1
|
Dastgerdi NK, Dastgerdi NK, Bayraktutan H, Costabile G, Atyabi F, Dinarvand R, Longobardi G, Alexander C, Conte C. Enhancing siRNA cancer therapy: Multifaceted strategies with lipid and polymer-based carrier systems. Int J Pharm 2024; 663:124545. [PMID: 39098747 DOI: 10.1016/j.ijpharm.2024.124545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Cancers are increasing in prevalence and many challenges remain for their treatment, such as chemoresistance and toxicity. In this context, siRNA-based therapeutics have many potential advantages for cancer therapies as a result of their ability to reduce or prevent expression of specific cancer-related genes. However, the direct delivery of naked siRNA is hindered by issues like enzymatic degradation, insufficient cellular uptake, and poor pharmacokinetics. Hence, the discovery of a safe and efficient delivery vehicle is essential. This review explores various lipid and polymer-based delivery systems for siRNA in cancer treatment. Both polymers and lipids have garnered considerable attention as carriers for siRNA delivery. While all of these systems protect siRNA and enhance transfection efficacy, each exhibits its unique strengths. Lipid-based delivery systems, for instance, demonstrate high entrapment efficacy and utilize cost-effective materials. Conversely, polymeric-based delivery systems offer advantages through chemical modifications. Nonetheless, certain drawbacks still limit their usage. To address these limitations, combining different materials in formulations (lipid, polymer, or targeting agent) could enhance pharmaceutical properties, boost transfection efficacy, and reduce side effects. Furthermore, co-delivery of siRNA with other therapeutic agents presents a promising strategy to overcome cancer resistance. Lipid-based delivery systems have been demonstrated to encapsulate many therapeutic agents and with high efficiency, but most are limited in terms of the functionalities they display. In contrast, polymeric-based delivery systems can be chemically modified by a wide variety of routes to include multiple components, such as release or targeting elements, from the same materials backbone. Accordingly, by incorporating multiple materials such as lipids, polymers, and/or targeting agents in RNA formulations it is possible to improve the pharmaceutical properties and therapeutic efficacy while reducing side effects. This review focuses on strategies to improve siRNA cancer treatments and discusses future prospects in this important field.
Collapse
Affiliation(s)
- Nazgol Karimi Dastgerdi
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK; Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazanin Karimi Dastgerdi
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hulya Bayraktutan
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | | | - Fatemeh Atyabi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614315, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614315, Iran.
| | | | - Cameron Alexander
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | - Claudia Conte
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy.
| |
Collapse
|
2
|
Walker AJ, Graham C, Greenwood M, Woodall M, Maeshima R, O’Hara-Wright M, Sanz DJ, Guerrini I, Aldossary AM, O’Callaghan C, Baines DL, Harrison PT, Hart SL. Molecular and functional correction of a deep intronic splicing mutation in CFTR by CRISPR-Cas9 gene editing. Mol Ther Methods Clin Dev 2023; 31:101140. [PMID: 38027060 PMCID: PMC10661860 DOI: 10.1016/j.omtm.2023.101140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the CFTR gene. The 10th most common mutation, c.3178-2477C>T (3849+10kb C>T), involves a cryptic, intronic splice site. This mutation was corrected in CF primary cells homozygous for this mutation by delivering pairs of guide RNAs (gRNAs) with Cas9 protein in ribonucleoprotein (RNP) complexes that introduce double-strand breaks to flanking sites to excise the 3849+10kb C>T mutation, followed by DNA repair by the non-homologous end-joining pathway, which functions in all cells of the airway epithelium. RNP complexes were delivered to CF basal epithelial cell by a non-viral, receptor-targeted nanocomplex comprising a formulation of targeting peptides and lipids. Canonical CFTR mRNA splicing was, thus, restored leading to the restoration of CFTR protein expression with concomitant restoration of electrophysiological function in airway epithelial air-liquid interface cultures. Off-target editing was not detected by Sanger sequencing of in silico-selected genomic sites with the highest sequence similarities to the gRNAs, although more sensitive unbiased whole genome sequencing methods would be required for possible translational developments. This approach could potentially be used to correct aberrant splicing signals in several other CF mutations and other genetic disorders where deep-intronic mutations are pathogenic.
Collapse
Affiliation(s)
- Amy J. Walker
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Carina Graham
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Miriam Greenwood
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Maximillian Woodall
- Institute for Infection and Immunity, St. George’s, University of London, London, UK
| | - Ruhina Maeshima
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Michelle O’Hara-Wright
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - David J. Sanz
- Department of Physiology, BioSciences Institute, University College Cork, Cork, Ireland
| | - Ileana Guerrini
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Ahmad M. Aldossary
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Christopher O’Callaghan
- Infection, Immunity & Inflammation Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Deborah L. Baines
- Institute for Infection and Immunity, St. George’s, University of London, London, UK
| | - Patrick T. Harrison
- Department of Physiology, BioSciences Institute, University College Cork, Cork, Ireland
| | - Stephen L. Hart
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
3
|
Kafetzis KN, Papalamprou N, McNulty E, Thong KX, Sato Y, Mironov A, Purohit A, Welsby PJ, Harashima H, Yu‐Wai‐Man C, Tagalakis AD. The Effect of Cryoprotectants and Storage Conditions on the Transfection Efficiency, Stability, and Safety of Lipid-Based Nanoparticles for mRNA and DNA Delivery. Adv Healthc Mater 2023; 12:e2203022. [PMID: 36906918 PMCID: PMC11468535 DOI: 10.1002/adhm.202203022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/16/2023] [Indexed: 03/13/2023]
Abstract
Lipid-based nanoparticles have recently shown great promise, establishing themselves as the gold standard in delivering novel RNA therapeutics. However, research on the effects of storage on their efficacy, safety, and stability is still lacking. Herein, the impact of storage temperature on two types of lipid-based nanocarriers, lipid nanoparticles (LNPs) and receptor-targeted nanoparticles (RTNs), loaded with either DNA or messenger RNA (mRNA), is explored and the effects of different cryoprotectants on the stability and efficacy of the formulations are investigated. The medium-term stability of the nanoparticles was evaluated by monitoring their physicochemical characteristics, entrapment and transfection efficiency, every two weeks over one month. It is demonstrated, that the use of cryoprotectants protects nanoparticles against loss of function and degradation in all storage conditions. Moreover, it is shown that the addition of sucrose enables all nanoparticles to remain stable and maintain their efficacy for up to a month when stored at -80 °C, regardless of cargo or type of nanoparticle. DNA-loaded nanoparticles also remain stable in a wider variety of storage conditions than mRNA-loaded ones. Importantly, these novel LNPs show increased GFP expression that can signify their future use in gene therapies, beyond the established role of LNPs in RNA therapeutics.
Collapse
Affiliation(s)
| | | | - Elisha McNulty
- Department of BiologyEdge Hill UniversityOrmskirkL39 4QPUK
| | - Kai X. Thong
- Faculty of Life Sciences & MedicineKing's College LondonLondonSE1 7EHUK
| | - Yusuke Sato
- Faculty of Pharmaceutical SciencesHokkaido UniversityKita‐12, Nishi‐6, Kita‐kuSapporo060–0812Japan
| | - Aleksandr Mironov
- Electron Microscopy Core Facility (RRID: SCR_021147)Faculty of BiologyMedicine and HealthUniversity of ManchesterManchesterM13 9PTUK
| | - Atul Purohit
- Oncology Drug Discovery & Women's Health GroupDepartment of MetabolismDigestion & ReproductionImperial College LondonLondonW12 0HSUK
| | | | - Hideyoshi Harashima
- Faculty of Pharmaceutical SciencesHokkaido UniversityKita‐12, Nishi‐6, Kita‐kuSapporo060–0812Japan
| | | | | |
Collapse
|
4
|
Grant-Serroukh D, Hunter MR, Maeshima R, Tagalakis AD, Aldossary AM, Allahham N, Williams GR, Edbrooke M, Desai A, Hart SL. Lipid-peptide nanocomplexes for mRNA delivery in vitro and in vivo. J Control Release 2022; 348:786-797. [PMID: 35718210 DOI: 10.1016/j.jconrel.2022.06.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 01/30/2023]
Abstract
Despite recent advances in the field of mRNA therapy, the lack of safe and efficacious delivery vehicles with pharmaceutically developable properties remains a major limitation. Here, we describe the systematic optimisation of lipid-peptide nanocomplexes for the delivery of mRNA in two murine cancer cell types, B16-F10 melanoma and CT26 colon carcinoma as well as NCI-H358 human lung bronchoalveolar cells. Different combinations of lipids and peptides were screened from an original lipid-peptide nanocomplex formulation for improved luciferase mRNA transfection in vitro by a multi-factorial screening approach. This led to the identification of key structural elements within the nanocomplex associated with substantial improvements in mRNA transfection efficiency included alkyl tail length of the cationic lipid, the fusogenic phospholipid, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and cholesterol. The peptide component (K16GACYGLPHKFCG) was further improved by the inclusion of a linker, RVRR, that is cleavable by the endosomal enzymes cathepsin B and furin, and a hydrophobic motif (X-S-X) between the mRNA packaging (K16) and receptor targeting domains (CYGLPHKFCG). Nanocomplex transfections of a murine B16-F10 melanoma tumour supported the inclusion of cholesterol for optimal transfection in vivo as well as in vitro. In vitro transfections were also performed with mRNA encoding interleukin-15 as a potential immunotherapy agent and again, the optimised formulation with the key structural elements demonstrated significantly higher expression than the original formulation. Physicochemical characterisation of the nanocomplexes over time indicated that the optimal formulation retained biophysical properties such as size, charge and mRNA complexation efficiency for 14 days upon storage at 4 °C without the need for additional stabilising agents. In summary, we have developed an efficacious lipid-peptide nanocomplex with promising pharmaceutical development properties for the delivery of therapeutic mRNA.
Collapse
Affiliation(s)
- Dania Grant-Serroukh
- UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK; UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, UK
| | - Morag R Hunter
- Pharmaceutical Sciences, AstraZeneca, Aaron Klug Building, Granta Park, Cambridge CB21 6GH, UK
| | - Ruhina Maeshima
- UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Aristides D Tagalakis
- UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Ahmad M Aldossary
- UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Nour Allahham
- UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, UK
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, UK
| | - Mark Edbrooke
- Pharmaceutical Sciences, AstraZeneca, Aaron Klug Building, Granta Park, Cambridge CB21 6GH, UK
| | - Arpan Desai
- Pharmaceutical Sciences, AstraZeneca, Aaron Klug Building, Granta Park, Cambridge CB21 6GH, UK
| | - Stephen L Hart
- UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|
5
|
Li Q, Shi Z, Zhang F, Zeng W, Zhu D, Mei L. Symphony of nanomaterials and immunotherapy based on the cancer-immunity cycle. Acta Pharm Sin B 2022; 12:107-134. [PMID: 35127375 PMCID: PMC8799879 DOI: 10.1016/j.apsb.2021.05.031] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/21/2021] [Accepted: 04/25/2021] [Indexed: 02/07/2023] Open
Abstract
The immune system is involved in the initiation and progression of cancer. Research on cancer and immunity has contributed to the development of several clinically successful immunotherapies. These immunotherapies often act on a single step of the cancer–immunity cycle. In recent years, the discovery of new nanomaterials has dramatically expanded the functions and potential applications of nanomaterials. In addition to acting as drug-delivery platforms, some nanomaterials can induce the immunogenic cell death (ICD) of cancer cells or regulate the profile and strength of the immune response as immunomodulators. Based on their versatility, nanomaterials may serve as an integrated platform for multiple drugs or therapeutic strategies, simultaneously targeting several steps of the cancer–immunity cycle to enhance the outcome of anticancer immune response. To illustrate the critical roles of nanomaterials in cancer immunotherapies based on cancer–immunity cycle, this review will comprehensively describe the crosstalk between the immune system and cancer, and the current applications of nanomaterials, including drug carriers, ICD inducers, and immunomodulators. Moreover, this review will provide a detailed discussion of the knowledge regarding developing combinational cancer immunotherapies based on the cancer–immunity cycle, hoping to maximize the efficacy of these treatments assisted by nanomaterials.
Collapse
Affiliation(s)
- Qianqian Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Zhaoqing Shi
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Fan Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Weiwei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Dunwan Zhu
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
- Corresponding authors. Tel./fax: +86 20 84723750
| | - Lin Mei
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
- Corresponding authors. Tel./fax: +86 20 84723750
| |
Collapse
|
6
|
Tagalakis AD, Jayarajan V, Maeshima R, Ho KH, Syed F, Wu L, Aldossary AM, Munye MM, Mistry T, Ogunbiyi OK, Sala A, Standing JF, Moghimi SM, Stoker AW, Hart SL. Integrin-Targeted, Short Interfering RNA Nanocomplexes for Neuroblastoma Tumor-Specific Delivery Achieve MYCN Silencing with Improved Survival. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2104843. [PMID: 35712226 PMCID: PMC9178728 DOI: 10.1002/adfm.202104843] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Indexed: 06/15/2023]
Abstract
The authors aim to develop siRNA therapeutics for cancer that can be administered systemically to target tumors and retard their growth. The efficacy of systemic delivery of siRNA to tumors with nanoparticles based on lipids or polymers is often compromised by their rapid clearance from the circulation by the liver. Here, multifunctional cationic and anionic siRNA nanoparticle formulations are described, termed receptor-targeted nanocomplexes (RTNs), that comprise peptides for siRNA packaging into nanoparticles and receptor-mediated cell uptake, together with lipids that confer nanoparticles with stealth properties to enhance stability in the circulation, and fusogenic properties to enhance endosomal release within the cell. Intravenous administration of RTNs in mice leads to predominant accumulation in xenograft tumors, with very little detected in the liver, lung, or spleen. Although non-targeted RTNs also enter the tumor, cell uptake appears to be RGD peptide-dependent indicating integrin-mediated uptake. RTNs with siRNA against MYCN (a member of the Myc family of transcription factors) in mice with MYCN-amplified neuroblastoma tumors show significant retardation of xenograft tumor growth and enhanced survival. This study shows that RTN formulations can achieve specific tumor-targeting, with minimal clearance by the liver and so enable delivery of tumor-targeted siRNA therapeutics.
Collapse
Affiliation(s)
- Aristides D. Tagalakis
- Department of Genetics and Genomic MedicineUCL Great Ormond Street Institute of Child HealthUniversity College London30 Guilford StreetLondonWC1N 1EHUK
- Present address:
Department of BiologyEdge Hill UniversityOrmskirkL39 4QPUK
| | - Vignesh Jayarajan
- Department of Genetics and Genomic MedicineUCL Great Ormond Street Institute of Child HealthUniversity College London30 Guilford StreetLondonWC1N 1EHUK
| | - Ruhina Maeshima
- Department of Genetics and Genomic MedicineUCL Great Ormond Street Institute of Child HealthUniversity College London30 Guilford StreetLondonWC1N 1EHUK
| | - Kin H. Ho
- Department of InflammationInfection and ImmunityUCL Great Ormond Street Institute of Child HealthUniversity College London30 Guilford StreetLondonWC1N 1EHUK
| | - Farhatullah Syed
- Department of InflammationInfection and ImmunityUCL Great Ormond Street Institute of Child HealthUniversity College London30 Guilford StreetLondonWC1N 1EHUK
| | - Lin‐Ping Wu
- Centre for Pharmaceutical Nanotechnology and NanotoxicologyFaculty of Health and Medical SciencesUniversity of CopenhagenUniversitetsparken 2Copenhagen2100Denmark
- Present address:
Guangzhou institute of Biomedicine and HealthChinese Academy of SciencesGuangzhou510530People's Republic of China
| | - Ahmad M. Aldossary
- Department of Genetics and Genomic MedicineUCL Great Ormond Street Institute of Child HealthUniversity College London30 Guilford StreetLondonWC1N 1EHUK
- Present address:
National Center for BiotechnologyKing Abdulaziz City for Science and TechnologyRiyadh11442Saudi Arabia
| | - Mustafa M. Munye
- Department of Genetics and Genomic MedicineUCL Great Ormond Street Institute of Child HealthUniversity College London30 Guilford StreetLondonWC1N 1EHUK
- Present address:
Cell and Gene Therapy Catapult12th Floor Tower Wing, Guy's Hospital, Great Maze PondLondonSE1 9RTUK
| | - Talisa Mistry
- Department of HistopathologyGreat Ormond Street Hospital for ChildrenNHS Foundation TrustLondonWC1N 3JHUK
| | - Olumide Kayode Ogunbiyi
- Department of HistopathologyGreat Ormond Street Hospital for ChildrenNHS Foundation TrustLondonWC1N 3JHUK
| | - Arturo Sala
- Department of Life SciencesBrunel University LondonKingston LaneMiddlesexUB8 3PHUK
| | - Joseph F. Standing
- Department of InflammationInfection and ImmunityUCL Great Ormond Street Institute of Child HealthUniversity College London30 Guilford StreetLondonWC1N 1EHUK
| | - Seyed M. Moghimi
- Centre for Pharmaceutical Nanotechnology and NanotoxicologyFaculty of Health and Medical SciencesUniversity of CopenhagenUniversitetsparken 2Copenhagen2100Denmark
- Present address:
School of Pharmacy, and Translational and Clinical Research Institute, the Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneNE1 7RUUK
- Present address:
Colorado Center for Nanomedicine and Nanosafety, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of Colorado Anschutz Medical CampusAuroraCO80045USA
| | - Andrew W. Stoker
- Department of Developmental Biology and CancerUCL Great Ormond Street Institute of Child HealthUniversity College London30 Guilford StreetLondonWC1N 1EHUK
| | - Stephen L. Hart
- Department of Genetics and Genomic MedicineUCL Great Ormond Street Institute of Child HealthUniversity College London30 Guilford StreetLondonWC1N 1EHUK
| |
Collapse
|
7
|
Ward DM, Shodeinde AB, Peppas NA. Innovations in Biomaterial Design toward Successful RNA Interference Therapy for Cancer Treatment. Adv Healthc Mater 2021; 10:e2100350. [PMID: 33973393 PMCID: PMC8273125 DOI: 10.1002/adhm.202100350] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/27/2021] [Indexed: 12/11/2022]
Abstract
Gene regulation using RNA interference (RNAi) therapy has been developed as one of the frontiers in cancer treatment. The ability to tailor the expression of genes by delivering synthetic oligonucleotides to tumor cells has transformed the way scientists think about treating cancer. However, its clinical application has been limited due to the need to deliver synthetic RNAi oligonucleotides efficiently and effectively to target cells. Advances in nanotechnology and biomaterials have begun to address the limitations to RNAi therapeutic delivery, increasing the likelihood of RNAi therapeutics for cancer treatment in clinical settings. Herein, innovations in the design of nanocarriers for the delivery of oligonucleotides for successful RNAi therapy are discussed.
Collapse
Affiliation(s)
- Deidra M Ward
- McKetta Department of Chemical Engineering, 200 E. Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
| | - Aaliyah B Shodeinde
- McKetta Department of Chemical Engineering, 200 E. Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
| | - Nicholas A Peppas
- McKetta Department of Chemical Engineering, 200 E. Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave. Stop A1900, Austin, TX, 78712, USA
- Department of Pediatrics and Department of Surgery and Perioperative Care, Dell Medical School, 1601 Trinity St., Bldg. B, Stop Z0800, Austin, TX, 78712, USA
| |
Collapse
|
8
|
Song H, Hart SL, Du Z. Assembly strategy of liposome and polymer systems for siRNA delivery. Int J Pharm 2021; 592:120033. [PMID: 33144189 DOI: 10.1016/j.ijpharm.2020.120033] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022]
Abstract
In recent years, gene therapy has made tremendous progress in the development of disease treatment. Among them, siRNA offers specificity of gene silencing, ease of synthesis, and short development period, and has been intensively studied worldwide. However, siRNA as the hydrophilic polyanion is easily degraded in vivo and poorly taken up into cells and so, the benefits of its powerful gene silencing ability will not be realized until better carriers are developed that are capable of protecting siRNA and delivering it intact to the cytoplasm of the target cells. Cationic liposomes (CL) and cationic polymers (CP) are the main non-viral siRNA vectors, there have been a lot of reports on the use of these two carriers to deliver siRNA. Whereas, as far as we know, there have been few review articles that provide an in-depth summary of the siRNA loading principle and internal structures of the siRNA delivery system. We summarize the formation principle and assembly structure of the cationic liposome-siRNA and polymer-siRNA complexes, and point out their advantages and characteristics and also show how to perfect their assembly and improve their clinical application in the future. It supports some useful suggestions for siRNA therapy, specifically, safe and efficient delivery.
Collapse
Affiliation(s)
- Huiling Song
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Stephen L Hart
- Department of Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Zixiu Du
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| |
Collapse
|
9
|
Nguyen KG, Vrabel MR, Mantooth SM, Hopkins JJ, Wagner ES, Gabaldon TA, Zaharoff DA. Localized Interleukin-12 for Cancer Immunotherapy. Front Immunol 2020; 11:575597. [PMID: 33178203 PMCID: PMC7593768 DOI: 10.3389/fimmu.2020.575597] [Citation(s) in RCA: 268] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/08/2020] [Indexed: 12/30/2022] Open
Abstract
Interleukin-12 (IL-12) is a potent, pro-inflammatory type 1 cytokine that has long been studied as a potential immunotherapy for cancer. Unfortunately, IL-12's remarkable antitumor efficacy in preclinical models has yet to be replicated in humans. Early clinical trials in the mid-1990's showed that systemic delivery of IL-12 incurred dose-limiting toxicities. Nevertheless, IL-12's pleiotropic activity, i.e., its ability to engage multiple effector mechanisms and reverse tumor-induced immunosuppression, continues to entice cancer researchers. The development of strategies which maximize IL-12 delivery to the tumor microenvironment while minimizing systemic exposure are of increasing interest. Diverse IL-12 delivery systems, from immunocytokine fusions to polymeric nanoparticles, have demonstrated robust antitumor immunity with reduced adverse events in preclinical studies. Several localized IL-12 delivery approaches have recently reached the clinical stage with several more at the precipice of translation. Taken together, localized delivery systems are supporting an IL-12 renaissance which may finally allow this potent cytokine to fulfill its considerable clinical potential. This review begins with a brief historical account of cytokine monotherapies and describes how IL-12 went from promising new cure to ostracized black sheep following multiple on-study deaths. The bulk of this comprehensive review focuses on developments in diverse localized delivery strategies for IL-12-based cancer immunotherapies. Advantages and limitations of different delivery technologies are highlighted. Finally, perspectives on how IL-12-based immunotherapies may be utilized for widespread clinical application in the very near future are offered.
Collapse
Affiliation(s)
- Khue G Nguyen
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Maura R Vrabel
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Siena M Mantooth
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Jared J Hopkins
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Ethan S Wagner
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Taylor A Gabaldon
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - David A Zaharoff
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
10
|
Maeshima R, Moulding D, Stoker AW, Hart SL. MYCN Silencing by RNAi Induces Neurogenesis and Suppresses Proliferation in Models of Neuroblastoma with Resistance to Retinoic Acid. Nucleic Acid Ther 2020; 30:237-248. [PMID: 32240058 PMCID: PMC7415885 DOI: 10.1089/nat.2019.0831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/02/2020] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma (NB) is the most common solid tumor in childhood. Twenty percent of patients display MYCN amplification, which indicates a very poor prognosis. MYCN is a highly specific target for an NB tumor therapy as MYCN expression is absent or very low in most normal cells, while, as a transcription factor, it regulates many essential cell activities in tumor cells. We aim to develop a therapy for NB based on MYCN silencing by short interfering RNA (siRNA) molecules, which can silence target genes by RNA interference (RNAi), a naturally occurring method of gene silencing. It has been shown previously that MYCN silencing can induce apoptosis and differentiation in MYCN amplified NB. In this article, we have demonstrated that siRNA-mediated silencing of MYCN in MYCN-amplified NB cells induced neurogenesis in NB cells, whereas retinoic acid (RA) treatment did not. RA can differentiate NB cells and is used for treatment of residual disease after surgery or chemotherapy, but resistance can develop. In addition, MYCN siRNA treatment suppressed growth in a MYCN-amplified NB cell line more than that by RA. Our result suggests that gene therapy using RNAi targeting MYCN can be a novel therapy toward MYCN-amplified NB that have complete or partial resistance toward RA.
Collapse
Affiliation(s)
- Ruhina Maeshima
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Dale Moulding
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Andrew W. Stoker
- Developmental Biology & Cancer Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Stephen L. Hart
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
11
|
Bilip M, Shah S, Mathiyalakan M, Tagalakis AD, Hart SL, Maeshima R, Eaton S, Orford M, Irving E, Di Florio A, Simons C, Stoker AW. Liposomal delivery of hydrophobic RAMBAs provides good bioavailability and significant enhancement of retinoic acid signalling in neuroblastoma tumour cells. J Drug Target 2020; 28:643-654. [PMID: 31903789 PMCID: PMC7609071 DOI: 10.1080/1061186x.2019.1710157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/29/2019] [Accepted: 12/25/2019] [Indexed: 01/04/2023]
Abstract
Retinoid treatment is employed during residual disease treatment in neuroblastoma, where the aim is to induce neural differentiation or death in tumour cells. However, although therapeutically effective, retinoids have only modest benefits and suffer from poor pharmacokinetic properties. In vivo, retinoids induce CYP26 enzyme production in the liver, enhancing their own rapid metabolic clearance, while retinoid resistance in tumour cells themselves is considered to be due in part to increased CYP26 production. Retinoic acid metabolism blocking agents (RAMBAs), which inhibit CYP26 enzymes, can improve retinoic acid (RA) pharmacokinetics in pre-clinical neuroblastoma models. Here, we demonstrate that in cultured neuroblastoma tumour cells, RAMBAs enhance RA action as seen by morphological differentiation, AKT signalling and suppression of MYCN protein. Although active as retinoid enhancers, these RAMBAs are highly hydrophobic and their effective delivery in humans will be very challenging. Here, we demonstrate that such RAMBAs can be loaded efficiently into cationic liposomal particles, where the RAMBAs achieve good bioavailability and activity in cultured tumour cells. This demonstrates the efficacy of RAMBAs in enhancing retinoid signalling in neuroblastoma cells and shows for the first time that liposomal delivery of hydrophobic RAMBAs is a viable approach, providing novel opportunities for their delivery and application in humans.
Collapse
Affiliation(s)
- Maja Bilip
- Great Ormond Street Institute of Child Health, UCL, London, UK
| | - Shreya Shah
- Great Ormond Street Institute of Child Health, UCL, London, UK
| | | | | | - Stephen L. Hart
- Great Ormond Street Institute of Child Health, UCL, London, UK
| | - Ruhina Maeshima
- Great Ormond Street Institute of Child Health, UCL, London, UK
| | - Simon Eaton
- Great Ormond Street Institute of Child Health, UCL, London, UK
| | - Michael Orford
- Great Ormond Street Institute of Child Health, UCL, London, UK
| | - Elsa Irving
- Great Ormond Street Institute of Child Health, UCL, London, UK
| | | | - Claire Simons
- Great Ormond Street Institute of Child Health, UCL, London, UK
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | | |
Collapse
|
12
|
Young E, Gould D, Hart S. Toward gene therapy in rheumatoid arthritis. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1736942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Emily Young
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - David Gould
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Stephen Hart
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
13
|
Meng J, Tagalakis AD, Hart SL. Silencing E3 Ubiqutin ligase ITCH as a potential therapy to enhance chemotherapy efficacy in p53 mutant neuroblastoma cells. Sci Rep 2020; 10:1046. [PMID: 31974512 PMCID: PMC6978385 DOI: 10.1038/s41598-020-57854-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
P53 mutations are responsible for drug-resistance of tumour cells which impacts on the efficacy of treatment. Alternative tumour suppressor pathways need to be explored to treat p53- deficient tumours. The E3 ubiquitin ligase, ITCH, negatively regulates the tumour suppressor protein TP73, providing a therapeutic target to enhance the sensitivity of the tumour cells to the treatment. In the present study, two p53-mutant neuroblastoma cell lines were used as in vitro models. Using immunostaining, western blot and qPCR methods, we firstly identified that ITCH was expressed on p53-mutant neuroblastoma cell lines. Transfection of these cell lines with ITCH siRNA could effectively silence the ITCH expression, and result in the stabilization of TP73 protein, which mediated the apoptosis of the neuroblastoma cells upon irradiation treatment. Finally, in vivo delivery of the ITCH siRNA using nanoparticles to the neuroblastoma xenograft mouse model showed around 15-20% ITCH silencing 48 hours after transfection. Our data suggest that ITCH could be silenced both in vitro and in vivo using nanoparticles, and silencing of ITCH sensitizes the tumour cells to irradiation treatment. This strategy could be further explored to combine the chemotherapy/radiotherapy treatment to enhance the therapeutic effects on p53-deficient neuroblastoma.
Collapse
Affiliation(s)
- Jinhong Meng
- Ryboquin Ltd, Ettrick Riverside, Dunsdale Road, Selkirk, TD7 5EB, UK
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Aristides D Tagalakis
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
- Department of Biology, Edge Hill University, Ormskirk, L39 4QP, UK
| | - Stephen L Hart
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|
14
|
Smart nanoparticles assembled by endogenous molecules for siRNA delivery and cancer therapy via CD44 and EGFR dual-targeting. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 15:208-217. [PMID: 30352311 DOI: 10.1016/j.nano.2018.09.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/05/2018] [Accepted: 09/16/2018] [Indexed: 11/24/2022]
Abstract
We developed an anticancer siRNA delivery system (named HLPR) through modular assembly of endogenous molecules. The structure of HLPR was a tightly condensed siRNA-peptide inner core in turn surrounded by the disordered lipid layer and thin HA coating from which the EGFR-targeted amino acid sequences of YHWYGYTPQNVI partially protrude outside of cell surfaces. Both HA and YHWYGYTPQNVI anchored on HLPR were responsible for targeting CD44 and EGFR overexpressed on the tumor cell surfaces, respectively. HLPR was relatively stable in the blood circulation and reached the tumor tissue in vivo through passive and active targeting. Then HLPR entered tumor cells mainly through EGFR-mediated pathway followed by the separation of HA from the remaining parts of nanocomplexes. The HA-uncoated complexes escaped the endosome through the membrane fusion function of DOPE and released cargoes (siRNA and peptide/siRNA) in the cytoplasm. HLPR significantly inhibited the growth of implanted subcutaneous liver tumors without toxicity.
Collapse
|
15
|
Tagalakis AD, Maeshima R, Yu-Wai-Man C, Meng J, Syed F, Wu LP, Aldossary AM, McCarthy D, Moghimi SM, Hart SL. Peptide and nucleic acid-directed self-assembly of cationic nanovehicles through giant unilamellar vesicle modification: Targetable nanocomplexes for in vivo nucleic acid delivery. Acta Biomater 2017; 51:351-362. [PMID: 28110069 DOI: 10.1016/j.actbio.2017.01.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 01/16/2017] [Accepted: 01/16/2017] [Indexed: 12/29/2022]
Abstract
One of the greatest challenges for the development of genetic therapies is the efficient targeted delivery of therapeutic nucleic acids. Towards this goal, we have introduced a new engineering initiative in self-assembly of biologically safe and stable nanovesicle complexes (∼90 to 140nm) derived from giant unilamellar vesicle (GUV) precursors and comprising plasmid DNA or siRNA and targeting peptide ligands. The biological performance of the engineered nanovesicle complexes were studied both in vitro and in vivo and compared with cationic liposome-based lipopolyplexes. Compared with cationic lipopolyplexes, nanovesicle complexes did not show advantages in transfection and cell uptake. However, nanovesicle complexes neither displayed significant cytotoxicity nor activated the complement system, which are advantageous for intravenous injection and tumour therapy. On intravenous administration into a neuroblastoma xenograft mouse model, nanovesicle complexes were found to distribute throughout the tumour interstitium, thus providing an alternative safer approach for future development of tumour-specific therapeutic nucleic acid interventions. On oropharyngeal instillation, nanovesicle complexes displayed better transfection efficiency than cationic lipopolyplexes. The technological advantages of nanovesicle complexes, originating from GUVs, over traditional cationic liposome-based lipopolyplexes are discussed. STATEMENT OF SIGNIFICANCE The efficient targeted delivery of nucleic acids in vivo provides some of the greatest challenges to the development of genetic therapies. Giant unilamellar lipid vesicles (GUVs) have been used mainly as cell and tissue mimics and are instrumental in studying lipid bilayers and interactions. Here, the GUVs have been modified into smaller nanovesicles. We have then developed novel nanovesicle complexes comprising self-assembling mixtures of the nanovesicles, plasmid DNA or siRNA, and targeting peptide ligands. Their biophysical properties were studied and their transfection efficiency was investigated. They transfected cells efficiently without any associated cytotoxicity and with targeting specificity, and in vivo they resulted in very high and tumour-specific uptake and in addition, efficiently transfected the lung. The peptide-targeted nanovesicle complexes allow for the specific targeted enhancement of nucleic acid delivery with improved biosafety over liposomal formulations and represent a promising tool to improve our arsenal of safe, non-viral vectors to deliver therapeutic cargos in a variety of disorders.
Collapse
Affiliation(s)
- A D Tagalakis
- Experimental and Personalised Medicine Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.
| | - R Maeshima
- Experimental and Personalised Medicine Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - C Yu-Wai-Man
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - J Meng
- Experimental and Personalised Medicine Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - F Syed
- Experimental and Personalised Medicine Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - L-P Wu
- Centre for Pharmaceutical Nanotechnology and Nanotoxicology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - A M Aldossary
- Experimental and Personalised Medicine Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - D McCarthy
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - S M Moghimi
- Centre for Pharmaceutical Nanotechnology and Nanotoxicology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; School of Medicine, Pharmacy and Health, Durham University, Stockton-on-Tees TS17 6BH, UK
| | - S L Hart
- Experimental and Personalised Medicine Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
16
|
Krueger AB, Carnell P, Carpenter JF. Characterization of Factors Affecting Nanoparticle Tracking Analysis Results With Synthetic and Protein Nanoparticles. J Pharm Sci 2016; 105:1434-43. [PMID: 27019960 DOI: 10.1016/j.xphs.2016.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/29/2016] [Accepted: 02/05/2016] [Indexed: 10/22/2022]
Abstract
In many manufacturing and research areas, the ability to accurately monitor and characterize nanoparticles is becoming increasingly important. Nanoparticle tracking analysis is rapidly becoming a standard method for this characterization, yet several key factors in data acquisition and analysis may affect results. Nanoparticle tracking analysis is prone to user input and bias on account of a high number of parameters available, contains a limited analysis volume, and individual sample characteristics such as polydispersity or complex protein solutions may affect analysis results. This study systematically addressed these key issues. The integrated syringe pump was used to increase the sample volume analyzed. It was observed that measurements recorded under flow caused a reduction in total particle counts for both polystyrene and protein particles compared to those collected under static conditions. In addition, data for polydisperse samples tended to lose peak resolution at higher flow rates, masking distinct particle populations. Furthermore, in a bimodal particle population, a bias was seen toward the larger species within the sample. The impacts of filtration on an agitated intravenous immunoglobulin sample and operating parameters including "MINexps" and "blur" were investigated to optimize the method. Taken together, this study provides recommendations on instrument settings and sample preparations to properly characterize complex samples.
Collapse
Affiliation(s)
- Aaron B Krueger
- Department of Pharmaceutical Sciences, University of Colorado Center for Pharmaceutical Biotechnology, Aurora, Colorado 80045
| | | | - John F Carpenter
- Department of Pharmaceutical Sciences, University of Colorado Center for Pharmaceutical Biotechnology, Aurora, Colorado 80045.
| |
Collapse
|
17
|
Rezaee M, Oskuee RK, Nassirli H, Malaekeh-Nikouei B. Progress in the development of lipopolyplexes as efficient non-viral gene delivery systems. J Control Release 2016; 236:1-14. [DOI: 10.1016/j.jconrel.2016.06.023] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/12/2016] [Accepted: 06/13/2016] [Indexed: 01/05/2023]
|
18
|
Mann K, Kullberg M. Trastuzumab-targeted gene delivery to Her2-overexpressing breast cancer cells. Cancer Gene Ther 2016; 23:221-8. [PMID: 27199219 PMCID: PMC4946976 DOI: 10.1038/cgt.2016.21] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 12/23/2022]
Abstract
We describe a novel gene delivery system that specifically targets human epidermal growth factor receptor 2 (Her2)-overexpressing breast cancer cells. The targeting complexes consist of a PEGylated polylysine core that is bound to DNA molecules coding for either green fluorescent protein or shrimp luciferase. The complex is disulfide linked to the monoclonal antibody trastuzumab and to a pore-forming protein, Listeriolysin O (LLO). Trastuzumab is responsible for specific targeting of Her2 receptors and uptake of the gene delivery complex into endosomes of recipient cells, whereas LLO ensures that the DNA molecules are capable of transit from the endosomes into the cytoplasm. Omission of either trastuzumab or LLO from the nanocomplexes results in minimal gene product in targeted cells. Treatment of isogeneic MCF7 and MCF7/Her18 cell lines, differing only in number of Her2 receptors, with the complete gene delivery system results in a 30-fold greater expression of luciferase activity in the Her2-overexpressing MCF7/Her18 cells. Our nanocomplexes are small (150–250 nm), stable to storage, nontoxic and generic in make-up such that any plasmid DNA or antibody specific for cell-surface receptors can be coupled to the PEGylated polylysine core.
Collapse
Affiliation(s)
- K Mann
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK, USA.,WWAMI Medical Education Program, University of Alaska Anchorage, Anchorage, AK, USA
| | - M Kullberg
- WWAMI Medical Education Program, University of Alaska Anchorage, Anchorage, AK, USA
| |
Collapse
|
19
|
Kwok A, McCarthy D, Hart SL, Tagalakis AD. Systematic Comparisons of Formulations of Linear Oligolysine Peptides with siRNA and Plasmid DNA. Chem Biol Drug Des 2016; 87:747-63. [PMID: 26684657 PMCID: PMC4991294 DOI: 10.1111/cbdd.12709] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 01/18/2023]
Abstract
The effects of lysine peptide lengths on DNA and siRNA packaging and delivery were studied using four linear oligolysine peptides with 8 (K8), 16 (K16), 24 (K24) and 32 (K32) lysines. Oligolysine peptides with 16 lysines or longer were effective for stable monodisperse particle formation and optimal transfection efficiency with plasmid DNA (pDNA), but K8 formulations were less stable under anionic heparin challenge and consequently displayed poor transfection efficiency. However, here we show that the oligolysines were not able to package siRNA to form stable complexes, and consequently, siRNA transfection was unsuccessful. These results indicate that the physical structure and length of cationic peptides and their charge ratios are critical parameters for stable particle formation with pDNA and siRNA and that without packaging, delivery and transfection cannot be achieved.
Collapse
Affiliation(s)
- Albert Kwok
- Experimental and Personalised Medicine SectionUCL Institute of Child HealthUniversity College London30 Guilford StreetLondonWC1N 1EHUK
- Present address: Department of Clinical Biochemistry University of CambridgeBox 289, Addenbrooke's HospitalCambridgeCB2 0QQUK
| | - David McCarthy
- UCL School of Pharmacy29‐39 Brunswick SquareLondonWC1N 1AXUK
| | - Stephen L. Hart
- Experimental and Personalised Medicine SectionUCL Institute of Child HealthUniversity College London30 Guilford StreetLondonWC1N 1EHUK
| | - Aristides D. Tagalakis
- Experimental and Personalised Medicine SectionUCL Institute of Child HealthUniversity College London30 Guilford StreetLondonWC1N 1EHUK
| |
Collapse
|
20
|
Yu-Wai-Man C, Tagalakis AD, Manunta MD, Hart SL, Khaw PT. Receptor-targeted liposome-peptide-siRNA nanoparticles represent an efficient delivery system for MRTF silencing in conjunctival fibrosis. Sci Rep 2016; 6:21881. [PMID: 26905457 PMCID: PMC4764806 DOI: 10.1038/srep21881] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/03/2016] [Indexed: 12/22/2022] Open
Abstract
There is increasing evidence that the Myocardin-related transcription factor/Serum response factor (MRTF/SRF) pathway plays a key role in fibroblast activation and that knocking down MRTF can lead to reduced scarring and fibrosis. Here, we have developed a receptor-targeted liposome-peptide-siRNA nanoparticle as a non-viral delivery system for MRTF-B siRNA in conjunctival fibrosis. Using 50 nM siRNA, the MRTF-B gene was efficiently silenced by 76% and 72% with LYR and LER nanoparticles, respectively. The silencing efficiency was low when non-targeting peptides or siRNA alone or liposome-siRNA alone were used. LYR and LER nanoparticles also showed higher silencing efficiency than PEGylated LYR-P and LER-P nanoparticles. The nanoparticles were not cytotoxic using different liposomes, targeting peptides, and 50 nM siRNA. Three-dimensional fibroblast-populated collagen matrices were also used as a functional assay to measure contraction in vitro, and showed that MRTF-B LYR nanoparticles completely blocked matrix contraction after a single transfection treatment. In conclusion, this is the first study to develop and show that receptor-targeted liposome-peptide-siRNA nanoparticles represent an efficient and safe non-viral siRNA delivery system that could be used to prevent fibrosis after glaucoma filtration surgery and other contractile scarring conditions in the eye.
Collapse
Affiliation(s)
- Cynthia Yu-Wai-Man
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Aristides D Tagalakis
- Wolfson Centre for Gene Therapy of Childhood Disease, UCL Institute of Child Health, London, United Kingdom
| | - Maria D Manunta
- Wolfson Centre for Gene Therapy of Childhood Disease, UCL Institute of Child Health, London, United Kingdom
| | - Stephen L Hart
- Wolfson Centre for Gene Therapy of Childhood Disease, UCL Institute of Child Health, London, United Kingdom
| | - Peng T Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
21
|
Abstract
Nucleic acids show immense potential to treat cancer, acquired immune deficiency syndrome, neurological diseases and other incurable human diseases. Upon systemic administration, they encounter a series of barriers and hence barely reach the site of action, the cell. Intracellular delivery of nucleic acids is facilitated by nanovectors, both viral and non-viral. A major advantage of non-viral vectors over viral vectors is safety. Nanovectors evaluated specifically for nucleic acid delivery include polyplexes, lipoplexes and other cationic carrier-based vectors. However, more recently there is an increased interest in inorganic nanovectors for nucleic acid delivery. Nevertheless, there is no comprehensive review on the subject. The present review would cover in detail specific properties and types of inorganic nanovectors, their preparation techniques and various biomedical applications as therapeutics, diagnostics and theranostics. Future prospects are also suggested.
Collapse
|
22
|
Tagalakis AD, Castellaro S, Zhou H, Bienemann A, Munye MM, McCarthy D, White EA, Hart SL. A method for concentrating lipid peptide DNA and siRNA nanocomplexes that retains their structure and transfection efficiency. Int J Nanomedicine 2015; 10:2673-83. [PMID: 25878500 PMCID: PMC4388080 DOI: 10.2147/ijn.s78935] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Nonviral gene and small interfering RNA (siRNA) delivery formulations are extensively used for biological and therapeutic research in cell culture experiments, but less so in in vivo and clinical research. Difficulties with formulating the nanoparticles for uniformity and stability at concentrations required for in vivo and clinical use are limiting their progression in these areas. Here, we report a simple but effective method of formulating monodisperse nanocomplexes from a ternary formulation of lipids, targeting peptides, and nucleic acids at a low starting concentration of 0.2 mg/mL of DNA, and we then increase their concentration up to 4.5 mg/mL by reverse dialysis against a concentrated polymer solution at room temperature. The nanocomplexes did not aggregate and they had maintained their biophysical properties, but, importantly, they also mediated DNA transfection and siRNA silencing in cultured cells. Moreover, concentrated anionic nanocomplexes administered by convection-enhanced delivery in the striatum showed efficient silencing of the β-secretase gene BACE1. This method of preparing nanocomplexes could probably be used to concentrate other nonviral formulations and may enable more widespread use of nanoparticles in vivo.
Collapse
Affiliation(s)
- Aristides D Tagalakis
- Experimental and Personalised Medicine Section, University College London (UCL) Institute of Child Health, London, UK
| | - Sara Castellaro
- Experimental and Personalised Medicine Section, University College London (UCL) Institute of Child Health, London, UK ; Department of Pharmacy, University of Genova, Genova, Italy
| | - Haiyan Zhou
- Experimental and Personalised Medicine Section, University College London (UCL) Institute of Child Health, London, UK
| | - Alison Bienemann
- Functional Neurosurgery Research Group, School of Clinical Sciences, AMBI Labs, University of Bristol, Southmead Hospital, Bristol, UK
| | - Mustafa M Munye
- Experimental and Personalised Medicine Section, University College London (UCL) Institute of Child Health, London, UK
| | | | - Edward A White
- Functional Neurosurgery Research Group, School of Clinical Sciences, AMBI Labs, University of Bristol, Southmead Hospital, Bristol, UK
| | - Stephen L Hart
- Experimental and Personalised Medicine Section, University College London (UCL) Institute of Child Health, London, UK
| |
Collapse
|
23
|
Role of liposome and peptide in the synergistic enhancement of transfection with a lipopolyplex vector. Sci Rep 2015; 5:9292. [PMID: 25786833 PMCID: PMC4365389 DOI: 10.1038/srep09292] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 02/26/2015] [Indexed: 01/22/2023] Open
Abstract
Lipopolyplexes are of widespread interest for gene therapy due to their multifunctionality and high transfection efficiencies. Here we compared the biological and biophysical properties of a lipopolyplex formulation with its lipoplex and polyplex equivalents to assess the role of the lipid and peptide components in the formation and function of the lipopolyplex formulation. We show that peptide efficiently packaged plasmid DNA forming spherical, highly cationic nanocomplexes that are taken up efficiently by cells. However, transgene expression was poor, most likely due to endosomal degradation since the polyplex lacks membrane trafficking properties. In addition the strong peptide-DNA interaction may prevent plasmid release from the complex and so limit plasmid DNA availability. Lipid/DNA lipoplexes, on the other hand, produced aggregated masses that showed poorer cellular uptake than the polyplex but contrastingly greater levels of transgene expression. This may be due to the greater ability of lipoplexes relative to polyplexes to promote endosomal escape. Lipopolyplex formulations formed spherical, cationic nanocomplexes with efficient cellular uptake and significantly enhanced transfection efficiency. The lipopolyplexes combined the optimal features of lipoplexes and polyplexes showing optimal cell uptake, endosomal escape and availability of plasmid for transcription, thus explaining the synergistic increase in transfection efficiency.
Collapse
|
24
|
Improved intracellular delivery of peptide- and lipid-nanoplexes by natural glycosides. J Control Release 2015; 206:75-90. [PMID: 25758332 DOI: 10.1016/j.jconrel.2015.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 12/29/2022]
Abstract
Targeted nanocarriers undergo endocytosis upon binding to their membrane receptors and are transported into cellular compartments such as late endosomes and lysosomes. In gene delivery the genetic material has to escape from the cellular compartments into the cytosol. The process of endosomal escape is one of the most critical steps for successful gene delivery. For this reason synthetic lipids with fusogenic properties such as 2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) are integrated into the nanocarriers. In this study we show that a natural, plant derived glycoside (SO1861) from Saponaria officinalis L. greatly improves the efficacy of lipid based as well as non-lipid based targeted nanoplexes consisting of a targeted K16 peptide with a nucleic acid binding domain and plasmid-DNA, minicircle-DNA or small interfering RNA (siRNA). By confocal live cell imaging and single cell analyses, we demonstrate that SO1861 augments the escape of the genetic cargo out of the intracellular compartments into the cytosol. Co-localisation experiments with fluorescence labelled dextran and transferrin indicate that SO1861 induces the release of the genetic cargo out of endosomes and lysosomes. However, the transduction efficacy of a lentivirus based gene delivery system was not augmented. In order to design receptor-targeted nanoplexes (LPD) with improved functional properties, SO1861 was integrated into the lipid matrix of the LPD. The SO1861 sensitized LPD (LPDS) were characterized by dynamic light scattering and transmission electron microscopy. Compared to their LPD counterparts the LPDS-nanoplexes showed a greatly improved gene delivery. As shown by differential scanning calorimetry SO1861 can be easily integrated into the lipid bilayer of glycerophospholipid model membranes. This underlines the great potential of SO1861 as a new transfection multiplier for non-viral gene delivery systems.
Collapse
|
25
|
The role of the helper lipid on the DNA transfection efficiency of lipopolyplex formulations. Sci Rep 2014; 4:7107. [PMID: 25407686 PMCID: PMC4236742 DOI: 10.1038/srep07107] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/28/2014] [Indexed: 01/06/2023] Open
Abstract
Multifunctional, lipopolyplex formulations comprising a mixture of cationic liposomes and cationic, receptor-targeting peptides have potential use in gene therapy applications. Lipopolyplex formulations described here are typically far more efficient transfection agents than binary lipoplex or polyplex formulations. It has been shown previously that the peptide component mediates both DNA packaging and targeting of the nanoparticle while in this report we investigate the contribution of the lipid component. We hypothesised that the lipid components synergise with the peptides in the transfection process by promoting endosomal escape after lipid bilayer fusion. Lipopolyplexes were prepared with cationic liposomes comprising DOTAP with either neutral lipid DOPE or DOPC. DOPE promotes fusogenic, inverted hexagonal lipid structures while DOPC promotes more stable laminar structures. Lipopolyplexes containing DOPE showed substantially higher transfection efficiency than those formulated with DOPC, both in vitro and in vivo. DOPE-containing lipopolyplexes showed rapid endosomal trafficking and nuclear accumulation of DNA while DOPC-containing formulations remained within the late endo-lysosomal compartments. These findings are consistent with previous finding for the role of DOPE in lipoplexes and support the hypothesis regarding the function of the lipid components in lipopolyplexes. These findings will help to inform future lipopolyplex design, strategies and clinical development processes.
Collapse
|
26
|
Tagalakis AD, Lee DHD, Bienemann AS, Zhou H, Munye MM, Saraiva L, McCarthy D, Du Z, Vink CA, Maeshima R, White EA, Gustafsson K, Hart SL. Multifunctional, self-assembling anionic peptide-lipid nanocomplexes for targeted siRNA delivery. Biomaterials 2014; 35:8406-15. [PMID: 24985735 DOI: 10.1016/j.biomaterials.2014.06.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/01/2014] [Indexed: 12/21/2022]
Abstract
Formulations of cationic liposomes and polymers readily self-assemble by electrostatic interactions with siRNA to form cationic nanoparticles which achieve efficient transfection and silencing in vitro. However, the utility of cationic formulations in vivo is limited due to rapid clearance from the circulation, due to their association with serum proteins, as well as systemic and cellular toxicity. These problems may be overcome with anionic formulations but they provide challenges of self-assembly and transfection efficiency. We have developed anionic, siRNA nanocomplexes utilizing anionic PEGylated liposomes and cationic targeting peptides that overcome these problems. Biophysical measurements indicated that at optimal ratios of components, anionic PEGylated nanocomplexes formed spherical particles and that, unlike cationic nanocomplexes, were resistant to aggregation in the presence of serum, and achieved significant gene silencing although their non-PEGylated anionic counterparts were less efficient. We have evaluated the utility of anionic nanoparticles for the treatment of neuronal diseases by administration to rat brains of siRNA to BACE1, a key enzyme involved in the formation of amyloid plaques. Silencing of BACE1 was achieved in vivo following a single injection of anionic nanoparticles by convection enhanced delivery and specificity of RNA interference verified by 5' RACE-PCR and Western blot analysis of protein.
Collapse
Affiliation(s)
- Aristides D Tagalakis
- Molecular Immunology Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
| | - Do Hyang D Lee
- Molecular Immunology Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Alison S Bienemann
- Functional Neurosurgery Research Group, School of Clinical Sciences, AMBI Labs, University of Bristol, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Haiyan Zhou
- Molecular Immunology Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Mustafa M Munye
- Molecular Immunology Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Luisa Saraiva
- Molecular Immunology Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - David McCarthy
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Zixiu Du
- Molecular Immunology Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Conrad A Vink
- Molecular Immunology Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Ruhina Maeshima
- Molecular Immunology Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Edward A White
- Functional Neurosurgery Research Group, School of Clinical Sciences, AMBI Labs, University of Bristol, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Kenth Gustafsson
- Molecular Immunology Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Stephen L Hart
- Molecular Immunology Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| |
Collapse
|
27
|
Kodama Y, Ohkubo C, Kurosaki T, Egashira K, Sato K, Fumoto S, Nishida K, Higuchi N, Kitahara T, Nakamura T, Sasaki H. Secure and effective gene delivery system of plasmid DNA coated by polynucleotide. J Drug Target 2014; 23:43-51. [PMID: 25148610 DOI: 10.3109/1061186x.2014.950665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Polynucleotides are anionic macromolecules which are expected to transfer into the targeted cells through specific uptake mechanisms. So, we developed polynucleotides coating complexes of plasmid DNA (pDNA) and polyethylenimine (PEI) for a secure and efficient gene delivery system and evaluated their usefulness. Polyadenylic acid (polyA), polyuridylic acid (polyU), polycytidylic acid (polyC), and polyguanylic acid (polyG) were examined as the coating materials. pDNA/PEI/polyA, pDNA/PEI/polyU, and pDNA/PEI/polyC complexes formed nanoparticles with a negative surface charge although pDNA/PEI/polyG was aggregated. The pDNA/PEI/polyC complex showed high transgene efficiency in B16-F10 cells although there was little efficiency in pDNA/PEI/polyA and pDNA/PEI/polyU complexes. An inhibition study strongly indicated the specific uptake mechanism of pDNA/PEI/polyC complex. Polynucleotide coating complexes had lower cytotoxicity than pDNA/PEI complex. The pDNA/PEI/polyC complex showed high gene expression selectively in the spleen after intravenous injection into mice. The pDNA/PEI/polyC complex showed no agglutination with erythrocytes and no acute toxicity although these were observed in pDNA/PEI complex. Thus, we developed polynucleotide coating complexes as novel vectors for clinical gene therapy, and the pDNA/PEI/polyC complex as a useful candidate for a gene delivery system.
Collapse
Affiliation(s)
- Yukinobu Kodama
- Department of Hospital Pharmacy, Nagasaki University Hospital , Nagasaki , Japan and
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Legumain protease-activated TAT-liposome cargo for targeting tumours and their microenvironment. Nat Commun 2014; 5:4280. [PMID: 24969588 DOI: 10.1038/ncomms5280] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/02/2014] [Indexed: 02/05/2023] Open
Abstract
Specific targeting and cellular internalization are key properties for carriers of antitumor therapeutic agents. Here, we develop a drug carrier through the attachment of substrate of endoprotease legumain, alanine-alanine-asparagine (AAN), to cell-penetrating peptides (TAT, trans-activating factor). The addition of the AAN moiety to the fourth lysine in the TAT creates a branched peptide moiety, which leads to a decrease in the transmembrane transport capacity of TAT by 72.65%. Legumain efficiently catalyses the release of TAT-liposome from the AAN-TAT-liposome and thereby recovers the penetrating capacity of TAT. Doxorubicin carried by the AAN-TAT-liposome led to an increase in the tumoricidal effect of doxorubicin and a reduction in its systemic adverse effects in comparison with doxorubicin carried by a control delivery system. Thus, the specific targeting and high efficiency of this delivery platform offers a novel approach to limit the toxicity of anticancer agents as well as increasing their efficacy in cancer therapy.
Collapse
|
29
|
Zhang MZ, Li C, Fang BY, Yao MH, Ren QQ, Zhang L, Zhao YD. High transfection efficiency of quantum dot-antisense oligonucleotide nanoparticles in cancer cells through dual-receptor synergistic targeting. NANOTECHNOLOGY 2014; 25:255102. [PMID: 24896735 DOI: 10.1088/0957-4484/25/25/255102] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Incorporating ligands with nanoparticle-based carriers for specific delivery of therapeutic nucleic acids (such as antisense oligonucleotides and siRNA) to tumor sites is a promising approach in anti-cancer strategies. However, nanoparticle-based carriers remain insufficient in terms of the selectivity and transfection efficiency. In this paper, we designed a dual receptor-targeted QDs gene carrier QD-(AS-ODN+GE11+c(RGDfK)) which could increase the cellular uptake efficiency and further enhance the transfection efficiency. Here, the targeting ligands used were peptides GE11 and c(RGDfK) which could recognize epidermal growth factor receptors (EGFR) and integrin ανβ3 receptors, respectively. Quantitative flow cytometry and ICP/MS showed that the synergistic effect between EGFR and integrin ανβ3 increased the cellular uptake of QDs carriers. The effects of inhibition agents showed the endocytosis pathway of QD-(AS-ODN+GE11+c(RGDfK)) probe was mainly clathrin-mediated. Western blot confirmed that QD-(AS-ODN+GE11+c(RGDfK)) could further enhance gene silencing efficiency compared to QD-(AS-ODN+GE11) and QD-(AS-ODN+c(RGDfK)), suggesting this dual receptor-targeted gene carrier achieved desired transfection efficiency. In this gene delivery system, QDs could not only be used as a gene vehicle but also as fluorescence probe, allowing for localization and tracking during the delivery process. This transport model is very well referenced for non-viral gene carriers to enhance the targeting ability and transfection efficiency.
Collapse
Affiliation(s)
- Ming-Zhen Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
30
|
Kullberg M, McCarthy R, Anchordoquy TJ. Gene delivery to Her-2+ breast cancer cells using a two-component delivery system to achieve specificity. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1253-62. [PMID: 24632244 DOI: 10.1016/j.nano.2014.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 01/31/2014] [Accepted: 02/28/2014] [Indexed: 10/25/2022]
Abstract
UNLABELLED Current liposomal gene delivery systems predominately utilize cationic lipids, which efficiently bind and deliver DNA plasmid, but also result in nonspecific gene expression in lung and liver tissue. To improve specificity, a two-component delivery strategy employing neutral liposomes was used to target breast cancers positive for the human epidermal growth factor receptor 2 (Her-2). The first component consisted of plasmid DNA condensed with cationic polyethylene glycol (PEG) modified polylysine (PL/DNA). The second component was a neutral Her-2 targeting liposome conjugated to the pore-forming protein, Listeriolysin O (LLO). Independently, PL/DNA delivery resulted in low expression of plasmid DNA. However, when PL/DNA and LLO/liposomes co-localized within an endosome, LLO disrupted endosome integrity, leading to cytoplasmic delivery and expression of the plasmid. When used to deliver a plasmid encoding the luciferase gene, this two-component system resulted in gene expression that was 268-fold greater in Her-2 positive cells than in Her-2 negative cells. FROM THE CLINICAL EDITOR In this paper a novel two-component gene delivery method is presented using PL/DNA and LLO liposomes, demonstrating strongly significant results in a model system.
Collapse
Affiliation(s)
- Max Kullberg
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO.
| | - Ryan McCarthy
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO
| | - Thomas J Anchordoquy
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO
| |
Collapse
|
31
|
Li W, Deng L, Moosa B, Wang G, Mashat A, M. Khashab N. “Nail” and “comb” effects of cholesterol modified NIPAm oligomers on cancer targeting liposomes. Biomater Sci 2014; 2:476-483. [DOI: 10.1039/c3bm60222b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Tagalakis AD, Kenny GD, Bienemann AS, McCarthy D, Munye MM, Taylor H, Wyatt MJ, Lythgoe MF, White EA, Hart SL. PEGylation improves the receptor-mediated transfection efficiency of peptide-targeted, self-assembling, anionic nanocomplexes. J Control Release 2013; 174:177-87. [PMID: 24269968 DOI: 10.1016/j.jconrel.2013.11.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 11/10/2013] [Accepted: 11/13/2013] [Indexed: 01/04/2023]
Abstract
Non-viral vector formulations comprise typically complexes of nucleic acids with cationic polymers or lipids. However, for in vivo applications cationic formulations suffer from problems of poor tissue penetration, non-specific binding to cells, interaction with serum proteins and cell adhesion molecules and can lead to inflammatory responses. Anionic formulations may provide a solution to these problems but they have not been developed to the same extent as cationic formulations due to difficulties of nucleic acid packaging and poor transfection efficiency. We have developed novel PEGylated, anionic nanocomplexes containing cationic targeting peptides that act as a bridge between PEGylated anionic liposomes and plasmid DNA. At optimized ratios, the components self-assemble into anionic nanocomplexes with a high packaging efficiency of plasmid DNA. Anionic PEGylated nanocomplexes were resistant to aggregation in serum and transfected cells with a far higher degree of receptor-targeted specificity than their homologous non-PEGylated anionic and cationic counterparts. Gadolinium-labeled, anionic nanoparticles, administered directly to the brain by convection-enhanced delivery displayed improved tissue penetration and dispersal as well as more widespread cellular transfection than cationic formulations. Anionic PEGylated nanocomplexes have widespread potential for in vivo gene therapy due to their targeted transfection efficiency and ability to penetrate tissues.
Collapse
Affiliation(s)
- Aristides D Tagalakis
- Wolfson Centre for Gene Therapy of Childhood Disease, UCL Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK.
| | - Gavin D Kenny
- Wolfson Centre for Gene Therapy of Childhood Disease, UCL Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Alison S Bienemann
- Functional Neurosurgery Research Group, School of Clinical Sciences, AMBI Labs, University of Bristol, Southmead Hospital, Bristol BS10 5NB, UK
| | - David McCarthy
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Mustafa M Munye
- Wolfson Centre for Gene Therapy of Childhood Disease, UCL Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Hannah Taylor
- Functional Neurosurgery Research Group, School of Clinical Sciences, AMBI Labs, University of Bristol, Southmead Hospital, Bristol BS10 5NB, UK
| | - Marcella J Wyatt
- Functional Neurosurgery Research Group, School of Clinical Sciences, AMBI Labs, University of Bristol, Southmead Hospital, Bristol BS10 5NB, UK
| | - Mark F Lythgoe
- UCL Centre for Advanced Biological Imaging, Division of Medicine and Institute of Child Health, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Edward A White
- Functional Neurosurgery Research Group, School of Clinical Sciences, AMBI Labs, University of Bristol, Southmead Hospital, Bristol BS10 5NB, UK
| | - Stephen L Hart
- Wolfson Centre for Gene Therapy of Childhood Disease, UCL Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
33
|
Kullberg M, McCarthy R, Anchordoquy TJ. Systemic tumor-specific gene delivery. J Control Release 2013; 172:730-6. [PMID: 24035974 DOI: 10.1016/j.jconrel.2013.08.300] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/20/2013] [Accepted: 08/22/2013] [Indexed: 12/19/2022]
Abstract
The objective of a systemically administered cancer gene therapy is to achieve gene expression that is isolated to the tumor tissue. Unfortunately, viral systems have strong affinity for the liver, and delivery from non-viral cationic systems often results in high expression in the lungs. Non-specific delivery to these organs must be overcome if tumors are to be aggressively treated with genes such as IL-12 which activates a tumor immune response, and TNF-alpha which can induce tumor cell apoptosis. Techniques which have led to specific expression in tumor tissue include receptor targeting through ligand conjugation, utilization of tumor specific promoters and viral mutation in order to take advantage of proteins overexpressed in tumor cells. This review analyzes these techniques applied to liposomal, PEI, dendrimer, stem cell and viral gene delivery systems in order to determine the techniques that are most effective in achieving tumor specific gene expression after systemic administration.
Collapse
Affiliation(s)
- Max Kullberg
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, 12850 Montview Boulevard, Aurora, Colorado 80045, USA.
| | | | | |
Collapse
|
34
|
Kwok A, Eggimann GA, Reymond JL, Darbre T, Hollfelder F. Peptide dendrimer/lipid hybrid systems are efficient DNA transfection reagents: structure--activity relationships highlight the role of charge distribution across dendrimer generations. ACS NANO 2013; 7:4668-4682. [PMID: 23682947 PMCID: PMC3715887 DOI: 10.1021/nn400343z] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/30/2013] [Indexed: 06/02/2023]
Abstract
Efficient DNA delivery into cells is the prerequisite of the genetic manipulation of organisms in molecular and cellular biology as well as, ultimately, in nonviral gene therapy. Current reagents, however, are relatively inefficient, and structure-activity relationships to guide their improvement are hard to come by. We now explore peptide dendrimers as a new type of transfection reagent and provide a quantitative framework for their evaluation. A collection of dendrimers with cationic and hydrophobic amino acid motifs (such as KK, KA, KH, KL, and LL) distributed across three dendrimer generations was synthesized by a solid-phase protocol that provides ready access to dendrimers in milligram quantities. In conjunction with a lipid component (DOTMA/DOPE), the best reagent, G1,2,3-KL ((LysLeu)8(LysLysLeu)4(LysLysLeu)2LysGlySerCys-NH2), improves transfection by 6-10-fold over commercial reagents under their respective optimal conditions. Emerging structure-activity relationships show that dendrimers with cationic and hydrophobic residues distributed in each generation are transfecting most efficiently. The trigenerational dendritic structure has an advantage over a linear analogue worth up to an order of magnitude. The success of placing the decisive cationic charge patterns in inner shells rather than previously on the surface of macromolecules suggests that this class of dendrimers significantly differs from existing transfection reagents. In the future, this platform may be tuned further and coupled to cell-targeting moieties to enhance transfection and cell specificity.
Collapse
Affiliation(s)
- Albert Kwok
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Gabriela A. Eggimann
- Department of Chemistry & Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry & Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Tamis Darbre
- Department of Chemistry & Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| |
Collapse
|
35
|
Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting. JOURNAL OF DRUG DELIVERY 2013; 2013:705265. [PMID: 23533772 PMCID: PMC3606784 DOI: 10.1155/2013/705265] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 02/06/2013] [Indexed: 12/30/2022]
Abstract
Liposomes are delivery systems that have been used to formulate a vast variety of therapeutic and imaging agents for the past several decades. They have significant advantages over their free forms in terms of pharmacokinetics, sensitivity for cancer diagnosis and therapeutic efficacy. The multifactorial nature of cancer and the complex physiology of the tumor microenvironment require the development of multifunctional nanocarriers. Multifunctional liposomal nanocarriers should combine long blood circulation to improve pharmacokinetics of the loaded agent and selective distribution to the tumor lesion relative to healthy tissues, remote-controlled or tumor stimuli-sensitive extravasation from blood at the tumor's vicinity, internalization motifs to move from tumor bounds and/or tumor intercellular space to the cytoplasm of cancer cells for effective tumor cell killing. This review will focus on current strategies used for cancer detection and therapy using liposomes with special attention to combination therapies.
Collapse
|
36
|
Tagalakis AD, Saraiva L, McCarthy D, Gustafsson KT, Hart SL. Comparison of nanocomplexes with branched and linear peptides for siRNA delivery. Biomacromolecules 2013; 14:761-70. [PMID: 23339543 DOI: 10.1021/bm301842j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Efficient delivery of small interfering RNA (siRNA) remains the greatest technological barrier to the clinical implementation of RNA interference strategies. We are investigating the relationship between the biophysical properties of siRNA nanocomplexes and their transfection efficiency as an approach to the generation of improved formulations. Peptide-based formulations are of great interest, and so in this study we have compared nanocomplex formulations for siRNA delivery containing linear and branched oligolysine or oligoarginine peptides. Peptides were combined with cationic liposomes in siRNA formulations and compared for transfection efficiency, siRNA packaging efficiency, biophysical properties, and particle stability. Nanocomplexes containing linear peptides were more condensed and stable than branched peptide formulations; however, their silencing activity was lower, suggesting that their greater stability might limit siRNA release within the cell. Thus, differences in transfection appeared to be associated with differences in packaging and stability, indicating the importance of optimizing this feature in siRNA nanocomplexes.
Collapse
Affiliation(s)
- Aristides D Tagalakis
- Wolfson Centre for Gene Therapy of Childhood Disease, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | | | | | | | | |
Collapse
|
37
|
Levine RM, Scott CM, Kokkoli E. Peptide functionalized nanoparticles for nonviral gene delivery. SOFT MATTER 2013; 9:985-1004. [DOI: 10.1039/c2sm26633d] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
38
|
Li W, Zhang P, Zheng K, Hu Q, Wang Y. Redox-triggered intracellular dePEGylation based on diselenide-linked polycations for DNA delivery. J Mater Chem B 2013; 1:6418. [DOI: 10.1039/c3tb21241f] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
39
|
Welser K, Campbell F, Kudsiova L, Mohammadi A, Dawson N, Hart SL, Barlow DJ, Hailes HC, Lawrence MJ, Tabor AB. Gene Delivery Using Ternary Lipopolyplexes Incorporating Branched Cationic Peptides: The Role of Peptide Sequence and Branching. Mol Pharm 2012; 10:127-41. [DOI: 10.1021/mp300187t] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Katharina Welser
- Department of Chemistry, University
College London, Christopher Ingold Laboratories, 20 Gordon Street,
London WC1H 0AJ, U.K
| | - Frederick Campbell
- Department of Chemistry, University
College London, Christopher Ingold Laboratories, 20 Gordon Street,
London WC1H 0AJ, U.K
| | - Laila Kudsiova
- Institute
of Pharmaceutical
Science, King’s College London, Franklin-Wilkins Building,
150 Stamford Street, Waterloo Campus, London SE1 9NH, U.K
| | - Atefeh Mohammadi
- Department of Chemistry, University
College London, Christopher Ingold Laboratories, 20 Gordon Street,
London WC1H 0AJ, U.K
| | - Natalie Dawson
- Department of Chemistry, University
College London, Christopher Ingold Laboratories, 20 Gordon Street,
London WC1H 0AJ, U.K
| | - Stephen L. Hart
- Wolfson Centre for Gene Therapy
of Childhood Disease, UCL Institute of Child Health, 30 Guilford Street,
London WC1N 1EH, U.K
| | - David J. Barlow
- Institute
of Pharmaceutical
Science, King’s College London, Franklin-Wilkins Building,
150 Stamford Street, Waterloo Campus, London SE1 9NH, U.K
| | - Helen C. Hailes
- Department of Chemistry, University
College London, Christopher Ingold Laboratories, 20 Gordon Street,
London WC1H 0AJ, U.K
| | - M. Jayne Lawrence
- Institute
of Pharmaceutical
Science, King’s College London, Franklin-Wilkins Building,
150 Stamford Street, Waterloo Campus, London SE1 9NH, U.K
| | - Alethea B. Tabor
- Department of Chemistry, University
College London, Christopher Ingold Laboratories, 20 Gordon Street,
London WC1H 0AJ, U.K
| |
Collapse
|
40
|
Kenny GD, Villegas-Llerena C, Tagalakis AD, Campbell F, Welser K, Botta M, Tabor AB, Hailes HC, Lythgoe MF, Hart SL. Multifunctional receptor-targeted nanocomplexes for magnetic resonance imaging and transfection of tumours. Biomaterials 2012; 33:7241-50. [DOI: 10.1016/j.biomaterials.2012.06.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 06/22/2012] [Indexed: 12/21/2022]
|
41
|
Reversible masking using low-molecular-weight neutral lipids to achieve optimal-targeted delivery. JOURNAL OF DRUG DELIVERY 2012; 2012:173465. [PMID: 22655199 PMCID: PMC3359711 DOI: 10.1155/2012/173465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 02/09/2012] [Accepted: 02/27/2012] [Indexed: 12/28/2022]
Abstract
Intravenous injection of therapeutics is required to effectively treat or cure metastatic cancer, certain cardiovascular diseases, and other acquired or inherited diseases. Using this route of delivery allows potential uptake in all disease targets that are accessed by the bloodstream. However, normal tissues and organs also have the potential for uptake of therapeutic agents. Therefore, investigators have used targeted delivery to attempt delivery solely to the target cells; however, use of ligands on the surface of delivery vehicles to target specific cell surface receptors is not sufficient to avoid nonspecific uptake. PEGylation has been used for decades to try to avoid nonspecific uptake but suffers from many problems known as “The PEGylation Dilemma.” We have solved this dilemma by replacing PEGylation with reversible masking using low-molecular-weight neutral lipids in order to achieve optimal-targeted delivery solely to target cells. Our paper will focus on this topic.
Collapse
|
42
|
Bartneck M, Keul HA, Wambach M, Bornemann J, Gbureck U, Chatain N, Neuss S, Tacke F, Groll J, Zwadlo-Klarwasser G. Effects of nanoparticle surface-coupled peptides, functional endgroups, and charge on intracellular distribution and functionality of human primary reticuloendothelial cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 8:1282-92. [PMID: 22406188 DOI: 10.1016/j.nano.2012.02.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 01/15/2012] [Accepted: 02/22/2012] [Indexed: 11/27/2022]
Abstract
UNLABELLED The medical use of nanoparticles (NPs) has to consider their interactions with the cells of the reticuloendothelial system. In this study the authors used gold nanorods coated by PEG chains bearing peptides or charged functional groups to study their influence on the uptake, subcellular distribution, and activation of human primary reticuloendothelial cells: monocytes, macrophages (MΦ), immature and mature dendritic cells (DC), and endothelial cells (EC). We found that beside MΦ and immature DC also EC internalize large quantities of NPs and observed an increased uptake of positively charged particles. Most notably, NPs accumulated in the MHC II compartment in mature DC that is involved in antigen processing. Furthermore, surface-coupled peptide sequences RGD and GLF altered the activation profile of DC, and modulated cytokine release in both DC and MΦ in a cell specific manner. These data suggest that the charge of NPs mainly influences their uptake, whereas conjugated peptides alter cell functions. FROM THE CLINICAL EDITOR In this paper the interactions between RES cells and nanoparticles is investigated, concluding that in the case of gold nanorods charge determines uptake characteristics, whereas conjugated peptides determine their function.
Collapse
Affiliation(s)
- Matthias Bartneck
- Department of Medicine III, Medical Faculty, RWTH Aachen, Aachen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Zhu Z, Xie C, Liu Q, Zhen X, Zheng X, Wu W, Li R, Ding Y, Jiang X, Liu B. The effect of hydrophilic chain length and iRGD on drug delivery from poly(ε-caprolactone)-poly(N-vinylpyrrolidone) nanoparticles. Biomaterials 2011; 32:9525-35. [PMID: 21903260 DOI: 10.1016/j.biomaterials.2011.08.072] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 08/23/2011] [Indexed: 12/18/2022]
Abstract
Poly(ε-caprolactone)-b-Poly(N-vinylpyrrolidone) (PCL-b-PVP) copolymers with different PVP block length were synthesized by xanthate-mediated reverse addition fragment transfer polymerization (RAFT) and the xanthate chain transfer agent on chain end was readily translated to hydroxy or aldehyde for conjugating various functional moieties, such as fluorescent dye, biotin hydrazine and tumor homing peptide iRGD. Thus, PCL-PVP nanoparticles were prepared by these functionalized PCL-b-PVP copolymers. Furthermore, paclitaxel-loaded PCL-PVP nanoparticles with satisfactory drug loading content (15%) and encapsulation efficiency (>90%) were obtained and used in vitro and in vivo antitumor examination. It was demonstrated that the length of PVP block had a significant influence on cytotoxicity, anti-BSA adsorption, circulation time, stealth behavior, biodistribution and antitumor activity for the nanoparticles. iRGD on PCL-PVP nanoparticle surface facilitated the nanoparticles to accumulate in tumor site and enhanced their penetration in tumor tissues, both of which improved the efficacy of paclitaxel-loaded nanoparticles in impeding tumor growth and prolonging the life time of H22 tumor-bearing mice.
Collapse
Affiliation(s)
- Zhenshu Zhu
- Laboratory of Mesoscopic Chemistry and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Tagalakis AD, He L, Saraiva L, Gustafsson KT, Hart SL. Receptor-targeted liposome-peptide nanocomplexes for siRNA delivery. Biomaterials 2011; 32:6302-15. [DOI: 10.1016/j.biomaterials.2011.05.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 05/05/2011] [Indexed: 01/08/2023]
|
45
|
Luo D, Zheng MY, Huang H. Role of integrins in invasion and metastasis of gastric cancer: potential therapeutic implications. Shijie Huaren Xiaohua Zazhi 2011; 19:2540-2545. [DOI: 10.11569/wcjd.v19.i24.2540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Integrins are a large family of cell adhesion molecules that are involved in many important cellular and pathological functions including cell survival, growth, differentiation, migration, inflammatory responses, platelet aggregation, tissue repair and tumor invasion. Over the past two decades, several integrin-targeted drugs have made their way into clinical practice, many others are increasing each year in clinical trials and still more are showing promising potential for therapeutic development based on preclinical studies. Additionally, the role of integrins in pathological conditions combined with their druggability by means of cell surface accessibility makes them attractive pharmacological targets in cancer research. As such, the identification of key roles of integrins in gastric cancer has revealed their substantial potential as therapeutic targets. This review summarizes recent progress in the study of correlation between integrins and invasion and metastasis of gastric cancer and evaluates their values in developing molecularly targeted therapies for this disease.
Collapse
|