1
|
Li J, Xu J, Wang Y, Chen Y, Ding Y, Gao W, Tan Y, Ge N, Chen Y, Ge S, Yang Q, He B, Ye X. Fusible and Radiopaque Microspheres for Embolization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405224. [PMID: 39118578 DOI: 10.1002/adma.202405224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/22/2024] [Indexed: 08/10/2024]
Abstract
In this work, fusible microspheres loaded with radiopaque agents as an embolic agent for transcatheter arterial embolization (TAE) are developed. A poly(ethylene glycol) (PEG) and poly(ε-caprolactone) (PCL) multi-block copolymer basing polyurethane (PCEU) is synthesized and fabricated into blank microspheres (BMs). The microspheres are elastic in compression test. A clinical contrast agent lipiodol is encapsulated in the microspheres to receive fusible radiopaque microspheres (FRMs). The sizes of FRMs are uniform and range from 142.2 to 343.1 µm. The encapsulated lipiodol acts as the plasticizer to reduce the melting temperature point (Tm) of PECU microspheres, thus, leading to the fusion of microspheres to exhibit efficient embolization in vivo. The performance of FRMs is carried out on a rabbit ear embolization model. Serious ischemic necrosis is observed and the radiopacity of FRMs sustains much longer time than that of commercial contrast agent Loversol in vivo. The fusible and radiopaque microsphere is promising to be developed as an exciting embolic agent.
Collapse
Affiliation(s)
- Jing Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Jingyi Xu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yunpeng Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yue Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yuanyuan Ding
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Wenxia Gao
- School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Yexiong Tan
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, 201805, China
| | - Naijian Ge
- Intervention Center, Eastern Hepatobiliary Surgery Hospital, The Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
| | - Yibin Chen
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, 201805, China
| | - Shennian Ge
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, 201805, China
| | - Qi Yang
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, 201805, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Xueting Ye
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| |
Collapse
|
2
|
Owens TC, Anton N, Attia MF. CT and X-ray contrast agents: Current clinical challenges and the future of contrast. Acta Biomater 2023; 171:19-36. [PMID: 37739244 DOI: 10.1016/j.actbio.2023.09.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/05/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Computed tomography (CT) is a powerful and widely used imaging technique in modern medicine. However, it often requires the use of contrast agents to visualize structures with similar radiographic density. Unfortunately, current clinical contrast agents (CAs) for CT have remained largely unchanged for decades and come with several significant drawbacks, including serious nephrotoxicity and short circulation half-lives. The next generation of CT radiocontrast agents should strive to be long-circulating, non-toxic, and non-immunogenic. Nanoparticle contrast agents have shown promise in recent years and are likely to comprise the majority of next-generation CT contrast agents. This review highlights the fundamental mechanism and background of X-ray and contrast agents. It also focuses on the challenges associated with current clinical contrast agents and provides a brief overview of potential future agents that are based on various materials such as lipids, polymers, dendrimers, metallic, and non-metallic inorganic nanoparticles (NPs). STATEMENT OF SIGNIFICANCE: We realized a need for clarification on a number of concerns related to the use of iodinated contrast material as debates regarding the safety of these agents with patients with kidney disease, shellfish allergies, and thyroid dysfunction remain ongoing in medical practice. This review was partially inspired by debates witnessed in medical practice regarding outdated misconceptions of contrast material that warrant clarification in translational and clinical arenas. Given that conversation around currently available agents is at somewhat of a high water mark, and nanoparticle research has now reached an unprecedented number of readers, we find that this review is timely and unique in the context of recent discussions in the field.
Collapse
Affiliation(s)
- Tyler C Owens
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA.
| | - Nicolas Anton
- Université de Strasbourg, INSERM, Regenerative Nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), F-67000 Strasbourg, France
| | - Mohamed F Attia
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA.
| |
Collapse
|
3
|
Yue NN, Xu HM, Xu J, Zhu MZ, Zhang Y, Tian CM, Nie YQ, Yao J, Liang YJ, Li DF, Wang LS. Application of Nanoparticles in the Diagnosis of Gastrointestinal Diseases: A Complete Future Perspective. Int J Nanomedicine 2023; 18:4143-4170. [PMID: 37525691 PMCID: PMC10387254 DOI: 10.2147/ijn.s413141] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/02/2023] [Indexed: 08/02/2023] Open
Abstract
The diagnosis of gastrointestinal (GI) diseases currently relies primarily on invasive procedures like digestive endoscopy. However, these procedures can cause discomfort, respiratory issues, and bacterial infections in patients, both during and after the examination. In recent years, nanomedicine has emerged as a promising field, providing significant advancements in diagnostic techniques. Nanoprobes, in particular, offer distinct advantages, such as high specificity and sensitivity in detecting GI diseases. Integration of nanoprobes with advanced imaging techniques, such as nuclear magnetic resonance, optical fluorescence imaging, tomography, and optical correlation tomography, has significantly enhanced the detection capabilities for GI tumors and inflammatory bowel disease (IBD). This synergy enables early diagnosis and precise staging of GI disorders. Among the nanoparticles investigated for clinical applications, superparamagnetic iron oxide, quantum dots, single carbon nanotubes, and nanocages have emerged as extensively studied and utilized agents. This review aimed to provide insights into the potential applications of nanoparticles in modern imaging techniques, with a specific focus on their role in facilitating early and specific diagnosis of a range of GI disorders, including IBD and colorectal cancer (CRC). Additionally, we discussed the challenges associated with the implementation of nanotechnology-based GI diagnostics and explored future prospects for translation in this promising field.
Collapse
Affiliation(s)
- Ning-ning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Hao-ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Min-zheng Zhu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, Guangdong, People’s Republic of China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Yu-qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Yu-jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - De-feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Li-sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
4
|
Wang X, Anton H, Vandamme T, Anton N. Updated insight into the characterization of nano-emulsions. Expert Opin Drug Deliv 2023; 20:93-114. [PMID: 36453201 DOI: 10.1080/17425247.2023.2154075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
INTRODUCTION In most of the studies, nano-emulsion characterization is limited to their size distribution and zeta potential. In this review, we present an updated insight of the characterization methods of nano-emulsions, including new or unconventional experimental approaches to explore in depth the nano-emulsion properties. AREA COVERED We propose an overview of all the main techniques used to characterize nano-emulsions, including the most classical ones, up to in vitro, ex vivo and in vivo evaluation. Innovative approaches are then presented in the second part of the review that presents innovative, experimental techniques less known in the field of nano-emulsion such as the nanoparticle tracking analysis, small-angle X-ray scattering, Raman spectroscopy, and nuclear magnetic resonance. Finally, in the last part we discuss the use of lipophilic fluorescent probes and imaging techniques as an emerging tool to understand the nano-emulsion droplet stability, surface decoration, release mechanisms, and in vivo fate. EXPERT OPINION This review is mostly intended for a broad readership and provides key tools regarding the choice of the approach to characterize nano-emulsions. Innovative and uncommon methods will be precious to disclose the information potentially reachable behind a formulation of nano-emulsions, not always known in first intention and with conventional methods.
Collapse
Affiliation(s)
- Xinyue Wang
- Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France
| | - Halina Anton
- Université de Strasbourg, CNRS, Laboratoire de Bioimagerie et Pathologies UMR 7021, F-67000 Strasbourg, France
| | - Thierry Vandamme
- Université de Strasbourg, INSERM, Regenerative nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), F-67000 Strasbourg, France
| | - Nicolas Anton
- Université de Strasbourg, INSERM, Regenerative nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), F-67000 Strasbourg, France
| |
Collapse
|
5
|
Attia MF, Akasov R, Elbaz NM, Owens TC, Curtis EC, Panda S, Santos-Oliveira R, Alexis F, Kievit FM, Whitehead DC. Radiopaque Iodosilane-Coated Lipid Hybrid Nanoparticle Contrast Agent for Dual-Modality Ultrasound and X-ray Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54389-54400. [PMID: 36449986 DOI: 10.1021/acsami.2c09104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Here, we report the synthesis of robust hybrid iodinated silica-lipid nanoemulsions (HSLNEs) for use as a contrast agent for ultrasound and X-ray applications. We engineered iodinated silica nanoparticles (SNPs), lipid nanoemulsions, and a series of HSLNEs by a low-energy spontaneous nanoemulsification process. The formation of a silica shell requires sonication to hydrolyze and polymerize/condensate the iodomethyltrimethoxysilane at the oil/water interface of the nanoemulsion droplets. The resulting nanoemulsions (NEs) exhibited a homogeneous spherical morphology under transmission electron microscopy. The particles had diameters ranging from 20 to 120 nm with both negative and positive surface charges in the absence and presence of cetyltrimethylammonium bromide (CTAB), respectively. Unlike CTAB-coated nanoformulations, the CTAB-free NEs showed excellent biocompatibility in murine RAW macrophages and human U87-MG cell lines in vitro. The maximum tolerated dose assessment was evaluated to verify their safety profiles in vivo. In vitro X-ray and ultrasound imaging and in vivo computed tomography were used to monitor both iodinated SNPs and HSLNEs, validating their significant contrast-enhancing properties and suggesting their potential as dual-modality clinical agents in the future.
Collapse
Affiliation(s)
- Mohamed F Attia
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina27599, United States
| | - Roman Akasov
- Federal Scientific Research Centre "Crystallography and Photonics" of RAS, 59 Leninsky Avenue, Moscow119333, Russia
- I.M. Sechenov First Moscow State Medical University, Trubetskaya Street 8-2, Moscow119991, Russia
| | - Nancy M Elbaz
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina27599, United States
| | - Tyler C Owens
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina27599, United States
| | - Evan C Curtis
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska68583-0900, United States
| | - Soham Panda
- Department of Chemistry, Clemson University, Clemson, South Carolina29634, United States
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Argonauta Nuclear Reactor Center, Rio de Janeiro21941906, Brazil
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Zona Oeste State University, Rio de Janeiro23070-200, Brazil
| | - Frank Alexis
- Departamento de Ingeniería Química, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito USFQ, Quito170901, Ecuador
| | - Forrest M Kievit
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska68583-0900, United States
| | - Daniel C Whitehead
- Department of Chemistry, Clemson University, Clemson, South Carolina29634, United States
| |
Collapse
|
6
|
Study of the spontaneous nano-emulsification process with different octadecyl succinic anhydride derivatives. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Development and Characterization of Nanoemulsions for Ophthalmic Applications: Role of Cationic Surfactants. MATERIALS 2021; 14:ma14247541. [PMID: 34947136 PMCID: PMC8706710 DOI: 10.3390/ma14247541] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022]
Abstract
The eye is a very complex organ comprising several physiological and physical barriers that compromise drug absorption into deeper layers. Nanoemulsions are promising delivery systems to be used in ocular drug delivery due to their innumerous advantages, such as high retention time onto the site of application and the modified release profile of loaded drugs, thereby contributing to increasing the bioavailability of drugs for the treatment of eye diseases, in particular those affecting the posterior segment. In this review, we address the main factors that govern the development of a suitable nanoemulsion formulation for eye administration to increase the patient’s compliance to the treatment. Appropriate lipid composition and type of surfactants (with a special emphasis on cationic compounds) are discussed, together with manufacturing techniques and characterization methods that are instrumental for the development of appropriate ophthalmic nanoemulsions.
Collapse
|
8
|
Zhang J, Liu W, Zhang P, Song Y, Ye Z, Fu H, Yang S, Qin Q, Guo Z, Zhang J. Polymers for Improved Delivery of Iodinated Contrast Agents. ACS Biomater Sci Eng 2021; 8:32-53. [PMID: 34851607 DOI: 10.1021/acsbiomaterials.1c01082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
X-ray computed tomography (CT), as one of the most widely used noninvasive imaging modalities, can provide three-dimensional anatomic details with high resolution, which plays a key role in disease diagnosis and treatment assessment. However, although they are the most prevalent and FDA-approved contrast agents, iodinated water-soluble molecules still face some challenges in clinical applications, such as fast clearance, serious adverse effects, nonspecific distribution, and low sensitivity. Because of their high biocompatibility, tunable designability, controllable biodegradation, facile synthesis, and modification capability, the polymers have demonstrated great potential for efficient delivery of iodinated contrast agents (ICAs). Herein, we comprehensively summarized the applications of multifunctional polymeric materials for ICA delivery in terms of increasing circulation time, decreasing nephrotoxicity, and improving the specificity and sensitivity of ICAs for CT imaging. We mainly focused on various iodinated polymers from the aspects of preparation, functionalization, and application in medical diagnosis. Future perspectives for achieving better imaging and clinical translation are also discussed to motivate new technologies and solutions.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China
| | - Weiming Liu
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China.,Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Peng Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China
| | - Yanqiu Song
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China
| | - Zhanpeng Ye
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Han Fu
- Graduate School of Tianjin Medical University, Tianjin 300070, China
| | - Shicheng Yang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China
| | - Qin Qin
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China
| | - Zhigang Guo
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China
| | - Jianhua Zhang
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300350, China
| |
Collapse
|
9
|
Zhang P, Ma X, Guo R, Ye Z, Fu H, Fu N, Guo Z, Zhang J, Zhang J. Organic Nanoplatforms for Iodinated Contrast Media in CT Imaging. Molecules 2021; 26:7063. [PMID: 34885645 PMCID: PMC8658861 DOI: 10.3390/molecules26237063] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/29/2022] Open
Abstract
X-ray computed tomography (CT) imaging can produce three-dimensional and high-resolution anatomical images without invasion, which is extremely useful for disease diagnosis in the clinic. However, its applications are still severely limited by the intrinsic drawbacks of contrast media (mainly iodinated water-soluble molecules), such as rapid clearance, serious toxicity, inefficient targetability and poor sensitivity. Due to their high biocompatibility, flexibility in preparation and modification and simplicity for drug loading, organic nanoparticles (NPs), including liposomes, nanoemulsions, micelles, polymersomes, dendrimers, polymer conjugates and polymeric particles, have demonstrated tremendous potential for use in the efficient delivery of iodinated contrast media (ICMs). Herein, we comprehensively summarized the strategies and applications of organic NPs, especially polymer-based NPs, for the delivery of ICMs in CT imaging. We mainly focused on the use of polymeric nanoplatforms to prolong circulation time, reduce toxicity and enhance the targetability of ICMs. The emergence of some new technologies, such as theragnostic NPs and multimodal imaging and their clinical translations, are also discussed.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China; (P.Z.); (X.M.); (N.F.); (Z.G.)
| | - Xinyu Ma
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China; (P.Z.); (X.M.); (N.F.); (Z.G.)
- Key Laboratory of Systems Bioengineering of the Ministry of Education, Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (R.G.); (Z.Y.)
| | - Ruiwei Guo
- Key Laboratory of Systems Bioengineering of the Ministry of Education, Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (R.G.); (Z.Y.)
| | - Zhanpeng Ye
- Key Laboratory of Systems Bioengineering of the Ministry of Education, Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (R.G.); (Z.Y.)
| | - Han Fu
- Graduate School, Tianjin Medical University, Tianjin 300070, China;
| | - Naikuan Fu
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China; (P.Z.); (X.M.); (N.F.); (Z.G.)
| | - Zhigang Guo
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China; (P.Z.); (X.M.); (N.F.); (Z.G.)
| | - Jianhua Zhang
- Key Laboratory of Systems Bioengineering of the Ministry of Education, Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (R.G.); (Z.Y.)
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300350, China
| | - Jing Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China; (P.Z.); (X.M.); (N.F.); (Z.G.)
| |
Collapse
|
10
|
Klymchenko AS, Liu F, Collot M, Anton N. Dye-Loaded Nanoemulsions: Biomimetic Fluorescent Nanocarriers for Bioimaging and Nanomedicine. Adv Healthc Mater 2021; 10:e2001289. [PMID: 33052037 DOI: 10.1002/adhm.202001289] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/21/2020] [Indexed: 12/16/2022]
Abstract
Lipid nanoemulsions (NEs), owing to their controllable size (20 to 500 nm), stability and biocompatibility, are now frequently used in various fields, such as food, cosmetics, pharmaceuticals, drug delivery, and even as nanoreactors for chemical synthesis. Moreover, being composed of components generally recognized as safe (GRAS), they can be considered as "green" nanoparticles that mimic closely lipoproteins and intracellular lipid droplets. Therefore, they attracted attention as carriers of drugs and fluorescent dyes for both bioimaging and studying the fate of nanoemulsions in cells and small animals. In this review, the composition of dye-loaded NEs, methods for their preparation, and emerging biological applications are described. The design of bright fluorescent NEs with high dye loading and minimal aggregation-caused quenching (ACQ) is focused on. Common issues including dye leakage and NEs stability are discussed, highlighting advanced techniques for their characterization, such as Förster resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS). Attempts to functionalize NEs surface are also discussed. Thereafter, biological applications for bioimaging and single-particle tracking in cells and small animals as well as biomedical applications for photodynamic therapy are described. Finally, challenges and future perspectives of fluorescent NEs are discussed.
Collapse
Affiliation(s)
- Andrey S. Klymchenko
- Laboratory of Biophotonic and Pathologies CNRS UMR 7021 Université de Strasbourg Faculté de Pharmacie, 74, Route du Rhin Illkirch 67401 France
| | - Fei Liu
- Laboratory of Biophotonic and Pathologies CNRS UMR 7021 Université de Strasbourg Faculté de Pharmacie, 74, Route du Rhin Illkirch 67401 France
- Université de Strasbourg CNRS CAMB UMR 7199 Strasbourg F‐67000 France
| | - Mayeul Collot
- Laboratory of Biophotonic and Pathologies CNRS UMR 7021 Université de Strasbourg Faculté de Pharmacie, 74, Route du Rhin Illkirch 67401 France
| | - Nicolas Anton
- Université de Strasbourg CNRS CAMB UMR 7199 Strasbourg F‐67000 France
| |
Collapse
|
11
|
Badea CT. Principles of Micro X-ray Computed Tomography. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
12
|
A critical review of synthesis procedures, applications and future potential of nanoemulsions. Adv Colloid Interface Sci 2021; 287:102318. [PMID: 33242713 DOI: 10.1016/j.cis.2020.102318] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022]
Abstract
Applications of nanotechnology in various spheres have increased manifold as it offers solution to unsolved problems with higher effectiveness. Nanoemulsions are one such system that are widely studied and have a very promising potential in solving various issues as those encountered in delivery of drugs, pesticides or any other biologically potent substance. Apart from this, nanoemulsions have wide applications in the field of food, cosmetics, skincare and agriculture. In this review, we have discussed and compared the methods of nanoemulsion preparation and various methods of synthesis, along with few major applications in various fields of science and technology. We sincerely hope that this review will help to understand the different aspects of nanoemulsions and help us to explore its potent applications in various fields.
Collapse
|
13
|
Bou S, Wang X, Anton N, Bouchaala R, Klymchenko AS, Collot M. Lipid-core/polymer-shell hybrid nanoparticles: synthesis and characterization by fluorescence labeling and electrophoresis. SOFT MATTER 2020; 16:4173-4181. [PMID: 32286601 DOI: 10.1039/d0sm00077a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Among the lipid nanoparticles, lipid polymer hybrid nanoparticles (HNPs) composed of an oily core and a polymeric shell display interesting features as efficient drug carriers due to the high loading capability of the oil phase and the stability and surface functionalization of the polymer shell. Herein, we formulated lipid-core/polymer-shell hybrid nanoparticles (HNPs) using a simple nanoprecipitation method involving Vitamin E Acetate (VEA) as the oily core and a tailor-made amphiphilic polymer as a wrapping shell. The fluorescence labeling of the oil, using a newly developed green fluorogenic BODIPY tracker, and of the polymer using a covalent attachment of a red emitting rhodamine was done to assess the formation, the composition and the stability of these new hybrid nanoparticles using dual color electrophoresis gel analysis. This technique, combined to conventional DLS and electronic microscopy analysis, allowed us to quickly determine that 20 wt% of the polymer was an optimal ratio for obtaining stable HNPs by nanoprecipiation. Finally, we showed that using different polymeric shells, various HNPs can be obtained and finely discriminated using a combined approach of electrophoresis and two-color labeling.
Collapse
Affiliation(s)
- Sophie Bou
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, University of Strasbourg, France.
| | | | | | | | | | | |
Collapse
|
14
|
Saito A, Yamamoto S, Ochi R, Inoue K, Hadano S, Watanabe S, Nakayama T, Niko Y. An Azide-Tethered Cremophor® ELP Surfactant Allowing Facile Post-Surface Functionalization of Nanoemulsions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Airi Saito
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan
| | - Shinkuro Yamamoto
- Center for Photodynamic Medicine Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Rika Ochi
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan
| | - Keiji Inoue
- Center for Photodynamic Medicine Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Shingo Hadano
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan
| | - Shigeru Watanabe
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan
| | - Taku Nakayama
- Center for Photodynamic Medicine Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Yosuke Niko
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan
| |
Collapse
|
15
|
Balegamire J, Vandamme M, Chereul E, Si-Mohamed S, Azzouz Maache S, Almouazen E, Ettouati L, Fessi H, Boussel L, Douek P, Chevalier Y. Iodinated polymer nanoparticles as contrast agent for spectral photon counting computed tomography. Biomater Sci 2020; 8:5715-5728. [DOI: 10.1039/d0bm01046d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Suspensions of iodinated polymer nanoparticles are evaluated as contrast agent for Computed Tomography (CT) and Spectral Photon Counting Computed Tomography (SPCCT).
Collapse
Affiliation(s)
| | | | | | - Salim Si-Mohamed
- University Lyon 1
- CREATIS
- CNRS UMR 5220
- INSERM U630
- 69621 Villeurbanne
| | - Samira Azzouz Maache
- University of Lyon 1
- ISPB
- Department of Parasitology and Medical Mycology
- 69008 Lyon
- France
| | - Eyad Almouazen
- University of Lyon 1
- LAGEPP
- CNRS UMR 5007
- 69622 Villeurbanne
- France
| | | | - Hatem Fessi
- University of Lyon 1
- LAGEPP
- CNRS UMR 5007
- 69622 Villeurbanne
- France
| | - Loïc Boussel
- University Lyon 1
- CREATIS
- CNRS UMR 5220
- INSERM U630
- 69621 Villeurbanne
| | - Philippe Douek
- University Lyon 1
- CREATIS
- CNRS UMR 5220
- INSERM U630
- 69621 Villeurbanne
| | - Yves Chevalier
- University of Lyon 1
- LAGEPP
- CNRS UMR 5007
- 69622 Villeurbanne
- France
| |
Collapse
|
16
|
Böttger R, Pauli G, Chao PH, AL Fayez N, Hohenwarter L, Li SD. Lipid-based nanoparticle technologies for liver targeting. Adv Drug Deliv Rev 2020; 154-155:79-101. [PMID: 32574575 DOI: 10.1016/j.addr.2020.06.017] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/26/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022]
Abstract
Liver diseases such as hepatitis, cirrhosis, and hepatocellular carcinoma are global health problems accounting for approximately 800 million cases and over 2 million deaths per year worldwide. Major drawbacks of standard pharmacological therapies are the inability to deliver a sufficient concentration of a therapeutic agent to the diseased liver, and nonspecific drug delivery leading to undesirable systemic side effects. Additionally, depending on the specific liver disease, drug delivery to a subset of liver cells is required. In recent years, lipid nanoparticles have been developed to passively and actively target drugs to the liver. The success of this approach has been highlighted by the FDA-approval of the first liver-targeting lipid nanoparticle, ONPATTRO, in 2018 and many other promising candidate technologies are expected to follow. This review summarizes recent developments of various lipid-based liver-targeting technologies, namely solid-lipid nanoparticles, liposomes, niosomes and micelles, and discusses the challenges and future perspectives in this field.
Collapse
|
17
|
Gu X, Zhu Z, Fan Q, Wei Y, Wang G, Meng F, Zhong Z, Deng C. Nanoagents Based on Poly(ethylene glycol)-b-Poly(l-thyroxine) Block Copolypeptide for Enhanced Dual-Modality Imaging and Targeted Tumor Radiotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902577. [PMID: 31539202 DOI: 10.1002/smll.201902577] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/08/2019] [Indexed: 06/10/2023]
Abstract
Future healthcare requires development of novel theranostic agents that are capable of not only enhancing diagnosis and monitoring therapeutic responses but also augmenting therapeutic outcomes. Here, a versatile and stable nanoagent is reported based on poly(ethylene glycol)-b-poly(l-thyroxine) (PEG-PThy) block copolypeptide for enhanced single photon emission computed tomography/computed tomography (SPECT/CT) dual-modality imaging and targeted tumor radiotherapy in vivo. PEG-PThy acquired by polymerization of l-thyroxine-N-carboxyanhydride (Thy-NCA) displays a controlled Mn , high iodine content of ≈49.2 wt%, and can spontaneously form 65 nm-sized nanoparticles (PThyN). In contrast to clinically used contrast agents like iohexol and iodixanol, PThyN reveals iso-osmolality, low viscosity, and long circulation time. While PThyN exhibits comparable in vitro CT attenuation efficacy to iohexol, it greatly enhances in vivo CT imaging of vascular systems and soft tissues. PThyN allows for surface decoration with the cRGD peptide achieving enhanced CT imaging of subcutaneous B16F10 melanoma and orthotopic A549 lung tumor. Taking advantages of a facile iodine exchange reaction, 125 I-labeled PThyN enables SPECT/CT imaging of tumors and monitoring of PThyN biodistribution in vivo. Besides, 131 I-labeled and cRGD-functionalized PThyN displays remarkable growth inhibition of the B16F10 tumor in mice (tumor inhibition rate > 89%). These poly(l-thyroxine) nanoparticles provide a unique and versatile theranostic platform for varying diseases.
Collapse
Affiliation(s)
- Xiaolei Gu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Zhehong Zhu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Qianyi Fan
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Yaohua Wei
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Guanglin Wang
- School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences, Medical College of Soochow University, Suzhou, 215123, China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Chao Deng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| |
Collapse
|
18
|
Fluorescent carbon dots functionalization. Adv Colloid Interface Sci 2019; 270:165-190. [PMID: 31265929 DOI: 10.1016/j.cis.2019.06.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 01/03/2023]
Abstract
Carbon dots (CDs), as a new type of luminescent zero-dimensional carbon nanomaterial, have been applied in a variety of fields. Currently, functionalization of CDs is an extremely useful method for effectively tuning their intrinsic structure and surface state. Heteroatom doping and surface modification are two functionalization strategies for improving the photophysical performance and broadening the range of applications for fluorescent CDs. Heteroatom doping in CDs can be used to tune their intrinsic properties, which has received significant research interests because of its simplicity. Surface modification can be applied for varying active sites and the functional groups on the CDs surface, which can endow fluorescent CDs with the unique properties resulting from functional ligand. In this review, we summarize the structural and physicochemical properties of functional CDs. We focused our review on the latest developments in functionalization strategies for CDs and discuss the detailed characteristics of different functionalization methods. Ultimately, we hope to inform researchers on the latest progress in functionalization of CDs and provide perspectives on future developments for functionalization of CDs and their potential applications.
Collapse
|
19
|
Wang X, Anton N, Ashokkumar P, Anton H, Fam TK, Vandamme T, Klymchenko AS, Collot M. Optimizing the Fluorescence Properties of Nanoemulsions for Single Particle Tracking in Live Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13079-13090. [PMID: 30844230 DOI: 10.1021/acsami.8b22297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanoemulsions (NEs) are biocompatible lipid nanoparticles composed of an oily core stabilized by a surfactant shell. It is acknowledged that the surface decoration with poly(ethylene glycol), through the use of nonionic surfactants, confers high stealth in biological medium with reduced nonspecific interactions. Tracking individual NE by fluorescence microscopy techniques would lead to a better understanding of their behavior in cells and thus require the development of bright single particles with enhanced photostability. However, the understanding of the relationship between the physicochemical properties and chemical composition of the NEs, on the one hand, and its fluorescence properties of encapsulated dyes, on the other hand, remains limited. Herein, we synthesized three new dioxaborine barbituryl styryl (DBS) dyes that displayed high molar extinction coefficients (up to 120 000 M-1 cm-1) with relatively low quantum yields in solvents and impressive fluorescence enhancement when dissolved in viscous oils (up to 0.98). The reported screening of nine different oils allowed disclosing a range of efficient "oil/dye" couples and understanding the main parameters that lead to the brightest NEs. We determine vitamin E acetate/DBS-C8 as the representative most efficient couple, combining high dye loading capabilities and low aggregation-induced quenching, leading to <50 nm ultrabright NEs (with brightness as high as 30 × 106 M-1 cm-1) with negligible dye leakage in biological media. Beyond a comprehensive optical and physicochemical characterization of fluorescent NEs, cellular two-photon excitation imaging was performed with polymer-coated cell penetrating NEs. Thanks to their impressive brightness and photostability, NEs displaying different charge surfaces were microinjected in HeLa cells and were individually tracked in the cytosol to study their relative velocity.
Collapse
Affiliation(s)
- Xinyue Wang
- Université de Strasbourg, CNRS, CAMB UMR 7199 , F-67000 Strasbourg , France
| | - Nicolas Anton
- Université de Strasbourg, CNRS, CAMB UMR 7199 , F-67000 Strasbourg , France
| | - Pichandi Ashokkumar
- Laboratory of Biophotonic and Pathologies , CNRS UMR 7021, Université de Strasbourg , Faculté de Pharmacie, 74, Route du Rhin , 67401 Illkirch , France
| | - Halina Anton
- Laboratory of Biophotonic and Pathologies , CNRS UMR 7021, Université de Strasbourg , Faculté de Pharmacie, 74, Route du Rhin , 67401 Illkirch , France
| | - Tkhe Kyong Fam
- Laboratory of Biophotonic and Pathologies , CNRS UMR 7021, Université de Strasbourg , Faculté de Pharmacie, 74, Route du Rhin , 67401 Illkirch , France
| | - Thierry Vandamme
- Université de Strasbourg, CNRS, CAMB UMR 7199 , F-67000 Strasbourg , France
| | - Andrey S Klymchenko
- Laboratory of Biophotonic and Pathologies , CNRS UMR 7021, Université de Strasbourg , Faculté de Pharmacie, 74, Route du Rhin , 67401 Illkirch , France
| | - Mayeul Collot
- Laboratory of Biophotonic and Pathologies , CNRS UMR 7021, Université de Strasbourg , Faculté de Pharmacie, 74, Route du Rhin , 67401 Illkirch , France
| |
Collapse
|
20
|
Biomedical Imaging: Principles, Technologies, Clinical Aspects, Contrast Agents, Limitations and Future Trends in Nanomedicines. Pharm Res 2019; 36:78. [PMID: 30945009 DOI: 10.1007/s11095-019-2608-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/11/2019] [Indexed: 12/11/2022]
Abstract
This review article presents the state-of-the-art in the major imaging modalities supplying relevant information on patient health by real-time monitoring to establish an accurate diagnosis and potential treatment plan. We draw a comprehensive comparison between all imagers and ultimately end with our focus on two main types of scanners: X-ray CT and MRI scanners. Numerous types of imaging probes for both imaging techniques are described, as well as reviewing their strengths and limitations, thereby showing the current need for the development of new diagnostic contrast agents (CAs). The role of nanoparticles in the design of CAs is then extensively detailed, reviewed and discussed. We show how nanoparticulate agents should be promising alternatives to molecular ones and how they are already paving new routes in the field of nanomedicine.
Collapse
|
21
|
Wallyn J, Anton N, Mertz D, Begin-Colin S, Perton F, Serra CA, Franconi F, Lemaire L, Chiper M, Libouban H, Messaddeq N, Anton H, Vandamme TF. Magnetite- and Iodine-Containing Nanoemulsion as a Dual Modal Contrast Agent for X-ray/Magnetic Resonance Imaging. ACS APPLIED MATERIALS & INTERFACES 2019; 11:403-416. [PMID: 30541280 DOI: 10.1021/acsami.8b19517] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Noninvasive diagnostic by imaging combined with a contrast agent (CA) is by now the most used technique to get insight into human bodies. X-ray and magnetic resonance imaging (MRI) are widely used technologies providing complementary results. Nowadays, it seems clear that bimodal CAs could be an emerging approach to increase the patient compliance, accessing different imaging modalities with a single CA injection. Owing to versatile designs, targeting properties, and high payload capacity, nanocarriers are considered as a viable solution to reach this goal. In this study, we investigated efficient superparamagnetic iron oxide nanoparticle (SPION)-loaded iodinated nano-emulsions (NEs) as dual modal injectable CAs for X-ray imaging and MRI. The strength of this new CA lies not only in its dual modal contrasting properties and biocompatibility, but also in the simplicity of the nanoparticulate assembling: iodinated oily core was synthesized by the triiodo-benzene group grafting on vitamin E (41.7% of iodine) via esterification, and SPIONs were produced by thermal decomposition during 2, 4, and 6 h to generate SPIONs with different morphologies and magnetic properties. SPIONs with most anisotropic shape and characterized by the highest r2/ r1 ratio once encapsulated into iodinated NE were used for animal experimentation. The in vivo investigation showed an excellent contrast modification because of the presence of the selected NEs, for both imaging techniques explored, that is, MRI and X-ray imaging. This work provides the description and in vivo application of a simple and efficient nanoparticulate system capable of enhancing contrast for both preclinical imaging modalities, MRI, and computed tomography.
Collapse
Affiliation(s)
- Justine Wallyn
- Université de Strasbourg, CNRS, CAMB UMR 7199 , F-67000 Strasbourg , France
| | - Nicolas Anton
- Université de Strasbourg, CNRS, CAMB UMR 7199 , F-67000 Strasbourg , France
| | - Damien Mertz
- Université de Strasbourg, CNRS, IPCMS UMR 7504 , F-67000 Strasbourg , France
| | - Sylvie Begin-Colin
- Université de Strasbourg, CNRS, IPCMS UMR 7504 , F-67000 Strasbourg , France
| | - Francis Perton
- Université de Strasbourg, CNRS, IPCMS UMR 7504 , F-67000 Strasbourg , France
| | - Christophe A Serra
- Université de Strasbourg, CNRS, ICS UPR 22 , F-67000 Strasbourg , France
| | - Florence Franconi
- Université d'Angers, PRISM , F-49045 Angers , France
- Université d'Angers, MINT INSERM 1066/CNRS , F-49045 Angers , France
| | - Laurent Lemaire
- Université d'Angers, PRISM , F-49045 Angers , France
- Université d'Angers, MINT INSERM 1066/CNRS , F-49045 Angers , France
| | - Manuela Chiper
- Université de Strasbourg, CNRS, BSC UMR 7242 , F-67412 Strasbourg , France
| | - Hélène Libouban
- Université d'Angers, GEROM, SFR ICAT 42-08, IRIS-IBS , F-49045 Angers , France
| | - Nadia Messaddeq
- Université de Strasbourg, CNRS, INSERM, Collège de France, IGBMC UMR 7104/UMR_S 694 , F-67400 Strasbourg , France
| | - Halina Anton
- Université de Strasbourg, CNRS, LPB UMR 7213 , F-67400 Strasbourg , France
| | - Thierry F Vandamme
- Université de Strasbourg, CNRS, CAMB UMR 7199 , F-67000 Strasbourg , France
| |
Collapse
|
22
|
Wang A, Yin L, He L, Xia H, Chen F, Zhao M, Ding J, Shi H. An acidic pH/reduction dual-stimuli responsive nanoprobe for enhanced CT imaging of tumours in vivo. NANOSCALE 2018; 10:20126-20130. [PMID: 30376027 DOI: 10.1039/c8nr05061a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Computed tomography (CT) is one of the most frequently used diagnostic imaging modalities in clinics. However, the fast clearance of CT contrast agents through the kidney and short circulation time severely restrict their in vivo applications. Herein, taking advantage of the biocompatible CBT condensation reaction, we rationally designed and synthesized a new smart acidic pH/glutathione (GSH) dual-stimuli responsive nanoprobe (1) which can intermolecularly undergo condensation and form a nanoparticle assembly (I-NPs) in the tumour microenvironment. In vivo CT imaging results indicated that probe 1 could be successfully applied for enhanced CT imaging of tumours in nude mice with a low dose of 21.79 mg I per kg body weight, which may offer a promising tool for precise tumor diagnosis.
Collapse
Affiliation(s)
- Anna Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou 215123, China.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Hainfeld JF, Ridwan SM, Stanishevskiy Y, Smilowitz NR, Davis J, Smilowitz HM. Small, Long Blood Half-Life Iodine Nanoparticle for Vascular and Tumor Imaging. Sci Rep 2018; 8:13803. [PMID: 30218059 PMCID: PMC6138673 DOI: 10.1038/s41598-018-31940-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/28/2018] [Indexed: 12/27/2022] Open
Abstract
Standard clinical X-ray contrast agents are small iodine-containing molecules that are rapidly cleared by the kidneys and provide robust imaging for only a few seconds, thereby limiting more extensive vascular and tissue biodistribution imaging as well as optimal tumor uptake. They are also not generally useful for preclinical microCT imaging where longer scan times are required for high resolution image acquisition. We here describe a new iodine nanoparticle contrast agent that has a unique combination of properties: 20 nm hydrodynamic diameter, covalent PEG coating, 40 hour blood half-life, 50% liver clearance after six months, accumulation in tumors, and well-tolerated to at least 4 g iodine/kg body weight after intravenous administration in mice. These characteristics are unique among the other iodine nanoparticles that have been previously reported and provide extended-time high contrast vascular imaging and tumor loading. As such, it is useful for preclinical MicroCT animal studies. Potential human applications might include X-ray radiation dose enhancement for cancer therapy and vascular imaging for life-threatening situations where high levels of contrast are needed for extended periods of time.
Collapse
Affiliation(s)
- James F Hainfeld
- Nanoprobes, Inc., 95 Horseblock Rd. Unit 1, Yaphank, NY, 11980, USA.
| | - Sharif M Ridwan
- University of Connecticut Health Center, Department of Cell Biology, 263 Farmington Ave., Farmington, CT, 06030, USA
| | | | - Nathaniel R Smilowitz
- New York University School of Medicine, Division of Cardiology, Department of Medicine 550 First Avenue, HCC-14 Catheterization Laboratory New York, New York, NY, 10016, USA
| | - James Davis
- Stony Brook University Hospital, Hospital Level 2, Rm 755, Stony Brook, NY, 11794-8691, USA
| | - Henry M Smilowitz
- University of Connecticut Health Center, Department of Cell Biology, 263 Farmington Ave., Farmington, CT, 06030, USA
| |
Collapse
|
24
|
Tang C, York AW, Mikitsh JL, Wright AC, Chacko AM, Elias DR, Xu Y, Lim HK, Prud'homme RK. Preparation of PEGylated Iodine-Loaded Nanoparticles via Polymer-Directed Self-Assembly. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201700592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Christina Tang
- Department of Chemical and Life Science Engineering; Virginia Commonwealth University; Richmond VA 23284 USA
- Department of Chemical and Biological Engineering; Princeton University; Princeton NJ 08544 USA
| | - Adam W. York
- Department of Chemical and Biological Engineering; Princeton University; Princeton NJ 08544 USA
| | - John L. Mikitsh
- Department of Radiology; Division of Nuclear Medicine and Clinical Molecular Imaging; University of Pennsylvania Perelman School of Medicine; Philadelphia PA 19104 USA
| | - Alexander C. Wright
- Department of Radiology; Division of Nuclear Medicine and Clinical Molecular Imaging; University of Pennsylvania Perelman School of Medicine; Philadelphia PA 19104 USA
| | - Ann-Marie Chacko
- Department of Radiology; Division of Nuclear Medicine and Clinical Molecular Imaging; University of Pennsylvania Perelman School of Medicine; Philadelphia PA 19104 USA
| | - Drew R. Elias
- Janssen Research & Development; LLC Spring House; PA 19477 USA
| | - Yaodong Xu
- Janssen Research & Development; LLC Spring House; PA 19477 USA
| | - Heng-Keang Lim
- Janssen Research & Development; LLC Spring House; PA 19477 USA
| | - Robert K. Prud'homme
- Department of Chemical and Biological Engineering; Princeton University; Princeton NJ 08544 USA
| |
Collapse
|
25
|
Wallyn J, Anton N, Serra CA, Bouquey M, Collot M, Anton H, Weickert JL, Messaddeq N, Vandamme TF. A new formulation of poly(MAOTIB) nanoparticles as an efficient contrast agent for in vivo X-ray imaging. Acta Biomater 2018; 66:200-212. [PMID: 29129788 DOI: 10.1016/j.actbio.2017.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/12/2017] [Accepted: 11/07/2017] [Indexed: 12/12/2022]
Abstract
Polymeric nanoparticles (PNPs) are gaining increasing importance as nanocarriers or contrasting material for preclinical diagnosis by micro-CT scanner. Here, we investigated a straightforward approach to produce a biocompatible, radiopaque, and stable polymer-based nanoparticle contrast agent, which was evaluated on mice. To this end, we used a nanoprecipitation dropping technique to obtain PEGylated PNPs from a preformed iodinated homopolymer, poly(MAOTIB), synthesized by radical polymerization of 2-methacryloyloxyethyl(2,3,5-triiodobenzoate) monomer (MAOTIB). The process developed allows an accurate control of the nanoparticle properties (mean size can range from 140 nm to 200 nm, tuned according to the formulation parameters) along with unprecedented important X-ray attenuation properties (concentration of iodine around 59 mg I/mL) compatible with a follow-up in vivo study. Routine characterizations such as FTIR, DSC, GPC, TGA, 1H and 13C NMR, and finally SEM were accomplished to obtain the main properties of the optimal contrast agent. Owing to excellent colloidal stability against physiological conditions evaluated in the presence of fetal bovine serum, the selected PNPs suspension was administered to mice. Monitoring and quantification by micro-CT showed that iodinated PNPs are endowed strong X-ray attenuation capacity toward blood pool and underwent a rapid and passive accumulation in the liver and spleen. STATEMENT OF SIGNIFICANCE The design of X-ray contrast agents for preclinical imaging is still highly challenging. To date, the best contrast agents reported are based on iodinated lipids or inorganic materials such as gold. In literature, several attempts were undertaken to create polymer-based X-ray contrast agents, but their applicability in vivo was limited to their low contrasting properties. Polymer-based contrast agents present the advantages of an easy surface modification for future application in targeting. Herein, we develop a novel approach to design polymer-based nanoparticle X-ray contrast agent (polymerization of a highly iodine-loaded monomer (MAOTIB)), leading to an iodine concentration of 59 mg/mL. We showed their high efficiency in vivo in mice, in terms of providing a strong signal in blood and then accumulating in the liver and spleen.
Collapse
Affiliation(s)
- Justine Wallyn
- Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France
| | - Nicolas Anton
- Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France.
| | | | - Michel Bouquey
- Université de Strasbourg, CNRS, ICS UPR 22, F-67000 Strasbourg, France
| | - Mayeul Collot
- Université de Strasbourg, CNRS, LBP UMR 7213, F-67000 Strasbourg, France
| | - Halina Anton
- Université de Strasbourg, CNRS, LBP UMR 7213, F-67000 Strasbourg, France
| | - Jean-Luc Weickert
- Université de Strasbourg, CNRS, INSERM, Collège de France, IGBMC UMR 7104/UMR_S 964, F-67000 Strasbourg, France
| | - Nadia Messaddeq
- Université de Strasbourg, CNRS, INSERM, Collège de France, IGBMC UMR 7104/UMR_S 964, F-67000 Strasbourg, France
| | - Thierry F Vandamme
- Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France
| |
Collapse
|
26
|
Anton N, Parlog A, Bou About G, Attia MF, Wattenhofer-Donzé M, Jacobs H, Goncalves I, Robinet E, Sorg T, Vandamme TF. Non-invasive quantitative imaging of hepatocellular carcinoma growth in mice by micro-CT using liver-targeted iodinated nano-emulsions. Sci Rep 2017; 7:13935. [PMID: 29066853 PMCID: PMC5655328 DOI: 10.1038/s41598-017-14270-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/09/2017] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the only cancer for which non-invasive diagnosis is recognized by international guidelines. Contrast agent free ultrasound imaging, computed tomography (CT) and/or magnetic resonance imaging are techniques used for early detection and confirmation. Clinical evidence depicts that CT is 30% less precise as compared to MRI for detection of small tumors. In our work, we have reported some novel tools that can enhance the sensitivity and precision of CT applied to preclinical research (micro-CT). Our system, containing non-toxic nano-droplets loaded with iodine has high contrasting properties, liver and hepatocyte specificity and strong liver persistence. Micro-CT was performed on HCC model implanted in nude mice by intrahepatic injection. Contrast agent was administrated intravenously. This method allows an unprecedented high precision of detection, quantitative measurement of tumor volume and quantitative follow-up of the tumor development.
Collapse
Affiliation(s)
- Nicolas Anton
- University of Strasbourg, Faculty of Pharmacy, 74 route du Rhin 67401 Illkirch-Graffenstaden Cedex, Strasbourg, France. .,CNRS UMR 7199, Laboratoire de Conception et Application de Molécules Bioactives, équipe de Pharmacie Biogalénique, 74 route du Rhin 67401 Illkirch-Graffenstaden Cedex, Strasbourg, France.
| | - Alexandru Parlog
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 1 rue Laurent Fries, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 1 rue Laurent Fries, 67404 Illkirch, Paris, France.,Institut National de la Sante et de la Recherche Médicale, U964, 1 rue Laurent Fries, 67404 Illkirch, Paris, France.,Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, Strasbourg, France
| | - Ghina Bou About
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 1 rue Laurent Fries, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 1 rue Laurent Fries, 67404 Illkirch, Paris, France.,Institut National de la Sante et de la Recherche Médicale, U964, 1 rue Laurent Fries, 67404 Illkirch, Paris, France.,Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, Strasbourg, France
| | - Mohamed F Attia
- University of Strasbourg, Faculty of Pharmacy, 74 route du Rhin 67401 Illkirch-Graffenstaden Cedex, Strasbourg, France.,CNRS UMR 7199, Laboratoire de Conception et Application de Molécules Bioactives, équipe de Pharmacie Biogalénique, 74 route du Rhin 67401 Illkirch-Graffenstaden Cedex, Strasbourg, France.,National Research Center, P.O., 12622, Cairo, Egypt.,Department of Bioengineering, Clemson University, 203 Rhodes Annex, Clemson, SC, 29634, USA
| | - Marie Wattenhofer-Donzé
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 1 rue Laurent Fries, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 1 rue Laurent Fries, 67404 Illkirch, Paris, France.,Institut National de la Sante et de la Recherche Médicale, U964, 1 rue Laurent Fries, 67404 Illkirch, Paris, France.,Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, Strasbourg, France
| | - Hugues Jacobs
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 1 rue Laurent Fries, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 1 rue Laurent Fries, 67404 Illkirch, Paris, France.,Institut National de la Sante et de la Recherche Médicale, U964, 1 rue Laurent Fries, 67404 Illkirch, Paris, France.,Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, Strasbourg, France
| | - Isabelle Goncalves
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 1 rue Laurent Fries, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 1 rue Laurent Fries, 67404 Illkirch, Paris, France.,Institut National de la Sante et de la Recherche Médicale, U964, 1 rue Laurent Fries, 67404 Illkirch, Paris, France.,Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, Strasbourg, France
| | - Eric Robinet
- IHU-Strasbourg, Institute of Image-Guided Surgery, 67000, Strasbourg, France
| | - Tania Sorg
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 1 rue Laurent Fries, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 1 rue Laurent Fries, 67404 Illkirch, Paris, France.,Institut National de la Sante et de la Recherche Médicale, U964, 1 rue Laurent Fries, 67404 Illkirch, Paris, France.,Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, Strasbourg, France
| | - Thierry F Vandamme
- University of Strasbourg, Faculty of Pharmacy, 74 route du Rhin 67401 Illkirch-Graffenstaden Cedex, Strasbourg, France.,CNRS UMR 7199, Laboratoire de Conception et Application de Molécules Bioactives, équipe de Pharmacie Biogalénique, 74 route du Rhin 67401 Illkirch-Graffenstaden Cedex, Strasbourg, France
| |
Collapse
|
27
|
Saxena V, Hasan A, Sharma S, Pandey LM. Edible oil nanoemulsion: An organic nanoantibiotic as a potential biomolecule delivery vehicle. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1332625] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Varun Saxena
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, India
| | - Abshar Hasan
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, India
| | - Swati Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, India
| | - Lalit M. Pandey
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, India
| |
Collapse
|
28
|
Abstract
In this work, we investigate the pulsation of an electrically charged jet surrounded by an immiscible dielectric liquid in flow-focusing capillary microfluidics. We have characterized a low-frequency large-amplitude pulsation and a high-frequency small-amplitude pulsation, respectively. The former, due to the unbalanced charge and fluid transportation is responsible for generating droplets with a broad size distribution. The latter is intrinsic and produces droplets with a relatively narrow size distribution. Moreover, the average size of the final droplets can be tuned via the intrinsic pulsating frequency through changing the diameter of the emitted liquid jet. Our results provide degree of control over the emulsion droplets with submicron sizes generated in microfluidic-electrospray platform.
Collapse
|
29
|
Sasikumar A, Kamalasanan K. Nanomedicine for prostate cancer using nanoemulsion: A review. J Control Release 2017; 260:111-123. [PMID: 28583444 DOI: 10.1016/j.jconrel.2017.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 01/15/2023]
Abstract
Prostate cancer (PCa) is a worldwide issue, with burgeoning rise in prevalence, morbidity and mortality. Targeted drug delivery, a long sort solution in this regard using controlled release (CR) - nanocarriers, is still a challenge. There is an emerging criticism that, the challenges are due to less appreciation for the biological barriers and lack of corresponding newer technologies. Over the years, more understanding about the biological barriers has come with the progress in characterization techniques. Correspondingly, there is a change in opinion about approaches in clinical trial that; focus of the end point need to be shifted towards disease stabilization for these explorative technologies. Currently, there is a requirement to overcome these newly identified challenges to develop newer affordable therapeutics. The ongoing clinical protocol for therapy using CR-nanocarriers is intravenous injection followed by local targeting to cancer site. This is the most accepted protocol and new CR-nanocarriers are being developed to suit this protocol. In this review, recent progress in treatment of PCa using CR-nanocarriers is analyzed with respect to newly identified biological barriers and design challenges. Possibilities of exploring nanoemulsion (NE) platform for targeted drug delivery to PCa are examined. Repurposing of drugs and combination therapy using NE platform targeted to PCa can be explored for design and development of affordable nanomedicine. In 20yrs. from now there expected to be numerous affordable nanomedicine technologies available in market exploring these lines.
Collapse
Affiliation(s)
- Aravindsiva Sasikumar
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham University, Amrita University, AIMS Health Sciences Campus, Kochi, Kerala, India
| | - Kaladhar Kamalasanan
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham University, Amrita University, AIMS Health Sciences Campus, Kochi, Kerala, India.
| |
Collapse
|
30
|
Heckert B, Banerjee T, Sulthana S, Naz S, Alnasser R, Thompson D, Normand G, Grimm J, Perez JM, Santra S. Design and Synthesis of New Sulfur-Containing Hyperbranched Polymer and Theranostic Nanomaterials for Bimodal Imaging and Treatment of Cancer. ACS Macro Lett 2017; 6:235-240. [PMID: 29104818 DOI: 10.1021/acsmacrolett.7b00008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In this study, we have synthesized a new hyperbranched polyester polymer containing sulfur-pendants (HBPE-S) in the branching points. This HBPE-S polymer is composed of spherical shaped, aliphatic three-dimensional architecture with carboxylic acid groups on the surface. The presence of sulfur pendants in the polymeric cavities demonstrated important role in the effective encapsulation of Bi-DOTA complexes ([Bi] = 5.21 μM), when compared to the previously reported polymer without sulfur pendants (HBPE, [Bi] = 1.07 x 10-3 μM). Higher X-ray blocking capability and excellent X-ray contrast images were obtained from Bi-DOTA encapsulating HBPE-S polymeric nanoparticles when compared with that of HBPE nanoparticles. In addition, the HBPE-S polymer's spherical structure with amphiphilic cavities allow for the successful encapsulation of anti-tumor drugs and optical dyes, indicating suitable for delivery of wide-range of theranostic agents for cancer diagnosis and treatment. Therapeutic drug taxol encapsulating, folic acid decorated HBPE-S-Fol nanoparticles showed more than 80% of lung carcinoma cell death within 24 h of incubation. Cell viability and microscopic experiments also confirmed for the targeted delivery, thereby minimizing toxicity to healthy tissues. Taken together, new HBPE-S polymer and multimodal theranostic nanoplatforms were synthesized with enhanced X-ray blocking capability for the effective cancer targeting and treatment monitoring.
Collapse
Affiliation(s)
- Blaze Heckert
- Department
of Chemistry, Pittsburg State University, 1701 South Broadway Street, Pittsburg, Kansas 66762, United States
| | - Tuhina Banerjee
- Department
of Chemistry, Pittsburg State University, 1701 South Broadway Street, Pittsburg, Kansas 66762, United States
| | - Shoukath Sulthana
- Department
of Chemistry, Pittsburg State University, 1701 South Broadway Street, Pittsburg, Kansas 66762, United States
| | - Shuguftha Naz
- Department
of Chemistry, Pittsburg State University, 1701 South Broadway Street, Pittsburg, Kansas 66762, United States
| | - Riyadh Alnasser
- Department
of Chemistry, Pittsburg State University, 1701 South Broadway Street, Pittsburg, Kansas 66762, United States
| | - Deaven Thompson
- Department
of Chemistry, Pittsburg State University, 1701 South Broadway Street, Pittsburg, Kansas 66762, United States
| | - Guillaume Normand
- Department
of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Jan Grimm
- Department
of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
- Pharmacology
Program and Department of Radiology, Weil Cornell Medical College, 1300 York Avenue, New York, New York 10065, United States
| | - J. Manuel Perez
- Nanoscience
Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Santimukul Santra
- Department
of Chemistry, Pittsburg State University, 1701 South Broadway Street, Pittsburg, Kansas 66762, United States
| |
Collapse
|
31
|
Attia MF, Dieng SM, Collot M, Klymchenko AS, Bouillot C, Serra CA, Schmutz M, Er-Rafik M, Vandamme TF, Anton N. Functionalizing Nanoemulsions with Carboxylates: Impact on the Biodistribution and Pharmacokinetics in Mice. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201600471] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/20/2017] [Indexed: 01/10/2023]
Affiliation(s)
- Mohamed F. Attia
- Faculty of Pharmacy; University of Strasbourg; 74 route du Rhin 67401 Illkirch Cedex France
- CNRS UMR 7199; Laboratoire de Conception et Application de Molécules Bioactives; équipe de Pharmacie Biogalénique; 74 route du Rhin 67401 Illkirch Cedex France
- National Research Center; P.O. 12622 Cairo Egypt
| | - Sidy M. Dieng
- Faculty of Pharmacy; University of Strasbourg; 74 route du Rhin 67401 Illkirch Cedex France
- CNRS UMR 7199; Laboratoire de Conception et Application de Molécules Bioactives; équipe de Pharmacie Biogalénique; 74 route du Rhin 67401 Illkirch Cedex France
| | - Mayeul Collot
- Faculty of Pharmacy; University of Strasbourg; 74 route du Rhin 67401 Illkirch Cedex France
- UMR CNRS 7213; Laboratoire de Biophotonique et Pharmacologie; équipe Nanochimie et Bioimagerie; 74 route du Rhin 67401 Illkirch Cedex France
| | - Andrey S. Klymchenko
- Faculty of Pharmacy; University of Strasbourg; 74 route du Rhin 67401 Illkirch Cedex France
- UMR CNRS 7213; Laboratoire de Biophotonique et Pharmacologie; équipe Nanochimie et Bioimagerie; 74 route du Rhin 67401 Illkirch Cedex France
| | | | | | - Marc Schmutz
- Institut Charles Sadron (ICS) UPR 22 CNRS; 67200 Strasbourg France
| | - Meriem Er-Rafik
- Institut Charles Sadron (ICS) UPR 22 CNRS; 67200 Strasbourg France
| | - Thierry F. Vandamme
- Faculty of Pharmacy; University of Strasbourg; 74 route du Rhin 67401 Illkirch Cedex France
- CNRS UMR 7199; Laboratoire de Conception et Application de Molécules Bioactives; équipe de Pharmacie Biogalénique; 74 route du Rhin 67401 Illkirch Cedex France
| | - Nicolas Anton
- Faculty of Pharmacy; University of Strasbourg; 74 route du Rhin 67401 Illkirch Cedex France
- CNRS UMR 7199; Laboratoire de Conception et Application de Molécules Bioactives; équipe de Pharmacie Biogalénique; 74 route du Rhin 67401 Illkirch Cedex France
| |
Collapse
|
32
|
Zou Y, Wei Y, Wang G, Meng F, Gao M, Storm G, Zhong Z. Nanopolymersomes with an Ultrahigh Iodine Content for High-Performance X-Ray Computed Tomography Imaging In Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1603997. [PMID: 28054400 DOI: 10.1002/adma.201603997] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/14/2016] [Indexed: 06/06/2023]
Abstract
Biocompatible and biodegradable nanopolymersomes with an unprecedented iodine content, low viscosity, and iso-osmolality achieve significantly enhanced CT imaging of blood pool and the reticuloendothelial system. Moreover, in subcutaneous and orthotopic tumor models in mice, they show enhanced in vivo imaging when compared to iohexol, a clinically used small-molecule contrast agent.
Collapse
Affiliation(s)
- Yan Zou
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P.R. China
| | - Yaohua Wei
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P.R. China
- Department of Biomaterials Science and Technology, MIRA Institute for Biological Technology and Technical Medicine, University of Twente, PO Box 217, 7500AE, Enschede, The Netherlands
| | - Guanglin Wang
- Center for Molecular Imaging and Nuclear Medicine, School for Radiological and Interdisciplinary Sciences, Soochow University, Suzhou, 215123, P.R. China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P.R. China
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, School for Radiological and Interdisciplinary Sciences, Soochow University, Suzhou, 215123, P.R. China
| | - Gert Storm
- Department of Biomaterials Science and Technology, MIRA Institute for Biological Technology and Technical Medicine, University of Twente, PO Box 217, 7500AE, Enschede, The Netherlands
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P.R. China
| |
Collapse
|
33
|
Ding S, Anton N, Akram S, Er-Rafik M, Anton H, Klymchenko A, Yu W, Vandamme TF, Serra CA. A new method for the formulation of double nanoemulsions. SOFT MATTER 2017; 13:1660-1669. [PMID: 28145556 DOI: 10.1039/c6sm02603f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Double emulsions are very attractive systems for many reasons; the most important of these are their capacity to encapsulate hydrophilic and lipophilic molecules simultaneously in a single particle and their potentiality to protect fragile hydrophilic molecules from the continuous phase. Double emulsions represent a technology that is widely present down to the micrometer scale; however, double nanoemulsions, with their new potential applications as nanomedicines or diagnosis agents, currently present a significant challenge. In this study, we propose an original two-step approach for the fabrication of double nanoemulsions with a final size below 200 nm. The process consists of the formulation of a primary water-in-oil (w1/O) nanoemulsion by high-pressure homogenization, followed by the re-emulsification of this primary emulsion by a low-energy method to preserve the double nanostructure. Various characterization techniques were undertaken to confirm the double structure and to evaluate the encapsulation efficiency of a small hydrophilic probe in the inner aqueous droplets. Complementary fluorescence confocal and cryo-TEM microscopy experiments were conducted to characterize and confirm the double structure of the double nanoemulsion.
Collapse
Affiliation(s)
- Shukai Ding
- Institut Charles Sadron (ICS) - UPR 22 CNRS, Strasbourg, France
| | - Nicolas Anton
- CNRS 7199, Laboratoire de Conception et Application de Molécules Bioactives (CAMB), Equipe de Pharmacie Biogalénique, 74 route du Rhin, 67401 Illkirch Cedex, France and Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch Cedex, France.
| | - Salman Akram
- CNRS 7199, Laboratoire de Conception et Application de Molécules Bioactives (CAMB), Equipe de Pharmacie Biogalénique, 74 route du Rhin, 67401 Illkirch Cedex, France and Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch Cedex, France.
| | - Meriem Er-Rafik
- Institut Charles Sadron (ICS) - UPR 22 CNRS, Strasbourg, France
| | - Halina Anton
- CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, 74 route du Rhin, 67401 Illkirch Cedex, France
| | - Andrey Klymchenko
- CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, 74 route du Rhin, 67401 Illkirch Cedex, France
| | - Wei Yu
- Institut Charles Sadron (ICS) - UPR 22 CNRS, Strasbourg, France
| | - Thierry F Vandamme
- CNRS 7199, Laboratoire de Conception et Application de Molécules Bioactives (CAMB), Equipe de Pharmacie Biogalénique, 74 route du Rhin, 67401 Illkirch Cedex, France and Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch Cedex, France.
| | - Christophe A Serra
- Institut Charles Sadron (ICS) - UPR 22 CNRS, Strasbourg, France and Université de Strasbourg, École Européenne de Chimie, Polymères et Matériaux (ECPM), Strasbourg, France.
| |
Collapse
|
34
|
Chen X, Zhu H, Huang X, Wang P, Zhang F, Li W, Chen G, Chen B. Novel iodinated gold nanoclusters for precise diagnosis of thyroid cancer. NANOSCALE 2017; 9:2219-2231. [PMID: 28120979 DOI: 10.1039/c6nr07656d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
As the most common endocrine malignancy with a high incidence, thyroid cancer lacks a dual-modal imaging method for precise diagnosis. An accurate and multimodal imaging system is pivotal to solve this problem. Herein, dual-modality fluorescence/Computed Tomography (CT) iodinated gold nanoclusters for malignant thyroid cancer visualization have been recently fabricated. In this study, innovative iodinated gold nanoclusters (AuNCs@BSA-I) were synthesized via Bovine serum albumin (BSA) and chloramine-T. AuNCs@BSA-I not only possess an ultra-small size and brilliant biocompatibility but also exhibit excellent fluorescence/CT imaging properties. Particularly with regard to CT imaging properties, AuNCs@BSA-I rival the clinical CT contrast medium. And the fluorescence emission spectrum of AuNCs@BSA-I falls in the near infrared region (NIR). For further translational application in medicine, we established an orthotopic human thyroid cancer patient tissue derived xenograft (PDX) mouse model, highly close to the actual human thyroid cancer. The results unveil that AuNCs@BSA-I exert sensitive and accurate diagnosis characteristics. To be more specific, the AuNCs@BSA-I fluorescent/CT signals in the thyroid tumor represent characteristics of 'slow in fast out', compared to those in the normal thyroid. Moreover, AuNCs@BSA-I could distinguish minimal thyroid cancer, as small as 2 mm3. Therefore, AuNCs@BSA-I appear to be a promising nanoprobe which could be applied to preclinical medicine.
Collapse
Affiliation(s)
- Xin Chen
- Department of Thyroid Surgery, The First Bethune Hospital of Jilin University, No. 71, Xinmin Street, Changchun, Jilin 130021, People's Republic of China and The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, People's Republic of China
| | - Huanhuan Zhu
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, People's Republic of China
| | - Xin Huang
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, People's Republic of China
| | - Peisong Wang
- Department of Thyroid Surgery, The First Bethune Hospital of Jilin University, No. 71, Xinmin Street, Changchun, Jilin 130021, People's Republic of China
| | - Fulei Zhang
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, People's Republic of China
| | - Wei Li
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, People's Republic of China
| | - Guang Chen
- Department of Thyroid Surgery, The First Bethune Hospital of Jilin University, No. 71, Xinmin Street, Changchun, Jilin 130021, People's Republic of China
| | - Bingdi Chen
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, People's Republic of China
| |
Collapse
|
35
|
Wang J, Quershi WA, Li Y, Xu J, Nie G. Analytical methods for nano-bio interface interactions. Sci China Chem 2016. [DOI: 10.1007/s11426-016-0340-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
36
|
Wu T, Heuillard E, Lindner V, Bou About G, Ignat M, Dillenseger JP, Anton N, Dalimier E, Gossé F, Fouré G, Blindauer F, Giraudeau C, El-Saghire H, Bouhadjar M, Calligaro C, Sorg T, Choquet P, Vandamme T, Ferrand C, Marescaux J, Baumert TF, Diana M, Pessaux P, Robinet E. Multimodal imaging of a humanized orthotopic model of hepatocellular carcinoma in immunodeficient mice. Sci Rep 2016; 6:35230. [PMID: 27739457 PMCID: PMC5064389 DOI: 10.1038/srep35230] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 09/15/2016] [Indexed: 02/07/2023] Open
Abstract
The development of multimodal strategies for the treatment of hepatocellular carcinoma requires tractable animal models allowing for advanced in vivo imaging. Here, we characterize an orthotopic hepatocellular carcinoma model based on the injection of luciferase-expressing human hepatoma Huh-7 (Huh-7-Luc) cells in immunodeficient mice. Luciferase allows for an easy repeated monitoring of tumor growth by in vivo bioluminescence. The intrahepatic injection was more efficient than intrasplenic or intraportal injection in terms of survival, rate of orthotopic engraftment, and easiness. A positive correlation between luciferase activity and tumor size, evaluated by Magnetic Resonance Imaging, allowed to define the endpoint value for animal experimentation with this model. Response to standard of care, sorafenib or doxorubicin, were similar to those previously reported in the literature, with however a strong toxicity of doxorubicin. Tumor vascularization was visible by histology seven days after Huh-7-Luc transplantation and robustly developed at day 14 and day 21. The model was used to explore different imaging modalities, including microtomography, probe-based confocal laser endomicroscopy, full-field optical coherence tomography, and ultrasound imaging. Tumor engraftment was similar after echo-guided intrahepatic injection as after laparotomy. Collectively, this orthotopic hepatocellular carcinoma model enables the in vivo evaluation of chemotherapeutic and surgical approaches using multimodal imaging.
Collapse
Affiliation(s)
- Tao Wu
- INSERM, U 1110, 67000 Strasbourg, France
- University of Strasbourg, 67000 Strasbourg, France
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, 650500, Yunnan, People’s Republic of China
| | - Emilie Heuillard
- INSERM, U 1110, 67000 Strasbourg, France
- University of Strasbourg, 67000 Strasbourg, France
- IHU-Strasbourg, Institute of Image-Guided Surgery, 67000 Strasbourg, France
| | - Véronique Lindner
- Pathology Department, University Hospital of Strasbourg, 67000 Strasbourg, France
| | | | - Mihaela Ignat
- Pôle Hépatodigestif, Unité Hépatologie, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- Research Institute against Cancer of the Digestive System (IRCAD), 67000 Strasbourg, France
| | - Jean-Philippe Dillenseger
- University of Strasbourg, 67000 Strasbourg, France
- Functional Unit 6237, Preclinical Imaging, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- National Center for Scientific Research (CNRS), ICube, MMB team, 67000 Strasbourg, France
- Medical Faculty, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France
| | - Nicolas Anton
- University of Strasbourg, 67000 Strasbourg, France
- National Center for Scientific Research (CNRS), UMR 7199, 67400 Illkirch, France
| | | | - Francine Gossé
- INSERM, U 1110, 67000 Strasbourg, France
- University of Strasbourg, 67000 Strasbourg, France
| | - Gael Fouré
- IHU-Strasbourg, Institute of Image-Guided Surgery, 67000 Strasbourg, France
| | - Franck Blindauer
- IHU-Strasbourg, Institute of Image-Guided Surgery, 67000 Strasbourg, France
| | - Céline Giraudeau
- IHU-Strasbourg, Institute of Image-Guided Surgery, 67000 Strasbourg, France
| | - Hussein El-Saghire
- INSERM, U 1110, 67000 Strasbourg, France
- University of Strasbourg, 67000 Strasbourg, France
| | - Mourad Bouhadjar
- IHU-Strasbourg, Institute of Image-Guided Surgery, 67000 Strasbourg, France
| | - Cynthia Calligaro
- IHU-Strasbourg, Institute of Image-Guided Surgery, 67000 Strasbourg, France
| | - Tania Sorg
- Mouse Clinical Institute, 67400 Illkirch, France
| | - Philippe Choquet
- University of Strasbourg, 67000 Strasbourg, France
- Functional Unit 6237, Preclinical Imaging, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- National Center for Scientific Research (CNRS), ICube, MMB team, 67000 Strasbourg, France
- Medical Faculty, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France
| | - Thierry Vandamme
- University of Strasbourg, 67000 Strasbourg, France
- National Center for Scientific Research (CNRS), UMR 7199, 67400 Illkirch, France
| | - Christophe Ferrand
- French Blood Agency Bourgogne/Franche-Comté, 25000 Besançon, France
- INSERM, U 1098, 25000 Besançon, France
- Université de Franche-Comté, 25000 Besançon, France
| | - Jacques Marescaux
- IHU-Strasbourg, Institute of Image-Guided Surgery, 67000 Strasbourg, France
- Pôle Hépatodigestif, Unité Hépatologie, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- Research Institute against Cancer of the Digestive System (IRCAD), 67000 Strasbourg, France
| | - Thomas F. Baumert
- INSERM, U 1110, 67000 Strasbourg, France
- University of Strasbourg, 67000 Strasbourg, France
- IHU-Strasbourg, Institute of Image-Guided Surgery, 67000 Strasbourg, France
- Pôle Hépatodigestif, Unité Hépatologie, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | - Michele Diana
- IHU-Strasbourg, Institute of Image-Guided Surgery, 67000 Strasbourg, France
- Research Institute against Cancer of the Digestive System (IRCAD), 67000 Strasbourg, France
| | - Patrick Pessaux
- INSERM, U 1110, 67000 Strasbourg, France
- University of Strasbourg, 67000 Strasbourg, France
- IHU-Strasbourg, Institute of Image-Guided Surgery, 67000 Strasbourg, France
- Pôle Hépatodigestif, Unité Hépatologie, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- Research Institute against Cancer of the Digestive System (IRCAD), 67000 Strasbourg, France
| | - Eric Robinet
- INSERM, U 1110, 67000 Strasbourg, France
- University of Strasbourg, 67000 Strasbourg, France
- IHU-Strasbourg, Institute of Image-Guided Surgery, 67000 Strasbourg, France
| |
Collapse
|
37
|
Bouchaala R, Mercier L, Andreiuk B, Mély Y, Vandamme T, Anton N, Goetz JG, Klymchenko AS. Integrity of lipid nanocarriers in bloodstream and tumor quantified by near-infrared ratiometric FRET imaging in living mice. J Control Release 2016; 236:57-67. [PMID: 27327767 PMCID: PMC4968657 DOI: 10.1016/j.jconrel.2016.06.027] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 06/10/2016] [Accepted: 06/16/2016] [Indexed: 11/29/2022]
Abstract
Lipid nanocarriers are considered as promising candidates for drug delivery and cancer targeting because of their low toxicity, biodegradability and capacity to encapsulate drugs and/or contrasting agents. However, their biomedical applications are currently limited because of a poor understanding of their integrity in vivo. To address this problem, we report on fluorescent nano-emulsion droplets of 100 nm size encapsulating lipophilic near-infrared cyanine 5.5 and 7.5 dyes with a help of bulky hydrophobic counterion tetraphenylborate. Excellent brightness and efficient Förster Resonance Energy Transfer (FRET) inside lipid NCs enabled for the first time quantitative fluorescence ratiometric imaging of NCs integrity directly in the blood circulation, liver and tumor xenografts of living mice using a whole-animal imaging set-up. This unique methodology revealed that the integrity of our FRET NCs in the blood circulation of healthy mice is preserved at 93% at 6 h of post-administration, while it drops to 66% in the liver (half-life is 8.2 h). Moreover, these NCs show fast and efficient accumulation in tumors, where they enter in nearly intact form (77% integrity at 2 h) before losing their integrity to 40% at 6 h (half-life is 4.4 h). Thus, we propose a simple and robust methodology based on ratiometric FRET imaging in vivo to evaluate quantitatively nanocarrier integrity in small animals. We also demonstrate that nano-emulsion droplets are remarkably stable nano-objects that remain nearly intact in the blood circulation and release their content mainly after entering tumors.
Collapse
Affiliation(s)
- Redouane Bouchaala
- Laboratoire de Biophotonique et Pharmacologie, UMR CNRS 7213, University of Strasbourg, 74 route du Rhin, 67401 Illkirch Cedex, France; Laboratory of Photonic Systems and Nonlinear Optics, Institute of Optics and Fine Mechanics, University of Setif 1, 19000, Algeria
| | - Luc Mercier
- MN3T, Inserm U1109, LabEx Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, F-67200, France
| | - Bohdan Andreiuk
- Laboratoire de Biophotonique et Pharmacologie, UMR CNRS 7213, University of Strasbourg, 74 route du Rhin, 67401 Illkirch Cedex, France; Organic Chemistry Department, Chemistry Faculty, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie, UMR CNRS 7213, University of Strasbourg, 74 route du Rhin, 67401 Illkirch Cedex, France
| | - Thierry Vandamme
- CNRS UMR 7199, Laboratoire de Conception et Application de Molécules Bioactives, University of Strasbourg, 74 route du Rhin, 67401 Illkirch Cedex, France
| | - Nicolas Anton
- CNRS UMR 7199, Laboratoire de Conception et Application de Molécules Bioactives, University of Strasbourg, 74 route du Rhin, 67401 Illkirch Cedex, France.
| | - Jacky G Goetz
- MN3T, Inserm U1109, LabEx Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, F-67200, France.
| | - Andrey S Klymchenko
- Laboratoire de Biophotonique et Pharmacologie, UMR CNRS 7213, University of Strasbourg, 74 route du Rhin, 67401 Illkirch Cedex, France.
| |
Collapse
|
38
|
Das NM, Hatsell S, Nannuru K, Huang L, Wen X, Wang L, Wang LH, Idone V, Meganck JA, Murphy A, Economides A, Xie L. In Vivo Quantitative Microcomputed Tomographic Analysis of Vasculature and Organs in a Normal and Diseased Mouse Model. PLoS One 2016; 11:e0150085. [PMID: 26910759 PMCID: PMC4765930 DOI: 10.1371/journal.pone.0150085] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/09/2016] [Indexed: 02/07/2023] Open
Abstract
Non-bone in vivo micro-CT imaging has many potential applications for preclinical evaluation. Specifically, the in vivo quantification of changes in the vascular network and organ morphology in small animals, associated with the emergence and progression of diseases like bone fracture, inflammation and cancer, would be critical to the development and evaluation of new therapies for the same. However, there are few published papers describing the in vivo vascular imaging in small animals, due to technical challenges, such as low image quality and low vessel contrast in surrounding tissues. These studies have primarily focused on lung, cardiovascular and brain imaging. In vivo vascular imaging of mouse hind limbs has not been reported. We have developed an in vivo CT imaging technique to visualize and quantify vasculature and organ structure in disease models, with the goal of improved quality images. With 1–2 minutes scanning by a high speed in vivo micro-CT scanner (Quantum CT), and injection of a highly efficient contrast agent (Exitron nano 12000), vasculature and organ structure were semi-automatically segmented and quantified via image analysis software (Analyze). Vessels of the head and hind limbs, and organs like the heart, liver, kidneys and spleen were visualized and segmented from density maps. In a mouse model of bone metastasis, neoangiogenesis was observed, and associated changes to vessel morphology were computed, along with associated enlargement of the spleen. The in vivo CT image quality, voxel size down to 20 μm, is sufficient to visualize and quantify mouse vascular morphology. With this technique, in vivo vascular monitoring becomes feasible for the preclinical evaluation of small animal disease models.
Collapse
Affiliation(s)
- Nanditha Mohan Das
- Department of Skeletal Diseases – Therapeutic Focus Areas, Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
| | - Sarah Hatsell
- Department of Skeletal Diseases – Therapeutic Focus Areas, Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
| | - Kalyan Nannuru
- Department of Skeletal Diseases – Therapeutic Focus Areas, Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
| | - Lily Huang
- Department of Skeletal Diseases – Therapeutic Focus Areas, Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
| | - Xialing Wen
- Department of Skeletal Diseases – Therapeutic Focus Areas, Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
| | - Lili Wang
- Department of Skeletal Diseases – Therapeutic Focus Areas, Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
| | - Li-Hsien Wang
- Department of Skeletal Diseases – Therapeutic Focus Areas, Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
| | - Vincent Idone
- Department of Skeletal Diseases – Therapeutic Focus Areas, Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
| | - Jeffrey A. Meganck
- Research and Development, PerkinElmer, Hopkinton, Massachusetts, United States of America
| | - Andrew Murphy
- Department of Skeletal Diseases – Therapeutic Focus Areas, Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
| | - Aris Economides
- Department of Skeletal Diseases – Therapeutic Focus Areas, Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
| | - LiQin Xie
- Department of Skeletal Diseases – Therapeutic Focus Areas, Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
- * E-mail:
| |
Collapse
|
39
|
|
40
|
Zhang H, Ding Q, Ding J. Noninvasive target CT detection and anti-inflammation of MRSA pneumonia with theranostic silver loaded mesoporous silica. RSC Adv 2016. [DOI: 10.1039/c5ra22944h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Antibiotics resistant MRSA related pneumonia lesions could be detected under CT guidance and controlled using theranostic reported herein.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Geriatric Gastroenterology
- The First Affiliated Hospital with Nanjing Medical University
- Nanjing
- People's Republic of China
| | - Qingqing Ding
- Department of Geriatric Gastroenterology
- The First Affiliated Hospital with Nanjing Medical University
- Nanjing
- People's Republic of China
| | - Jing Ding
- Department of Respiratory Medicine
- the Affiliated Nanjing Children Hospital with Nanjing Medical University
- Nanjing
- People's Republic of China
| |
Collapse
|
41
|
Wang K, Peng H, Thurecht KJ, Puttick S, Whittaker AK. Multifunctional hyperbranched polymers for CT/19F MRI bimodal molecular imaging. Polym Chem 2016. [DOI: 10.1039/c5py01707f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multifunctional hyperbranched polymers containing iodine and fluorine were synthesised by reversible addition–fragmentation chain transfer (RAFT) polymerisation, and evaluated as novel contrast agents for CT/19F MRI bimodal molecular imaging.
Collapse
Affiliation(s)
- Kewei Wang
- Australian Institute for Bioengineering and Nanotechnology
- Centre for Advanced Imaging
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- The University of Queensland
- St. Lucia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology
- Centre for Advanced Imaging
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- The University of Queensland
- St. Lucia
| | - Kristofer J. Thurecht
- Australian Institute for Bioengineering and Nanotechnology
- Centre for Advanced Imaging
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- The University of Queensland
- St. Lucia
| | - Simon Puttick
- Australian Institute for Bioengineering and Nanotechnology
- Centre for Advanced Imaging
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- The University of Queensland
- St. Lucia
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and Nanotechnology
- Centre for Advanced Imaging
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- The University of Queensland
- St. Lucia
| |
Collapse
|
42
|
Zhang M, Ju H, Zhang L, Sun M, Zhou Z, Dai Z, Zhang L, Gong A, Wu C, Du F. Engineering iodine-doped carbon dots as dual-modal probes for fluorescence and X-ray CT imaging. Int J Nanomedicine 2015; 10:6943-53. [PMID: 26609232 PMCID: PMC4644166 DOI: 10.2147/ijn.s82778] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
X-ray computed tomography (CT) is the most commonly used imaging technique for noninvasive diagnosis of disease. In order to improve tissue specificity and prevent adverse effects, we report the design and synthesis of iodine-doped carbon dots (I-doped CDs) as efficient CT contrast agents and fluorescence probe by a facile bottom-up hydrothermal carbonization process. The as-prepared I-doped CDs are monodispersed spherical nanoparticles (a diameter of ~2.7 nm) with favorable dispersibility and colloidal stability in water. The aqueous solution of I-doped CDs showed wavelength-dependent excitation and stable photoluminescence similar to traditional carbon quantum dots. Importantly, I-doped CDs displayed superior X-ray attenuation properties in vitro and excellent biocompatibility. After intravenous injection, I-doped CDs were distributed throughout the body and excreted by renal clearance. These findings validated that I-doped CDs with high X-ray attenuation potency and favorable photoluminescence show great promise for biomedical research and disease diagnosis.
Collapse
Affiliation(s)
- Miaomiao Zhang
- School of Medicine, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Huixiang Ju
- Department of Clinical Laboratory, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, Jiangsu, People’s Republic of China
| | - Li Zhang
- School of Medicine, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Mingzhong Sun
- Department of Clinical Laboratory, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, Jiangsu, People’s Republic of China
| | - Zhongwei Zhou
- Department of Clinical Laboratory, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, Jiangsu, People’s Republic of China
| | - Zhenyu Dai
- Radiology Department, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, Jiangsu, People’s Republic of China
| | - Lirong Zhang
- School of Medicine, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Aihua Gong
- School of Medicine, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Chaoyao Wu
- School of Medicine, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Fengyi Du
- School of Medicine, Jiangsu University, Zhenjiang, People’s Republic of China
| |
Collapse
|
43
|
Ashton JR, West JL, Badea CT. In vivo small animal micro-CT using nanoparticle contrast agents. Front Pharmacol 2015; 6:256. [PMID: 26581654 PMCID: PMC4631946 DOI: 10.3389/fphar.2015.00256] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/19/2015] [Indexed: 12/12/2022] Open
Abstract
Computed tomography (CT) is one of the most valuable modalities for in vivo imaging because it is fast, high-resolution, cost-effective, and non-invasive. Moreover, CT is heavily used not only in the clinic (for both diagnostics and treatment planning) but also in preclinical research as micro-CT. Although CT is inherently effective for lung and bone imaging, soft tissue imaging requires the use of contrast agents. For small animal micro-CT, nanoparticle contrast agents are used in order to avoid rapid renal clearance. A variety of nanoparticles have been used for micro-CT imaging, but the majority of research has focused on the use of iodine-containing nanoparticles and gold nanoparticles. Both nanoparticle types can act as highly effective blood pool contrast agents or can be targeted using a wide variety of targeting mechanisms. CT imaging can be further enhanced by adding spectral capabilities to separate multiple co-injected nanoparticles in vivo. Spectral CT, using both energy-integrating and energy-resolving detectors, has been used with multiple contrast agents to enable functional and molecular imaging. This review focuses on new developments for in vivo small animal micro-CT using novel nanoparticle probes applied in preclinical research.
Collapse
Affiliation(s)
- Jeffrey R Ashton
- Department of Biomedical Engineering, Duke University, Durham NC, USA ; Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham NC, USA
| | - Jennifer L West
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Cristian T Badea
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham NC, USA
| |
Collapse
|
44
|
Biodistribution and Toxicity of X-Ray Iodinated Contrast Agent in Nano-emulsions in Function of Their Size. Pharm Res 2015; 33:603-14. [PMID: 26511860 DOI: 10.1007/s11095-015-1813-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/21/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE This study aimed to investigate the impact of the size of X-ray iodinated contrast agent in nano-emulsions, on their toxicity and fate in vivo. METHODS A new compound, triiodobenzoate cholecalciferol, was synthetized, formulated as nano-emulsions, and followed after i.v. administration in mice by X-ray imaging (micro computed tomography). Physicochemical characterization and process optimization allowed identifying a good compromise between X-ray contrasting properties, monodispersity and stability. This also allowed selecting two formulations with different sizes, hydrodynamic diameters of 55 and 100 nm, but exactly the same composition. In vitro experiments were performed on two cell lines, namely hepatocytes (BNL-CL2) and macrophages (RAW264.7). RESULTS Cell viability studies, cell uptake observations by confocal microscopy, and uptake quantification by fluorimetry, disclosed clear differences between two formulations, as well as between two types of cell lines. After i.v. injection of the two iodinated nano-emulsions in mice, CT scans provided the quantification of the pharmacokinetics and biodistributions. We finally showed that the size in the nano-emulsions has not a real impact on the pharmacokinetics and biodistributions, but has a strong influence on their toxicity, corroborating the in vitro results. CONCLUSIONS This study shows that the size of the nanocarrier significantly matters, likely due to highly different interactions with cells and tissues. Graphical Abstract A study on the effect of the size of cholecciferol nano-emulsions, on their in vivo becoming, through X-ray imaging modality.
Collapse
|
45
|
Nicolau SE, Davis LL, Duncan CC, Olsen TR, Alexis F, Whitehead DC, Van Horn BA. Oxime functionalization strategy for iodinated poly(epsilon-caprolactone) X-ray opaque materials. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27706] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Samantha E. Nicolau
- Department of Chemistry and Biochemistry; College of Charleston; 66 George St. Charleston South Carolina 29424
| | - Lundy L. Davis
- Department of Chemistry and Biochemistry; College of Charleston; 66 George St. Charleston South Carolina 29424
| | - Caroline C. Duncan
- Department of Chemistry and Biochemistry; College of Charleston; 66 George St. Charleston South Carolina 29424
| | - Timothy R. Olsen
- Department of Bioengineering; Clemson University; 203 Rhodes Research Center Annex Clemson South Carolina 29634
| | - Frank Alexis
- Department of Bioengineering; Clemson University; 203 Rhodes Research Center Annex Clemson South Carolina 29634
- Institute of Biological Interfaces of Engineering; Department of Bioengineering; Clemson University; Clemson South Carolina 29634-0905
| | - Daniel C. Whitehead
- Department of Chemistry; Clemson University; 467 Hunter Laboratories Clemson South Carolina 29634
| | - Brooke A. Van Horn
- Department of Chemistry and Biochemistry; College of Charleston; 66 George St. Charleston South Carolina 29424
| |
Collapse
|
46
|
|
47
|
Attia MF, Anton N, Bouchaala R, Didier P, Arntz Y, Messaddeq N, Klymchenko AS, Mély Y, Vandamme TF. Functionalization of nano-emulsions with an amino-silica shell at the oil–water interface. RSC Adv 2015. [DOI: 10.1039/c5ra12676b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A new and simple method of modify and functionalize the liquid/liquid interface of nano-emulsion droplets.
Collapse
Affiliation(s)
- Mohamed F. Attia
- University of Strasbourg
- Faculty of Pharmacy
- 74 route du Rhin
- 67401 Illkirch Cedex
- France
| | - Nicolas Anton
- University of Strasbourg
- Faculty of Pharmacy
- 74 route du Rhin
- 67401 Illkirch Cedex
- France
| | - Redouane Bouchaala
- University of Strasbourg
- Faculty of Pharmacy
- 74 route du Rhin
- 67401 Illkirch Cedex
- France
| | - Pascal Didier
- University of Strasbourg
- Faculty of Pharmacy
- 74 route du Rhin
- 67401 Illkirch Cedex
- France
| | - Youri Arntz
- University of Strasbourg
- Faculty of Pharmacy
- 74 route du Rhin
- 67401 Illkirch Cedex
- France
| | - Nadia Messaddeq
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire)
- Inserm U964
- CNRS UMR7104
- Université de Strasbourg
- 67404 Illkirch
| | - Andrey S. Klymchenko
- University of Strasbourg
- Faculty of Pharmacy
- 74 route du Rhin
- 67401 Illkirch Cedex
- France
| | - Yves Mély
- University of Strasbourg
- Faculty of Pharmacy
- 74 route du Rhin
- 67401 Illkirch Cedex
- France
| | - Thierry F. Vandamme
- University of Strasbourg
- Faculty of Pharmacy
- 74 route du Rhin
- 67401 Illkirch Cedex
- France
| |
Collapse
|
48
|
WANG Z, NEVES MA, ISODA H, NAKAJIMA M. Preparation and Characterization of Micro/Nano-emulsions Containing Functional Food Components. ACTA ACUST UNITED AC 2015. [DOI: 10.11301/jsfe.16.263] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Zheng WANG
- Alliance for Research on North Africa, University of Tsukuba
- Faculty of Life and Environmental Sciences, University of Tsukuba
| | - Marcos A. NEVES
- Alliance for Research on North Africa, University of Tsukuba
- Faculty of Life and Environmental Sciences, University of Tsukuba
| | - Hiroko ISODA
- Alliance for Research on North Africa, University of Tsukuba
- Faculty of Life and Environmental Sciences, University of Tsukuba
| | - Mitsutoshi NAKAJIMA
- Alliance for Research on North Africa, University of Tsukuba
- Faculty of Life and Environmental Sciences, University of Tsukuba
| |
Collapse
|
49
|
Talegaonkar S, Negi LM. Nanoemulsion in Drug Targeting. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1007/978-3-319-11355-5_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
50
|
Hallouard F, Dollo G, Brandhonneur N, Grasset F, Corre PL. Preparation and characterization of spironolactone-loaded nano-emulsions for extemporaneous applications. Int J Pharm 2014; 478:193-201. [PMID: 25448582 DOI: 10.1016/j.ijpharm.2014.11.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/05/2014] [Accepted: 11/08/2014] [Indexed: 11/30/2022]
Abstract
In neonates as well as in adults having swallowing difficulty, oral medication is given through a nasogastric tube making liquid formulations preferable. In this study, we present the high potential of nanometric emulsions formulated by spontaneous surfactant diffusion, as extemporaneous formulations of hydrophobic drug. Spironolactone used as hydrophobic drug model, was incorporated in oil before formulation at a concentration of 13.5mg/g oil. Then, all formulations were evaluated from pharmacotechnical and clinical standpoints, for their use in hospital or community pharmacy. The strength of this new liquid formulation lies on the simplicity, efficiency and reproducibility of their low energy process as on clinical aspects: high dose uniformity, facility to be administered through in nasogastric tube without any retention and a stability of 2 months at least compatible for an extemporaneous use. Moreover, this emulsion presented spironolactone content of 3.75 mg/ml among the most concentrated formulations published.
Collapse
Affiliation(s)
- François Hallouard
- Université de Rennes I, Laboratoire de Pharmacie Galénique, Biopharmacie et Pharmacie Clinique, Rennes, France
| | - Gilles Dollo
- Université de Rennes I, Laboratoire de Pharmacie Galénique, Biopharmacie et Pharmacie Clinique, Rennes, France; Centre Hospitalo-Universitaire de Rennes, Pôle Pharmacie, Rennes, France.
| | - Nolwenn Brandhonneur
- Université de Rennes I, Laboratoire de Pharmacie Galénique, Biopharmacie et Pharmacie Clinique, Rennes, France
| | - Fabien Grasset
- Université de Rennes I, Institut des Sciences Chimiques de Rennes, UMR/CNRS 6226, Rennes, France; CNRS, UMI 3629CNRS/Saint-Gobain, Laboratory for Innovative Key Materials and Structures-Link, National Institute of Material Science (NIMS), GREEN/MANA Room 512, 1-1 Namiki, 305-0044 Tsukuba, Japan
| | - Pascal Le Corre
- Université de Rennes I, Laboratoire de Pharmacie Galénique, Biopharmacie et Pharmacie Clinique, Rennes, France; Centre Hospitalo-Universitaire de Rennes, Pôle Pharmacie, Rennes, France
| |
Collapse
|