HBP repeats, into the left ventricular myocardium of mice following MI. We found that the particles substantially reduced post-MI remodeling, attesting to the sustained, local release of the drug within the tissue. As the number of HBP repeats controls the rate of drug release from the AlgS particles, and since C9 can be easily replaced with almost any protein, our tunable sustained-release system can readily accommodate a wide range of protein-based treatments.
Collapse
Affiliation(s)
- Amit Itzhar
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Gal Yosef
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Maayan Eilon-Ashkenazy
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yulia Shmidov
- Department of Chemical Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hadas Gil
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shiran Lacham-Hartman
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sigal Elyagon
- Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sharon Etzion
- Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ronit Bitton
- Department of Chemical Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Smadar Cohen
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yoram Etzion
- Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Niv Papo
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel; National Institute of Biotechnology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
7
|
Malektaj H, Nour S, Imani R, Siadati MH. Angiogenesis induction as a key step in cardiac tissue Regeneration: From angiogenic agents to biomaterials. Int J Pharm 2023; 643:123233. [PMID: 37460050 DOI: 10.1016/j.ijpharm.2023.123233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/02/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
Cardiovascular diseases are the leading cause of death worldwide. After myocardial infarction, the vascular supply of the heart is damaged or blocked, leading to the formation of scar tissue, followed by several cardiac dysfunctions or even death. In this regard, induction of angiogenesis is considered as a vital process for supplying nutrients and oxygen to the cells in cardiac tissue engineering. The current review aims to summarize different approaches of angiogenesis induction for effective cardiac tissue repair. Accordingly, a comprehensive classification of induction of pro-angiogenic signaling pathways through using engineered biomaterials, drugs, angiogenic factors, as well as combinatorial approaches is introduced as a potential platform for cardiac regeneration application. The angiogenic induction for cardiac repair can enhance patient treatment outcomes and generate economic prospects for the biomedical industry. The development and commercialization of angiogenesis methods often involves collaboration between academic institutions, research organizations, and biomedical companies.
Collapse
Affiliation(s)
- Haniyeh Malektaj
- Department of Materials and Production, Aalborg University, Fibigerstraede 16, Aalborg 9220, Denmark
| | - Shirin Nour
- Department of Biomedical Engineering, Graeme Clark Institute, The University of Melbourne, VIC 3010, Australia; Department of Chemical Engineering, The University of Melbourne, VIC 3010, Australia
| | - Rana Imani
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Mohammad H Siadati
- Materials Science and Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
8
|
Lomartire S, Gonçalves AMM. Algal Phycocolloids: Bioactivities and Pharmaceutical Applications. Mar Drugs 2023; 21:384. [PMID: 37504914 PMCID: PMC10381318 DOI: 10.3390/md21070384] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Seaweeds are abundant sources of diverse bioactive compounds with various properties and mechanisms of action. These compounds offer protective effects, high nutritional value, and numerous health benefits. Seaweeds are versatile natural sources of metabolites applicable in the production of healthy food, pharmaceuticals, cosmetics, and fertilizers. Their biological compounds make them promising sources for biotechnological applications. In nature, hydrocolloids are substances which form a gel in the presence of water. They are employed as gelling agents in food, coatings and dressings in pharmaceuticals, stabilizers in biotechnology, and ingredients in cosmetics. Seaweed hydrocolloids are identified in carrageenan, alginate, and agar. Carrageenan has gained significant attention in pharmaceutical formulations and exhibits diverse pharmaceutical properties. Incorporating carrageenan and natural polymers such as chitosan, starch, cellulose, chitin, and alginate. It holds promise for creating biodegradable materials with biomedical applications. Alginate, a natural polysaccharide, is highly valued for wound dressings due to its unique characteristics, including low toxicity, biodegradability, hydrogel formation, prevention of bacterial infections, and maintenance of a moist environment. Agar is widely used in the biomedical field. This review focuses on analysing the therapeutic applications of carrageenan, alginate, and agar based on research highlighting their potential in developing innovative drug delivery systems using seaweed phycocolloids.
Collapse
Affiliation(s)
- Silvia Lomartire
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ana M M Gonçalves
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
9
|
Lee M, Park J, Choe G, Lee S, Kang BG, Jun JH, Shin Y, Kim MC, Kim YS, Ahn Y, Lee JY. A Conductive and Adhesive Hydrogel Composed of MXene Nanoflakes as a Paintable Cardiac Patch for Infarcted Heart Repair. ACS NANO 2023. [PMID: 37339066 DOI: 10.1021/acsnano.3c00933] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Myocardial infarction (MI) is a major cause of death worldwide. After the occurrence of MI, the heart frequently undergoes serious pathological remodeling, leading to excessive dilation, electrical disconnection between cardiac cells, and fatal functional damage. Hence, extensive efforts have been made to suppress pathological remodeling and promote the repair of the infarcted heart. In this study, we developed a hydrogel cardiac patch that can provide mechanical support, electrical conduction, and tissue adhesiveness to aid in the recovery of an infarcted heart function. Specifically, we developed a conductive and adhesive hydrogel (CAH) by combining the two-dimensional titanium carbide (Ti3C2Tx) MXene with natural biocompatible polymers [i.e., gelatin and dextran aldehyde (dex-ald)]. The CAH was formed within 250 s of mixing the precursor solution and could be painted. The hydrogel containing 3.0 mg/mL MXene, 10% gelatin, and 5% dex-ald exhibited appropriate material characteristics for cardiac patch applications, including a uniform distribution of MXene, a high electrical conductivity (18.3 mS/cm), cardiac tissue-like elasticity (30.4 kPa), strong tissue adhesion (6.8 kPa), and resistance to various mechanical deformations. The CAH was cytocompatible and induced cardiomyocyte (CM) maturation in vitro, as indicated by the upregulation of connexin 43 expression and a faster beating rate. Furthermore, CAH could be painted onto the heart tissue and remained stably adhered to the beating epicardium. In vivo animal studies revealed that CAH cardiac patch treatment significantly improved cardiac function and alleviated the pathological remodeling of an infarcted heart. Thus, we believe that our MXene-based CAH can potentially serve as a promising platform for the effective repair of various electroactive tissues including the heart, muscle, and nerve tissues.
Collapse
Affiliation(s)
- Mingyu Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Junggeon Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Goeun Choe
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sanghun Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Bo Gyeong Kang
- Cell Regeneration Research Center, Chonnam National University, Gwangju 61005, Republic of Korea
| | - Ju Hee Jun
- Cell Regeneration Research Center, Chonnam National University, Gwangju 61005, Republic of Korea
| | - Yoonmin Shin
- Department of Cardiology, Chonnam National University Hospital, Gwangju 61005, Republic of Korea
| | - Min Chul Kim
- Department of Cardiology, Chonnam National University Hospital, Gwangju 61005, Republic of Korea
- Chonnam National University Medical School, Gwangju 61005, Republic of Korea
| | - Yong Sook Kim
- Cell Regeneration Research Center, Chonnam National University, Gwangju 61005, Republic of Korea
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju 61005, Republic of Korea
| | - Youngkeun Ahn
- Cell Regeneration Research Center, Chonnam National University, Gwangju 61005, Republic of Korea
- Department of Cardiology, Chonnam National University Hospital, Gwangju 61005, Republic of Korea
- Chonnam National University Medical School, Gwangju 61005, Republic of Korea
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
10
|
Sharma R, Malviya R, Singh S, Prajapati B. A Critical Review on Classified Excipient Sodium-Alginate-Based Hydrogels: Modification, Characterization, and Application in Soft Tissue Engineering. Gels 2023; 9:gels9050430. [PMID: 37233021 DOI: 10.3390/gels9050430] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Alginates are polysaccharides that are produced naturally and can be isolated from brown sea algae and bacteria. Sodium alginate (SA) is utilized extensively in the field of biological soft tissue repair and regeneration owing to its low cost, high biological compatibility, and quick and moderate crosslinking. In addition to their high printability, SA hydrogels have found growing popularity in tissue engineering, particularly due to the advent of 3D bioprinting. There is a developing curiosity in tissue engineering with SA-based composite hydrogels and their potential for further improvement in terms of material modification, the molding process, and their application. This has resulted in numerous productive outcomes. The use of 3D scaffolds for growing cells and tissues in tissue engineering and 3D cell culture is an innovative technique for developing in vitro culture models that mimic the in vivo environment. Especially compared to in vivo models, in vitro models were more ethical and cost-effective, and they stimulate tissue growth. This article discusses the use of sodium alginate (SA) in tissue engineering, focusing on SA modification techniques and providing a comparative examination of the properties of several SA-based hydrogels. This review also covers hydrogel preparation techniques, and a catalogue of patents covering different hydrogel formulations is also discussed. Finally, SA-based hydrogel applications and future research areas concerning SA-based hydrogels in tissue engineering were examined.
Collapse
Affiliation(s)
- Rishav Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bhupendra Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, India
| |
Collapse
|
11
|
Modification, 3D printing process and application of sodium alginate based hydrogels in soft tissue engineering: A review. Int J Biol Macromol 2023; 232:123450. [PMID: 36709808 DOI: 10.1016/j.ijbiomac.2023.123450] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/26/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Sodium alginate (SA) is an inexpensive and biocompatible biomaterial with fast and gentle crosslinking that has been widely used in biological soft tissue repair/regeneration. Especially with the advent of 3D bioprinting technology, SA hydrogels have been applied more deeply in tissue engineering due to their excellent printability. Currently, the research on material modification, molding process and application of SA-based composite hydrogels has become a hot topic in tissue engineering, and a lot of fruitful results have been achieved. To better help readers have a comprehensive understanding of the development status of SA based hydrogels and their molding process in tissue engineering, in this review, we summarized SA modification methods, and provided a comparative analysis of the characteristics of various SA based hydrogels. Secondly, various molding methods of SA based hydrogels were introduced, the processing characteristics and the applications of different molding methods were analyzed and compared. Finally, the applications of SA based hydrogels in tissue engineering were reviewed, the challenges in their applications were also analyzed, and the future research directions were prospected. We believe this review is of great helpful for the researchers working in biomedical and tissue engineering.
Collapse
|
12
|
Wu M, Pelacho B, Claus P, De Buck S, Veltman D, Gillijns H, Holemans P, Pokreisz P, Caluwé E, Iglesias Colino E, Cohen S, Prosper F, Janssens S. Alginate sulfate-nanoparticles loaded with hepatocyte growth factor and insulin-like growth factor-1 improve left ventricular repair in a porcine model of myocardial ischemia reperfusion injury. Eur J Pharm Biopharm 2023; 184:83-91. [PMID: 36693545 DOI: 10.1016/j.ejpb.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Nanomedicine offers great potential for the treatment of cardiovascular disease and particulate systems have the capacity to markedly improve bioavailability of therapeutics. The delivery of pro-angiogenic hepatocyte growth factor (HGF) and pro-survival and pro-myogenic insulin-like growth factor (IGF-1) encapsulated in Alginate-Sulfate nanoparticles (AlgS-NP) might improve left ventricular (LV) functional recovery after myocardial infarction (MI). In a porcine ischemia-reperfusion model, MI is induced by 75 min balloon occlusion of the mid-left anterior descending coronary artery followed by reperfusion. After 1 week, pigs (n = 12) with marked LV-dysfunction (LV ejection fraction, LVEF < 45%) are randomized to fusion imaging-guided intramyocardial injections of 8 mg AlgS-NP prepared with 200 µg HGF and IGF-1 (HGF/IGF1-NP) or PBS (Control). Intramyocardial injection is safe and pharmacokinetic studies of Cy5-labeled NP confirm superior cardiac retention compared to intracoronary infusion. Seven weeks after intramyocardial-injection of HGF/IGF1-NP, infarct size, measured using magnetic resonance imaging, is significantly smaller than in controls and is associated with increased coronary flow reserve. Importantly, HGF/IGF1-NP-treated pigs show significantly increased LVEF accompanied by improved myocardial remodeling. These findings demonstrate the feasibility and efficacy of using AlgS-NP as a delivery system for growth factors and offer the prospect of innovative treatment for refractory ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Ming Wu
- Department of Cardiovascular Sciences, University of Leuven, KU Leuven, B-3000 Leuven, Belgium
| | - Beatriz Pelacho
- Hematology-Oncology and Regenerative Medicine, Clínica Universidad de Navarra and Center for Applied Medical Research, University of Navarra, Pamplona, PC 31008, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, PC 31008, Spain
| | - Piet Claus
- Department of Cardiovascular Sciences, University of Leuven, KU Leuven, B-3000 Leuven, Belgium
| | - Stijn De Buck
- Department of Cardiology, University Hospital Leuven, B-3000 Leuven, Belgium
| | - Denise Veltman
- Department of Cardiovascular Sciences, University of Leuven, KU Leuven, B-3000 Leuven, Belgium
| | - Hilde Gillijns
- Department of Cardiovascular Sciences, University of Leuven, KU Leuven, B-3000 Leuven, Belgium
| | - Patricia Holemans
- Department of Cardiovascular Sciences, University of Leuven, KU Leuven, B-3000 Leuven, Belgium
| | - Peter Pokreisz
- Department of Cardiovascular Sciences, University of Leuven, KU Leuven, B-3000 Leuven, Belgium; Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Ellen Caluwé
- Department of Cardiovascular Sciences, University of Leuven, KU Leuven, B-3000 Leuven, Belgium
| | - Estefania Iglesias Colino
- Hematology-Oncology and Regenerative Medicine, Clínica Universidad de Navarra and Center for Applied Medical Research, University of Navarra, Pamplona, PC 31008, Spain
| | - Smadar Cohen
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Felipe Prosper
- Hematology-Oncology and Regenerative Medicine, Clínica Universidad de Navarra and Center for Applied Medical Research, University of Navarra, Pamplona, PC 31008, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, PC 31008, Spain; Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Stefan Janssens
- Department of Cardiovascular Sciences, University of Leuven, KU Leuven, B-3000 Leuven, Belgium; Department of Cardiology, University Hospital Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
13
|
Hume RD, Kanagalingam S, Deshmukh T, Chen S, Mithieux SM, Rashid FN, Roohani I, Lu J, Doan T, Graham D, Clayton ZE, Slaughter E, Kizana E, Stempien-Otero AS, Brown P, Thomas L, Weiss AS, Chong JJ. Tropoelastin Improves Post-Infarct Cardiac Function. Circ Res 2023; 132:72-86. [PMID: 36453283 PMCID: PMC9829044 DOI: 10.1161/circresaha.122.321123] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
BACKGROUND Myocardial infarction (MI) is among the leading causes of death worldwide. Following MI, necrotic cardiomyocytes are replaced by a stiff collagen-rich scar. Compared to collagen, the extracellular matrix protein elastin has high elasticity and may have more favorable properties within the cardiac scar. We sought to improve post-MI healing by introducing tropoelastin, the soluble subunit of elastin, to alter scar mechanics early after MI. METHODS AND RESULTS We developed an ultrasound-guided direct intramyocardial injection method to administer tropoelastin directly into the left ventricular anterior wall of rats subjected to induced MI. Experimental groups included shams and infarcted rats injected with either PBS vehicle control or tropoelastin. Compared to vehicle treated controls, echocardiography assessments showed tropoelastin significantly improved left ventricular ejection fraction (64.7±4.4% versus 46.0±3.1% control) and reduced left ventricular dyssynchrony (11.4±3.5 ms versus 31.1±5.8 ms control) 28 days post-MI. Additionally, tropoelastin reduced post-MI scar size (8.9±1.5% versus 20.9±2.7% control) and increased scar elastin (22±5.8% versus 6.2±1.5% control) as determined by histological assessments. RNA sequencing (RNAseq) analyses of rat infarcts showed that tropoelastin injection increased genes associated with elastic fiber formation 7 days post-MI and reduced genes associated with immune response 11 days post-MI. To show translational relevance, we performed immunohistochemical analyses on human ischemic heart disease cardiac samples and showed an increase in tropoelastin within fibrotic areas. Using RNA-seq we also demonstrated the tropoelastin gene ELN is upregulated in human ischemic heart disease and during human cardiac fibroblast-myofibroblast differentiation. Furthermore, we showed by immunocytochemistry that human cardiac fibroblast synthesize increased elastin in direct response to tropoelastin treatment. CONCLUSIONS We demonstrate for the first time that purified human tropoelastin can significantly repair the infarcted heart in a rodent model of MI and that human cardiac fibroblast synthesize elastin. Since human cardiac fibroblasts are primarily responsible for post-MI scar synthesis, our findings suggest exciting future clinical translation options designed to therapeutically manipulate this synthesis.
Collapse
Affiliation(s)
- Robert D. Hume
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.).,Sydney Medical School, University of Sydney, NSW, Australia (R.D.H., T.D., F.R., Z.E.C., E.K., J.J.H.C.)
| | - Shaan Kanagalingam
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.)
| | - Tejas Deshmukh
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.).,Department of Cardiology, Westmead Hospital, NSW, Australia (T.D., J.L., E.K., P.B., L.T., J.J.H.C.).,Sydney Medical School, University of Sydney, NSW, Australia (R.D.H., T.D., F.R., Z.E.C., E.K., J.J.H.C.)
| | - Siqi Chen
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.)
| | - Suzanne M. Mithieux
- Charles Perkins Centre, University of Sydney, NSW, Australia (S.M.M., A.S.W.).,School of Life and Environmental Sciences, University of Sydney, NSW, Australia (S.M.M., A.S.W.)
| | - Fairooj N. Rashid
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.)
| | - Iman Roohani
- School of Biomedical Engineering, University of Sydney, NSW, Australia (I.R.).,School of Chemistry, University of New South Wales, Australia (I.R.)
| | - Juntang Lu
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.).,Department of Cardiology, Westmead Hospital, NSW, Australia (T.D., J.L., E.K., P.B., L.T., J.J.H.C.)
| | - Tram Doan
- Centre for Cancer Research, Westmead Institute for Medical Research, NSW, Australia (T.D.‚ D.G.)
| | - Dinny Graham
- Centre for Cancer Research, Westmead Institute for Medical Research, NSW, Australia (T.D.‚ D.G.).,Westmead Breast Cancer Institute, NSW, Australia (D.G.).,Westmead Clinical School, University of Sydney, NSW, Australia (D.G., L.T.)
| | - Zoe E. Clayton
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.).,Sydney Medical School, University of Sydney, NSW, Australia (R.D.H., T.D., F.R., Z.E.C., E.K., J.J.H.C.)
| | | | - Eddy Kizana
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.).,Department of Cardiology, Westmead Hospital, NSW, Australia (T.D., J.L., E.K., P.B., L.T., J.J.H.C.).,Sydney Medical School, University of Sydney, NSW, Australia (R.D.H., T.D., F.R., Z.E.C., E.K., J.J.H.C.)
| | - April S. Stempien-Otero
- Department of Medicine, Division of Cardiology, University of Washington School of Medicine, Seattle, WA (A.S.S.-O.)
| | - Paula Brown
- Department of Cardiology, Westmead Hospital, NSW, Australia (T.D., J.L., E.K., P.B., L.T., J.J.H.C.)
| | - Liza Thomas
- Department of Cardiology, Westmead Hospital, NSW, Australia (T.D., J.L., E.K., P.B., L.T., J.J.H.C.).,Westmead Clinical School, University of Sydney, NSW, Australia (D.G., L.T.)
| | | | - James J.H. Chong
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.).,Department of Cardiology, Westmead Hospital, NSW, Australia (T.D., J.L., E.K., P.B., L.T., J.J.H.C.).,Sydney Medical School, University of Sydney, NSW, Australia (R.D.H., T.D., F.R., Z.E.C., E.K., J.J.H.C.)
| |
Collapse
|
14
|
Three-Dimensional Bio-Printed Cardiac Patch for Sustained Delivery of Extracellular Vesicles from the Interface. Gels 2022; 8:gels8120769. [PMID: 36547293 PMCID: PMC9777613 DOI: 10.3390/gels8120769] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiac tissue engineering has emerged as a promising strategy to treat infarcted cardiac tissues by replacing the injured region with an ex vivo fabricated functional cardiac patch. Nevertheless, integration of the transplanted patch with the host tissue is still a burden, limiting its clinical application. Here, a bi-functional, 3D bio-printed cardiac patch (CP) design is proposed, composed of a cell-laden compartment at its core and an extracellular vesicle (EV)-laden compartment at its shell for better integration of the CP with the host tissue. Alginate-based bioink solutions were developed for each compartment and characterized rheologically, examined for printability and their effect on residing cells or EVs. The resulting 3D bio-printed CP was examined for its mechanical stiffness, showing an elastic modulus between 4-5 kPa at day 1 post-printing, suitable for transplantation. Affinity binding of EVs to alginate sulfate (AlgS) was validated, exhibiting dissociation constant values similar to those of EVs with heparin. The incorporation of AlgS-EVs complexes within the shell bioink sustained EV release from the CP, with 88% cumulative release compared with 92% without AlgS by day 4. AlgS also prolonged the release profile by an additional 2 days, lasting 11 days overall. This CP design comprises great potential at promoting more efficient patch assimilation with the host.
Collapse
|
15
|
Khanna A, Oropeza BP, Huang NF. Engineering Spatiotemporal Control in Vascularized Tissues. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9100555. [PMID: 36290523 PMCID: PMC9598830 DOI: 10.3390/bioengineering9100555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
A major challenge in engineering scalable three-dimensional tissues is the generation of a functional and developed microvascular network for adequate perfusion of oxygen and growth factors. Current biological approaches to creating vascularized tissues include the use of vascular cells, soluble factors, and instructive biomaterials. Angiogenesis and the subsequent generation of a functional vascular bed within engineered tissues has gained attention and is actively being studied through combinations of physical and chemical signals, specifically through the presentation of topographical growth factor signals. The spatiotemporal control of angiogenic signals can generate vascular networks in large and dense engineered tissues. This review highlights the developments and studies in the spatiotemporal control of these biological approaches through the coordinated orchestration of angiogenic factors, differentiation of vascular cells, and microfabrication of complex vascular networks. Fabrication strategies to achieve spatiotemporal control of vascularization involves the incorporation or encapsulation of growth factors, topographical engineering approaches, and 3D bioprinting techniques. In this article, we highlight the vascularization of engineered tissues, with a focus on vascularized cardiac patches that are clinically scalable for myocardial repair. Finally, we discuss the present challenges for successful clinical translation of engineered tissues and biomaterials.
Collapse
Affiliation(s)
| | - Beu P. Oropeza
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
- Center for Tissue Regeneration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Ngan F. Huang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
- Center for Tissue Regeneration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Correspondence:
| |
Collapse
|
16
|
Kerignard E, Bethry A, Falcoz C, Nottelet B, Pinese C. Design of Hybrid Polymer Nanofiber/Collagen Patches Releasing IGF and HGF to Promote Cardiac Regeneration. Pharmaceutics 2022; 14:1854. [PMID: 36145603 PMCID: PMC9502465 DOI: 10.3390/pharmaceutics14091854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death globally. Myocardial infarction in particular leads to a high rate of mortality, and in the case of survival, to a loss of myocardial functionality due to post-infarction necrosis. This functionality can be restored by cell therapy or biomaterial implantation, and the need for a rapid regeneration has led to the development of bioactive patches, in particular through the incorporation of growth factors (GF). In this work, we designed hybrid patches composed of polymer nanofibers loaded with HGF and IGF and associated with a collagen membrane. Among the different copolymers studied, the polymers and their porogens PLA-Pluronic-PLA + PEG and PCL + Pluronic were selected to encapsulate HGF and IGF. While 89 and 92% of IGF were released in 2 days, HGF was released up to 58% and 50% in 35 days from PLA-Pluronic-PLA + PEG and PCL + Pluronic nanofibers, respectively. We also compared two ways of association for the loaded nanofibers and the collagen membrane, namely a direct deposition of the nanofibers on a moisturized collagen membrane (wet association), or entrapment between collagen layers (sandwich association). The interfacial cohesion and the degradation properties of the patches were evaluated. We also show that the sandwich association decreases the burst release of HGF while increasing the release efficiency. Finally, we show that the patches are cytocompatible and that the presence of collagen and IGF promotes the proliferation of C2C12 myoblast cells for 11 days. Taken together, these results show that these hybrid patches are of interest for cardiac muscle regeneration.
Collapse
|
17
|
Rocker AJ, Cavasin M, Johnson NR, Shandas R, Park D. Sulfonated Thermoresponsive Injectable Gel for Sequential Release of Therapeutic Proteins to Protect Cardiac Function after Myocardial Infarction. ACS Biomater Sci Eng 2022; 8:3883-3898. [PMID: 35950643 DOI: 10.1021/acsbiomaterials.2c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Myocardial infarction causes cardiomyocyte death and persistent inflammatory responses, which generate adverse pathological remodeling. Delivering therapeutic proteins from injectable materials in a controlled-release manner may present an effective biomedical approach for treating this disease. A thermoresponsive injectable gel composed of chitosan, conjugated with poly(N-isopropylacrylamide) and sulfonate groups, was developed for spatiotemporal protein delivery to protect cardiac function after myocardial infarction. The thermoresponsive gel delivered vascular endothelial growth factor (VEGF), interleukin-10 (IL-10), and platelet-derived growth factor (PDGF) in a sequential and sustained manner in vitro. An acute myocardial infarction mouse model was used to evaluate polymer biocompatibility and to determine therapeutic effects from the delivery system on cardiac function. Immunohistochemistry showed biocompatibility of the hydrogel, while the controlled delivery of the proteins reduced macrophage infiltration and increased vascularization. Echocardiography showed an improvement in ejection fraction and fractional shortening after injecting the thermal gel and proteins. A factorial design of experimental study was implemented to optimize the delivery system for the best combination and doses of proteins for further increasing stable vascularization and reducing inflammation using a subcutaneous injection mouse model. The results showed that VEGF, IL-10, and FGF-2 demonstrated significant contributions toward promoting long-term vascularization, while PDGF's effect was minimal.
Collapse
Affiliation(s)
- Adam J Rocker
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Maria Cavasin
- Department of Medicine, Division of Cardiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Noah R Johnson
- Department of Neurology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Robin Shandas
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Daewon Park
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| |
Collapse
|
18
|
Zhang S, Lin A, Tao Z, Fu Y, Xiao L, Ruan G, Li Y. Microsphere‐containing hydrogel scaffolds for tissue engineering. Chem Asian J 2022; 17:e202200630. [PMID: 35909078 DOI: 10.1002/asia.202200630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/25/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Shihao Zhang
- East China University of Science and Technology Engineering Research Center for Biomaterials of Ministry of Education CHINA
| | - Anqi Lin
- East China University of Science and Technology Engineering Research Center for Biomaterials of Ministry of Education CHINA
| | - Ziwei Tao
- East China University of Science and Technology Engineering Research Center for Biomaterials of Ministry of Education CHINA
| | - Yingying Fu
- East China University of Science and Technology Engineering Research Center for Biomaterials of Ministry of Education CHINA
| | - Lan Xiao
- Queensland University of Technology Centre for Biomedical Technologies AUSTRALIA
| | | | - Yulin Li
- East China University of Science and Technology Meilong Road 130 Shanghai CHINA
| |
Collapse
|
19
|
Esmaeili H, Patino-Guerrero A, Hasany M, Ansari MO, Memic A, Dolatshahi-Pirouz A, Nikkhah M. Electroconductive biomaterials for cardiac tissue engineering. Acta Biomater 2022; 139:118-140. [PMID: 34455109 PMCID: PMC8935982 DOI: 10.1016/j.actbio.2021.08.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022]
Abstract
Myocardial infarction (MI) is still the leading cause of mortality worldwide. The success of cell-based therapies and tissue engineering strategies for treatment of injured myocardium have been notably hindered due to the limitations associated with the selection of a proper cell source, lack of engraftment of engineered tissues and biomaterials with the host myocardium, limited vascularity, as well as immaturity of the injected cells. The first-generation approaches in cardiac tissue engineering (cTE) have mainly relied on the use of desired cells (e.g., stem cells) along with non-conductive natural or synthetic biomaterials for in vitro construction and maturation of functional cardiac tissues, followed by testing the efficacy of the engineered tissues in vivo. However, to better recapitulate the native characteristics and conductivity of the cardiac muscle, recent approaches have utilized electroconductive biomaterials or nanomaterial components within engineered cardiac tissues. This review article will cover the recent advancements in the use of electrically conductive biomaterials in cTE. The specific emphasis will be placed on the use of different types of nanomaterials such as gold nanoparticles (GNPs), silicon-derived nanomaterials, carbon-based nanomaterials (CBNs), as well as electroconductive polymers (ECPs) for engineering of functional and electrically conductive cardiac tissues. We will also cover the recent progress in the use of engineered electroconductive tissues for in vivo cardiac regeneration applications. We will discuss the opportunities and challenges of each approach and provide our perspectives on potential avenues for enhanced cTE. STATEMENT OF SIGNIFICANCE: Myocardial infarction (MI) is still the primary cause of death worldwide. Over the past decade, electroconductive biomaterials have increasingly been applied in the field of cardiac tissue engineering. This review article provides the readers with the leading advances in the in vitro applications of electroconductive biomaterials for cTE along with an in-depth discussion of injectable/transplantable electroconductive biomaterials and their delivery methods for in vivo MI treatment. The article also discusses the knowledge gaps in the field and offers possible novel avenues for improved cardiac tissue engineering.
Collapse
Affiliation(s)
- Hamid Esmaeili
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | | | - Masoud Hasany
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | | | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alireza Dolatshahi-Pirouz
- Department of Health Technology, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark; Department of Health Technology, Technical University of Denmark, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs, Lyngby, Denmark
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA; Biodesign Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
20
|
Zhao Y, Song S, Ren X, Zhang J, Lin Q, Zhao Y. Supramolecular Adhesive Hydrogels for Tissue Engineering Applications. Chem Rev 2022; 122:5604-5640. [PMID: 35023737 DOI: 10.1021/acs.chemrev.1c00815] [Citation(s) in RCA: 252] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue engineering is a promising and revolutionary strategy to treat patients who suffer the loss or failure of an organ or tissue, with the aim to restore the dysfunctional tissues and enhance life expectancy. Supramolecular adhesive hydrogels are emerging as appealing materials for tissue engineering applications owing to their favorable attributes such as tailorable structure, inherent flexibility, excellent biocompatibility, near-physiological environment, dynamic mechanical strength, and particularly attractive self-adhesiveness. In this review, the key design principles and various supramolecular strategies to construct adhesive hydrogels are comprehensively summarized. Thereafter, the recent research progress regarding their tissue engineering applications, including primarily dermal tissue repair, muscle tissue repair, bone tissue repair, neural tissue repair, vascular tissue repair, oral tissue repair, corneal tissue repair, cardiac tissue repair, fetal membrane repair, hepatic tissue repair, and gastric tissue repair, is systematically highlighted. Finally, the scientific challenges and the remaining opportunities are underlined to show a full picture of the supramolecular adhesive hydrogels. This review is expected to offer comparative views and critical insights to inspire more advanced studies on supramolecular adhesive hydrogels and pave the way for different fields even beyond tissue engineering applications.
Collapse
Affiliation(s)
- Yue Zhao
- Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.,State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Shanliang Song
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiangzhong Ren
- Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Junmin Zhang
- Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Quan Lin
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
21
|
Gionet-Gonzales M, Casella A, Diloretto D, Ginnell C, Griffin KH, Bigot A, Leach JK. Sulfated Alginate Hydrogels Prolong the Therapeutic Potential of MSC Spheroids by Sequestering the Secretome. Adv Healthc Mater 2021; 10:e2101048. [PMID: 34486244 PMCID: PMC8568671 DOI: 10.1002/adhm.202101048] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/13/2021] [Indexed: 01/07/2023]
Abstract
Cell-based approaches to tissue repair suffer from rapid cell death upon implantation, limiting the window for therapeutic intervention. Despite robust lineage-specific differentiation potential in vitro, the function of transplanted mesenchymal stromal cells (MSCs) in vivo is largely attributed to their potent secretome comprising a variety of growth factors (GFs). Furthermore, GF secretion is markedly increased when MSCs are formed into spheroids. Native GFs are sequestered within the extracellular matrix (ECM) via sulfated glycosaminoglycans, increasing the potency of GF signaling compared to their unbound form. To address the critical need to prolong the efficacy of transplanted cells, alginate hydrogels are modified with sulfate groups to sequester endogenous heparin-binding GFs secreted by MSC spheroids. The influence of crosslinking method and alginate modification is assessed on mechanical properties, degradation rate, and degree of sulfate modification. Sulfated alginate hydrogels sequester a mixture of MSC-secreted endogenous biomolecules, thereby prolonging the therapeutic effect of MSC spheroids for tissue regeneration. GFs are sequestered for longer durations within sulfated hydrogels and retain their bioactivity to regulate endothelial cell tubulogenesis and myoblast infiltration. This platform has the potential to prolong the therapeutic benefit of the MSC secretome and serve as a valuable tool for investigating GF sequestration.
Collapse
Affiliation(s)
| | - Alena Casella
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
| | - Daphne Diloretto
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
| | - Clara Ginnell
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
| | - Katherine H. Griffin
- School of Veterinary Medicine, University of California, Davis, CA, 95616, USA,Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817
| | - Anne Bigot
- Universite de Paris, Institut de Myologie, Paris, France 75013
| | - J. Kent Leach
- Corresponding author: J. Kent Leach, Ph.D., University of California, Davis, Department of Orthopaedic Surgery, 4860 Y Street, Suite 3800, Sacramento, CA 95817,
| |
Collapse
|
22
|
Khazaei S, Soleimani M, Tafti SHA, Aghdam RM, Hojati Z. Improvement of Heart Function After Transplantation of Encapsulated Stem Cells Induced with miR-1/Myocd in Myocardial Infarction Model of Rat. Cell Transplant 2021; 30:9636897211048786. [PMID: 34606735 PMCID: PMC8493326 DOI: 10.1177/09636897211048786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cardiovascular disease is one of the most common causes of death worldwide. Mesenchymal stem cells (MSCs) are one of the most common sources in cell-based therapies in heart regeneration. There are several methods to differentiate MSCs into cardiac-like cells, such as gene induction. Moreover, using a three-dimensional (3D) culture, such as hydrogels increases efficiency of differentiation. In the current study, mouse adipose-derived MSCs were co-transduced with lentiviruses containing microRNA-1 (miR-1) and Myocardin (Myocd). Then, expression of cardiac markers, such as NK2 homeobox 5(Nkx2-5), GATA binding protein 4 (Gata4), and troponin T type 2 (Tnnt2) was investigated, at both gene and protein levels in two-dimensional (2D) culture and chitosan/collagen hydrogel (CS/CO) as a 3D culture. Additionally, after induction of myocardial infarction (MI) in rats, a patch containing the encapsulated induced cardiomyocytes (iCM/P) was implanted to MI zone. Subsequently, 30 days after MI induction, echocardiography, immunohistochemistry staining, and histological examination were performed to evaluate cardiac function. The results of quantitative real -time polymerase chain reaction (qRT-PCR) and immunocytochemistry showed that co-induction of miR-1 and Myocd in MSCs followed by 3D culture of transduced cells increased expression of cardiac markers. Besides, results of in vivo study implicated that heart function was improved in MI model of rats in iCM/P-treated group. The results suggested that miR-1/Myocd induction combined with encapsulation of transduced cells in CS/CO hydrogel increased efficiency of MSCs differentiation into iCMs and could improve heart function in MI model of rats after implantation.
Collapse
Affiliation(s)
- Samaneh Khazaei
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, Isfahan University, Isfahan, Iran
| | - Masoud Soleimani
- Tissue Engineering and Hematology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Tissue Engineering and Nanomedicine Research Center, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Hossein Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zohreh Hojati
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, Isfahan University, Isfahan, Iran
| |
Collapse
|
23
|
Shaheen A, Maswal M, Dar AA. Synergistic effect of various metal ions on the mechanical, thixotropic, self-healing, swelling and water retention properties of bimetallic hydrogels of alginate. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Narasimhan B, Narasimhan H, Lorente-Ros M, Romeo FJ, Bhatia K, Aronow WS. Therapeutic angiogenesis in coronary artery disease: a review of mechanisms and current approaches. Expert Opin Investig Drugs 2021; 30:947-963. [PMID: 34346802 DOI: 10.1080/13543784.2021.1964471] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Despite tremendous advances, the shortcomings of current therapies for coronary disease are evidenced by the fact that it remains the leading cause of death in many parts of the world. There is hence a drive to develop novel therapies to tackle this disease. Therapeutic approaches to coronary angiogenesis have long been an area of interest in lieu of its incredible, albeit unrealized potential. AREAS COVERED This paper offers an overview of mechanisms of native angiogenesis and a description of angiogenic growth factors. It progresses to outline the advances in gene and stem cell therapy and provides a brief description of other investigational approaches to promote angiogenesis. Finally, the hurdles and limitations unique to this particular area of study are discussed. EXPERT OPINION An effective, sustained, and safe therapeutic option for angiogenesis truly could be the paradigm shift for cardiovascular medicine. Unfortunately, clinically meaningful therapeutic options remain elusive because promising animal studies have not been replicated in human trials. The sheer complexity of this process means that numerous major hurdles remain before therapeutic angiogenesis truly makes its way from the bench to the bedside.
Collapse
Affiliation(s)
- Bharat Narasimhan
- Department Of Medicine, Mount Sinai St.Lukes-Roosevelt, Icahn School Of Medicine At Mount Sinai, New York, NY, USA
| | | | - Marta Lorente-Ros
- Department Of Medicine, Mount Sinai St.Lukes-Roosevelt, Icahn School Of Medicine At Mount Sinai, New York, NY, USA
| | - Francisco Jose Romeo
- Department Of Medicine, Mount Sinai St.Lukes-Roosevelt, Icahn School Of Medicine At Mount Sinai, New York, NY, USA
| | - Kirtipal Bhatia
- Department Of Medicine, Mount Sinai St.Lukes-Roosevelt, Icahn School Of Medicine At Mount Sinai, New York, NY, USA
| | - Wilbert S Aronow
- Department of Cardiology, Westchester Medical Center/New York Medical College, Valhalla, NY, USA
| |
Collapse
|
25
|
Hemalatha T, Aarthy M, Pandurangan S, Kamini NR, Ayyadurai N. A deep dive into the darning effects of biomaterials in infarct myocardium: current advances and future perspectives. Heart Fail Rev 2021; 27:1443-1467. [PMID: 34342769 DOI: 10.1007/s10741-021-10144-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 12/21/2022]
Abstract
Myocardial infarction (MI) occurs due to the obstruction of coronary arteries, a major crux that restricts blood flow and thereby oxygen to the distal part of the myocardium, leading to loss of cardiomyocytes and eventually, if left untreated, leads to heart failure. MI, a potent cardiovascular disorder, requires intense therapeutic interventions and thereby presents towering challenges. Despite the concerted efforts, the treatment strategies for MI are still demanding, which has paved the way for the genesis of biomaterial applications. Biomaterials exhibit immense potentials for cardiac repair and regeneration, wherein they act as extracellular matrix replacing scaffolds or as delivery vehicles for stem cells, protein, plasmids, etc. This review concentrates on natural, synthetic, and hybrid biomaterials; their function; and interaction with the body, mechanisms of repair by which they are able to improve cardiac function in a MI milieu. We also provide focus on future perspectives that need attention. The cognizance provided by the research results certainly indicates that biomaterials could revolutionize the treatment paradigms for MI with a positive impact on clinical translation.
Collapse
Affiliation(s)
- Thiagarajan Hemalatha
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Mayilvahanan Aarthy
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Suryalakshmi Pandurangan
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Numbi Ramudu Kamini
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Niraikulam Ayyadurai
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India.
| |
Collapse
|
26
|
Alijani-Ghazyani Z, Sabzevari R, Roushandeh AM, Jahanian-Najafabadi A, Amiri F, Roudkenar MH. Transplantation of Umbilical Cord-Derived Mesenchymal Stem Cells Overexpressing Lipocalin 2 Ameliorates Ischemia-Induced Injury and Reduces Apoptotic Death in a Rat Acute Myocardial Infarction Model. Stem Cell Rev Rep 2021; 16:968-978. [PMID: 32656623 DOI: 10.1007/s12015-020-10007-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Myocardial infarction (MI) is a leading cause of death worldwide and requires development of efficient therapeutic strategies . Mesenchymal stem cells (MSCs) -based therapy of MI has been promising but inefficient due to undesirable microenvironment of the infarct tissue. Hence, the current study was conducted to fortify MSCs against the unfavorable microenvironment of infarct tissue via overexpression of Lipocalin 2 (Lcn2) as a cytoprotective factor. The engineered cells (Lcn2-MSCs) were transplanted to infarcted heart of a rat model of MI. According to our findings, Lcn2 overexpression resulted in increased MSCs survival in the MI tissue (p < 0.05) compared to non-engineered cells. Furthermore, the infusion of Lcn2-MSCs mitigated Left ventricle (LV) remodeling, decreased fibrosis (p < 0.0001), and reduced apoptotic death of the LVs' cells (p < 0.0001) compared to the control. Our findings suggest a potential novel therapeutic strategy for MI, however, further investigations such as safety and efficacy assessments in large animals followed by clinical trials are required.
Collapse
Affiliation(s)
- Zahra Alijani-Ghazyani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Reza Sabzevari
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushandeh
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.,Anatomical Sciences Department, Medicine Faculty, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Amiri
- Department of Medical Laboratory Science, Paramedicine Faculty, Hamadan University of Medical Science, Hamadan, Iran
| | - Mehryar Habibi Roudkenar
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
27
|
Therapies to prevent post-infarction remodelling: From repair to regeneration. Biomaterials 2021; 275:120906. [PMID: 34139506 DOI: 10.1016/j.biomaterials.2021.120906] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 05/02/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022]
Abstract
Myocardial infarction is the first cause of worldwide mortality, with an increasing incidence also reported in developing countries. Over the past decades, preclinical research and clinical trials continually tested the efficacy of cellular and acellular-based treatments. However, none of them resulted in a drug or device currently used in combination with either percutaneous coronary intervention or coronary artery bypass graft. Inflammatory, proliferation and remodelling phases follow the ischaemic event in the myocardial tissue. Only recently, single-cell sequencing analyses provided insights into the specific cell populations which determine the final fibrotic deposition in the affected region. In this review, ischaemia, inflammation, fibrosis, angiogenesis, cellular stress and fundamental cellular and molecular components are evaluated as therapeutic targets. Given the emerging evidence of biomaterial-based systems, the increasing use of injectable hydrogels/scaffolds and epicardial patches is reported both as acellular and cellularised/functionalised treatments. Since several variables influence the outcome of any experimented treatment, we return to the pathological basis with an unbiased view towards any specific process or cellular component. Thus, by evaluating the benefits and limitations of the approaches based on these targets, the reader can weigh the rationale of each of the strategies that reached the clinical trials stage. As recent studies focused on the relevance of the extracellular matrix in modulating ischaemic remodelling and enhancing myocardial regeneration, we aim to portray current trends in the field with this review. Finally, approaches towards feasible translational studies that are as yet unexplored are also suggested.
Collapse
|
28
|
Valera IC, Wacker AL, Hwang HS, Holmes C, Laitano O, Landstrom AP, Parvatiyar MS. Essential roles of the dystrophin-glycoprotein complex in different cardiac pathologies. Adv Med Sci 2021; 66:52-71. [PMID: 33387942 DOI: 10.1016/j.advms.2020.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/12/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022]
Abstract
The dystrophin-glycoprotein complex (DGC), situated at the sarcolemma dynamically remodels during cardiac disease. This review examines DGC remodeling as a common denominator in diseases affecting heart function and health. Dystrophin and the DGC serve as broad cytoskeletal integrators that are critical for maintaining stability of muscle membranes. The presence of pathogenic variants in genes encoding proteins of the DGC can cause absence of the protein and/or alterations in other complex members leading to muscular dystrophies. Targeted studies have allowed the individual functions of affected proteins to be defined. The DGC has demonstrated its dynamic function, remodeling under a number of conditions that stress the heart. Beyond genetic causes, pathogenic processes also impinge on the DGC, causing alterations in the abundance of dystrophin and associated proteins during cardiac insult such as ischemia-reperfusion injury, mechanical unloading, and myocarditis. When considering new therapeutic strategies, it is important to assess DGC remodeling as a common factor in various heart diseases. The DGC connects the internal F-actin-based cytoskeleton to laminin-211 of the extracellular space, playing an important role in the transmission of mechanical force to the extracellular matrix. The essential functions of dystrophin and the DGC have been long recognized. DGC based therapeutic approaches have been primarily focused on muscular dystrophies, however it may be a beneficial target in a number of disorders that affect the heart. This review provides an account of what we now know, and discusses how this knowledge can benefit persistent health conditions in the clinic.
Collapse
Affiliation(s)
- Isela C Valera
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Amanda L Wacker
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Hyun Seok Hwang
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Christina Holmes
- Department of Chemical and Biomedical Engineering, Florida A&M University-Florida State University College of Engineering, Tallahassee, FL, USA
| | - Orlando Laitano
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Andrew P Landstrom
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, NC, USA; Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Michelle S Parvatiyar
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
29
|
Portillo Esquivel LE, Zhang B. Application of Cell, Tissue, and Biomaterial Delivery in Cardiac Regenerative Therapy. ACS Biomater Sci Eng 2021; 7:1000-1021. [PMID: 33591735 DOI: 10.1021/acsbiomaterials.0c01805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiovascular diseases (CVD) are the leading cause of death around the world, being responsible for 31.8% of all deaths in 2017 (Roth, G. A. et al. The Lancet 2018, 392, 1736-1788). The leading cause of CVD is ischemic heart disease (IHD), which caused 8.1 million deaths in 2013 (Benjamin, E. J. et al. Circulation 2017, 135, e146-e603). IHD occurs when coronary arteries in the heart are narrowed or blocked, preventing the flow of oxygen and blood into the cardiac muscle, which could provoke acute myocardial infarction (AMI) and ultimately lead to heart failure and death. Cardiac regenerative therapy aims to repair and refunctionalize damaged heart tissue through the application of (1) intramyocardial cell delivery, (2) epicardial cardiac patch, and (3) acellular biomaterials. In this review, we aim to examine these current approaches and challenges in the cardiac regenerative therapy field.
Collapse
Affiliation(s)
| | - Boyang Zhang
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada.,School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontaria L8S 4L8, Canada
| |
Collapse
|
30
|
Wu Y, Chang T, Chen W, Wang X, Li J, Chen Y, Yu Y, Shen Z, Yu Q, Zhang Y. Release of VEGF and BMP9 from injectable alginate based composite hydrogel for treatment of myocardial infarction. Bioact Mater 2021; 6:520-528. [PMID: 32995677 PMCID: PMC7492819 DOI: 10.1016/j.bioactmat.2020.08.031] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/21/2020] [Accepted: 08/29/2020] [Indexed: 12/28/2022] Open
Abstract
Myocardial infarction (MI) is one of cardiovascular diseases that pose a serious threat to human health. The pathophysiology of MI is complex and contains several sequential phases including blockage of a coronary artery, necrosis of myocardial cells, inflammation, and myocardial fibrosis. Aiming at the treatment of different stages of MI, in this work, an injectable alginate based composite hydrogel is developed to load vascular endothelial active factor (VEGF) and silk fibroin (SF) microspheres containing bone morphogenetic protein 9 (BMP9) for releasing VEGF and BMP9 to realize their respective functions. The results of in vitro experiments indicate a rapid initial release of VEGF during the first few days and a relatively slow and sustained release of BMP9 for days, facilitating the formation of blood vessels in the early stage and inhibiting myocardial fibrosis in the long-term stage, respectively. Intramyocardial injection of such composite hydrogel into the infarct border zone of mice MI model via multiple points promotes angiogenesis and reduces the infarction size. Taken together, these results indicate that the dual-release of VEGF and BMP9 from the composite hydrogel results in a collaborative effect on the treatment of MI and improvement of heart function, showing a promising potential for cardiac clinical application.
Collapse
Affiliation(s)
- Yong Wu
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, PR China
| | - Tianqi Chang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, PR China
| | - Weiqian Chen
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, PR China
| | - Xiaoyu Wang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, PR China
| | - Jingjing Li
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, PR China
| | - Yueqiu Chen
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, PR China
| | - You Yu
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, PR China
| | - Zhenya Shen
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, PR China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Yanxia Zhang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, PR China
| |
Collapse
|
31
|
Yuan Z, Qin Q, Yuan M, Wang H, Li R. Development and novel design of clustery graphene oxide formed Conductive Silk hydrogel cell vesicle to repair and routine care of myocardial infarction: Investigation of its biological activity for cell delivery applications. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
32
|
Skourtis D, Stavroulaki D, Athanasiou V, Fragouli PG, Iatrou H. Nanostructured Polymeric, Liposomal and Other Materials to Control the Drug Delivery for Cardiovascular Diseases. Pharmaceutics 2020; 12:1160. [PMID: 33260547 PMCID: PMC7760553 DOI: 10.3390/pharmaceutics12121160] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 01/12/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally, taking an estimated 17.9 million lives each year, representing one third of global mortality. As existing therapies still have limited success, due to the inability to control the biodistribution of the currently approved drugs, the quality of life of these patients is modest. The advent of nanomedicine has brought new insights in innovative treatment strategies. For this reason, several novel nanotechnologies have been developed for both targeted and prolonged delivery of therapeutics to the cardiovascular system tο minimize side effects. In this regard, nanoparticles made of natural and/or synthetic nanomaterials, like liposomes, polymers or inorganic materials, are emerging alternatives for the encapsulation of already approved drugs to control their delivery in a targeted way. Therefore, nanomedicine has attracted the attention of the scientific community as a potential platform to deliver therapeutics to the injured heart. In this review, we discuss the current types of biomaterials that have been investigated as potential therapeutic interventions for CVDs as they open up a host of possibilities for more targeted and effective therapies, as well as minimally invasive treatments.
Collapse
Affiliation(s)
- Dimitrios Skourtis
- Industrial Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, GR–15771 Athens, Greece; (D.S.); (D.S.); (V.A.)
| | - Dimitra Stavroulaki
- Industrial Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, GR–15771 Athens, Greece; (D.S.); (D.S.); (V.A.)
| | - Varvara Athanasiou
- Industrial Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, GR–15771 Athens, Greece; (D.S.); (D.S.); (V.A.)
| | - Panagiota G. Fragouli
- Dyeing, Finishing, Dyestuffs and Advanced Polymers Laboratory, University of West Attica, DIDPE, 250 Thevon Street, GR–12241 Athens, Greece;
| | - Hermis Iatrou
- Industrial Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, GR–15771 Athens, Greece; (D.S.); (D.S.); (V.A.)
| |
Collapse
|
33
|
Yang Q, Fang J, Lei Z, Sluijter JPG, Schiffelers R. Repairing the heart: State-of the art delivery strategies for biological therapeutics. Adv Drug Deliv Rev 2020; 160:1-18. [PMID: 33039498 DOI: 10.1016/j.addr.2020.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 12/23/2022]
Abstract
Myocardial infarction (MI) is one of the leading causes of mortality worldwide. It is caused by an acute imbalance between oxygen supply and demand in the myocardium, usually caused by an obstruction in the coronary arteries. The conventional therapy is based on the application of (a combination of) anti-thrombotics, reperfusion strategies to open the occluded artery, stents and bypass surgery. However, numerous patients cannot fully recover after these interventions. In this context, new therapeutic methods are explored. Three decades ago, the first biologicals were tested to improve cardiac regeneration. Angiogenic proteins gained popularity as potential therapeutics. This is not straightforward as proteins are delicate molecules that in order to have a reasonably long time of activity need to be stabilized and released in a controlled fashion requiring advanced delivery systems. To ensure long-term expression, DNA vectors-encoding for therapeutic proteins have been developed. Here, the nuclear membrane proved to be a formidable barrier for efficient expression. Moreover, the development of delivery systems that can ensure entry in the target cell, and also correct intracellular trafficking towards the nucleus are essential. The recent introduction of mRNA as a therapeutic entity has provided an attractive intermediate: prolonged but transient expression from a cytoplasmic site of action. However, protection of the sensitive mRNA and correct delivery within the cell remains a challenge. This review focuses on the application of synthetic delivery systems that target the myocardium to stimulate cardiac repair using proteins, DNA or RNA.
Collapse
Affiliation(s)
- Qiangbing Yang
- Division LAB, CDL Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Juntao Fang
- Division Heart & Lungs, Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Zhiyong Lei
- Division LAB, CDL Research, University Medical Center Utrecht, Utrecht, the Netherlands; Division Heart & Lungs, Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Joost P G Sluijter
- Division Heart & Lungs, Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands; Regenerative Medicine Utrecht, Circulatory Health Laboratory, Utrecht University, Utrecht, the Netherlands
| | - Raymond Schiffelers
- Division LAB, CDL Research, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
34
|
Alcazar CA, Hu C, Rando TA, Huang NF, Nakayama KH. Transplantation of insulin-like growth factor-1 laden scaffolds combined with exercise promotes neuroregeneration and angiogenesis in a preclinical muscle injury model. Biomater Sci 2020; 8:5376-5389. [PMID: 32996916 DOI: 10.1039/d0bm00990c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The regeneration of skeletal muscle can be permanently impaired by traumatic injuries, despite the high regenerative capacity of native muscle. An attractive therapeutic approach for treating severe muscle inuries is the implantation of off-the-shelf engineered biomimetic scaffolds into the site of tissue damage to enhance muscle regeneration. Anisotropic nanofibrillar scaffolds provide spatial patterning cues to create organized myofibers, and growth factors such as insulin-like growth factor-1 (IGF-1) are potent inducers of both muscle regeneration as well as angiogenesis. The aim of this study was to test the therapeutic efficacy of anisotropic IGF-1-releasing collagen scaffolds combined with voluntary exercise for the treatment of acute volumetric muscle loss, with a focus on histomorphological effects. To enhance the angiogenic and regenerative potential of injured murine skeletal muscle, IGF-1-laden nanofibrillar scaffolds with aligned topography were fabricated using a shear-mediated extrusion approach, followed by growth factor adsorption. Individual scaffolds released a cumulative total of 1244 ng ± 153 ng of IGF-1 over the course of 21 days in vitro. To test the bioactivity of IGF-1-releasing scaffolds, the myotube formation capacity of murine myoblasts was quantified. On IGF-1-releasing scaffolds seeded with myoblasts, the resulting myotubes formed were 1.5-fold longer in length and contained 2-fold greater nuclei per myotube, when compared to scaffolds without IGF-1. When implanted into the ablated murine tibialis anterior muscle, the IGF-1-laden scaffolds, in conjunction with voluntary wheel running, significantly increased the density of perfused microvessels by greater than 3-fold, in comparison to treatment with scaffolds without IGF-1. Enhanced myogenesis was also observed in animals treated with the IGF-1-laden scaffolds combined with exercise, compared to control scaffolds transplanted into mice that did not receive exercise. Furthermore, the abundance of mature neuromuscular junctions was greater by approximately 2-fold in muscles treated with IGF-1-laden scaffolds, when paired with exercise, in comparison to the same treatment without exercise. These findings demonstrate that voluntary exercise improves the regenerative effect of growth factor-laden scaffolds by augmenting neurovascular regeneration, and have important translational implications in the design of off-the-shelf therapeutics for the treatment of traumatic muscle injury.
Collapse
Affiliation(s)
- Cynthia A Alcazar
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.
| | | | | | | | | |
Collapse
|
35
|
Karimi Hajishoreh N, Baheiraei N, Naderi N, Salehnia M. Reduced graphene oxide facilitates biocompatibility of alginate for cardiac repair. J BIOACT COMPAT POL 2020. [DOI: 10.1177/0883911520933913] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The benefits of combined cell/material therapy appear promising for myocardial infarction treatment. The safety of alginate, along with its excellent biocompatibility and biodegradability, has been extensively investigated for cardiac tissue engineering. Among graphene-based nanomaterials, reduced graphene oxide has been considered as a promising candidate for cardiac treatment due to its unique physicochemical properties. In this study, the reduced graphene oxide incorporation effect within alginate hydrogels was investigated for cardiac repair application. Reduced graphene oxide reinforced alginate properties, resulting in an increase in gel stiffness. The cytocompatibility of the hydrogels prepared with human bone marrow–derived mesenchymal stem cells was assessed by the 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide) assay. Following reduced graphene oxide addition, alginate-reduced graphene oxide retained significantly higher cell viability compared to that of alginate and cells cultured on tissue culture plates. Acridine orange/propidium iodide staining was also used to identify both viable and necrotic human bone marrow–derived mesenchymal stem cells within the prepared hydrogels. After a 72-h culture, the percentage of viable cells was twice as much as those cultured on either alginate or tissue culture plate, reaching approximately 80%. Quantitative reverse transcription polymerase chain reaction analysis was performed to assess gene expression of neonatal rat cardiac cells encapsulated on hydrogels for TrpT-2, Conx43, and Actn4 after 7 days. The expression of all genes in alginate-reduced graphene oxide increased significantly compared to that in alginate or tissue culture plate. The results obtained confirmed that the presence of reduced graphene oxide, as an electro-active moiety within alginate, could tune the physicochemical properties of this material, providing a desirable electroactive hydrogel for stem cell therapy in patients with ischemic heart disease.
Collapse
Affiliation(s)
- Negar Karimi Hajishoreh
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nasim Naderi
- Rajaie Cardiovascular, Medical, and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mojdeh Salehnia
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
36
|
Munarin F, Kant RJ, Rupert CE, Khoo A, Coulombe KLK. Engineered human myocardium with local release of angiogenic proteins improves vascularization and cardiac function in injured rat hearts. Biomaterials 2020; 251:120033. [PMID: 32388033 PMCID: PMC8115013 DOI: 10.1016/j.biomaterials.2020.120033] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/27/2022]
Abstract
Heart regeneration after myocardial infarction requires new cardiomyocytes and a supportive vascular network. Here, we evaluate the efficacy of localized delivery of angiogenic factors from biomaterials within the implanted muscle tissue to guide growth of a more dense, organized, and perfused vascular supply into implanted engineered human cardiac tissue on an ischemia/reperfusion injured rat heart. We use large, aligned 3-dimensional engineered tissue with cardiomyocytes derived from human induced pluripotent stem cells in a collagen matrix that contains dispersed alginate microspheres as local protein depots. Release of angiogenic growth factors VEGF and bFGF in combination with morphogen sonic hedgehog from the microspheres into the local microenvironment occurs from the epicardial implant site. Analysis of the 3D vascular network in the engineered tissue via Microfil® perfusion and microCT imaging at 30 days shows increased volumetric network density with a wider distribution of vessel diameters, proportionally increased branching and length, and reduced tortuosity. Global heart function is increased in the angiogenic factor-loaded cardiac implants versus sham. These findings demonstrate for the first time the efficacy of a combined remuscularization and revascularization therapy for heart regeneration after myocardial infarction.
Collapse
Affiliation(s)
- Fabiola Munarin
- Center for Biomedical Engineering, Brown University, 184 Hope St, Providence, RI, 02912, USA
| | - Rajeev J Kant
- Center for Biomedical Engineering, Brown University, 184 Hope St, Providence, RI, 02912, USA
| | - Cassady E Rupert
- Center for Biomedical Engineering, Brown University, 184 Hope St, Providence, RI, 02912, USA
| | - Amelia Khoo
- Center for Biomedical Engineering, Brown University, 184 Hope St, Providence, RI, 02912, USA
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, Brown University, 184 Hope St, Providence, RI, 02912, USA.
| |
Collapse
|
37
|
Qi Q, Zhu Y, Liu G, Yuan Z, Li H, Zhao Q. Local intramyocardial delivery of bioglass with alginate hydrogels for post-infarct myocardial regeneration. Biomed Pharmacother 2020; 129:110382. [PMID: 32590191 DOI: 10.1016/j.biopha.2020.110382] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/03/2020] [Accepted: 06/07/2020] [Indexed: 12/27/2022] Open
Abstract
Heart failure (HF) is a common and serious manifestation after myocardial infarction (MI). Despite their clinical importance, current treatments for MI still have several limitations. Revascularization has been proven to have positive effects on MI-induced damage. Currently biomaterial-based angiogenesis strategies represent potential candidates for MI treatment. Bioglass (BG) is a commercially available family of bioactive glasses. BG has angiogenic properties and thus might be an attractive alternative for MI treatments. Here, we loaded BG in sodium alginate (BGSA), locally injected it into peri-infarct myocardial tissue and examined its suitability for inducing cardiac angiogenesis and eventually improving cardiac function following MI. Cardiac function was evaluated via echocardiography. Infarct morphometry, angiogenesis, apoptosis and angiogenic protein expression were all analysed 4 weeks after BGSA injection. Compared with the control treatment, BGSA was sufficient to prompt angiogenesis, suppress apoptosis, up-regulate the expression of angiogenic proteins, attenuate infarct size, preserve wall thickness and eventually improve cardiac function. Our results demonstrate the feasibility and effectiveness of BGSA in myocardial regeneration via angiogenesis, suggesting that BGSA is a potential therapeutic strategy for post-infarct myocardial regeneration.
Collapse
Affiliation(s)
- Quan Qi
- Department of Cardiac Surgery, First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yanlun Zhu
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Gang Liu
- Department of Cardiology, Yuyao People's Hospital, Yuyao, 315400, China
| | - Zhize Yuan
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Haiyan Li
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Qiang Zhao
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
38
|
Dong Y, Hong M, Dai R, Wu H, Zhu P. Engineered bioactive nanoparticles incorporated biofunctionalized ECM/silk proteins based cardiac patches combined with MSCs for the repair of myocardial infarction: In vitro and in vivo evaluations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:135976. [PMID: 31865091 DOI: 10.1016/j.scitotenv.2019.135976] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
The development of cardiac patches by the combination of bioactive nano- and bio-materials with mesenchymal stem cells signifies an auspicious approach for the treatment of cardiac repair in myocardial infarction. In the present investigation, we study about the cardiac function of morphology improved gold nanoparticles combined with extracellular matrix/silk proteins for the cell proliferation and expansion of cardiomyocytes. The physico-chemical and morphological characteristics demonstrated that spherical and homogeneous Au particles are distributed on the matrix porous surface for providing favorable conductivity and biological influences in cardiac repair. The in vitro cell studies of prepared patches have established enhanced cell compatibility and retention of cardiomyocytes survival. The in vivo determinations imply that Au-ESF group decreases infarct size to 65% from 89% in control group. These developed cardiac patches can be highly suitable in the cardiac regeneration and offer new platform in cardiac tissue engineering.
Collapse
Affiliation(s)
- Yongda Dong
- Department of Cardiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Meiman Hong
- Department of Cardiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Ruozhu Dai
- Department of Cardiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Haiyun Wu
- Department of Cardiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China.
| | - Ping Zhu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China.
| |
Collapse
|
39
|
Steele AN, Paulsen MJ, Wang H, Stapleton LM, Lucian HJ, Eskandari A, Hironaka CE, Farry JM, Baker SW, Thakore AD, Jaatinen KJ, Tada Y, Hollander MJ, Williams KM, Seymour AJ, Totherow KP, Yu AC, Cochran JR, Appel EA, Woo YJ. Multi-phase catheter-injectable hydrogel enables dual-stage protein-engineered cytokine release to mitigate adverse left ventricular remodeling following myocardial infarction in a small animal model and a large animal model. Cytokine 2020; 127:154974. [DOI: 10.1016/j.cyto.2019.154974] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/18/2019] [Accepted: 12/26/2019] [Indexed: 10/25/2022]
|
40
|
Bar A, Cohen S. Inducing Endogenous Cardiac Regeneration: Can Biomaterials Connect the Dots? Front Bioeng Biotechnol 2020; 8:126. [PMID: 32175315 PMCID: PMC7056668 DOI: 10.3389/fbioe.2020.00126] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 02/10/2020] [Indexed: 12/19/2022] Open
Abstract
Heart failure (HF) after myocardial infarction (MI) due to blockage of coronary arteries is a major public health issue. MI results in massive loss of cardiac muscle due to ischemia. Unfortunately, the adult mammalian myocardium presents a low regenerative potential, leading to two main responses to injury: fibrotic scar formation and hypertrophic remodeling. To date, complete heart transplantation remains the only clinical option to restore heart function. In the last two decades, tissue engineering has emerged as a promising approach to promote cardiac regeneration. Tissue engineering aims to target processes associated with MI, including cardiomyogenesis, modulation of extracellular matrix (ECM) remodeling, and fibrosis. Tissue engineering dogmas suggest the utilization and combination of two key components: bioactive molecules and biomaterials. This chapter will present current therapeutic applications of biomaterials in cardiac regeneration and the challenges still faced ahead. The following biomaterial-based approaches will be discussed: Nano-carriers for cardiac regeneration-inducing biomolecules; corresponding matrices for their controlled release; injectable hydrogels for cell delivery and cardiac patches. The concept of combining cardiac patches with controlled release matrices will be introduced, presenting a promising strategy to promote endogenous cardiac regeneration.
Collapse
Affiliation(s)
- Assaf Bar
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Smadar Cohen
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
- Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beersheba, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
41
|
Yu CP, Juang JH, Lin YJ, Kuo CW, Hsieh LH, Huang CC. Enhancement of Subcutaneously Transplanted β Cell Survival Using 3D Stem Cell Spheroids with Proangiogenic and Prosurvival Potential. ACTA ACUST UNITED AC 2020; 4:e1900254. [PMID: 32293147 DOI: 10.1002/adbi.201900254] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/08/2020] [Indexed: 01/20/2023]
Abstract
Islet transplantation has been demonstrated to be a promising therapy for type 1 diabetes mellitus. Although it is a minimally invasive operating procedure and provides easy access for graft monitoring, subcutaneous transplantation of the islet only has limited therapeutic outcomes, owing to the poor capacity of skin tissue to foster revascularization in a short period. Herein, 3D cell spheroids of clinically accessible umbilical cord blood mesenchymal stem cells and human umbilical vein endothelial cells are formed and employed for codelivery with β cells subcutaneously. The 3D stem cell spheroids, which can secrete multiple proangiogenic and prosurvival growth factors, induce robust angiogenesis and prevent β cell graft death, as indicated by the results of in vivo bioluminescent tracking and histological analysis. These experimental data highlight the efficacy of the 3D stem cell spheroids that are fabricated using translationally applicable cell types in promoting the survival and function of subcutaneously transplanted β cells.
Collapse
Affiliation(s)
- Chih-Ping Yu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jyuhn-Huarng Juang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan.,Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan.,Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Yu-Jie Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ching-Wen Kuo
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.,Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Li-Hung Hsieh
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chieh-Cheng Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
42
|
Rocker AJ, Lee DJ, Shandas R, Park D. Injectable Polymeric Delivery System for Spatiotemporal and Sequential Release of Therapeutic Proteins To Promote Therapeutic Angiogenesis and Reduce Inflammation. ACS Biomater Sci Eng 2020; 6:1217-1227. [PMID: 33464833 DOI: 10.1021/acsbiomaterials.9b01758] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Myocardial infarction (MI) causes cardiac cell death, induces persistent inflammatory responses, and generates harmful pathological remodeling, which leads to heart failure. Biomedical approaches to restore blood supply to ischemic myocardium, via controlled delivery of angiogenic and immunoregulatory proteins, may present an efficient treatment option for coronary artery disease (CAD). Vascular endothelial growth factor (VEGF) is necessary to initiate neovessel formation, while platelet-derived growth factor (PDGF) is needed later to recruit pericytes, which stabilizes new vessels. Anti-inflammatory cytokines like interleukin-10 (IL-10) can help optimize cardiac repair and limit the damaging effects of inflammation following MI. To meet these angiogenic and anti-inflammatory needs, an injectable polymeric delivery system composed of encapsulating micelle nanoparticles embedded in a sulfonated reverse thermal gel was developed. The sulfonate groups on the thermal gel electrostatically bind to VEGF and IL-10, and their specific binding affinities control their release rates, while PDGF-loaded micelles are embedded in the gel to provide the sequential release of the growth factors. An in vitro release study was performed, which demonstrated the sequential release capabilities of the delivery system. The ability of the delivery system to induce new blood vessel formation was analyzed in vivo using a subcutaneous injection mouse model. Histological assessment was used to quantify blood vessel formation and an inflammatory response, which showed that the polymeric delivery system significantly increased functional and mature vessel formation while reducing inflammation. Overall, the results demonstrate the effective delivery of therapeutic proteins to promote angiogenesis and limit inflammatory responses.
Collapse
Affiliation(s)
- Adam J Rocker
- Department of Bioengineering, University of Colorado Denver
- Anschutz Medical Campus, 12800 E. 19th Avenue, Aurora, Colorado 80045, United States
| | - David J Lee
- Department of Bioengineering, University of Colorado Denver
- Anschutz Medical Campus, 12800 E. 19th Avenue, Aurora, Colorado 80045, United States
| | - Robin Shandas
- Department of Bioengineering, University of Colorado Denver
- Anschutz Medical Campus, 12800 E. 19th Avenue, Aurora, Colorado 80045, United States
| | - Daewon Park
- Department of Bioengineering, University of Colorado Denver
- Anschutz Medical Campus, 12800 E. 19th Avenue, Aurora, Colorado 80045, United States
| |
Collapse
|
43
|
Arjmand B, Tayanloo-Beik A, Foroughi Heravani N, Alaei S, Payab M, Alavi-Moghadam S, Goodarzi P, Gholami M, Larijani B. Zebrafish for Personalized Regenerative Medicine; A More Predictive Humanized Model of Endocrine Disease. Front Endocrinol (Lausanne) 2020; 11:396. [PMID: 32765420 PMCID: PMC7379230 DOI: 10.3389/fendo.2020.00396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 05/18/2020] [Indexed: 12/18/2022] Open
Abstract
Regenerative medicine is a multidisciplinary field that aims to determine different factors and develop various methods to regenerate impaired tissues, organs, and cells in the disease and impairment conditions. When treatment procedures are specified according to the individual's information, the leading role of personalized regenerative medicine will be revealed in developing more effective therapies. In this concept, endocrine disorders can be considered as potential candidates for regenerative medicine application. Diabetes mellitus as a worldwide prevalent endocrine disease causes different damages such as blood vessel damages, pancreatic damages, and impaired wound healing. Therefore, a global effort has been devoted to diabetes mellitus investigations. Hereupon, the preclinical study is a fundamental step. Up to now, several species of animals have been modeled to identify the mechanism of multiple diseases. However, more recent researches have been demonstrated that animal models with the ability of tissue regeneration are more suitable choices for regenerative medicine studies in endocrine disorders, typically diabetes mellitus. Accordingly, zebrafish has been introduced as a model that possesses the capacity to regenerate different organs and tissues. Especially, fine regeneration in zebrafish has been broadly investigated in the regenerative medicine field. In addition, zebrafish is a suitable model for studying a variety of different situations. For instance, it has been used for developmental studies because of the special characteristics of its larva. In this review, we discuss the features of zebrafish that make it a desirable animal model, the advantages of zebrafish and recent research that shows zebrafish is a promising animal model for personalized regenerative diseases. Ultimately, we conclude that as a newly introduced model, zebrafish can have a leading role in regeneration studies of endocrine diseases and provide a good perception of underlying mechanisms.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmeh Foroughi Heravani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Alaei
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholami
- Department of Toxicology and Pharmacology, Toxicology and Poisoning Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Bagher Larijani
| |
Collapse
|
44
|
Amirsadeghi A, Jafari A, Eggermont LJ, Hashemi SS, Bencherif SA, Khorram M. Vascularization strategies for skin tissue engineering. Biomater Sci 2020; 8:4073-4094. [DOI: 10.1039/d0bm00266f] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lack of proper vascularization after skin trauma causes delayed wound healing. This has sparked the development of various tissue engineering strategies to improve vascularization.
Collapse
Affiliation(s)
- Armin Amirsadeghi
- Department of Chemical Engineering
- School of Chemical and Petroleum Engineering
- Shiraz University
- Shiraz 71348-51154
- Iran
| | - Arman Jafari
- Department of Chemical Engineering
- School of Chemical and Petroleum Engineering
- Shiraz University
- Shiraz 71348-51154
- Iran
| | | | - Seyedeh-Sara Hashemi
- Burn & Wound Healing Research Center
- Shiraz University of Medical Science
- Shiraz 71345-1978
- Iran
| | - Sidi A. Bencherif
- Department of Chemical Engineering
- Northeastern University
- Boston
- USA
- Department of Bioengineering
| | - Mohammad Khorram
- Department of Chemical Engineering
- School of Chemical and Petroleum Engineering
- Shiraz University
- Shiraz 71348-51154
- Iran
| |
Collapse
|
45
|
Feng J, Wu Y, Chen W, Li J, Wang X, Chen Y, Yu Y, Shen Z, Zhang Y. Sustained release of bioactive IGF-1 from a silk fibroin microsphere-based injectable alginate hydrogel for the treatment of myocardial infarction. J Mater Chem B 2019; 8:308-315. [PMID: 31808500 DOI: 10.1039/c9tb01971e] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Low circulating levels of insulin-like growth factor 1 (IGF-1) have been correlated with an increased risk for cardiovascular diseases in humans. In this work, an injectable alginate hydrogel containing silk fibroin (SF) microspheres with the capability to sustain the release of IGF-1 was prepared to induce myocardial repair after myocardial infarction (MI). First, IGF-1 was physically adsorbed onto SF microspheres prepared by the coaxial needle system, and these IGF-1-containing microspheres were subsequently encapsulated into sodium alginate solutions at different concentrations (1.0-2.5%). Finally, this solution was crosslinked with 0.68% calcium gluconate solution to prepare the composite injectable hydrogel. The composite hydrogel prepared using a sodium alginate solution at a concentration of 1.5% could promote proliferation of H9C2 cardiomyocytes and reduce the cellular apoptosis rate under hypoxic conditions. The enzyme-linked immunosorbent assay results indicated that SF microspheres as microcarriers could effectively enhance the sustained release of IGF-1 from the hydrogels, causing the composite hydrogel to possess a better sustained release ability than the system without the SF microspheres. Moreover, echocardiography, hematoxylin-eosin staining, and Masson trichrome staining results indicated that an intramyocardial injection of the composite hydrogel into the peripheral region of a MI rat model could reduce the infarct size and improve the cardiac function after 28 days. The applications of such a composite hydrogel may comprise a powerful platform in cardiac tissue engineering.
Collapse
Affiliation(s)
- Jianguo Feng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P. R. China. and Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu 215007, P. R. China and The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, P. R. China
| | - Yong Wu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P. R. China. and Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu 215007, P. R. China
| | - Weiqian Chen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P. R. China. and Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu 215007, P. R. China
| | - Jingjing Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P. R. China. and Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu 215007, P. R. China
| | - Xiaoyu Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P. R. China. and Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu 215007, P. R. China
| | - Yueqiu Chen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P. R. China. and Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu 215007, P. R. China
| | - Yunsheng Yu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P. R. China. and Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu 215007, P. R. China
| | - Zhenya Shen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P. R. China. and Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu 215007, P. R. China
| | - Yanxia Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P. R. China. and Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu 215007, P. R. China
| |
Collapse
|
46
|
Xu Y, Chen C, Hellwarth PB, Bao X. Biomaterials for stem cell engineering and biomanufacturing. Bioact Mater 2019; 4:366-379. [PMID: 31872161 PMCID: PMC6909203 DOI: 10.1016/j.bioactmat.2019.11.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/09/2019] [Accepted: 11/20/2019] [Indexed: 12/15/2022] Open
Abstract
Recent years have witnessed the expansion of tissue failures and diseases. The uprising of regenerative medicine converges the sight onto stem cell-biomaterial based therapy. Tissue engineering and regenerative medicine proposes the strategy of constructing spatially, mechanically, chemically and biologically designed biomaterials for stem cells to grow and differentiate. Therefore, this paper summarized the basic properties of embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult stem cells. The properties of frequently used biomaterials were also described in terms of natural and synthetic origins. Particularly, the combination of stem cells and biomaterials for tissue repair applications was reviewed in terms of nervous, cardiovascular, pancreatic, hematopoietic and musculoskeletal system. Finally, stem-cell-related biomanufacturing was envisioned and the novel biofabrication technologies were discussed, enlightening a promising route for the future advancement of large-scale stem cell-biomaterial based therapeutic manufacturing.
Collapse
Affiliation(s)
| | | | | | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, West Lafayette, IN, 47907, USA
| |
Collapse
|
47
|
Lv K, Li Q, Zhang L, Wang Y, Zhong Z, Zhao J, Lin X, Wang J, Zhu K, Xiao C, Ke C, Zhong S, Wu X, Chen J, Yu H, Zhu W, Li X, Wang B, Tang R, Wang J, Huang J, Hu X. Incorporation of small extracellular vesicles in sodium alginate hydrogel as a novel therapeutic strategy for myocardial infarction. Am J Cancer Res 2019; 9:7403-7416. [PMID: 31695776 PMCID: PMC6831299 DOI: 10.7150/thno.32637] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/15/2019] [Indexed: 12/26/2022] Open
Abstract
Bone marrow mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs) have been widely used for treating myocardial infarction (MI). However, low retention and short-lived therapeutic effects are still significant challenges. This study aimed to determine whether incorporation of MSC-derived sEVs in alginate hydrogel increases their retention in the heart thereby improving therapeutic effects. Methods: The optimal sodium alginate hydrogel incorporating sEVs system was determined by its release ability of sEVs and rheology of hydrogel. Ex vivo fluorescence imaging was utilized to evaluate the retention of sEVs in the heart. Immunoregulation and effects of sEVs on angiogenesis were analyzed by immunofluorescence staining. Echocardiography and Masson's trichrome staining were used to estimate cardiac function and infarct size. Results: The delivery of sEVs incorporated in alginate hydrogel (sEVs-Gel) enhanced their retention in the heart. Compared with sEVs only treatment (sEVs), sEVs-Gel treatment significantly decreased cardiac cell apoptosis and promoted the polarization of macrophages at day 3 after MI. sEVs-Gel treatment also increased scar thickness and angiogenesis at four weeks post-infarction. Measurement of cardiac function and infarct size were significantly better in the sEVs-Gel group than in the group treated with sEVs only. Conclusion: Delivery of sEVs incorporated in alginate hydrogel provides a novel approach of cell-free therapy and optimizes the therapeutic effect of sEVs for MI.
Collapse
|
48
|
Wei Z, Volkova E, Blatchley MR, Gerecht S. Hydrogel vehicles for sequential delivery of protein drugs to promote vascular regeneration. Adv Drug Deliv Rev 2019; 149-150:95-106. [PMID: 31421149 PMCID: PMC6889011 DOI: 10.1016/j.addr.2019.08.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/04/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
In recent years, as the mechanisms of vasculogenesis and angiogenesis have been uncovered, the functions of various pro-angiogenic growth factors (GFs) and cytokines have been identified. Therefore, therapeutic angiogenesis, by delivery of GFs, has been sought as a treatment for many vascular diseases. However, direct injection of these protein drugs has proven to have limited clinical success due to their short half-lives and systemic off-target effects. To overcome this, hydrogel carriers have been developed to conjugate single or multiple GFs with controllable, sustained, and localized delivery. However, these attempts have failed to account for the temporal complexity of natural angiogenic pathways, resulting in limited therapeutic effects. Recently, the emerging ideas of optimal sequential delivery of multiple GFs have been suggested to better mimic the biological processes and to enhance therapeutic angiogenesis. Incorporating sequential release into drug delivery platforms will likely promote the formation of neovasculature and generate vast therapeutic potential.
Collapse
Affiliation(s)
- Zhao Wei
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology Physical-Sciences Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Eugenia Volkova
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology Physical-Sciences Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michael R Blatchley
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology Physical-Sciences Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology Physical-Sciences Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
49
|
Production and characterization of a novel asymmetric 3D printed construct aimed for skin tissue regeneration. Colloids Surf B Biointerfaces 2019; 181:994-1003. [DOI: 10.1016/j.colsurfb.2019.06.063] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/29/2019] [Accepted: 06/26/2019] [Indexed: 01/16/2023]
|
50
|
Ong W, Pinese C, Chew SY. Scaffold-mediated sequential drug/gene delivery to promote nerve regeneration and remyelination following traumatic nerve injuries. Adv Drug Deliv Rev 2019; 149-150:19-48. [PMID: 30910595 DOI: 10.1016/j.addr.2019.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/27/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Abstract
Neural tissue regeneration following traumatic injuries is often subpar. As a result, the field of neural tissue engineering has evolved to find therapeutic interventions and has seen promising outcomes. However, robust nerve and myelin regeneration remain elusive. One possible reason may be the fact that tissue regeneration often follows a complex sequence of events in a temporally-controlled manner. Although several other fields of tissue engineering have begun to recognise the importance of delivering two or more biomolecules sequentially for more complete tissue regeneration, such serial delivery of biomolecules in neural tissue engineering remains limited. This review aims to highlight the need for sequential delivery to enhance nerve regeneration and remyelination after traumatic injuries in the central nervous system, using spinal cord injuries as an example. In addition, possible methods to attain temporally-controlled drug/gene delivery are also discussed for effective neural tissue regeneration.
Collapse
|