1
|
Zhang H, Chen H, Guo G, Lin J, Chen X, Huang P, Lin C, Lin H, Lu Y, Lin J, Li X, Zhang W. Nanotechnology in prostate cancer: a bibliometric analysis from 2004 to 2023. Discov Oncol 2025; 16:451. [PMID: 40175778 PMCID: PMC11965044 DOI: 10.1007/s12672-025-02265-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/28/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Prostate cancer (PC) contributes to male mortality worldwide. The objective of this study is to comprehensively depict the scientific accomplishments and research trends in nanotechnology for PC applications. METHODS Utilizing the Web of Science Core Collection database, publications were gathered on the basis of inclusion and selection criteria. The publications were analyzed and visualized using VOSviewer, R-studio and CiteSpace software tools. RESULTS A total of 1949 studies were incorporated. Farokhzad was the most productive author. The United States and China released 58.13% of the total publications. The Chinese Academy of Sciences was the most influential institution, and the International Journal of Nanomedicine stood out as a prominent journal in this field. The most frequently referenced publication and research subject category were identified. The most extensively investigated area was nanoparticle-based drug delivery, while recent research has focused on anticancer with novel nanocarriers. CONCLUSION A bibliometric analysis in the PC and nanotechnology was conducted between 2004 and 2023. The overview and characteristics of the publications were identified. We discussed the application and restrictions faced by nanotechnology in PC management. The study of nanotechnology in PC treatment needs to be further studied.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Urology, Jieyang People's Hospital, Jieyang, 522000, Guangdong, People's Republic of China
| | - Hongpeng Chen
- Department of Oncology, Jieyang People's Hospital, Jieyang, 522000, Guangdong, People's Republic of China
| | - Gaowei Guo
- Department of Urology, Jieyang People's Hospital, Jieyang, 522000, Guangdong, People's Republic of China
| | - Jinming Lin
- Department of Urology, Jieyang People's Hospital, Jieyang, 522000, Guangdong, People's Republic of China
| | - Xiaosheng Chen
- Department of Urology, Jieyang People's Hospital, Jieyang, 522000, Guangdong, People's Republic of China
| | - Peidong Huang
- Department of Urology, Jieyang People's Hospital, Jieyang, 522000, Guangdong, People's Republic of China
| | - Chuqi Lin
- Department of Urology, Jieyang People's Hospital, Jieyang, 522000, Guangdong, People's Republic of China
| | - Huirong Lin
- Department of Urology, Jieyang People's Hospital, Jieyang, 522000, Guangdong, People's Republic of China
| | - Yong Lu
- Department of Urology, Jieyang People's Hospital, Jieyang, 522000, Guangdong, People's Republic of China
| | - Jieming Lin
- Department of Operating Room, Jieyang People's Hospital, Jieyang, 522000, Guangdong, People's Republic of China
| | - Xinji Li
- Department of Urology, Jieyang People's Hospital, Jieyang, 522000, Guangdong, People's Republic of China.
| | - Wei Zhang
- Department of Urology, Jieyang People's Hospital, Jieyang, 522000, Guangdong, People's Republic of China.
| |
Collapse
|
2
|
Wu S, Lu J. Liposome-Enabled Nanomaterials for Muscle Regeneration. SMALL METHODS 2025:e2402154. [PMID: 39967365 DOI: 10.1002/smtd.202402154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/08/2025] [Indexed: 02/20/2025]
Abstract
Muscle regeneration is a vital biological process that is crucial for maintaining muscle function and integrity, particularly for the treatment of muscle diseases such as sarcopenia and muscular dystrophy. Generally, muscular tissues can self-repair and regenerate under various conditions, including acute or chronic injuries, aging, and genetic mutation. However, regeneration becomes challenging beyond a certain threshold, particularly in severe muscle injuries or progressive diseases. In recent years, liposome-based nanotechnologies have shown potential as promising therapeutic strategies for muscle regeneration. Liposomes offer an adaptable platform for targeted drug delivery due to their cell membrane-like structure and excellent biocompatibility. They can enhance drug solubility, stability, and targeted delivery while minimizing systemic side effects by different mechanisms. This review summarizes recent advancements, discusses current applications and mechanisms, and highlights challenges and future directions for possible clinical translation of liposome-based nanomaterials in the treatment of muscle diseases. It is hoped this review offers new insights into the development of liposome-enabled nanomedicine to address current limitations.
Collapse
Affiliation(s)
- Shuang Wu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
- Clinical and Translational Oncology Program, The University of Arizona Cancer Center, Tucson, AZ, 85721, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ, 85721, USA
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
3
|
Noor L, Hafeez A, Rahman MA, Vishwakarma KK, Kapoor A, Ara N, Aqeel R. Demystifying the Potential of Embelin-Loaded Nanoformulations: a Comprehensive Review. AAPS PharmSciTech 2024; 25:249. [PMID: 39433611 DOI: 10.1208/s12249-024-02968-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
Phytoconstituent based therapies have the potential to reduce the adverse effects and enhance overall patient compliance for different diseased conditions. Embelin (EMB) is a natural compound extracted from Embelia ribes that has demonstrated high therapeutic potential, particularly as anti-inflammatory and anticancer therapeutic applications. However, its poor water solubility and low oral bioavailability limitations make it challenging to use in biomedical applications. Nanostructure-based novel formulations have shown the potential to improve physicochemical and biological characteristics of active pharmaceutical ingredients obtained from plants. Different nanoformulations that have been utilized to encapsulate/entrap EMB for various therapeutic applications are nanoliposomes, nanostructured lipid carriers, niosomes, polymeric nanoparticles, nanosuspensions, phytosomes, self nanoemulsifying drug delivery system, silver nanoparticles, microparticles, solid lipid nanoparticle, gold nanoparticles and nanomicelles. The common methods reported for the preparation of EMB nanoformulations are thin film hydration, nanoprecipitation, ethanol injection, emulsification followed by sonication. The size of nanoformulations ranged in between 50 and 345 nm. In this review, the mentioned EMB loaded nanocarriers are methodically discussed for size, shape, drug entrapment, zeta potential, in vitro release & permeation and in vivo studies. Potential of EMB with other drugs (dual drug approach) incorporated in nanocarriers are also discussed (physicochemical and preclinical characteristics). Patents related to EMB nanoformulations are also presented which showed the clinical translation of this bioactive for future utilization in different indications.
Collapse
Affiliation(s)
- Layba Noor
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Abdul Hafeez
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India.
| | - Md Azizur Rahman
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | | | - Archita Kapoor
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Nargis Ara
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Rabia Aqeel
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| |
Collapse
|
4
|
Sharma R, Yadav V, Jha S, Dighe S, Jain S. Unveiling the potential of ursolic acid modified hyaluronate nanoparticles for combination drug therapy in triple negative breast cancer. Carbohydr Polym 2024; 338:122196. [PMID: 38763723 DOI: 10.1016/j.carbpol.2024.122196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 05/21/2024]
Abstract
Triple negative breast cancer (TNBC) represents the most aggressive and heterogenous disease, and combination therapy holds promising potential. Here, an enzyme-responsive polymeric prodrug with self-assembly properties was synthesized for targeted co-delivery of paclitaxel (PTX) and ursolic acid (UA). Hyaluronic acid (HA) was conjugated with UA, yielding an amphiphilic prodrug with 13.85 mol% UA and a CMC of 32.3 μg/mL. The HA-UA conjugate exhibited ∼14 % and 47 % hydrolysis at pH 7.4 and in tumor cell lysate. HA-UA/PTX NPs exhibited a spherical structure with 173 nm particle size, and 0.15 PDI. The nanoparticles showed high drug loading (11.58 %) and entrapment efficiency (76.87 %) of PTX. Release experiments revealed accelerated drug release (∼78 %) in the presence of hyaluronidase enzyme. Cellular uptake in MDA-MB-231 cells showed enhanced uptake of HA-UA/PTX NPs through CD44 receptor-mediated endocytosis. In vitro, HA-UA/PTX NPs exhibited higher cytotoxicity, apoptosis, and mitochondrial depolarization compared to PTX alone. In vivo, HA-UA/PTX NPs demonstrated improved pharmacokinetic properties, with 2.18, 2.40, and 2.35-fold higher AUC, t1/2, and MRT compared to free PTX. Notably, HA-UA/PTX NPs exhibited superior antitumor efficacy with a 90 % tumor inhibition rate in 4T1 tumor model and low systemic toxicity, showcasing their significant potential as carriers for TNBC combination therapy.
Collapse
Affiliation(s)
- Reena Sharma
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Vivek Yadav
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Shikha Jha
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Sayali Dighe
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
5
|
Liu H, Huang M, Xin D, Wang H, Yu H, Pu W. Natural products with anti-tumorigenesis potential targeting macrophage. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155794. [PMID: 38875811 DOI: 10.1016/j.phymed.2024.155794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/06/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Inflammation is a risk factor for tumorigenesis. Macrophage, a subset of immune cells with high plasticity, plays a multifaceted role in this process. Natural products, which are bioactive compounds derived from traditional herbs or foods, have exhibited diverse effects on macrophages and tumorigenesis making them a valuable resource of drug discovery or optimization in tumor prevention. PURPOSE Provide a comprehensive overview of the various roles of macrophages in tumorigenesis, as well as the effects of natural products on tumorigenesis by modulating macrophage function. METHODS A thorough literature search spanning the past two decades was carried out using PubMed, Web of Science, Elsevier, and CNKI following the PRISMA guidelines. The search terms employed included "macrophage and tumorigenesis", "natural products, macrophages and tumorigenesis", "traditional Chinese medicine and tumorigenesis", "natural products and macrophage polarization", "macrophage and tumor related microenvironment", "macrophage and tumor signal pathway", "toxicity of natural products" and combinations thereof. Furthermore, certain articles are identified through the tracking of citations from other publications or by accessing the websites of relevant journals. Studies that meet the following criteria are excluded: (1) Articles not written in English or Chinese; (2) Full texts were not available; (3) Duplicate articles and irrelevant studies. The data collected was organized and summarized based on molecular mechanisms or compound structure. RESULTS This review elucidates the multifaceted effect of macrophages on tumorigenesis, encompassing process such as inflammation, angiogenesis, and tumor cell invasion by regulating metabolism, non-coding RNA, signal transduction and intercellular crosstalk. Natural products, including vitexin, ovatodiolide, ligustilide, and emodin, as well as herbal remedies, have demonstrated efficacy in modulating macrophage function, thereby attenuating tumorigenesis. These interventions mainly focus on mitigating the initial inflammatory response or modifying the inflammatory environment within the precancerous niche. CONCLUSIONS These mechanistic insights of macrophages in tumorigenesis offer valuable ideas for researchers. The identified natural products facilitate the selection of promising candidates for future cancer drug development.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Manru Huang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Dandan Xin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Hong Wang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
| | - Weiling Pu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
6
|
Wang Z, Li W, Jiang Y, Tran TB, Chung J, Kim M, Scott AJ, Lu J. Camptothesome-based combination nanotherapeutic regimen for improved colorectal cancer immunochemotherapy. Biomaterials 2024; 306:122477. [PMID: 38309054 PMCID: PMC10922823 DOI: 10.1016/j.biomaterials.2024.122477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/21/2023] [Accepted: 01/18/2024] [Indexed: 02/05/2024]
Abstract
Camptothesome is a sphingomyelin-conjugated camptothecin (SM-CSS-CPT) nanovesicle that fortified the therapeutic delivery of CPT in diverse cancer types. To mitigate the Camptothesome-induced IDO1 negative feedback mechanism, we had co-encapsulated, indoximod (IND, IDO1 inhibitor) into Camptothesome using doxorubicin-derived IND (DOX-IND). To maximize the therapeutic potential of DOX-IND/Camptothesome, herein, we first dissected the synergistic drug ratio (DOX-IND/SM-CSS-CPT) via systematical in vitro screening. DOX-IND/Camptothesome with optimal drug ratio synchronized in vivo drug delivery with significantly higher tumor uptake compared to free drugs. This optimum DOX-IND/Camptothesome outperformed the combination of Camptothesome, Doxil and IND or other IDO1 inhibitors (BMS-986205 or epacadostat) in treating mice bearing late-stage MC38 tumors, and combination with immune checkpoint blockade (ICB) enabled it to eradicate 60 % of large tumors. Further, this optimized co-delivery Camptothesome beat Folfox and Folfiri, two first-line combination chemotherapies for colorectal cancer in antitumor efficacy and exhibited no side effects as compared to the severe systemic toxicities associated with Folfox and Folfiri. Finally, we demonstrated that the synergistic DOX-IND/Camptothesome was superior to the combined use of Onivyde + Doxil + IND in curbing the advanced orthotopic CT26-Luc tumors and eliminated 40 % tumors with complete metastasis remission when cooperated with ICB, eliciting stronger anti-CRC immune responses and greater reversal of immunosuppression. These results corroborated that with precise optimal synergistic drug ratio, the therapeutic potential of DOX-IND/Camptothesome can be fully unleased, which warrants further clinical investigation to benefit the cancer patients.
Collapse
Affiliation(s)
- Zhiren Wang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, United States
| | - Wenpan Li
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, United States
| | - Yanhao Jiang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, United States
| | - Tuyen Ba Tran
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, United States
| | - Jinha Chung
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, United States
| | - Minhyeok Kim
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, United States
| | - Aaron James Scott
- Clinical and Translational Oncology Program, The University of Arizona Cancer Center, Tucson, AZ, 85721, United States; BIO5 Institute, The University of Arizona, Tucson, AZ, 85721, United States
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, United States; BIO5 Institute, The University of Arizona, Tucson, AZ, 85721, United States; Division of Hematology and Oncology, Department of Medicine, College of Medicine, The University of Arizona, Tucson, AZ 85721, United States; Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, 85721, United States.
| |
Collapse
|
7
|
Wang Z, Li W, Jiang Y, Park J, Gonzalez KM, Wu X, Zhang QY, Lu J. Cholesterol-modified sphingomyelin chimeric lipid bilayer for improved therapeutic delivery. Nat Commun 2024; 15:2073. [PMID: 38453918 PMCID: PMC10920917 DOI: 10.1038/s41467-024-46331-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Cholesterol (Chol) fortifies packing and reduces fluidity and permeability of the lipid bilayer in vesicles (liposomes)-mediated drug delivery. However, under the physiological environment, Chol is rapidly extracted from the lipid bilayer by biomembranes, which jeopardizes membrane stability and results in premature leakage for delivered payloads, yielding suboptimal clinic efficacy. Herein, we report a Chol-modified sphingomyelin (SM) lipid bilayer via covalently conjugating Chol to SM (SM-Chol), which retains membrane condensing ability of Chol. Systemic structure activity relationship screening demonstrates that SM-Chol with a disulfide bond and longer linker outperforms other counterparts and conventional phospholipids/Chol mixture systems on blocking Chol transfer and payload leakage, increases maximum tolerated dose of vincristine while reducing systemic toxicities, improves pharmacokinetics and tumor delivery efficiency, and enhances antitumor efficacy in SU-DHL-4 diffuse large B-cell lymphoma xenograft model in female mice. Furthermore, SM-Chol improves therapeutic delivery of structurally diversified therapeutic agents (irinotecan, doxorubicin, dexamethasone) or siRNA targeting multi-drug resistant gene (p-glycoprotein) in late-stage metastatic orthotopic KPC-Luc pancreas cancer, 4T1-Luc2 triple negative breast cancer, lung inflammation, and CT26 colorectal cancer animal models in female mice compared to respective FDA-approved nanotherapeutics or lipid compositions. Thus, SM-Chol represents a promising platform for universal and improved drug delivery.
Collapse
Affiliation(s)
- Zhiren Wang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Wenpan Li
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Yanhao Jiang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Jonghan Park
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Karina Marie Gonzalez
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Xiangmeng Wu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Qing-Yu Zhang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, 85721, USA
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA.
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, 85721, USA.
- Clinical and Translational Oncology Program (CTOP), The University of Arizona Cancer Center, Tucson, AZ, 85721, USA.
- BIO5 Institute, The University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
8
|
Ishizuka M, Kaibori M, Sumiyama F, Okamoto Y, Suganami A, Tamura Y, Yoshii K, Sugie T, Sekimoto M. Photodynamic therapy with paclitaxel-encapsulated indocyanine green-modified liposomes for breast cancer. Front Oncol 2024; 14:1365305. [PMID: 38515576 PMCID: PMC10955121 DOI: 10.3389/fonc.2024.1365305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
Background Photodynamic therapy (PDT) involves the administration of a photosensitizing agent and irradiation of light at an excitation wavelength that damages tumor cells without causing significant damage to normal tissue. We developed indocyanine green (ICG)-modified liposomes in which paclitaxel (PTX) was encapsulated (ICG-Lipo-PTX). ICG-Lipo-PTX accumulates specifically in tumors due to the characteristics of the liposomes. The thermal and photodynamic effects of ICG and the local release of PTX by irradiation are expected to induce not only antitumor effects but also cancer immunity. In this study, we investigated the antitumor effects of ICG-Lipo-PTX in breast cancer. Methods The antitumor effects of ICG-Lipo-PTX were examined in xenograft model mice subcutaneously implanted with KPL-1 human breast cancer cells. ICG-Lipo-PTX, ICG-Lipo, or saline was administered intraperitoneally, and the fluorescence intensity was measured with a fluorescence imaging system (IVIS). Intratumor temperature, tumor volume, and necrotic area of tumor tissue were also compared. Next, we investigated the induction of cancer immunity in an allogeneic transplantation model in which BALB-MC mouse breast cancer cells were transplanted subcutaneously in the bilateral inguinal region. ICG-Lipo-PTX was administered intraperitoneally, and PDT was performed on only one side. The fluorescence intensity measured by IVIS and the bilateral tumor volumes were compared. Cytokine secretory capacity was also evaluated by ELISPOT assay using splenocytes. Results In the xenograft model, the fluorescence intensity and temperature during PDT were significantly higher with ICG-Lipo-PTX and ICG-Lipo in tumor areas than in nontumor areas. The fluorescence intensity in the tumor area was reduced to the same level as that in the nonirradiated area after two times of irradiation. Tumor growth was significantly reduced and the percentage of necrotic area in the tumor was higher after PDT in the ICG-Lipo-PTX group than in the other groups. In the allograft model, tumor growth on day 14 in the ICG-Lipo-PTX group was significantly suppressed not only on the PDT side but also on the non-PDT side. In addition, the secretion of interferon-γ and interleukin-2 was enhanced, whereas that of interleukin-10 was suppressed, in the ICG-Lipo-PTX group. Conclusion The PDT therapy with ICG-Lipo-PTX may be an effective treatment for breast cancer.
Collapse
Affiliation(s)
- Mariko Ishizuka
- Department of Surgery, Kansai Medical University, Osaka, Japan
| | - Masaki Kaibori
- Department of Surgery, Kansai Medical University, Osaka, Japan
| | - Fusao Sumiyama
- Department of Surgery, Kansai Medical University, Osaka, Japan
| | | | - Akiko Suganami
- Department of Bioinformatics, Chiba University, Chiba, Japan
| | - Yutaka Tamura
- Department of Bioinformatics, Chiba University, Chiba, Japan
| | - Kengo Yoshii
- Department of Mathematics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomoharu Sugie
- Department of Surgery, Kansai Medical University, Osaka, Japan
| | | |
Collapse
|
9
|
Ali A, Emad NA, Sultana N, Ali H, Jahan S, Aqil M, Mujeeb M, Sultana Y. Medicinal potential of embelin and its nanoformulations: An update on the molecular mechanism and various applications. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1228-1242. [PMID: 39229578 PMCID: PMC11366951 DOI: 10.22038/ijbms.2024.77888.16850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/13/2024] [Indexed: 09/05/2024]
Abstract
Natural herbs have garnered significant research recently as their components target multiple disease signaling pathways, making them highly potential for various disease prevention and treatment. Embelin, a naturally occurring benzoquinone isolated from Embelia ribes, has shown promising biological activities such as antitumor, antidiabetic, anti-oxidant, and antimicrobial. Various mechanisms have been reported, including monitoring genes that synchronize the cell cycle, up-regulating multiple anti-oxidant enzymes, suppressing genes that prevent cell death, influencing transcription factors, and preventing inflammatory biomarkers. However, the hydrophobic nature of embelin leads to poor absorption and limits its therapeutic potential. This review highlights a wide range of nanocarriers used as delivery systems for embelin, including polymeric nanoparticles, liposomes, nanostructured lipid carriers, micelles, nanoemulsion, and metallic nanoparticles. These embelin nanomedicine formulations have been developed in preclinical studies as a possible treatment for many disorders and characterized using various in vitro, ex vivo, and in vivo models.
Collapse
Affiliation(s)
- Asad Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Nasr A. Emad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Niha Sultana
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Hamad Ali
- Department of Phytochemistry and Pharmacognosy, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Samreen Jahan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohd Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohd Mujeeb
- Department of Phytochemistry and Pharmacognosy, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Yasmin Sultana
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
10
|
Rama B, Ribeiro AJ. Role of nanotechnology in the prolonged release of drugs by the subcutaneous route. Expert Opin Drug Deliv 2023; 20:559-577. [PMID: 37305971 DOI: 10.1080/17425247.2023.2214362] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 05/11/2023] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Subcutaneous physiology is distinct from other parenteral routes that benefit the administration of prolonged-release formulations. A prolonged-release effect is particularly convenient for treating chronic diseases because it is associated with complex and often prolonged posologies. Therefore, drug-delivery systems focused on nanotechnology are proposed as alternatives that can overcome the limitations of current therapeutic regimens and improve therapeutic efficacy. AREAS COVERED This review presents an updated systematization of nanosystems, focusing on their applications in highly prevalent chronic diseases. Subcutaneous-delivered nanosystem-based therapies comprehensively summarize nanosystems, drugs, and diseases and their advantages, limitations, and strategies to increase their translation into clinical applications. An outline of the potential contribution of quality-by-design (QbD) and artificial intelligence (AI) to the pharmaceutical development of nanosystems is presented. EXPERT OPINION Although recent academic research and development (R&D) advances in the subcutaneous delivery of nanosystems have exhibited promising results, pharmaceutical industries and regulatory agencies need to catch up. The lack of standardized methodologies for analyzing in vitro data from nanosystems for subcutaneous administration and subsequent in vivo correlation limits their access to clinical trials. There is an urgent need for regulatory agencies to develop methods that faithfully mimic subcutaneous administration and specific guidelines for evaluating nanosystems.
Collapse
Affiliation(s)
- B Rama
- Faculdade de Farmácia, Universidade de Coimbra, Coimbra, Portugal
| | - A J Ribeiro
- Faculdade de Farmácia, Universidade de Coimbra, Coimbra, Portugal
- Genetics of Cognitive Disfunction, i3S, IBMC, Porto, Portugal
| |
Collapse
|
11
|
Li W, Jiang Y, Lu J. Nanotechnology-enabled immunogenic cell death for improved cancer immunotherapy. Int J Pharm 2023; 634:122655. [PMID: 36720448 PMCID: PMC9975075 DOI: 10.1016/j.ijpharm.2023.122655] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023]
Abstract
Tumor immunotherapy has revolutionized the field of oncology treatments in recent years. As one of the promising strategies of cancer immunotherapy, tumor immunogenic cell death (ICD) has shown significant potential for tumor therapy. Nanoparticles are widely used for drug delivery due to their versatile characteristics, such as stability, slow blood elimination, and tumor-targeting ability. To increase the specificity of ICD inducers and improve the efficiency of ICD induction, functionally specific nanoparticles, such as liposomes, nanostructured lipid carriers, micelles, nanodiscs, biomembrane-coated nanoparticles and inorganic nanoparticles have been widely reported as the vehicles to deliver ICD inducers in vivo. In this review, we summarized the strategies of different nanoparticles for ICD-induced cancer immunotherapy, and systematically discussed their advantages and disadvantages as well as provided feasible strategies for solving these problems. We believe that this review will offer some insights into the design of effective nanoparticulate systems for the therapeutic delivery of ICD inducers, thus, promoting the development of ICD-mediated cancer immunotherapy.
Collapse
Affiliation(s)
- Wenpan Li
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, United States
| | - Yanhao Jiang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, United States
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, United States; NCI-designated University of Arizona Comprehensive Cancer Center, Tucson, AZ 85721, United States; BIO5 Institute, The University of Arizona, Tucson, AZ 85721, United States; Southwest Environmental Health Sciences Center, The University of Arizona, Tucson 85721, United States.
| |
Collapse
|
12
|
Li W, Gonzalez KM, Chung J, Kim M, Lu J. Surface-modified nanotherapeutics targeting atherosclerosis. Biomater Sci 2022; 10:5459-5471. [PMID: 35980230 PMCID: PMC9529904 DOI: 10.1039/d2bm00660j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atherosclerosis is a chronic and metabolic-related disease that is a serious threat to human health. Currently available diagnostic and therapeutic measures for atherosclerosis lack adequate efficiency which requires promising alternative approaches. Nanotechnology-based nano-delivery systems allow for new perspectives for atherosclerosis therapy. Surface-modified nanoparticles could achieve highly effective therapeutic effects by binding to specific receptors that are abnormally overexpressed in atherosclerosis, with less adverse effects on non-target tissues. The main purpose of this review is to summarize the research progress and design ideas to target atherosclerosis using a variety of ligand-modified nanoparticle systems, discuss the shortcomings of current vector design, and look at future development directions. We hope that this review will provide novel research strategies for the design and development of nanotherapeutics targeting atherosclerosis.
Collapse
Affiliation(s)
- Wenpan Li
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, USA.
| | - Karina Marie Gonzalez
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, USA.
| | - Jinha Chung
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, USA.
| | - Minhyeok Kim
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, USA.
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, USA.
- NCI-designated University of Arizona Comprehensive Cancer Center, Tucson, Arizona, 85721, USA
- BIO5 Institute, The University of Arizona, Tucson, Arizona, 85721, USA
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, 85721, USA
| |
Collapse
|
13
|
Embelin and Its Derivatives: Design, Synthesis, and Potential Delivery Systems for Cancer Therapy. Pharmaceuticals (Basel) 2022; 15:ph15091131. [PMID: 36145352 PMCID: PMC9505931 DOI: 10.3390/ph15091131] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Embelin is a naturally occurring benzoquinone that inhibits the growth of cancer cells, making it a potent anticancer drug. However, the low water solubility of embelin restricts its clinical applicability. This review provides a concise summary and in-depth analysis of the published literature on the design and synthesis of embelin derivatives possessing increased aqueous solubility and superior therapeutic efficacy. In addition, the potential of drug delivery systems to improve the anticancer capabilities of embelin and its derivatives is discussed.
Collapse
|
14
|
Li L, Zhan Q, Yi K, Chen N, Li X, Yang S, Hou X, Zhao J, Yuan X, Kang C. Engineering Lipusu by lysophosphatidylcholine for improved tumor cellular uptake and anticancer efficacy. J Mater Chem B 2022; 10:1833-1842. [DOI: 10.1039/d1tb02823e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Liposomes have been developed as drug delivery carriers to enhance the antitumor efficiency of the therapeutic agents. Lipusu® (Lip), a paclitaxel (PTX) liposome, has been widely used in the treatment...
Collapse
|
15
|
Han HS, Koo SY, Choi KY. Emerging nanoformulation strategies for phytocompounds and applications from drug delivery to phototherapy to imaging. Bioact Mater 2021; 14:182-205. [PMID: 35310344 PMCID: PMC8892098 DOI: 10.1016/j.bioactmat.2021.11.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022] Open
Abstract
Over thousands of years, natural bioactive compounds derived from plants (bioactive phytocompounds, BPCs) have been used worldwide to address human health issues. Today, they are a significant resource for drug discovery in the development of modern medicines. Although many BPCs have promising biological activities, most of them cannot be effectively utilized in drugs for therapeutic applications because of their inherent limitations of low solubility, structural instability, short half-life, poor bioavailability, and non-specific distribution to organs. Researchers have utilized emerging nanoformulation (NF) technologies to overcome these limitations as they have demonstrated great potential to improve the solubility, stability, and pharmacokinetic and pharmacodynamic characteristics of BPCs. This review exemplifies NF strategies for resolving the issues associated with BPCs and summarizes recent advances in their preclinical and clinical applications for imaging and therapy. This review also highlights how innovative NF technologies play a leading role in next-generation BPC-based drug development for extended therapeutic applications. Finally, this review discusses the opportunities to take BPCs with meaningful clinical impact from bench to bedside and extend the patent life of BPC-based medicines with new formulations or application to new adjacent diseases beyond the primary drug indications. Natural bioactive phytocompounds derived from plants have been used worldwide to address human health issues. However, most of them cannot be effectively utilized in drugs for therapeutic applications because of their inherent limitations. Nanoformulation approach has recently been underlined as an emerging pharmaceutical strategy to overcome the intrinsic drawbacks of bioactive phytocompounds. Various types of nanoformulation and their up-to-date applications for targeted delivery, phototherapy, and imaging are reviewed. Finally, their clinical implications for the repurposing of bioactive phytocompounds are deliberated.
Collapse
Affiliation(s)
- Hwa Seung Han
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
| | - Song Yi Koo
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
| | - Ki Young Choi
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
- Corresponding author. Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea.
| |
Collapse
|
16
|
Singla RK, Sai CS, Chopra H, Behzad S, Bansal H, Goyal R, Gautam RK, Tsagkaris C, Joon S, Singla S, Shen B. Natural Products for the Management of Castration-Resistant Prostate Cancer: Special Focus on Nanoparticles Based Studies. Front Cell Dev Biol 2021; 9:745177. [PMID: 34805155 PMCID: PMC8602797 DOI: 10.3389/fcell.2021.745177] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/06/2021] [Indexed: 02/05/2023] Open
Abstract
Prostate cancer is the most common type of cancer among men and the second most frequent cause of cancer-related mortality around the world. The progression of advanced prostate cancer to castration-resistant prostate cancer (CRPC) plays a major role in disease-associated morbidity and mortality, posing a significant therapeutic challenge. Resistance has been associated with the activation of androgen receptors via several mechanisms, including alternative dehydroepiandrosterone biosynthetic pathways, other androgen receptor activator molecules, oncogenes, and carcinogenic signaling pathways. Tumor microenvironment plays a critical role not only in the cancer progression but also in the drug resistance. Numerous natural products have shown major potential against particular or multiple resistance pathways as shown by in vitro and in vivo studies. However, their efficacy in clinical trials has been undermined by their unfavorable pharmacological properties (hydrophobic molecules, instability, low pharmacokinetic profile, poor water solubility, and high excretion rate). Nanoparticle formulations can provide a way out of the stalemate, employing targeted drug delivery, improved pharmacokinetic drug profile, and transportation of diagnostic and therapeutic agents via otherwise impermeable biological barriers. This review compiles the available evidence regarding the use of natural products for the management of CRPC with a focus on nanoparticle formulations. PubMed and Google Scholar search engines were used for preclinical studies, while ClinicalTrials.gov and PubMed were searched for clinical studies. The results of our study suggest the efficacy of natural compounds such as curcumin, resveratrol, apigenin, quercetin, fisetin, luteolin, kaempferol, genistein, berberine, ursolic acid, eugenol, gingerol, and ellagic acid against several mechanisms leading to castration resistance in preclinical studies, but fail to set the disease under control in clinical studies. Nanoparticle formulations of curcumin and quercetin seem to increase their potential in clinical settings. Using nanoparticles based on betulinic acid, capsaicin, sintokamide A, niphatenones A and B, as well as atraric acid seems promising but needs to be verified with preclinical and clinical studies.
Collapse
Affiliation(s)
- Rajeev K. Singla
- Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | | | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | - Sahar Behzad
- Evidence-Based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Himangini Bansal
- Delhi Institute of Pharmaceutical Sciences and Research, New Delhi, India
| | - Rajat Goyal
- MM School of Pharmacy, MM University, Ambala, India
| | | | | | - Shikha Joon
- Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Shailja Singla
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Bairong Shen
- Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Wang Z, Little N, Chen J, Lambesis KT, Le KT, Han W, Scott AJ, Lu J. Immunogenic camptothesome nanovesicles comprising sphingomyelin-derived camptothecin bilayers for safe and synergistic cancer immunochemotherapy. NATURE NANOTECHNOLOGY 2021; 16:1130-1140. [PMID: 34385682 PMCID: PMC8855709 DOI: 10.1038/s41565-021-00950-z] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 06/28/2021] [Indexed: 05/02/2023]
Abstract
Despite the enormous therapeutic potential of immune checkpoint blockade (ICB), it benefits only a small subset of patients. Some chemotherapeutics can switch 'immune-cold' tumours to 'immune-hot' to synergize with ICB. However, safe and universal therapeutic platforms implementing such immune effects remain scarce. We demonstrate that sphingomyelin-derived camptothecin nanovesicles (camptothesomes) elicit potent granzyme-B- and perforin-mediated cytotoxic T lymphocyte (CTL) responses, potentiating PD-L1/PD-1 co-blockade to eradicate subcutaneous MC38 adenocarcinoma with developed memory immunity. In addition, camptothesomes improve the pharmacokinetics and lactone stability of camptothecin, avoid systemic toxicities, penetrate deeply into the tumour and outperform the antitumour efficacy of Onivyde. Camptothesome co-load the indoleamine 2,3-dioxygenase inhibitor indoximod into its interior using the lipid-bilayer-crossing capability of the immunogenic cell death inducer doxorubicin, eliminating clinically relevant advanced orthotopic CT26-Luc tumours and late-stage B16-F10-Luc2 melanoma, and achieving complete metastasis remission when combined with ICB and folate targeting. The sphingomyelin-derived nanotherapeutic platform and doxorubicin-enabled transmembrane transporting technology are generalizable to various therapeutics, paving the way for transformation of the cancer immunochemotherapy paradigm.
Collapse
Affiliation(s)
- Zhiren Wang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Nicholas Little
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Jiawei Chen
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Kevin Tyler Lambesis
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Kimberly Thi Le
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Weiguo Han
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Aaron James Scott
- NCI-Designated University of Arizona Comprehensive Cancer Center, Tucson, AZ, USA
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA.
- NCI-Designated University of Arizona Comprehensive Cancer Center, Tucson, AZ, USA.
- BIO5 Institute, The University of Arizona, Tucson, AZ, USA.
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
18
|
Basha NJ, Basavarajaiah SM, Baskaran S, Kumar P. A comprehensive insight on the biological potential of embelin and its derivatives. Nat Prod Res 2021; 36:3054-3068. [PMID: 34304655 DOI: 10.1080/14786419.2021.1955361] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Naturally occurring bioactive molecules are known for their diverse biological applications such as antimicrobial, anticancer, anti-inflammatory, and analgesic activities. Also, some of the natural products act as medicinal drugs. Further, bioactive cell-permeable molecule embelin has been reported for its diverse biological activities such as antimalarial, anticancer, and anti-inflammatory in the literature. With the continuation of our research work on biologically active molecules, based on structural activity relationship and docking studies of embelin and its derivatives, we have reported target-specific anticancer and antimalarial activities of embelin and its analogs. Also, it has been reported in many recent research articles that embelin and its derivatives are known to possess medicinal properties. This review mainly highlights recent reports on broad-spectrum biological activities of the embelin and its analogs to date.
Collapse
Affiliation(s)
- N Jeelan Basha
- Department of Chemistry, Indian Academy Degree College-Autonomous, Bangalore, India
| | | | - Swathi Baskaran
- Department of Chemistry, Indian Academy Degree College-Autonomous, Bangalore, India
| | - Prasanna Kumar
- Department of Chemistry, Indian Academy Degree College-Autonomous, Bangalore, India
| |
Collapse
|
19
|
Li W, Little N, Park J, Foster CA, Chen J, Lu J. Tumor-Associated Fibroblast-Targeting Nanoparticles for Enhancing Solid Tumor Therapy: Progress and Challenges. Mol Pharm 2021; 18:2889-2905. [PMID: 34260250 DOI: 10.1021/acs.molpharmaceut.1c00455] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Even though nanoparticle drug delivery systems (nanoDDSs) have improved antitumor efficacy by delivering more drugs to tumor sites compared to free and unencapsulated therapeutics, achieving satisfactory distribution and penetration of nanoDDSs inside solid tumors, especially in stromal fibrous tumors, remains challenging. As one of the most common stromal cells in solid tumors, tumor-associated fibroblasts (TAFs) not only promote tumor growth and metastasis but also reduce the drug delivery efficiency of nanoparticles through the tumor's inherent physical and physiological barriers. Thus, TAFs have been emerging as attractive targets, and TAF-targeting nanotherapeutics have been extensively explored to enhance the tumor delivery efficiency and efficacy of various anticancer agents. The purpose of this Review is to opportunely summarize the underlying mechanisms of TAFs on obstructing nanoparticle-mediated drug delivery into tumors and discuss the current advances of a plethora of nanotherapeutic approaches for effectively targeting TAFs.
Collapse
Affiliation(s)
- Wenpan Li
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Nicholas Little
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jonghan Park
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Cole Alexander Foster
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jiawei Chen
- Michigan Institute for Clinical & Health Research, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States.,BIO5 Institute, The University of Arizona, Tucson, Arizona 85721, United States.,NCI-designated University of Arizona Comprehensive Cancer Center, Tucson, Arizona 85721, United States.,Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
20
|
Amin H, Khan A, Makeen HA, Rashid H, Amin I, Masoodi MH, Khan R, Arafah A, Rehman MU. Nanosized delivery systems for plant-derived therapeutic compounds and their synthetic derivative for cancer therapy. PHYTOMEDICINE 2021:655-675. [DOI: 10.1016/b978-0-12-824109-7.00020-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
21
|
Alven S, Aderibigbe BA. The Therapeutic Efficacy of Dendrimer and Micelle Formulations for Breast Cancer Treatment. Pharmaceutics 2020; 12:E1212. [PMID: 33333778 PMCID: PMC7765183 DOI: 10.3390/pharmaceutics12121212] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is among the most common types of cancer in women and it is the cause of a high rate of mortality globally. The use of anticancer drugs is the standard treatment approach used for this type of cancer. However, most of these drugs are limited by multi-drug resistance, drug toxicity, poor drug bioavailability, low water solubility, poor pharmacokinetics, etc. To overcome multi-drug resistance, combinations of two or more anticancer drugs are used. However, the combination of two or more anticancer drugs produce toxic side effects. Micelles and dendrimers are promising drug delivery systems that can overcome the limitations associated with the currently used anticancer drugs. They have the capability to overcome drug resistance, reduce drug toxicity, improve the drug solubility and bioavailability. Different classes of anticancer drugs have been loaded into micelles and dendrimers, resulting in targeted drug delivery, sustained drug release mechanism, increased cellular uptake, reduced toxic side effects of the loaded drugs with enhanced anticancer activity in vitro and in vivo. This review article reports the biological outcomes of dendrimers and micelles loaded with different known anticancer agents on breast cancer in vitro and in vivo.
Collapse
Affiliation(s)
| | - Blessing Atim Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape 5700, South Africa;
| |
Collapse
|
22
|
Hu Q, Wang K, Qiu L. 6-Aminocaproic acid as a linker to improve near-infrared fluorescence imaging and photothermal cancer therapy of PEGylated indocyanine green. Colloids Surf B Biointerfaces 2020; 197:111372. [PMID: 33017715 DOI: 10.1016/j.colsurfb.2020.111372] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 10/23/2022]
Abstract
Clinical extensive application of indocyanine green (ICG) is limited by several drawbacks such as poor bioenvironmental stability, aggregate propensity, and rapid elimination from the body, etc. In this study, we construct a novel amphiphilic mPEG-ACA-ICG conjugate by modifying synthetic heptamethine cyanine derivative ICG-COOH with a hydrophobic linker 6-aminocaproic acid (ACA) and amino-terminal poly(ethylene glycol) (mPEG-NH2). The as-prepared mPEG-ACA-ICG conjugate has the ability to self-assemble into micellar aggregates in an aqueous solution with a lower CMC value than mPEG-ICG conjugate without ACA linker. More importantly, compared with free ICG and mPEG-ICG conjugate, mPEG-ACA-ICG nanomicelles exhibited better stability and higher photothermal conversion efficiency upon near-infrared light irradiation due to the intramolecular introduction of a hydrophobic ACA segment. In our in vivo experiment, mPEG-ACA-ICG nanomicelles ensured the formidable effect on tumor photothermal therapy (PTT) and the maximum tumor inhibition rate reached 72.6 %. In addition, real-time determination ability for fluorescence image-guided surgery (FIGS) of mPEG-ACA-ICG nanomicelles was also confirmed on tumor xenograft mice model. Taken together, mPEG-ACA-ICG conjugate may hold great promise for non-invasive cancer theranostics.
Collapse
Affiliation(s)
- Qiang Hu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kesi Wang
- Ministry of Educational (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liyan Qiu
- Ministry of Educational (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
23
|
Zeinali M, Abbaspour-Ravasjani S, Ghorbani M, Babazadeh A, Soltanfam T, Santos AC, Hamishehkar H, Hamblin MR. Nanovehicles for co-delivery of anticancer agents. Drug Discov Today 2020; 25:1416-1430. [DOI: 10.1016/j.drudis.2020.06.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/26/2020] [Accepted: 06/26/2020] [Indexed: 12/17/2022]
|
24
|
Wang Z, Chen J, Little N, Lu J. Self-assembling prodrug nanotherapeutics for synergistic tumor targeted drug delivery. Acta Biomater 2020; 111:20-28. [PMID: 32454086 PMCID: PMC7245299 DOI: 10.1016/j.actbio.2020.05.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/27/2020] [Accepted: 05/18/2020] [Indexed: 01/08/2023]
Abstract
Self-assembling prodrugs represents a robust and effective nanotherapeutic approach for delivering poorly soluble anticancer drugs. With numerous intrinsic advantages, self-assembling prodrugs possess the maximum drug loading capacity, controlled drug release kinetics, prolonged blood circulation, and preferential tumor accumulation based on the enhanced permeability and retention (EPR) effect. These prodrug conjugates allow for efficient self-assembly into nanodrugs with the potential of encapsulating other therapeutic agents that have different molecular targets, enabling simultaneous temporal-spatial release of drugs for synergistic antitumor efficacy with reduced systemic side effects. The aim of this review is to summarize the recent progress of self-assembling prodrug cancer nanotherapeutics that are made through conjugating therapeutically active agents to Polyethylene glycol, Vitamin E, or drugs with different physicochemical properties via rational design, for synergistic tumor targeted drug delivery. Statement of Significance All current FDA-approved nanomedicines use inert biomaterials as drug delivery carriers. These biomaterials lack any therapeutic potential, contributing not only to the cost, but may also elicit severe unfavorable adverse effects. Despite the reduction in toxicity associated with the payload, these nanotherapeutics have been met with limited clinical success, likely due to the monotherapy regimen. The self-assembling prodrug (SAP) has been emerging as a powerful platform for enhancing efficacy through co-delivering other therapeutic modalities with distinct molecular targets. Herein, we opportunely present a comprehensive review article summarizing three unique approaches of making SAP for synergistic drug delivery: pegylation, vitamin E-derivatization, and drug-drug conjugation. These SAPs may inevitably pave the way for developing more efficacious, clinically translatable, combination cancer nanotherapies.
Collapse
|
25
|
Yan T, Zeng Q, Wang L, Wang N, Cao H, Xu X, Chen X. Harnessing the Power of Optical Microscopic and Macroscopic Imaging for Natural Products as Cancer Therapeutics. Front Pharmacol 2019; 10:1438. [PMID: 31849680 PMCID: PMC6892944 DOI: 10.3389/fphar.2019.01438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/11/2019] [Indexed: 01/03/2023] Open
Abstract
Natural products (NPs) are an important source for new drug discovery over the past decades, which have been demonstrated to be effectively used in cancer prevention, treatment, and adjuvant therapy. Many methods, such as the genomic and metabolomic approaches, immunochemistry, mass spectrometry, and chromatography, have been used to study the effects of NPs on cancer as well as themselves. Because of the advantages in specificity, sensitivity, high throughput, and cost-effectiveness, optical imaging (OI) approaches, including optical microscopic imaging and macroscopic imaging techniques have also been applied in the studies of NPs. Optical microscopic imaging can observe NPs as cancer therapeutics at the cellular level and analyze its cytotoxicity and mechanism of action. Optical macroscopic imaging observes the distribution, metabolic pathway, and target lesions of NPs in vivo, and evaluates NPs as cancer therapeutics at the whole-body level in small living animals. This review focuses on the recent advances in NPs as cancer therapeutics, with particular emphasis on the powerful use of optical microscopic and macroscopic imaging techniques, including the studies of observation of ingestion by cells, anticancer mechanism, and in vivo delivery. Finally, we prospect the wider application and future potential of OI approaches in NPs as cancer therapeutics.
Collapse
Affiliation(s)
- Tianyu Yan
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education and School of Life Science and Technology, Xidian University, Xi’an, China
| | - Qi Zeng
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education and School of Life Science and Technology, Xidian University, Xi’an, China
| | - Lin Wang
- School of Information Sciences and Technology, Northwest University, Xi’an, China
| | - Nan Wang
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education and School of Life Science and Technology, Xidian University, Xi’an, China
| | - Honghao Cao
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education and School of Life Science and Technology, Xidian University, Xi’an, China
| | - Xinyi Xu
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education and School of Life Science and Technology, Xidian University, Xi’an, China
| | - Xueli Chen
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education and School of Life Science and Technology, Xidian University, Xi’an, China
| |
Collapse
|
26
|
Li Y, Zhang T, Liu Q, He J. PEG-Derivatized Dual-Functional Nanomicelles for Improved Cancer Therapy. Front Pharmacol 2019; 10:808. [PMID: 31379579 PMCID: PMC6659352 DOI: 10.3389/fphar.2019.00808] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/24/2019] [Indexed: 02/05/2023] Open
Abstract
Polymeric micelles have attracted considerable attention for effective delivery of poorly water-soluble cancer drugs. Polyethylene glycol (PEG), which has been approved for human use by the US Food and Drug Administration, is the most commonly used hydrophilic component of polymeric micelles because it is biocompatible and biodegradable. One disadvantage of traditional polymeric micelles is that they include a large amount of inert carrier materials, which do not contribute to therapeutic activity but increase cost and toxicity risk. A better alternative may be "dual-functional" micellar carriers, in which the hydrophobic carrier material (conjugated to PEG) has intrinsic therapeutic activity that complements, or even synergizes with, the antitumor activity of the drug cargo. This review summarizes recent progress in the development of PEG-derivatized dual-functional nanomicelles and surveys the evidence of their feasibility and promise for cancer therapy.
Collapse
Affiliation(s)
- Yanping Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China
| | - Ting Zhang
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu, China
| | - Qinhui Liu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China
| | - Jinhan He
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China.,Department of Pharmacy, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
27
|
PEG-derivatized birinapant as a nanomicellar carrier of paclitaxel delivery for cancer therapy. Colloids Surf B Biointerfaces 2019; 182:110356. [PMID: 31319226 DOI: 10.1016/j.colsurfb.2019.110356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 02/05/2023]
Abstract
A novel triblock amphiphilic copolymer (PAL-PEG-Birinapant) was designed and synthesized as a dual-functional micellar carrier utilizing birinapant (an inhibitor of inhibitor-of-apoptosis proteins) as a pH-sensitive segment and inhibitor-of-apoptosis proteins-targeting ligand. The mixed micelles comprised of PAL-PEG-Birinapant (PPB) and mPEG2k-PDLLA2k (MPP), named as PPB/MPP (2/1,w/w) micelles were developed for enhanced solubility and antitumor potency of hydrophobic drugs as paclitaxel (PTX). In vitro cell viability and cytotoxicity studies revealed that the PTX-loaded PPB/MPP micelles were more potent than the commercial PTX formulation (Taxol®), as well as the in vitro cell apoptosis study. Clear differences in the intracellular uptake of free coumarin-6 (C6) solution and C6-loaded PPB/MPP micelles were observed and indicated that the PPB/MPP micelles could efficiently deliver chemical compound into tumor cells. PPB copolymer and PTX-loaded PPB/MPP micelles demonstrated an excellent safety profile with a maximum tolerated dose (MTD) of above 1.2 g copolymer/kg and above 100 mg PTX/kg in mice respectively in contrast to 20˜24 mg/kg of Taxol®. The near infrared (NIR) fluorescence imaging showed that PPB/MPP micelles persisted for a relatively long time in the circulation and accumulated preferentially in tumor tissue. Moreover, PTX loaded PPB/MPP micelles significantly inhibited the tumor growth both in MDA-MB-231 and Ramos cancer xenograft mice models without obvious toxicity. Collectively, our study presents a new dual-functional micelles that improve the therapeutic efficacy of PTX in vitro and in vivo.
Collapse
|
28
|
Başpınar Y, Erel-Akbaba G, Kotmakçı M, Akbaba H. Development and characterization of nanobubbles containing paclitaxel and survivin inhibitor YM155 against lung cancer. Int J Pharm 2019; 566:149-156. [DOI: 10.1016/j.ijpharm.2019.05.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/04/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022]
|
29
|
Reduction responsive liposomes based on paclitaxel-ss-lysophospholipid with high drug loading for intracellular delivery. Int J Pharm 2019; 564:244-255. [DOI: 10.1016/j.ijpharm.2019.04.060] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/02/2019] [Accepted: 04/20/2019] [Indexed: 11/20/2022]
|
30
|
Lu J, Liu X, Liao YP, Wang X, Ahmed A, Jiang W, Ji Y, Meng H, Nel AE. Breast Cancer Chemo-immunotherapy through Liposomal Delivery of an Immunogenic Cell Death Stimulus Plus Interference in the IDO-1 Pathway. ACS NANO 2018; 12:11041-11061. [PMID: 30481959 PMCID: PMC6262474 DOI: 10.1021/acsnano.8b05189] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Immunotherapy provides the best approach to reduce the high mortality of metastatic breast cancer (BC). We demonstrate a chemo-immunotherapy approach, which utilizes a liposomal carrier to simultaneously trigger immunogenic cell death (ICD) as well as interfere in the regionally overexpressed immunosuppressive effect of indoleamine 2,3-dioxygenase (IDO-1) at the BC tumor site. The liposome was constructed by self-assembly of a phospholipid-conjugated prodrug, indoximod (IND), which inhibits the IDO-1 pathway, followed by the remote loading of the ICD-inducing chemo drug, doxorubicin (DOX). Intravenous injection of the encapsulated two-drug combination dramatically improved the pharmacokinetics and tumor drug concentrations of DOX and IND in an orthotopic 4T1 tumor model in syngeneic mice. Delivery of a threshold ICD stimulus resulted in the uptake of dying BC cells by dendritic cells, tumor antigen presentation and the activation/recruitment of naı̈ve T-cells. The subsequent activation of perforin- and IFN-γ releasing cytotoxic T-cells induced robust tumor cell killing at the primary as well as metastatic tumor sites. Immune phenotyping of the tumor tissues confirmed the recruitment of CD8+ cytotoxic T lymphocytes (CTLs), disappearance of Tregs, and an increase in CD8+/FOXP3+ T-cell ratios. Not only does the DOX/IND-Liposome provide a synergistic antitumor response that is superior to a DOX-only liposome, but it also demonstrated that the carrier could be effectively combined with PD-1 blocking antibodies to eradicate lung metastases. All considered, an innovative nano-enabled approach has been established to allow deliberate use of ICD to switch an immune deplete to an immune replete BC microenvironment, allowing further boosting of the response by coadministered IDO inhibitors or immune checkpoint blocking antibodies.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Breast Neoplasms/immunology
- Breast Neoplasms/pathology
- Breast Neoplasms/therapy
- Cell Death/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Doxorubicin/administration & dosage
- Doxorubicin/chemistry
- Doxorubicin/pharmacology
- Drug Delivery Systems
- Drug Screening Assays, Antitumor
- Female
- Immunotherapy
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Liposomes/chemistry
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/therapy
- Mice
- Mice, Inbred BALB C
- Tryptophan/administration & dosage
- Tryptophan/analogs & derivatives
- Tryptophan/chemistry
- Tryptophan/pharmacology
Collapse
Affiliation(s)
- Jianqin Lu
- Division
of NanoMedicine, Department of Medicine, David Geffen School
of Medicine, Center for Environmental Implications of Nanotechnology, California
NanoSystems Institute, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiangsheng Liu
- Division
of NanoMedicine, Department of Medicine, David Geffen School
of Medicine, Center for Environmental Implications of Nanotechnology, California
NanoSystems Institute, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yu-Pei Liao
- Division
of NanoMedicine, Department of Medicine, David Geffen School
of Medicine, Center for Environmental Implications of Nanotechnology, California
NanoSystems Institute, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiang Wang
- Division
of NanoMedicine, Department of Medicine, David Geffen School
of Medicine, Center for Environmental Implications of Nanotechnology, California
NanoSystems Institute, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ayman Ahmed
- Division
of NanoMedicine, Department of Medicine, David Geffen School
of Medicine, Center for Environmental Implications of Nanotechnology, California
NanoSystems Institute, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Wen Jiang
- Division
of NanoMedicine, Department of Medicine, David Geffen School
of Medicine, Center for Environmental Implications of Nanotechnology, California
NanoSystems Institute, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ying Ji
- Division
of NanoMedicine, Department of Medicine, David Geffen School
of Medicine, Center for Environmental Implications of Nanotechnology, California
NanoSystems Institute, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Huan Meng
- Division
of NanoMedicine, Department of Medicine, David Geffen School
of Medicine, Center for Environmental Implications of Nanotechnology, California
NanoSystems Institute, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California 90095, United States
- Phone: 310.825.0217. E-mail:
| | - Andre E. Nel
- Division
of NanoMedicine, Department of Medicine, David Geffen School
of Medicine, Center for Environmental Implications of Nanotechnology, California
NanoSystems Institute, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California 90095, United States
- Phone: 310.825.6620. E-mail:
| |
Collapse
|
31
|
Spina RM, Lozano E, Barrera PA, Agüero MB, Tapia A, Feresin GE, Sosa MÁ. Antiproliferative effect and ultrastructural alterations induced by 5-O-methylembelin on Trypanosoma cruzi. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 46:111-118. [PMID: 30097111 DOI: 10.1016/j.phymed.2018.04.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/26/2018] [Accepted: 04/15/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Embelin (EMB), obtained from Oxalis erythrorhiza Gillies ex Hooker et Arnott (Oxalidaceae), was reported against Trypanosoma cruzi and Leishmania spp. Additionally, antiprotozoan activity against Plasmodium falciparum was reported for its methylated derivative (ME). PURPOSE To evaluate the potential anti-Trypanosoma cruzi activity of EMB, ME and 2,5-di-O-methylembelin (DME) and analyze the possible mechanism of action. STUDY DESIGN/METHODS EMB was isolated by a chromatographic method from the air-dried ground whole plant. To evaluate the effects of methylation, ME and DME were synthesized and tested against T. cruzi epimastigotes and trypomastigotes. The most active compound ME was evaluated against amastigotes. Ultrastructural alterations, ROS generation and the effect on mitochondrial activity of ME were measured. RESULTS Compounds inhibited the proliferation of epimastigotes. ME was also active against intracellular amastigotes. Mitochondrial alterations were observed by TEM. Additionally, ME modified the mitochondrial activity, and induced an increase in ROS levels. These evidences postulate the mitochondrion as a possible target of ME. CONCLUSION ME inhibited amastigotes proliferation, thus being a potential lead compound for the treatment of Chagas' disease.
Collapse
Affiliation(s)
- Renata María Spina
- Facultad de Ciencias Médicas, Instituto de Histología y Embriología "Dr. Mario H. Burgos", Universidad Nacional de Cuyo-CONICET, CC 56 (5500) Mendoza, Argentina
| | - Esteban Lozano
- Laboratorio de Inmunología y Desarrollo de Vacunas, Instituto de Medicina y Biología Experimental de Cuyo, Av. Ruiz Leal s/n Parque General San Martín, CP 5500 Mendoza, Argentina
| | - Patricia Andrea Barrera
- Facultad de Ciencias Médicas, Instituto de Histología y Embriología "Dr. Mario H. Burgos", Universidad Nacional de Cuyo-CONICET, CC 56 (5500) Mendoza, Argentina
| | - María Belén Agüero
- Instituto de Biotecnología-Instituto de Ciencias Básicas, Universidad Nacional de San Juan, Av. Libertador General San Martín 1109 (O), CP5400 San Juan, Argentina; CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina
| | - Alejandro Tapia
- Instituto de Biotecnología-Instituto de Ciencias Básicas, Universidad Nacional de San Juan, Av. Libertador General San Martín 1109 (O), CP5400 San Juan, Argentina
| | - Gabriela Egly Feresin
- Instituto de Biotecnología-Instituto de Ciencias Básicas, Universidad Nacional de San Juan, Av. Libertador General San Martín 1109 (O), CP5400 San Juan, Argentina; CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina
| | - Miguel Ángel Sosa
- Facultad de Ciencias Médicas, Instituto de Histología y Embriología "Dr. Mario H. Burgos", Universidad Nacional de Cuyo-CONICET, CC 56 (5500) Mendoza, Argentina.
| |
Collapse
|
32
|
Cisplatin-stitched α-poly(glutamatic acid) nanoconjugate for enhanced safety and effective tumor inhibition. Eur J Pharm Sci 2018; 119:189-199. [DOI: 10.1016/j.ejps.2018.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/03/2018] [Accepted: 04/16/2018] [Indexed: 11/18/2022]
|
33
|
Prabhu KS, Achkar IW, Kuttikrishnan S, Akhtar S, Khan AQ, Siveen KS, Uddin S. Embelin: a benzoquinone possesses therapeutic potential for the treatment of human cancer. Future Med Chem 2018; 10:961-976. [PMID: 29620447 DOI: 10.4155/fmc-2017-0198] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/18/2017] [Indexed: 08/28/2023] Open
Abstract
Natural products have been gaining recognition and are becoming a significant part of research in the area of drug development and discovery. Phytochemicals derived from these sources have been comprehensively studied and have displayed a wide range of activities against many fatal diseases including cancer. One such product that has gained recognition from its pharmacological properties and nontoxic nature is embelin, obtained from Embelia ribes. Amid all the vivid pharmacological activities, embelin has gained its prominence in the area of cancer research. Embelin binds to the BIR3 domain of XIAP, preventing the association of XIAP and caspase-9 resulting in the suppression of cell growth, proliferation and migration of various types of cancer cells. Furthermore, embelin modulates anti-apoptotic pathways by suppressing the activity of NF-κB, PI3-kinase/AKT, JAK/STAT pathway - among others. The present review summarizes the various reported effects of embelin on different types of cancer cells and highlights the cellular mechanisms of action.
Collapse
Affiliation(s)
- Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Iman W Achkar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Kodapully S Siveen
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
34
|
Zhang Z, Wang X, Li B, Hou Y, Cai Z, Yang J, Li Y. Paclitaxel-loaded PLGA microspheres with a novel morphology to facilitate drug delivery and antitumor efficiency. RSC Adv 2018; 8:3274-3285. [PMID: 35541195 PMCID: PMC9077493 DOI: 10.1039/c7ra12683b] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/08/2018] [Indexed: 12/25/2022] Open
Abstract
A novel morphological PTX-PLGA-MS with microporous surface and porous internal structures to enhance drug loading, delivery and antitumor efficiency.
Collapse
Affiliation(s)
- Zongrui Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
- Biomedical Materials and Engineering Research Center of Hubei Province
| | - Xinyu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
- Biomedical Materials and Engineering Research Center of Hubei Province
| | - Binbin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
- Biomedical Materials and Engineering Research Center of Hubei Province
| | - Yuanjing Hou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
- Biomedical Materials and Engineering Research Center of Hubei Province
| | - Zhengwei Cai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
- Biomedical Materials and Engineering Research Center of Hubei Province
| | - Jing Yang
- School of Foreign Languages
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Yi Li
- Institute of Textiles and Clothing
- The Hong Kong Polytechnic University
- Kowloon
- P. R. China
| |
Collapse
|
35
|
Bhatt P, Lalani R, Vhora I, Patil S, Amrutiya J, Misra A, Mashru R. Liposomes encapsulating native and cyclodextrin enclosed paclitaxel: Enhanced loading efficiency and its pharmacokinetic evaluation. Int J Pharm 2018; 536:95-107. [DOI: 10.1016/j.ijpharm.2017.11.048] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 11/02/2017] [Accepted: 11/21/2017] [Indexed: 01/06/2023]
|
36
|
Zhang X, Wu Y, Zhang M, Mao J, Wu Y, Zhang Y, Yao J, Xu C, Guo W, Yu B. Sodium cholate-enhanced polymeric micelle system for tumor-targeting delivery of paclitaxel. Int J Nanomedicine 2017; 12:8779-8799. [PMID: 29263668 PMCID: PMC5732553 DOI: 10.2147/ijn.s150196] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Polymeric micelles are attractive nanocarriers for tumor-targeted delivery of paclitaxel (PTX). High antitumor efficacy and low toxicity require that PTX mainly accumulated in tumors with little drug exposure to normal tissues. However, many PTX-loaded micelle formulations suffer from low stability, fast drug release, and lack of tumor-targeting capability in the circulation. To overcome these challenges, we developed a micellar formulation that consists of sodium cholate (NaC) and monomethoxy poly (ethylene glycol)-block-poly (d,l-lactide) (mPEG-PDLLA). METHODS PTX-loaded NaC-mPEG-PDLLA micelles (PTX-CMs) and PTX-loaded mPEG-PDLLA micelles (PTX-Ms) were formulated, and their characteristics, particle size, surface morphology, release behavior in vitro, pharmacokinetics and in vivo biodistributions were researched. In vitro and in vivo tumor inhibition effects were systematically investigated. Furthermore, the hemolysis and acute toxicity of PTX-CMs were also evaluated. RESULTS The size of PTX-CMs was 53.61±0.75 nm and the ζ-potential was -19.73±0.68 mV. PTX was released much slower from PTX-CMs than PTX-Ms in vitro. Compared with PTX-Ms, the cellular uptake of PTX-CMs was significantly reduced in macrophages and significantly increased in human cancer cells, and therefore, PTX-CMs showed strong growth inhibitory effects on human cancer cells. In vivo, the plasma AUC0-t of PTX-CMs was 1.8-fold higher than that of PTX-Ms, and 5.2-fold higher than that of Taxol. The biodistribution study indicated that more PTX-CMs were accumulated in tumor than PTX-Ms and Taxol. Furthermore, the significant antitumor efficacy of PTX-CMs was observed in mice bearing BEL-7402 hepatocellular carcinoma and A549 lung carcinoma. Results from drug safety assessment studies including acute toxicity and hemolysis test revealed that the PTX-CMs were safe for in vivo applications. CONCLUSION These results strongly revealed that NaC-mPEG-PDLLA micelles can tumor-target delivery of PTX and enhance drug penetration in tumor, suggesting that NaC-mPEG-PDLLA micelles are promising nanocarrier systems for anticancer drugs delivery.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Beijing Key Laboratory of Special Elastomeric Composite Materials, Beijing Institute of Petrochemical Technology, Beijing
- Push-Kang Biotechnology, Hangzhou
| | - Yibo Wu
- Beijing Key Laboratory of Special Elastomeric Composite Materials, Beijing Institute of Petrochemical Technology, Beijing
| | - Min Zhang
- Beijing Key Laboratory of Special Elastomeric Composite Materials, Beijing Institute of Petrochemical Technology, Beijing
| | - Jing Mao
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing, China
| | - Yun Wu
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | | | - Ju Yao
- Push-Kang Biotechnology, Hangzhou
| | - Chang Xu
- Push-Kang Biotechnology, Hangzhou
| | - Wenli Guo
- Beijing Key Laboratory of Special Elastomeric Composite Materials, Beijing Institute of Petrochemical Technology, Beijing
| | - Bo Yu
- Push-Kang Biotechnology, Hangzhou
| |
Collapse
|
37
|
Li P, Zhou X, Qu D, Guo M, Fan C, Zhou T, Ling Y. Preliminary study on fabrication, characterization and synergistic anti-lung cancer effects of self-assembled micelles of covalently conjugated celastrol-polyethylene glycol-ginsenoside Rh2. Drug Deliv 2017; 24:834-845. [PMID: 28532223 PMCID: PMC8241176 DOI: 10.1080/10717544.2017.1326540] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 01/26/2023] Open
Abstract
The aim of this study was to develop an amphipathic polyethylene glycol (PEG) derivative that was bi-terminally modified with celastrol and ginsenoside Rh2 (Celastrol-PEG-G Rh2). Such derivative was capable of forming novel, celastrol-loaded polymeric micelles (CG-M) for endo/lysosomal delivery and thereby synergistic treatment of lung cancer. Celastrol-PEG-G Rh2 with a yield of 55.6% was first synthesized and characterized. Its critical micellar concentration was 1 × 10-5 M, determined by pyrene entrapment method. CG-M had a small particle size of 121.53 ± 2.35 nm, a narrow polydispersity index of 0.214 ± 0.001 and a moderately negative zeta potential of -23.14 ± 3.15 mV. Celastrol and G Rh2 were rapidly released from CG-M under acidic and enzymatic conditions, but slowly released in normal physiological environments. In cellular studies, the internalization of celastrol and G Rh2 by human non-small cell lung cancer (A549) cells treated with CG-M was 5.8-fold and 1.8-fold higher than that of non-micelle control. Combinational therapy of celastrol and G Rh2 using CG-M exhibited synergistic anticancer activities in cell apoptosis and proliferation assays via rapid drug release within endo/lysosomes. Most importantly, the celastrol in CG-M exhibited a long elimination half-life of 445.3 ± 43.5 min and an improved area under the curve of 645060.8 ± 63640.7 ng/mL/h, that were 1.03-fold and 2.44-fold greater than those of non-micelle control, respectively. These findings suggest that CG-M is a promising vector for precisely releasing anticancer drugs within the tumor cells, and thereby exerts an improved synergistic anti-lung cancer effect.
Collapse
Affiliation(s)
- Peng Li
- Department of Oncology, Changzhou Cancer Hospital of Soochow University, Changzhou, P.R. China
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - XiaoYue Zhou
- Department of Oncology, Changzhou Cancer Hospital of Soochow University, Changzhou, P.R. China
| | - Ding Qu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, P.R. China, and
| | - Mengfei Guo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, P.R. China, and
| | - Chenyi Fan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, P.R. China, and
| | - Tong Zhou
- Department of Oncology, Changzhou Cancer Hospital of Soochow University, Changzhou, P.R. China
| | - Yang Ling
- Department of Oncology, Changzhou Cancer Hospital of Soochow University, Changzhou, P.R. China
- Clinical Oncology Laboratory, Changzhou Cancer Hospital of Soochow University, Changzhou, P.R. China
| |
Collapse
|
38
|
Pei Q, Hu X, Liu S, Li Y, Xie Z, Jing X. Paclitaxel dimers assembling nanomedicines for treatment of cervix carcinoma. J Control Release 2017; 254:23-33. [DOI: 10.1016/j.jconrel.2017.03.391] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/01/2017] [Accepted: 03/26/2017] [Indexed: 12/11/2022]
|
39
|
Wang Y, Xiang X, Wu SQ, Chen G, Zhang MM, Wang MG, Wang FJ, Sandford AJ, He JQ. Association of CYP2B6 gene polymorphisms and anti-tuberculosis drug-induced hepatotoxicity in a Chinese population. INFECTION GENETICS AND EVOLUTION 2017; 51:198-202. [PMID: 28389387 DOI: 10.1016/j.meegid.2017.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 03/25/2017] [Accepted: 04/01/2017] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Antituberculosis drug-induced hepatotoxicity (ATDH) remains a common and severe challenge in tuberculosis (TB) chemotherapy. A growing number of studies have revealed that genetic polymorphisms affect an individual's susceptibility to ATDH. The aim of this study was to explore the role of cytochrome P450 family 2 subfamily B member 6 (CYP2B6) gene polymorphisms in the development of ATDH in Chinese TB patients. METHODS CYP2B6*6 genotypes were determined in TB patients with and without ATDH. Association between polymorphisms and risk of ATDH was estimated by multiple logistic regression analysis. RESULTS A total of 343 eligible TB patients (166 with ATDH; 177 without ATDH) were included in this study. Analysis of all subjects revealed no statistical differences in genotype distribution between the two groups. However, the CYP2B6 *6/*6 genotype was significantly associated with decreased risk of ATDH in the male subgroup (P=0.039, OR=0.097, 95% CI: 0.011-0.885). Furthermore, in male patients, the presence of the CYP2B6*6 allele was significantly higher in the non-ATDH group compared with the ATDH group (26.2% vs. 15.5%, P=0.020, OR=0.522, 95% CI: 0.301-0.903). CONCLUSIONS This study is the first to demonstrate an association between CYP2B6 polymorphisms and the risk of ATDH in the Chinese population. We have shown that males who have the CYP2B6 *6/*6 genotype may be less susceptible to the development of ATDH. Further studies are required to confirm this genetic association result.
Collapse
Affiliation(s)
- Yu Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xi Xiang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shou-Quan Wu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Guo Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Miao-Miao Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ming-Gui Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Feng-Juan Wang
- Department of Hematology and Research Laboratory of Hematology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Andrew J Sandford
- Centre for Heart Lung Innovation, University of British Columbia and St. Paul's Hospital, Vancouver, BC, Canada
| | - Jian-Qing He
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
40
|
Yu Y, Xu S, You H, Zhang Y, Yang B, Sun X, Yang L, Chen Y, Fu S, Wu J. In vivo synergistic anti-tumor effect of paclitaxel nanoparticles combined with radiotherapy on human cervical carcinoma. Drug Deliv 2017; 24:75-82. [PMID: 28155566 PMCID: PMC8241140 DOI: 10.1080/10717544.2016.1230902] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In this study, our purpose was to explore the synergistic anti-tumor effect and mechanism of paclitaxel nanoparticles (PTX-NPs) combined with radiotherapy (RT) on human cervical carcinoma (HeLa). PTX-NPs were prepared by a solid dispersion method using methoxy poly(ethylene glycol)–poly(ɛ-caprolactone) (MPEG–PCL), which combined with RT exerted a potent and high efficient effect against cervical cancer. In vivo antitumor activity of PTX-NPs combined with RT, was estimated using nude mice carrying Hela cell xenograft tumor. The results were evaluated using microfluorine-18-deoxyglucose PET/computed tomography (18F-FDG PET/CT) and immunohistochemistry. The results showed that PTX-NPs possessed a more efficient effect than PTX when combined with RT (p < 0.05). PTX-NPs in combination with RT might inhibit cell proliferation through its action on Ki-67, and decreased micro-vessel density (MVD) associated with CD31 and vascular endothelial growth factor (VEGF). These results suggested that PTX-NPs possessed a synergistic anti-tumor effect against cervical cancer when combined with RT.
Collapse
Affiliation(s)
| | - Shan Xu
- a Department of Oncology and
| | | | | | - Bo Yang
- a Department of Oncology and
| | | | | | - Yue Chen
- b Department of Nuclear Medicine , the Affiliated Hospital of Southwest Medical University , Luzhou , China
| | | | | |
Collapse
|
41
|
Fu S, Yang G, Wang J, Wang X, Cheng X, Tang R. Acid-degradable poly(ortho ester urethanes) copolymers for potential drug carriers: Preparation, characterization, in vitro and in vivo evaluation. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.02.079] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Cortez Tornello PR, Feresin GE, Tapia A, Dzieciuch M, Cuadrado TR, Abraham GA. Effect of processing techniques on new poly(ε-caprolactone)-embelin microparticles of biomedical interest. ADVANCES IN POLYMER TECHNOLOGY 2017. [DOI: 10.1002/adv.21814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pablo R. Cortez Tornello
- Research Institute of Materials Science and Technology; INTEMA (UNMdP-CONICET); Mar del Plata Argentina
| | - Gabriela E. Feresin
- Instituto de Biotecnología; Facultad de Ingeniería; Universidad Nacional de San Juan; San Juan Argentina
| | - Alejandro Tapia
- Instituto de Biotecnología; Facultad de Ingeniería; Universidad Nacional de San Juan; San Juan Argentina
| | - Monika Dzieciuch
- Nanotechnology of Polymers and Biomaterials Team; Department of Chemistry; Jagiellonian University; Cracow Poland
| | - Teresita R. Cuadrado
- Research Institute of Materials Science and Technology; INTEMA (UNMdP-CONICET); Mar del Plata Argentina
| | - Gustavo A. Abraham
- Research Institute of Materials Science and Technology; INTEMA (UNMdP-CONICET); Mar del Plata Argentina
| |
Collapse
|
43
|
Zhang X, Liu Y, Kim YJ, Mac J, Zhuang R, Wang P. Co-delivery of carboplatin and paclitaxel via cross-linked multilamellar liposomes for ovarian cancer treatment. RSC Adv 2017; 7:19685-19693. [PMID: 28603607 PMCID: PMC5450007 DOI: 10.1039/c7ra01100h] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/30/2017] [Indexed: 02/06/2023] Open
Abstract
Cross-linked multilamellar liposomes offer an approach to achieve combinatorial delivery of hydrophobic paclitaxel and hydrophilic metallic carboplatin at a synergistic ratio to treat ovarian cancer.
Carboplatin (CPT) and paclitaxel (PTX) used in combination is one of the most effective treatments for ovarian cancer. However, the traditional combination methods used to co-administrate CPT and PTX showed limited clinical efficacy due to their distinct pharmacokinetics. Although much effort has been devoted to developing nanoparticles capable of encapsulating drugs with different lipophilicites, co-delivery of carboplatin with paclitaxel by a single nanoparticle has rarely been reported. Here, we encapsulated and delivered this drug combination to ovarian cancer cells at a controlled ratio by a previously reported crosslinked multilamellar liposome vesicle (cMLV). A 1 : 1 CPT/PTX molar ratio for cMLVs (CPT/PTX) combination treatment was found to induce the strongest anti-tumor synergism and to target ALDH+ cancer stem cells (CSC) in vitro. Moreover, we demonstrated that this co-encapsulation strategy reduced systemic cytotoxicity and resulted in a stronger anti-tumor effect when compared to free drug combinations and individual drug-loaded cMLVs in an OVCAR8 ovarian cancer xenograft mouse model. Thus, this study suggests a potentially promising combination therapy for ovarian cancer in clinical practice.
Collapse
Affiliation(s)
- Xiaoyang Zhang
- Mork Family Department of Chemical Engineering and Materials Science , University of Southern California , 3710 McClintock Ave. , RTH509 , Los Angeles , CA 90089 , USA . ; ; Tel: +1-213-740-0780
| | - Yarong Liu
- Mork Family Department of Chemical Engineering and Materials Science , University of Southern California , 3710 McClintock Ave. , RTH509 , Los Angeles , CA 90089 , USA . ; ; Tel: +1-213-740-0780
| | - Yu Jeong Kim
- Department of Pharmacology and Pharmaceutical Sciences , University of Southern California , Los Angeles , CA 90089 , USA
| | - John Mac
- Mork Family Department of Chemical Engineering and Materials Science , University of Southern California , 3710 McClintock Ave. , RTH509 , Los Angeles , CA 90089 , USA . ; ; Tel: +1-213-740-0780
| | - Rachel Zhuang
- Department of Biomedical Engineering , University of Southern California , Los Angeles , CA 90089 , USA
| | - Pin Wang
- Mork Family Department of Chemical Engineering and Materials Science , University of Southern California , 3710 McClintock Ave. , RTH509 , Los Angeles , CA 90089 , USA . ; ; Tel: +1-213-740-0780.,Department of Pharmacology and Pharmaceutical Sciences , University of Southern California , Los Angeles , CA 90089 , USA.,Department of Biomedical Engineering , University of Southern California , Los Angeles , CA 90089 , USA
| |
Collapse
|
44
|
Xu J, Zhang X, Chen Y, Huang Y, Wang P, Wei Y, Ma X, Li S. Improved Micellar Formulation for Enhanced Delivery for Paclitaxel. Mol Pharm 2016; 14:31-41. [PMID: 28043124 DOI: 10.1021/acs.molpharmaceut.6b00581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have previously improved the bioactivity of PEG5k-FTS2 system by incorporating disulfide bond (PEG5k-S-S-FTS2) to facilitate the release of farnesyl thiosalicylic acid (FTS).1 Later, fluorenylmethyloxycarbonyl (Fmoc) moiety has been introduced to PEG5k-FTS2 system (PEG5k-Fmoc-FTS2) in order to enhance drug loading capacity (DLC) and formulation stability.2 In this study, we have brought in both disulfide linkage and Fmoc group to PEG5k-FTS2 to form a simple PEG5k-Fmoc-S-S-FTS2 micellar system. PEG5k-Fmoc-S-S-FTS2 conjugate formed filamentous micelles with a ∼10-fold decrease in critical micellar concentration (CMC). Compared with PEG5k-Fmoc-FTS2, our novel system exhibited further strengthened DLC and colloidal stability. More FTS was freed from PEG5k-Fmoc-S-S-FTS2 in treated tumor cells compared to PEG5k-Fmoc-FTS2, which was correlated to an increased cytotoxicity of our new carrier in these cancer cells. After loading Paclitaxel (PTX) into PEG5k-Fmoc-S-S-FTS2 micelles, it showed more potent efficiency in inhibition of tumor cell proliferation than Taxol and PTX-loaded PEG5k-Fmoc-FTS2. PTX release kinetics of PTX/PEG5k-Fmoc-S-S-FTS2 was much slower than that of Taxol and PTX/PEG5k-Fmoc-FTS2 in normal release medium. In contrast, in glutathione (GSH)-containing medium, PTX in PEG5k-Fmoc-S-S-FTS2 micelles revealed faster and more complete release. Pharmacokinetics and tissue distribution study showed that our PEG5k-Fmoc-S-S-FTS2 system maintained PTX in circulation for a longer time and delivered more PTX to tumor sites with less accumulation in major organs. Finally, PTX-loaded PEG5k-Fmoc-S-S-FTS2 micelles resulted in a superior therapeutic effect in vivo compared to Taxol and PTX formulated in PEG5k-Fmoc-FTS2 micelles.
Collapse
Affiliation(s)
- Jieni Xu
- Center for Pharmacogenetics, ‡Department of Pharmaceutical Sciences, School of Pharmacy, and §University of Pittsburgh Cancer Institute, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Xiaolan Zhang
- Center for Pharmacogenetics, ‡Department of Pharmaceutical Sciences, School of Pharmacy, and §University of Pittsburgh Cancer Institute, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Yichao Chen
- Center for Pharmacogenetics, ‡Department of Pharmaceutical Sciences, School of Pharmacy, and §University of Pittsburgh Cancer Institute, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Yixian Huang
- Center for Pharmacogenetics, ‡Department of Pharmaceutical Sciences, School of Pharmacy, and §University of Pittsburgh Cancer Institute, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Pengcheng Wang
- Center for Pharmacogenetics, ‡Department of Pharmaceutical Sciences, School of Pharmacy, and §University of Pittsburgh Cancer Institute, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Yuan Wei
- Center for Pharmacogenetics, ‡Department of Pharmaceutical Sciences, School of Pharmacy, and §University of Pittsburgh Cancer Institute, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Xiaochao Ma
- Center for Pharmacogenetics, ‡Department of Pharmaceutical Sciences, School of Pharmacy, and §University of Pittsburgh Cancer Institute, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Song Li
- Center for Pharmacogenetics, ‡Department of Pharmaceutical Sciences, School of Pharmacy, and §University of Pittsburgh Cancer Institute, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
45
|
Sun J, Chen Y, Li K, Huang Y, Fu X, Zhang X, Zhao W, Wei Y, Xu L, Zhang P, Venkataramanan R, Li S. A prodrug micellar carrier assembled from polymers with pendant farnesyl thiosalicylic acid moieties for improved delivery of paclitaxel. Acta Biomater 2016; 43:282-291. [PMID: 27422196 PMCID: PMC5012958 DOI: 10.1016/j.actbio.2016.07.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/28/2016] [Accepted: 07/11/2016] [Indexed: 11/25/2022]
Abstract
UNLABELLED In order to achieve enhanced and synergistic delivery of paclitaxel (PTX), a hydrophobic anticancer agent, two novel prodrug copolymers, POEG15-b-PFTS6 and POEG15-b-PFTS16 composed of hydrophilic poly(oligo(ethylene glycol) methacrylate) (POEG) and hydrophobic farnesylthiosalicylate (FTS, a nontoxic Ras antagonist) blocks, were synthesized. Both POEG-b-PFTS polymers were able to form micelles with intrinsic antitumor activity in vitro and in vivo. Employing these micelles as a carrier to load PTX, their drug loading capacity, stability, in vivo biodistribution and tumor inhibition effect were evaluated. PTX/POEG15-b-PFTS16 mixed micelles exhibited an excellent stability of 9days at 4°C with a PTX loading capacity of 8.2%, which was more effective than PTX/POEG15-b-PFTS6 mixed micelles. In vivo biodistribution data showed that DiR-loaded POEG-b-PFTS micelles were more effectively localized in the tumor than in other organs. Moreover, both PTX/POEG-b-PFTS micelles showed significantly higher antitumor activity than Taxol in a 4T1.2 murine breast tumor model, and the tumor inhibition and animal survival followed the order of PTX/POEG15-b-PFTS16>PTX/POEG15-b-PFTS6>POEG15-b-PFTS16>Taxol≈POEG15-b-PFTS6. Our data suggest that POEG-b-PFTS micelles are a promising anticancer drug carrier that warrants more studies in the future. STATEMENT OF SIGNIFICANCE Polymerization of drug-based monomer represents a facile and precise method to obtain well-defined polymeric prodrug amphiphiles. Currently, most reports largely focus on the synthesis methods and the biophysical properties. There is limited information about their anti-tumor activity and delivery function as prodrug carriers in vitro and in vivo. In this manuscript, we report the development of two novel prodrug copolymers, POEG15-b-PFTS6 and POEG15-b-PFTS16 composed of hydrophilic poly(oligo(ethylene glycol) methacrylate) (POEG) and hydrophobic farnesylthiosalicylate (FTS, a nontoxic Ras antagonist) blocks. Both POEG-b-PFTS polymers were able to self-assemble into nano-sized micelles with intrinsic antitumor activity in vitro and in vivo. More importantly, POEG-b-PFTS polymers were effective in forming stable mixed micelles with various anticancer agents including PTX, DOX, docetaxel, gefitinib, and imatinib. Delivery of PTX via our new carrier led to significantly improved antitumor activity, suggesting effective PTX/FTS combination therapy. We believe that our study shall be of broad interest to the readers in the fields of biomaterials and drug delivery.
Collapse
Affiliation(s)
- Jingjing Sun
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yichao Chen
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ke Li
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA; Department of Radiation Oncology, University of Kansas, Lawrence, KS 66045, USA; University of Kansas Cancer Center, University of Kansas, Lawrence, KS 66045, USA
| | - Yixian Huang
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiaofeng Fu
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiaolan Zhang
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Wenchen Zhao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yuan Wei
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Liang Xu
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA; Department of Radiation Oncology, University of Kansas, Lawrence, KS 66045, USA; University of Kansas Cancer Center, University of Kansas, Lawrence, KS 66045, USA
| | - Peijun Zhang
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Song Li
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
46
|
Xu XM, Zhang ML, Zhang Y, Zhao L. Osthole induces lung cancer cell apoptosis through inhibition of inhibitor of apoptosis family proteins. Oncol Lett 2016; 12:3779-3784. [PMID: 27895730 PMCID: PMC5104166 DOI: 10.3892/ol.2016.5170] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/09/2016] [Indexed: 12/21/2022] Open
Abstract
In the present study, we investigated the effects and mechanisms of Osthole on the apoptosis of non-small cell lung cancer (NSCLC) cells and its synergistic effect with Embelin. Our results revealed that treatment with both Osthole and Embelin inhibited cell proliferation. Notably, combination treatment of Osthole and Embelin inhibited cell proliferation more significantly compared with monotherapy. In addition, morphological analysis and Annexin V/propidium iodide analysis revealed that the combination of Osthole and Embelin enhanced their effect on cell apoptosis. We further examined the effect of Osthole on the expression of inhibitor of apoptosis protein (IAP) family proteins. That treatment of A549 lung cancer cells with various concentrations of Osthole was observed to decrease the protein expression of X-chromosome-encoded IAP, c-IAP1, c-IAP2 and Survivin, and increase Smac expression in a dose-dependent manner. Furthermore, it was noted that Osthole or Embelin alone increased the expression of BAX, caspase-3, caspase-9, cleaved caspase-3 and cleaved caspase-9, and decreased Bcl-2 levels following treatment. Osthole and Embelin combination treatment had a synergistic effect on the regulation of these proteins. In conclusion, our study demonstrated that Osthole inhibited proliferation and induced the apoptosis of lung cancer cells via IAP family proteins in a dose-dependent manner. Osthole enhances the antitumor effect of Embelin, indicating that combination of Osthole and Embelin has potential clinical significance in the treatment of NSCLC.
Collapse
Affiliation(s)
- Xiao-Man Xu
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Man-Li Zhang
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yi Zhang
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Li Zhao
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
47
|
Hedrich WD, Hassan HE, Wang H. Insights into CYP2B6-mediated drug-drug interactions. Acta Pharm Sin B 2016; 6:413-425. [PMID: 27709010 PMCID: PMC5045548 DOI: 10.1016/j.apsb.2016.07.016] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/18/2016] [Accepted: 05/27/2016] [Indexed: 01/11/2023] Open
Abstract
Mounting evidence demonstrates that CYP2B6 plays a much larger role in human drug metabolism than was previously believed. The discovery of multiple important substrates of CYP2B6 as well as polymorphic differences has sparked increasing interest in the genetic and xenobiotic factors contributing to the expression and function of the enzyme. The expression of CYP2B6 is regulated primarily by the xenobiotic receptors constitutive androstane receptor (CAR) and pregnane X receptor (PXR) in the liver. In addition to CYP2B6, these receptors also mediate the inductive expression of CYP3A4, and a number of important phase II enzymes and drug transporters. CYP2B6 has been demonstrated to play a role in the metabolism of 2%–10% of clinically used drugs including widely used antineoplastic agents cyclophosphamide and ifosfamide, anesthetics propofol and ketamine, synthetic opioids pethidine and methadone, and the antiretrovirals nevirapine and efavirenz, among others. Significant inter-individual variability in the expression and function of the human CYP2B6 gene exists and can result in altered clinical outcomes in patients receiving treatment with CYP2B6-substrate drugs. These variances arise from a number of sources including genetic polymorphism, and xenobiotic intervention. In this review, we will provide an overview of the key players in CYP2B6 expression and function and highlight recent advances made in assessing clinical ramifications of important CYP2B6-mediated drug–drug interactions.
Collapse
Key Words
- 4-OH-CPA, 4-hydroxycyclophosphamide
- C/EBP, CCAAT/enhancer-binding protein
- CAR
- CAR, constitutive androstane receptor
- CHOP, cyclophosphamide–doxorubicin–vincristine–prednisone
- CITCO, (6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime)
- COUP-TF, chicken ovalbumin upstream promoter-transcription factor
- CPA, cyclophosphamide
- CYP, cytochrome P450
- CYP2B6
- Cyclophosphamide
- DDI, drug–drug interaction
- DEX, dexamethasone
- Drug–drug interaction
- E2, estradiol
- EFV, efavirenz
- ERE, estrogen responsive element
- Efavirenz
- GR, glucocorticoid receptor
- GRE, glucocorticoid responsive element
- HAART, highly active antiretroviral therapy
- HNF, hepatocyte nuclear factor
- IFA, Ifosfamide
- MAOI, monoamine oxidase inhibitor
- NNRTI, non-nucleotide reverse-transcriptase inhibitor
- NR1/2, nuclear receptor binding site 1/2
- NVP, nevirapine
- PB, phenobarbital
- PBREM, phenobarbital-responsive enhancer module
- PCN, pregnenolone 16 alpha-carbonitrile
- PXR
- PXR, pregnane X receptor
- Polymorphism
- RIF, rifampin
- SNP, single nucleotide polymorphism
- TCPOBOP, 1,4-bis[3,5-dichloropyridyloxy]benzene
- UGT, UDP-glucuronosyl transferase
Collapse
Affiliation(s)
| | | | - Hongbing Wang
- Corresponding author at: Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA. Tel.: +1 410 706 1280; fax: +1 410 706 5017.
| |
Collapse
|
48
|
Zhao M, Huang Y, Chen Y, Xu J, Li S, Guo X. PEG-Fmoc-Ibuprofen Conjugate as a Dual Functional Nanomicellar Carrier for Paclitaxel. Bioconjug Chem 2016; 27:2198-205. [DOI: 10.1021/acs.bioconjchem.6b00415] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Min Zhao
- School
of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yixian Huang
- Center
for Pharmacogenetics, Department of Pharmaceutical Sciences, School
of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Yichao Chen
- Center
for Pharmacogenetics, Department of Pharmaceutical Sciences, School
of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Jieni Xu
- Center
for Pharmacogenetics, Department of Pharmaceutical Sciences, School
of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Song Li
- Center
for Pharmacogenetics, Department of Pharmaceutical Sciences, School
of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xingjie Guo
- School
of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
49
|
Kroon J, Kooijman S, Cho NJ, Storm G, van der Pluijm G. Improving Taxane-Based Chemotherapy in Castration-Resistant Prostate Cancer. Trends Pharmacol Sci 2016; 37:451-462. [DOI: 10.1016/j.tips.2016.03.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/08/2016] [Accepted: 03/18/2016] [Indexed: 01/26/2023]
|
50
|
Zhong Y, Goltsche K, Cheng L, Xie F, Meng F, Deng C, Zhong Z, Haag R. Hyaluronic acid-shelled acid-activatable paclitaxel prodrug micelles effectively target and treat CD44-overexpressing human breast tumor xenografts in vivo. Biomaterials 2016; 84:250-261. [DOI: 10.1016/j.biomaterials.2016.01.049] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/21/2016] [Accepted: 01/21/2016] [Indexed: 02/06/2023]
|