1
|
Oshinowo O, Copeland R, Patel A, Shaver N, Fay ME, Jeltuhin R, Xiang Y, Caruso C, Otumala AE, Hernandez S, Delgado P, Dean G, Kelvin JM, Chester D, Brown AC, Dreaden EC, Leong T, Waggoner J, Li R, Ortlund E, Bennett C, Lam WA, Myers DR. Autoantibodies immuno-mechanically modulate platelet contractile force and bleeding risk. Nat Commun 2024; 15:10201. [PMID: 39587073 PMCID: PMC11589161 DOI: 10.1038/s41467-024-54309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 11/05/2024] [Indexed: 11/27/2024] Open
Abstract
Altered mechanotransduction has been proposed as a putative mechanism for disease pathophysiology, yet evidence remains scarce. Here we introduce a concept we call single cell immuno-mechanical modulation, which links immunology, integrin biology, cellular mechanics, and disease pathophysiology and symptomology. Using a micropatterned hydrogel-laden coverslip compatible with standard fluorescence microscopy, we conduct a clinical mechanobiology study, specifically focusing on immune thrombocytopenia (ITP), an autoantibody-mediated platelet disorder that currently lacks a reliable biomarker for bleeding risk. We discover that in pediatric ITP patients (n = 53), low single platelet contraction force alone is a "physics-based" biomarker of bleeding (92.3% sensitivity, 90% specificity). Mechanistically, autoantibodies and monoclonal antibodies drive increases and decreases of cell force by stabilizing integrins in different conformations depending on the targeted epitope. Hence, immuno-mechanical modulation demonstrates how antibodies may pathologically alter mechanotransduction to cause clinical symptoms and this phenomenon can be leveraged to control cellular mechanics for research, diagnostic, and therapeutic purposes.
Collapse
Affiliation(s)
- Oluwamayokun Oshinowo
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children's Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Emory University, Atlanta, GA, USA
| | - Renee Copeland
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children's Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Emory University, Atlanta, GA, USA
| | - Anamika Patel
- Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Nina Shaver
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children's Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Emory University, Atlanta, GA, USA
| | - Meredith E Fay
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children's Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Emory University, Atlanta, GA, USA
| | - Rebecca Jeltuhin
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Yijin Xiang
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children's Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Christina Caruso
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children's Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Adiya E Otumala
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children's Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sarah Hernandez
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, GA, USA
| | - Priscilla Delgado
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children's Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gabrielle Dean
- Aflac Cancer Center and Blood Disorders Service, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - James M Kelvin
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Daniel Chester
- Joint Department of Biomedical Engineering of University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Ashley C Brown
- Joint Department of Biomedical Engineering of University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Erik C Dreaden
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Traci Leong
- Department of Biostatistics & Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jesse Waggoner
- Joint Department of Biomedical Engineering of University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Renhao Li
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children's Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Eric Ortlund
- Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Carolyn Bennett
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children's Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Wilbur A Lam
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children's Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, GA, USA.
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, USA.
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
- Winship Cancer Institute of Emory University, Emory University, Atlanta, GA, USA.
| | - David R Myers
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children's Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, GA, USA.
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
2
|
Barcelona-Estaje E, Oliva MAG, Cunniffe F, Rodrigo-Navarro A, Genever P, Dalby MJ, Roca-Cusachs P, Cantini M, Salmeron-Sanchez M. N-cadherin crosstalk with integrin weakens the molecular clutch in response to surface viscosity. Nat Commun 2024; 15:8824. [PMID: 39394209 PMCID: PMC11479646 DOI: 10.1038/s41467-024-53107-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
Mesenchymal stem cells (MSCs) interact with their surroundings via integrins, which link to the actin cytoskeleton and translate physical cues into biochemical signals through mechanotransduction. N-cadherins enable cell-cell communication and are also linked to the cytoskeleton. This crosstalk between integrins and cadherins modulates MSC mechanotransduction and fate. Here we show the role of this crosstalk in the mechanosensing of viscosity using supported lipid bilayers as substrates of varying viscosity. We functionalize these lipid bilayers with adhesion peptides for integrins (RGD) and N-cadherins (HAVDI), to demonstrate that integrins and cadherins compete for the actin cytoskeleton, leading to an altered MSC mechanosensing response. This response is characterised by a weaker integrin adhesion to the environment when cadherin ligation occurs. We model this competition via a modified molecular clutch model, which drives the integrin/cadherin crosstalk in response to surface viscosity, ultimately controlling MSC lineage commitment.
Collapse
Affiliation(s)
- Eva Barcelona-Estaje
- Centre for the Cellular Microenvironment, Advanced Research Centre, University of Glasgow, Glasgow, UK
| | - Mariana A G Oliva
- Centre for the Cellular Microenvironment, Advanced Research Centre, University of Glasgow, Glasgow, UK
| | - Finlay Cunniffe
- Centre for the Cellular Microenvironment, Advanced Research Centre, University of Glasgow, Glasgow, UK
| | | | - Paul Genever
- Department of Biology, University of York, York, UK
| | - Matthew J Dalby
- Centre for the Cellular Microenvironment, Advanced Research Centre, University of Glasgow, Glasgow, UK
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain.
- University of Barcelona, Barcelona, Spain.
| | - Marco Cantini
- Centre for the Cellular Microenvironment, Advanced Research Centre, University of Glasgow, Glasgow, UK.
| | - Manuel Salmeron-Sanchez
- Centre for the Cellular Microenvironment, Advanced Research Centre, University of Glasgow, Glasgow, UK.
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
3
|
Oshinowo O, Azer SS, Lin J, Lam WA. Why platelet mechanotransduction matters for hemostasis and thrombosis. J Thromb Haemost 2023; 21:2339-2353. [PMID: 37331517 PMCID: PMC10529432 DOI: 10.1016/j.jtha.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/20/2023]
Abstract
Mechanotransduction is the ability of cells to "feel" or sense their mechanical microenvironment and integrate and convert these physical stimuli into adaptive biochemical cellular responses. This phenomenon is vital for the physiology of numerous nucleated cell types to affect their various cellular processes. As the main drivers of hemostasis and clot retraction, platelets also possess this ability to sense the dynamic mechanical microenvironments of circulation and convert those signals into biological responses integral to clot formation. Like other cell types, platelets leverage their "hands" or receptors/integrins to mechanotransduce important signals in responding to vascular injury to achieve hemostasis. The clinical relevance of cellular mechanics and mechanotransduction is imperative as pathologic alterations or aberrant mechanotransduction in platelets has been shown to lead to bleeding and thrombosis. As such, the aim of this review is to provide an overview of the most recent research related to platelet mechanotransduction, from platelet generation to platelet activation, within the hemodynamic environment and clot contraction at the site of vascular injury, thereby covering the entire "life cycle" of platelets. Additionally, we describe the key mechanoreceptors in platelets and discuss the new biophysical techniques that have enabled the field to understand how platelets sense and respond to their mechanical microenvironment via those receptors. Finally, the clinical significance and importance of continued exploration of platelet mechanotransduction have been discussed as the key to better understanding of both thrombotic and bleeding disorders lies in a more complete mechanistic understanding of platelet function by way of mechanotransduction.
Collapse
Affiliation(s)
- Oluwamayokun Oshinowo
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA; The Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, USA; Children's Healthcare of Atlanta Inc, Aflac Cancer and Blood Disorders Center, Atlanta, Georgia, USA
| | - Sally S Azer
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA; The Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, USA; Children's Healthcare of Atlanta Inc, Aflac Cancer and Blood Disorders Center, Atlanta, Georgia, USA
| | - Jessica Lin
- The Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Wilbur A Lam
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA; The Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, USA; Children's Healthcare of Atlanta Inc, Aflac Cancer and Blood Disorders Center, Atlanta, Georgia, USA.
| |
Collapse
|
4
|
Trueman RP, Finn PG, Westwood MM, Dey A, Palgrave R, Tabor A, Phillips JB, Schroeder BC. Improving the biological interfacing capability of diketopyrrolopyrrole polymers via p-type doping. JOURNAL OF MATERIALS CHEMISTRY. C 2023; 11:6943-6950. [PMID: 37274026 PMCID: PMC10233798 DOI: 10.1039/d3tc01148h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/10/2023] [Indexed: 06/06/2023]
Abstract
Polydiketopyrrolopyrrole terthiophene (DPP3T) is an organic semiconducting polymer that has been widely investigated as the active layer within organic electronic devices, such as photovoltaics and bioelectronic sensors. To facilitate interfacing between biological systems and organic semiconductors it is crucial to tune the material properties to support not only cell adhesion, but also proliferation and growth. Herein, we highlight the potential of molecular doping to judiciously modulate the surface properties of DPP3T and investigate the effects on Schwann cell behaviour on the surface. By using p-type dopants FeCl3 and Magic Blue, we successfully alter the topography of DPP3T thin films, which in turn alters cell behaviour of a Schwann cell line on the surfaces of the films over the course of 48 hours. Cell numbers are significantly increased within both DPP3T doped films, as well as cells possessing larger, more spread out morphology indicated by cell size and shape analysis. Furthermore, the viability of the Schwann cells seeded on the surfaces of the films was not significantly lowered. The use of dopants for influencing cell behaviour on semiconducting polymers holds great promise for improving the cell-device interface, potentially allowing better integration of cells and devices at the initial time of introduction to a biological environment.
Collapse
Affiliation(s)
- Ryan P Trueman
- Center for Nerve Engineering, UCL London UK
- Department of Pharmacology, UCL School of Pharmacy, University College London London UK
- Department of Chemistry, University College London London UK
| | | | | | - Avishek Dey
- Department of Chemistry, University College London London UK
| | - Robert Palgrave
- Department of Chemistry, University College London London UK
| | - Alethea Tabor
- Department of Chemistry, University College London London UK
| | - James B Phillips
- Center for Nerve Engineering, UCL London UK
- Department of Pharmacology, UCL School of Pharmacy, University College London London UK
| | - Bob C Schroeder
- Department of Chemistry, University College London London UK
| |
Collapse
|
5
|
Masuda H, Arisaka Y, Hakariya M, Iwata T, Yoda T, Yui N. Molecular Mobility of Polyrotaxane Surfaces Alleviates Oxidative Stress-Induced Senescence in Mesenchymal Stem Cells. Macromol Biosci 2023; 23:e2300053. [PMID: 36942889 DOI: 10.1002/mabi.202300053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/14/2023] [Indexed: 03/23/2023]
Abstract
Polyrotaxane is a supramolecular assembly consisting of multiple cyclic molecules threaded by a linear polymer. One of the unique properties of polyrotaxane is molecular mobility, cyclic molecules moving along the linear polymer. Molecular mobility of polyrotaxane surfaces affects cell spreading, differentiation, and other cell-related aspects through changing subcellular localization of yes-associated proteins (YAPs). Subcellular YAP localization is also related to cell senescence derived from oxidative stress, which is known to cause cancer, diabetes, and heart disease. Herein, the effects of polyrotaxane surface molecular mobility on subcellular YAP localization and cell senescence following H2 O2 -induced oxidative stress are evaluated in human mesenchymal stem cells (HMSCs) cultured on polyrotaxane surfaces with different molecular mobilities. Oxidative stress promotes cytoplasmic YAP localization in HMSCs on high-mobility polyrotaxane surfaces; however, low-mobility polyrotaxane surfaces more effectively maintain nuclear YAP localization, exhibiting lower senescence-associated β-galactosidase activity and senescence-related gene expression and DNA damage than that seen with the high-mobility surfaces. These results suggest that the molecular mobility of polyrotaxane surfaces regulates subcellular YAP localization, thereby protecting HMSCs from oxidative stress-induced cell senescence. Applying the molecular mobility of polyrotaxane surfaces to implantable scaffolds can provide insights into the prevention and treatment of diseases caused by oxidative stress.
Collapse
Affiliation(s)
- Hiroki Masuda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan
| | - Yoshinori Arisaka
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 101-0062, Japan
| | - Masahiro Hakariya
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan
| | - Tetsuya Yoda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 101-0062, Japan
| |
Collapse
|
6
|
Xie W, Wei X, Kang H, Jiang H, Chu Z, Lin Y, Hou Y, Wei Q. Static and Dynamic: Evolving Biomaterial Mechanical Properties to Control Cellular Mechanotransduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204594. [PMID: 36658771 PMCID: PMC10037983 DOI: 10.1002/advs.202204594] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/28/2022] [Indexed: 06/17/2023]
Abstract
The extracellular matrix (ECM) is a highly dynamic system that constantly offers physical, biological, and chemical signals to embraced cells. Increasing evidence suggests that mechanical signals derived from the dynamic cellular microenvironment are essential controllers of cell behaviors. Conventional cell culture biomaterials, with static mechanical properties such as chemistry, topography, and stiffness, have offered a fundamental understanding of various vital biochemical and biophysical processes, such as cell adhesion, spreading, migration, growth, and differentiation. At present, novel biomaterials that can spatiotemporally impart biophysical cues to manipulate cell fate are emerging. The dynamic properties and adaptive traits of new materials endow them with the ability to adapt to cell requirements and enhance cell functions. In this review, an introductory overview of the key players essential to mechanobiology is provided. A biophysical perspective on the state-of-the-art manipulation techniques and novel materials in designing static and dynamic ECM-mimicking biomaterials is taken. In particular, different static and dynamic mechanical cues in regulating cellular mechanosensing and functions are compared. This review to benefit the development of engineering biomechanical systems regulating cell functions is expected.
Collapse
Affiliation(s)
- Wenyan Xie
- Department of BiotherapyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuan610065China
| | - Xi Wei
- Department of Mechanical EngineeringThe University of Hong KongHong KongChina
| | - Heemin Kang
- Department of Materials Science and EngineeringKorea UniversitySeoul02841South Korea
| | - Hong Jiang
- Department of BiotherapyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuan610065China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering (Joint Appointment with School of Biomedical Sciences)The University of Hong KongHong KongChina
| | - Yuan Lin
- Department of Mechanical EngineeringThe University of Hong KongHong KongChina
| | - Yong Hou
- Department of Electrical and Electronic EngineeringThe University of Hong KongHong KongChina
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Qiang Wei
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials and EngineeringSichuan UniversityChengdu610065China
| |
Collapse
|
7
|
Hakariya M, Arisaka Y, Masuda H, Yoda T, Iwata T, Yui N. Suppressed Migration and Enhanced Cisplatin Chemosensitivity in Human Cancer Cell Lines by Tuning the Molecular Mobility of Supramolecular Biomaterials. Macromol Biosci 2023; 23:e2200438. [PMID: 36461103 DOI: 10.1002/mabi.202200438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/17/2022] [Indexed: 12/04/2022]
Abstract
Cancer cells recognize physical cues transmitted from the surrounding microenvironment, and accordingly alter the migration and chemosensitivity. Cell adhesive biomaterials with tunable physical properties can contribute to the understanding of cancer cell responses, and development of new cancer therapies. Previously, it was reported that polyrotaxane-based surfaces with molecular mobility effectively modulate cellular functions via the yes-associated protein (YAP)-related signaling pathway. In the present study, the impact of molecular mobility of polyrotaxane surfaces on the migration and chemosensitivity of lung (A549), pancreatic (BxPC-3), and breast cancer (MDA-MB-231) cell lines is investigated, and it is found that the cellular spreading of adherent A549 and BxPC-3 cells and nuclear YAP translocation are promoted on low-mobility surfaces, suggesting that cancer cells alter their subcellular YAP localization in response to molecular mobility. Furthermore, low-mobility surfaces suppress cellular migration more than high-mobility surfaces. Additionally, low-mobility surfaces promote the cisplatin chemosensitivity of each cancer cell line to a greater extent than high-mobility surfaces. These results suggest that the molecular mobility of polyrotaxane surfaces suppresses cellular migration and enhances chemosensitivity via the subcellular translocation of YAP in cancer cells. Biointerfaces based on polyrotaxanes can thus be a new platform for elucidating cancer cell migration and chemoresistance mechanisms.
Collapse
Affiliation(s)
- Masahiro Hakariya
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan
| | - Yoshinori Arisaka
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 101-0062, Japan
| | - Hiroki Masuda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan
| | - Tetsuya Yoda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 101-0062, Japan
| |
Collapse
|
8
|
Tanaka-Takemura Y, Arisaka Y, Hakariya M, Masuda H, Mikami R, Sekiya-Aoyama R, Iwata T, Yoda T, Ono T, Yui N. Independent Roles of Molecular Mobility and Zeta Potential on Supramolecular Surfaces in the Sequence of RAW264.7 Macrophage Responses. Macromol Biosci 2022; 22:e2200282. [PMID: 36057796 DOI: 10.1002/mabi.202200282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/18/2022] [Indexed: 12/25/2022]
Abstract
Surface properties of biomaterials affect the morphologies and inflammatory responses of macrophages. Recently, biomaterial design utilizing these properties has been explored to build a scaffold for balancing the immune system in vivo. In the present study, polyrotaxane surfaces with different functional groups including methyl, amino, and sulfo groups are utilized to clarify the effect of molecular mobility and zeta potential of these surfaces on RAW264.7 macrophage responses. At 24 h post-seeding, the majority of the cells adhere onto each surface, and the initial spreading is suppressed by more negatively-charged polyrotaxane surfaces. From 24 to 48 h of incubation, the spreading areas on the unmodified and methylated surfaces significantly increase, whereas those on the aminated and sulfonated surfaces remain unchanged. These results suggest that the initially cellular spreading process depends on the zeta potential, while the subsequent spreading process is governed by the molecular mobility. After lipopolysaccharide stimulation, the less mobile surfaces induce higher expression of inflammation-related genes than highly mobile surfaces, suggesting that molecular mobility is the main factor modulating the inflammatory activity in macrophages. These findings indicate that the zeta potential and molecular mobility of polyrotaxane surfaces may play independent roles in the sequence of macrophage responses.
Collapse
Affiliation(s)
- Yuka Tanaka-Takemura
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan
| | - Yoshinori Arisaka
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 101-0062, Japan
| | - Masahiro Hakariya
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan
| | - Hiroki Masuda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan
| | - Ryo Mikami
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan
| | - Ruriko Sekiya-Aoyama
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 101-0062, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan
| | - Tetsuya Yoda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan
| | - Takashi Ono
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 101-0062, Japan
| |
Collapse
|
9
|
Tamura A, Kang TW, Tonegawa A, Arisaka Y, Masuda H, Mikami R, Iwata T, Yoda T, Yui N. Supramolecular Surface Coatings with Acetylated Polyrotaxane-Based Triblock Copolymers for Thermal Regulation of Cell Adhesion and Fabrication of Cell Sheets. Biomacromolecules 2022; 23:4860-4871. [PMID: 36206115 DOI: 10.1021/acs.biomac.2c01043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polyrotaxanes (PRXs) containing acetylated α-cyclodextrins exhibit a temperature-dependent phase transition in aqueous solutions across their lower critical solution temperature (LCST) of approximately 26.6 °C. To gain insights into the interactions of acetylated PRXs (Ac-PRXs) with biological components, thermoresponsive supramolecular surfaces were prepared by coating tissue culture polystyrene (TCPS) surfaces with Ac-PRX triblock copolymers, and their surface properties across the LCST were evaluated. The wettability and protein adsorption of Ac-PRX-coated surfaces changed significantly between 10 and 37 °C, whereas the uncoated TCPS and unmodified PRX-coated surfaces did not alter the wettability and protein adsorption at 10 and 37 °C. The adhesion, proliferation, morphology, and adhesion strength of NIH/3T3 cells on Ac-PRX-coated surfaces were found to be similar to those of the uncoated and unmodified PRX-coated surfaces. However, the adhesion strength of NIH/3T3 cells on Ac-PRX-coated surfaces decreased drastically at 10 °C. Consequently, the cells spontaneously detached from the Ac-PRX-coated surfaces without enzymatic treatment. Additionally, when incubating confluent cells at 10 °C, the cells detached from Ac-PRX-coated surfaces as cell sheets while retaining extracellular matrix proteins. The findings of this study provide new directions for the design of thermoresponsive supramolecular biointerfaces for applications in bioseparation and cell manipulation.
Collapse
Affiliation(s)
- Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Tae Woong Kang
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Asato Tonegawa
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Yoshinori Arisaka
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Hiroki Masuda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Ryo Mikami
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Tetsuya Yoda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
10
|
Mikami R, Arisaka Y, Hakariya M, Iwata T, Yui N. Improved epithelial cell-cell adhesion using molecular mobility of supramolecular surfaces. Biomater Sci 2021; 9:7151-7158. [PMID: 34605503 DOI: 10.1039/d1bm01356d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cells can sense the surrounding microenvironmental properties including contact with biomaterials. Although in vitro cell fates in response to the physical properties of cell-adhesive materials have been widely reported, their influence on cell-cell adhesion is unclear. Here, we investigated the role of molecular mobility on polyrotaxane surfaces in epithelial cell-cell adhesion. Polyrotaxane surfaces with high mobility induced cytoplasmic yes-associated protein (YAP) localization in epithelial cells, whereas those with low mobility induced nuclear YAP localization, suggesting that YAP localization is switched by the mobility of the polyrotaxane surface. The cytoplasmic YAP localization increased the expression of tight junction-associated genes. A scratch assay revealed that although the epithelial cells on the low mobile surface rapidly initiated their migration, the cells on the highly mobile surface delayed their migration. Thus, this finding suggests that polyrotaxane surfaces with higher mobility induce cytoplasmic YAP localization, leading to stronger cell-cell adhesion. The polyrotaxane biointerface is promising as a powerful tool to improve the physical immune system and repair biological tissues.
Collapse
Affiliation(s)
- Ryo Mikami
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Yoshinori Arisaka
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| | - Masahiro Hakariya
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| |
Collapse
|
11
|
Arisaka Y, Masuda H, Yoda T, Yui N. Delayed Senescence of Human Vascular Endothelial Cells by Molecular Mobility of Supramolecular Biointerfaces. Macromol Biosci 2021; 21:e2100216. [PMID: 34390172 DOI: 10.1002/mabi.202100216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/16/2021] [Indexed: 01/10/2023]
Abstract
Yes-associated protein (YAP), a transcriptional coactivator of the Hippo signaling pathway, has been widely implicated in vascular aging and diseases. For preventing vascular endothelial cell senescence, the design and development of biomaterials to regulate YAP activity are required. This study prepares polyrotaxane-coated surfaces with molecular mobility and clarifies the role of the mobility on vascular endothelial cell senescence through Hippo-YAP signaling. The polyrotaxane surface with high mobility induces cytoplasmic YAP localization in endothelial cells, whereas the surface with low mobility induces nuclear YAP localization. After serial cultivation of endothelial cells using polyrotaxane surfaces with different mobilities for 35 d, the endothelial cells aged on the polyrotaxane surface with high mobility exhibit higher proliferative potential, smaller spreading size, and lower activity of senescence-associated β-galactosidase than those aged on the surface with low mobility. These findings suggest that cellular senescence can be delayed by modulating the molecular mobility on polyrotaxane surfaces.
Collapse
Affiliation(s)
- Yoshinori Arisaka
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 101-0062, Japan
| | - Hiroki Masuda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan
| | - Tetsuya Yoda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 101-0062, Japan
| |
Collapse
|
12
|
Dikshit K, Bruns CJ. Post-synthesis modification of slide-ring gels for thermal and mechanical reconfiguration. SOFT MATTER 2021; 17:5248-5257. [PMID: 33949424 DOI: 10.1039/d0sm02260h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ring-sliding behavior in polyrotaxanes imbues gels, elastomers, and glasses with remarkable stress-dissipation and actuation properties. Since these properties can be modulated and tuned by structural parameters, many efforts have been devoted to developing synthetic protocols that define the structures and properties of slide-ring materials. We introduce post-synthetic modifications of slide-ring gels derived from unmodified α-cyclodextrin and poly(ethylene glycol) polyrotaxanes that enable (i) actuation and control of the thermo-responsive lower critical solution temperature (LCST) behavior of ring-modified slide-ring hydrogels, and (ii) chemically bonding separate gels into hybrid or shape-reconfigured macro-structures with a slide-ring adhesive solution. The mechanical properties of the post-modified gels have been characterized by shear rheology and uniaxial tensile tests, while the corresponding xerogels were characterized by wide-angle X-ray scattering. These demonstrations show that post-synthetic modification offers a practical solution for re-configuring the properties and shapes of slide-ring gels.
Collapse
Affiliation(s)
- Karan Dikshit
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | | |
Collapse
|
13
|
Sekiya-Aoyama R, Arisaka Y, Hakariya M, Masuda H, Iwata T, Yoda T, Yui N. Dual effect of molecular mobility and functional groups of polyrotaxane surfaces on the fate of mesenchymal stem cells. Biomater Sci 2021; 9:675-684. [PMID: 33559665 DOI: 10.1039/d0bm01782e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyrotaxanes are supramolecular assemblies consisting of cyclic molecules (e.g., α-cyclodextrins) and linear polymer chains (e.g., poly[ethylene glycol]), in which cyclic molecules can move along the polymer chain. Here, we examined the effect of functional groups introduced into the α-cyclodextrins of polyrotaxane on cell responses such as adhesion, proliferation, and differentiation. Polyrotaxane-based triblock copolymers modified with methyl (CH3, hydrophobic, and nonionic), hydroxy (OH, hydrophilic and nonionic), amino (NH2, cationic), and sulfo (SO3H, anionic) groups were coated on the surface of the culture plate to fabricate polyrotaxane surfaces with different surface chemistries. The chemical compositions of each surface were determined via time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy. The contact angle hysteresis reflecting the molecular mobility and zeta potential of each polyrotaxane surface changed depending on the functional groups. When osteoblast and adipocyte differentiation was induced in human mesenchymal stem cells cultured on each polyrotaxane surface, the cells adhered to the SO3H-modified polyrotaxane surfaces exhibited osteoblast differentiation, whereas the cells adhered to the OH-, NH2-, and SO3H-modified polyrotaxane surfaces preferentially underwent adipocyte differentiation compared with those on the unmodified and CH3-modified polyrotaxane surfaces. Interestingly, the SO3H-modified polyrotaxane surfaces promoted both osteoblast and adipocyte differentiation. High molecular mobility and negative charge on the SO3H-modified polyrotaxane surfaces are expected to contribute to the facilitation of both osteoblast and adipocyte differentiation.
Collapse
Affiliation(s)
- Ruriko Sekiya-Aoyama
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan. and Denka Innovation Center, Denka Co., Ltd., 3-5-1 Asahi-machi, Machida, Tokyo 194-8560, Japan
| | - Yoshinori Arisaka
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| | - Masahiro Hakariya
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Hiroki Masuda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Tetsuya Yoda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| |
Collapse
|
14
|
Arisaka Y, Hakariya M, Iwata T, Masuda H, Yoda T, Tamura A, Yui N. Surface-tethering of methylated polyrotaxanes with 4-vinylbenzyl groups onto poly(ether ether ketone) substrates for improving osteoblast compatibility. Dent Mater J 2021; 40:813-819. [PMID: 33642449 DOI: 10.4012/dmj.2020-332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Poly(ether ether ketone) (PEEK) is a high-performance thermoplastic used for several industrial applications due to its excellent mechanical properties. However, the use of PEEK is limited to dental materials because of its poor implant-bone integration. In the present study, methylated polyrotaxanes (MePRXs) with 4-vinylbenzyl groups, which are supermolecules composed of methylated α-cyclodextrins and poly(ethylene glycol) chains end-capped with 4-vinylbenzyl groups, were covalently tethered onto PEEK surfaces using photo-induced polymerization to improve their osteoblast compatibility. The surface-tethering of MePRXs onto PEEK surfaces was confirmed by analyzing their attenuated total reflectance Fourier transform infrared spectra and contact angles. When mouse preosteoblasts were cultured on the MePRX-PEEK and bare PEEK surfaces, the MePRX-PEEK surfaces showed significantly better proliferation and osteoblast differentiation than the bare PEEK surfaces. These results suggest that surface modification of PEEKs using MePRXs improves their osteoblast compatibility.
Collapse
Affiliation(s)
- Yoshinori Arisaka
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| | - Masahiro Hakariya
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU)
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU)
| | - Hiroki Masuda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU)
| | - Tetsuya Yoda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU)
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)
| |
Collapse
|
15
|
Arisaka Y, Yui N. Molecular mobility of polyrotaxane-based biointerfaces alters inflammatory responses and polarization in Kupffer cell lines. Biomater Sci 2021; 9:2271-2278. [DOI: 10.1039/d0bm02127j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Molecular mobility of polyrotaxane-based biointerfaces altered the cellular morphology and gene expression of pro-inflammatory cytokines in the presence of lipopolysaccharide.
Collapse
Affiliation(s)
- Yoshinori Arisaka
- Department of Organic Biomaterials
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Tokyo 101-0062
- Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Tokyo 101-0062
- Japan
| |
Collapse
|
16
|
Lin X, Wu K, Zhou Q, Jain P, Boit MO, Li B, Hung HC, Creason SA, Himmelfarb J, Ratner BD, Jiang S. Photoreactive Carboxybetaine Copolymers Impart Biocompatibility and Inhibit Plasticizer Leaching on Polyvinyl Chloride. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41026-41037. [PMID: 32876425 DOI: 10.1021/acsami.0c09457] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Protein and cell interactions on implanted, blood-contacting medical device surfaces can lead to adverse biological reactions. Medical-grade poly(vinyl chloride) (PVC) materials have been used for decades, particularly as blood-contacting tubes and containers. However, there are numerous concerns with their performance including platelet activation, complement activation, and thrombin generation and also leaching of plasticizers, particularly in clinical applications. Here, we report a surface modification method that can dramatically prevent blood protein adsorption, human platelet activation, and complement activation on commercial medical-grade PVC materials under various test conditions. The surface modification can be accomplished through simple dip-coating followed by light illumination utilizing biocompatible polymers comprising zwitterionic carboxybetaine (CB) moieties and photosensitive cross-linking moieties. This surface treatment can be manufactured routinely at small or large scales and can impart to commercial PVC materials superhydrophilicity and nonfouling capability. Furthermore, the polymer effectively prevented leaching of plasticizers out from commercial medical-grade PVC materials. This coating technique is readily applicable to many other polymers and medical devices requiring surfaces that will enhance performance in clinical settings.
Collapse
Affiliation(s)
- Xiaojie Lin
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Kan Wu
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Qiong Zhou
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Priyesh Jain
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Mary O'Kelly Boit
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Bowen Li
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Hsiang-Chieh Hung
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Sharon A Creason
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Jonathan Himmelfarb
- Department of Medicine, Division of Nephrology, and Kidney Research Institute, University of Washington, Seattle, Washington 98195, United States
| | - Buddy D Ratner
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Shaoyi Jiang
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
17
|
Masuda H, Arisaka Y, Sekiya-Aoyama R, Yoda T, Yui N. Biological Effects of Polyrotaxane Surfaces on Cellular Responses of Fibroblast, Preosteoblast and Preadipocyte Cell Lines. Polymers (Basel) 2020; 12:polym12040924. [PMID: 32316349 PMCID: PMC7240480 DOI: 10.3390/polym12040924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/21/2022] Open
Abstract
Biointerfaces based on polyrotaxane (PRX), consisting of α-cyclodextrins (α-CDs) threaded on a poly(ethylene glycol) (PEG) chain, are promising functionalized platforms for culturing cells. PRXs are characterized by the molecular mobility of constituent molecules where the threading α-CDs can move and rotate along the PEG chain. Taking advantage of this mobility, we have previously succeeded in demonstrating the regulation of cellular responses, such as cellular adhesion, proliferation, and differentiation. In the present study, we investigated differences in the cellular responses to PRX surfaces versus commercially available tissue culture polystyrene (TCPS) surfaces using fibroblasts, preosteoblasts, and preadipocytes. PRX surfaces were found to more significantly promote cellular proliferation than the TCPS surfaces, regardless of the cell type. To identify the signaling pathways involved in the activation of cellular proliferation, a DNA microarray analysis was performed. PRX surfaces showed a significant increase in the integrin-mediated cell adhesion and focal adhesion pathways. Furthermore, PRX surfaces also promoted osteoblast differentiation more than TCPS. These results suggest that structural features of PRX surfaces act as mechanical cues to dominate cellular proliferation and differentiation.
Collapse
Affiliation(s)
- Hiroki Masuda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan; (H.M.); (T.Y.)
| | - Yoshinori Arisaka
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan; (Y.A.); (R.S.-A.)
| | - Ruriko Sekiya-Aoyama
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan; (Y.A.); (R.S.-A.)
| | - Tetsuya Yoda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan; (H.M.); (T.Y.)
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan; (Y.A.); (R.S.-A.)
- Correspondence:
| |
Collapse
|
18
|
Oda Y, Inutsuka M, Awane R, Totani M, Yamada NL, Haraguchi M, Ozawa M, Matsuno H, Tanaka K. A Dynamic Interface Based on Segregation of an Amphiphilic Hyperbranched Polymer Containing Fluoroalkyl and Oligo(ethylene oxide) Moieties. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yukari Oda
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan
- Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Manabu Inutsuka
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan
| | - Ryo Awane
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan
| | - Masayasu Totani
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan
| | - Norifumi L. Yamada
- Neutron Science Division, Institute of Materials Structure Science, High Energy Acceleration Research Organization, Ibaraki 319-1106, Japan
| | - Masayuki Haraguchi
- Materials Research Laboratories, Nissan Chemical Corporation, Chiba 274-0052, Japan
| | - Masaaki Ozawa
- Materials Research Laboratories, Nissan Chemical Corporation, Chiba 274-0052, Japan
| | - Hisao Matsuno
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan
- Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan
| | - Keiji Tanaka
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan
- Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
19
|
Sekiya‐Aoyama R, Arisaka Y, Yui N. Mobility Tuning of Polyrotaxane Surfaces to Stimulate Myocyte Differentiation. Macromol Biosci 2020; 20:e1900424. [DOI: 10.1002/mabi.201900424] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Ruriko Sekiya‐Aoyama
- Department of Organic BiomaterialsInstitute of Biomaterials and BioengineeringTokyo Medical and Dental University Tokyo 101‐0062 Japan
- Denka Innovation Center, Denka Co., Ltd. Machida Tokyo 194–8560 Japan
| | - Yoshinori Arisaka
- Department of Organic BiomaterialsInstitute of Biomaterials and BioengineeringTokyo Medical and Dental University Tokyo 101‐0062 Japan
| | - Nobuhiko Yui
- Department of Organic BiomaterialsInstitute of Biomaterials and BioengineeringTokyo Medical and Dental University Tokyo 101‐0062 Japan
| |
Collapse
|
20
|
Lee DH, Tamura A, Arisaka Y, Seo JH, Yui N. Mechanically Reinforced Gelatin Hydrogels by Introducing Slidable Supramolecular Cross-Linkers. Polymers (Basel) 2019; 11:E1787. [PMID: 31683825 PMCID: PMC6918157 DOI: 10.3390/polym11111787] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/26/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
Tough mechanical properties are generally required for tissue substitutes used in regeneration of damaged tissue, as these substitutes must be able to withstand the external physical force caused by stretching. Gelatin, a biopolymer derived from collagen, is a biocompatible and cell adhesive material, and is thus widely utilized as a component of biomaterials. However, the application of gelatin hydrogels as a tissue substitute is limited owing to their insufficient mechanical properties. Chemical cross-linking is a promising method to improve the mechanical properties of hydrogels. We examined the potential of the chemical cross-linking of gelatin hydrogels with carboxy-group-modified polyrotaxanes (PRXs), a supramolecular polymer comprising a poly(ethylene glycol) chain threaded into the cavity of α-cyclodextrins (α-CDs), to improve mechanical properties such as stretchability and toughness. Cross-linking gelatin hydrogels with threading α-CDs in PRXs could allow for freely mobile cross-linking points to potentially improve the mechanical properties. Indeed, the stretchability and toughness of gelatin hydrogels cross-linked with PRXs were slightly higher than those of the hydrogels with the conventional chemical cross-linkers 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS). In addition, the hysteresis loss of gelatin hydrogels cross-linked with PRXs after repeated stretching and relaxation cycles in a hydrated state was remarkably improved in comparison with that of conventional cross-linked hydrogels. It is considered that the freely mobile cross-linking points of gelatin hydrogels cross-linked with PRXs attenuates the stress concentration. Accordingly, gelatin hydrogels cross-linked with PRXs would provide excellent mechanical properties as biocompatible tissue substitutes exposed to a continuous external physical force.
Collapse
Affiliation(s)
- Dae Hoon Lee
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| | - Yoshinori Arisaka
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| | - Ji-Hun Seo
- Department of Materials Science and Engineering, School of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea.
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| |
Collapse
|
21
|
Construction of hydrophilic surfaces with poly(vinyl ether)s and their interfacial properties in water. Polym J 2019. [DOI: 10.1038/s41428-019-0215-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Arisaka Y, Yui N. Polyrotaxane-based biointerfaces with dynamic biomaterial functions. J Mater Chem B 2019; 7:2123-2129. [PMID: 32073570 DOI: 10.1039/c9tb00256a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The molecular mobility of cyclic molecules (e.g.α-cyclodextrins) threaded along a linear polymer chain (e.g. poly(ethylene glycol)) in polyrotaxanes is a unique feature for biomaterials with dynamic functionality. Surfaces with molecular mobility can be obtained by introducing polyrotaxanes. The molecular mobility of polyrotaxane-based surfaces can be modulated by changing the number of threaded cyclic molecules and modifying their functional groups. Biological ligands modified with α-cyclodextrins exhibit increased multivalent interactions with their receptors due to the molecular mobility of the latter. Furthermore, polyrotaxane-based surfaces not only improve the initial response of cells via multivalent interactions, but also affect cytoskeleton formation and the inherent quality of cells, including differentiation. Such polyrotaxane surfaces can emerge as new biointerfaces that can adapt to the dynamic biological nature.
Collapse
Affiliation(s)
- Yoshinori Arisaka
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| | | |
Collapse
|
23
|
Rajendran AK, Arisaka Y, Iseki S, Yui N. Sulfonated Polyrotaxane Surfaces with Basic Fibroblast Growth Factor Alter the Osteogenic Potential of Human Mesenchymal Stem Cells in Short-Term Culture. ACS Biomater Sci Eng 2019; 5:5652-5659. [DOI: 10.1021/acsbiomaterials.8b01343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Arun Kumar Rajendran
- Section of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Yoshinori Arisaka
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Sachiko Iseki
- Section of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
24
|
Arisaka Y, Yui N. Engineering molecularly mobile polyrotaxane surfaces with heparin‐binding EGF‐like growth factors for improving hepatocyte functions. J Biomed Mater Res A 2019; 107:1080-1085. [DOI: 10.1002/jbm.a.36646] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/24/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Yoshinori Arisaka
- Department of Organic Biomaterials, Institute of Biomaterials and BioengineeringTokyo Medical and Dental University, 2‐3‐10 Kanda‐Surugadai, Chiyoda Tokyo 101‐0062 Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and BioengineeringTokyo Medical and Dental University, 2‐3‐10 Kanda‐Surugadai, Chiyoda Tokyo 101‐0062 Japan
| |
Collapse
|
25
|
Ge A, Qiao L, Seo JH, Yui N, Ye S. Surface-Restructuring Differences between Polyrotaxanes and Random Copolymers in Aqueous Environment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:12463-12470. [PMID: 30216076 DOI: 10.1021/acs.langmuir.8b02676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the present study, we investigated the surface reorganization behaviors and adsorption conformations of fibrinogen on the surface of polyrotaxanes containing different amounts of α-cyclodextrin (α-CD) by using surface-sensitive vibrational spectroscopy sum frequency generation (SFG). For comparison, behaviors of the surface restructuring and fibrinogen adsorption on the random copolymers containing similar terminal groups were also investigated. It was found that larger amounts of BMA moieties of polyrotaxanes form ordered surface structures after immersion in water for 48 h. Furthermore, the polyrotaxane surfaces exhibit a much higher capability of fibrinogen adsorption than the random copolymer surfaces. The water-induced surface restructuring of the polyrotaxane films slightly affects the adsorption structure of the fibrinogen molecules.
Collapse
Affiliation(s)
- Aimin Ge
- Institute for Catalysis , Hokkaido University , Sapporo 001-0021 , Japan
| | - Lin Qiao
- Institute for Catalysis , Hokkaido University , Sapporo 001-0021 , Japan
| | - Ji-Hun Seo
- Institute of Biomaterials and Bioengineering , Tokyo Medical and Dental University , Tokyo 101-0062 , Japan
| | - Nobuhiko Yui
- Institute of Biomaterials and Bioengineering , Tokyo Medical and Dental University , Tokyo 101-0062 , Japan
| | - Shen Ye
- Department of Chemistry, Graduate School of Science , Tohoku University , Sendai 980-8578 , Japan
| |
Collapse
|
26
|
Hoshiba T, Yoshikawa C, Sakakibara K. Characterization of Initial Cell Adhesion on Charged Polymer Substrates in Serum-Containing and Serum-Free Media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:4043-4051. [PMID: 29544251 DOI: 10.1021/acs.langmuir.8b00233] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Charged substrates are expected to promote cell adhesion via electrostatic interaction, but it remains unclear how cells adhere to these substrates. Here, initial cell adhesion (<30 min) was re-examined on charged substrates in serum-containing and serum-free media to distinguish among various cell adhesion mechanisms (i.e., electrostatic interaction, hydrophobic interaction, and biological interaction). Cationic and anionic methacrylate copolymers were coated on nonionic nontissue culture-treated polystyrene to create charged substrates. Cells adhered similarly on cationic, anionic, and nonionic substrates in serum-free medium via integrin-independent mechanisms, but their adhesion forces differed (anionic > cationic > nonionic substrates), indicating that cell adhesion is not mediated solely by the cells' negative charge. In serum-containing medium, the cells adhered minimally on anionic and nonionic substrates, but they adhered abundantly on cationic substrates via both integrin-dependent and -independent mechanisms. These results suggest that neither electrostatic force nor protein adsorption is accountable for cell adhesion. Conclusively, the observed phenomena revealed a gap in the generally accepted understanding of cell adhesion mechanisms on charged polymeric substrates. A reanalysis of their mechanisms is necessary.
Collapse
Affiliation(s)
- Takashi Hoshiba
- International Center for Materials Nanoarchitechtonics , National Institute for Materials Science , 1-2-1 Sengen , Tsukuba , Ibaraki 305-0047 , Japan
| | - Chiaki Yoshikawa
- International Center for Materials Nanoarchitechtonics , National Institute for Materials Science , 1-2-1 Sengen , Tsukuba , Ibaraki 305-0047 , Japan
| | - Keita Sakakibara
- Institute for Chemical Research , Kyoto University , Gokasho, Uji, Kyoto 611-0011 , Japan
| |
Collapse
|
27
|
Hao W, Han J, Chu Y, Huang L, Sun J, Zhuang Y, Li X, Ma H, Chen Y, Dai J. Lower fluidity of supported lipid bilayers promotes neuronal differentiation of neural stem cells by enhancing focal adhesion formation. Biomaterials 2018; 161:106-116. [PMID: 29421547 DOI: 10.1016/j.biomaterials.2018.01.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 01/04/2018] [Accepted: 01/20/2018] [Indexed: 12/11/2022]
Abstract
Extensive studies have been performed to understand how the mechanical properties of a stem cell's microenvironment influence its behaviors. Supported lipid bilayers (SLBs), a well-known biomimetic platform, have been used to mimic the dynamic characteristics of the extracellular matrix (ECM) because of their fluidity. However, the effect of the fluidity of SLBs on stem cell fate is unknown. We constructed SLBs with different fluidities to explore the influence of fluidity on the differentiation of neural stem cells (NSCs). The results showed that the behavior of NSCs was highly dependent on the fluidity of SLBs. Low fluidity resulted in enhanced focal adhesion formation, a dense network of stress fibers, stretched and elongated cellular morphology and increased neuronal differentiation, while high fluidity led to less focal adhesion formation, immature stress fibers, round cellular morphology and more astrocyte differentiation. Mechanistic studies revealed that low fluidity may have enhanced focal adhesion formation, which activated FAK-MEK/ERK signaling pathways and ultimately promoted neuronal differentiation of NSCs. This work provides a strategy for manipulating the dynamic matrix surface for the development of culture substrates and tissue-engineered scaffolds, which may aid the understanding of how the dynamic ECM influences stem cell behaviors as well as improve the efficacy of stem cell applications.
Collapse
Affiliation(s)
- Wangping Hao
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Jie Han
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yun Chu
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; University of Science and Technology of China, Hefei, 230026, China
| | - Lei Huang
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jie Sun
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yan Zhuang
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Xiaoran Li
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Hongwei Ma
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yanyan Chen
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Jianwu Dai
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China.
| |
Collapse
|
28
|
Abstract
Tissues are viscoelastic in nature and their physical properties play a fundamental role in development, tumorigenesis, and wound healing. Cell response to matrix elasticity is well understood through a “molecular clutch” which engages when stiffness is sufficiently high to expose binding sites in mechanosensitive proteins. Here we show that cell response to pure viscous surfaces (i.e., with no elastic component) can be explained through the same molecular clutch. Mechanisms used by cells to sense rigidity are more universal and can be used to unveil cell interaction with complex viscoelastic environments. The research presents a tool to understand cells within tissues and in turn opens new avenues to incorporate viscosity into the design of synthetic cellular microenvironments. Cell response to matrix rigidity has been explained by the mechanical properties of the actin-talin-integrin-fibronectin clutch. Here the molecular clutch model is extended to account for cell interactions with purely viscous surfaces (i.e., without an elastic component). Supported lipid bilayers present an idealized and controllable system through which to study this concept. Using lipids of different diffusion coefficients, the mobility (i.e., surface viscosity) of the presented ligands (in this case RGD) was altered by an order of magnitude. Cell size and cytoskeletal organization were proportional to viscosity. Furthermore, there was a higher number of focal adhesions and a higher phosphorylation of FAK on less-mobile (more-viscous) surfaces. Actin retrograde flow, an indicator of the force exerted on surfaces, was also seen to be faster on more mobile surfaces. This has consequential effects on downstream molecules; the mechanosensitive YAP protein localized to the nucleus more on less-mobile (more-viscous) surfaces and differentiation of myoblast cells was enhanced on higher viscosity. This behavior was explained within the framework of the molecular clutch model, with lower viscosity leading to a low force loading rate, preventing the exposure of mechanosensitive proteins, and with a higher viscosity causing a higher force loading rate exposing these sites, activating downstream pathways. Consequently, the understanding of how viscosity (regardless of matrix stiffness) influences cell response adds a further tool to engineer materials that control cell behavior.
Collapse
|
29
|
Itagaki N, Oda Y, Hirata T, Nguyen HK, Kawaguchi D, Matsuno H, Tanaka K. Surface Characterization and Platelet Adhesion on Thin Hydrogel Films of Poly(vinyl ether). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:14332-14339. [PMID: 29211485 DOI: 10.1021/acs.langmuir.7b03427] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Poly(vinyl ether), with short oxyethylene side chains which possess a simple and relatively polar structure, should be a unique candidate for a bioinert material thanks to its solubility in water. On the basis of living cationic copolymerization and subsequent ultraviolet light irradiation, thin films of poly(2-methoxyethyl vinyl ether) with different cross-linking densities were prepared on solid substrates. The films were thickened in water, and the extent was dependent on the cross-linking density. Although the surface chemistry and aggregation states were almost identical to one another, the stiffness, or the softness, of the outermost region in the film was strongly dependent on the cross-linking density. That is, the interface between polymer and water became thicker, or more diffused, with decreasing cross-linking density. The blood compatibility based on the platelet adhesion on to the hydrogel films was better for a more diffused interface.
Collapse
Affiliation(s)
- Nozomi Itagaki
- Department of Applied Chemistry, ‡Education Center for Global Leaders in Molecular Systems for Devices, and §International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University , Fukuoka 819-0395, Japan
| | - Yukari Oda
- Department of Applied Chemistry, ‡Education Center for Global Leaders in Molecular Systems for Devices, and §International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University , Fukuoka 819-0395, Japan
| | - Toyoaki Hirata
- Department of Applied Chemistry, ‡Education Center for Global Leaders in Molecular Systems for Devices, and §International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University , Fukuoka 819-0395, Japan
| | - Hung Kim Nguyen
- Department of Applied Chemistry, ‡Education Center for Global Leaders in Molecular Systems for Devices, and §International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University , Fukuoka 819-0395, Japan
| | - Daisuke Kawaguchi
- Department of Applied Chemistry, ‡Education Center for Global Leaders in Molecular Systems for Devices, and §International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University , Fukuoka 819-0395, Japan
| | - Hisao Matsuno
- Department of Applied Chemistry, ‡Education Center for Global Leaders in Molecular Systems for Devices, and §International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University , Fukuoka 819-0395, Japan
| | - Keiji Tanaka
- Department of Applied Chemistry, ‡Education Center for Global Leaders in Molecular Systems for Devices, and §International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University , Fukuoka 819-0395, Japan
| |
Collapse
|
30
|
Cipitria A, Salmeron-Sanchez M. Mechanotransduction and Growth Factor Signalling to Engineer Cellular Microenvironments. Adv Healthc Mater 2017; 6. [PMID: 28792683 DOI: 10.1002/adhm.201700052] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/20/2017] [Indexed: 12/20/2022]
Abstract
Engineering cellular microenvironments involves biochemical factors, the extracellular matrix (ECM) and the interaction with neighbouring cells. This progress report provides a critical overview of key studies that incorporate growth factor (GF) signalling and mechanotransduction into the design of advanced microenvironments. Materials systems have been developed for surface-bound presentation of GFs, either covalently tethered or sequestered through physico-chemical affinity to the matrix, as an alternative to soluble GFs. Furthermore, some materials contain both GF and integrin binding regions and thereby enable synergistic signalling between the two. Mechanotransduction refers to the ability of the cells to sense physical properties of the ECM and to transduce them into biochemical signals. Various aspects of the physics of the ECM, i.e. stiffness, geometry and ligand spacing, as well as time-dependent properties, such as matrix stiffening, degradability, viscoelasticity, surface mobility as well as spatial patterns and gradients of physical cues are discussed. To conclude, various examples illustrate the potential for cooperative signalling of growth factors and the physical properties of the microenvironment for potential applications in regenerative medicine, cancer research and drug testing.
Collapse
Affiliation(s)
- Amaia Cipitria
- Julius Wolff Institute & Center for Musculoskeletal Surgery; Charité - Universitätsmedizin Berlin; 13353 Berlin Germany
- Berlin-Brandenburg Center for Regenerative Therapies; Charité - Universitätsmedizin Berlin; 13353 Berlin Germany
| | - Manuel Salmeron-Sanchez
- Division of Biomedical Engineering; School of Engineering; University of Glasgow; Glasgow G128LT UK
| |
Collapse
|
31
|
Arisaka Y, Yui N. Tethered bone morphogenetic protein-2 onto sulfonated-polyrotaxane based surfaces promotes osteogenic differentiation of MC3T3-E1 cells. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:974-985. [DOI: 10.1080/09205063.2017.1319095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yoshinori Arisaka
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
32
|
Influence of Hard Segments on the Thermal, Phase-Separated Morphology, Mechanical, and Biological Properties of Polycarbonate Urethanes. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7030306] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
33
|
Sugimoto S, Oda Y, Hirata T, Matsuyama R, Matsuno H, Tanaka K. Surface segregation of a branched polymer with hydrophilic poly[2-(2-ethoxy)ethoxyethyl vinyl ether] side chains. Polym Chem 2017. [DOI: 10.1039/c6py01984f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A branched polymer with hydrophilic side chains was designed and prepared for anti-biofouling surface construction through its preferential segregation.
Collapse
Affiliation(s)
- Shin Sugimoto
- Department of Automotive Science
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Yukari Oda
- Department of Applied Chemistry
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Toyoaki Hirata
- Department of Applied Chemistry
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Ruriko Matsuyama
- Department of Applied Chemistry
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Hisao Matsuno
- Department of Applied Chemistry
- Kyushu University
- Fukuoka 819-0395
- Japan
- International Institute for Carbon-Neutral Energy Research (I2CNER)
| | - Keiji Tanaka
- Department of Automotive Science
- Kyushu University
- Fukuoka 819-0395
- Japan
- Department of Applied Chemistry
| |
Collapse
|
34
|
Sato C, Aoki M, Tanaka M. Blood-compatible poly(2-methoxyethyl acrylate) for the adhesion and proliferation of endothelial and smooth muscle cells. Colloids Surf B Biointerfaces 2016; 145:586-596. [DOI: 10.1016/j.colsurfb.2016.05.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/16/2016] [Accepted: 05/18/2016] [Indexed: 12/20/2022]
|
35
|
Bathawab F, Bennett M, Cantini M, Reboud J, Dalby M, Salmerón-Sánchez M. Lateral Chain Length in Polyalkyl Acrylates Determines the Mobility of Fibronectin at the Cell/Material Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:800-9. [PMID: 26715432 PMCID: PMC4732669 DOI: 10.1021/acs.langmuir.5b03259] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/10/2015] [Indexed: 05/22/2023]
Abstract
Cells, by interacting with surfaces indirectly through a layer of extracellular matrix proteins, can respond to a variety of physical properties, such as topography or stiffness. Polymer surface mobility is another physical property that is less well understood but has been indicated to hold the potential to modulate cell behavior. Polymer mobility is related to the glass-transition temperature (Tg) of the system, the point at which a polymer transitions from an amorphous solid to a more liquid-like state. This work shows that changes in polymer mobility translate to interfacial mobility of extracellular matrix proteins adsorbed on the material surface. This study has utilized a family of polyalkyl acrylates with similar chemistry but different degrees of mobility, obtained through increasing length of the side chain. These materials are used, in conjunction with fluorescent fibronectin, to determine the mobility of this interfacial layer of protein that constitutes the initial cell-material interface. Furthermore, the extent of fibronectin domain availability (III9, III10, - the integrin binding site), cell-mediated reorganization, and cell differentiation was also determined. A nonmonotonic dependence of fibronectin mobility on polymer surface mobility was observed, with a similar trend noted in cell-mediated reorganization of the protein layer by L929 fibroblasts. The availability of the integrin-binding site was higher on the more mobile surfaces, where a similar organization of the protein into networks at the material interface was observed. Finally, differentiation of C2C12 myoblasts was seen to be highly sensitive to surface mobility upon inhibition of cell contractility. Altogether, these findings show that polymer mobility is a subtle influence that translates to the cell/material interface through the protein layer to alter the biological activity of the surface.
Collapse
Affiliation(s)
- Fatma Bathawab
- Division
of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, United Kingdom
| | - Mark Bennett
- Division
of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, United Kingdom
| | - Marco Cantini
- Division
of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, United Kingdom
- E-mail:
| | - Julien Reboud
- Division
of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, United Kingdom
| | - Matthew
J. Dalby
- Centre
for Cell Engineering, Institute for Molecular, Cell and Systems Biology, University of Glasgow, Glasgow G12 8LT, United Kingdom
| | - Manuel Salmerón-Sánchez
- Division
of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, United Kingdom
- E-mail:
| |
Collapse
|
36
|
Seo JH, Hirata M, Kakinoki S, Yamaoka T, Yui N. Dynamic polyrotaxane-coated surface for effective differentiation of mouse induced pluripotent stem cells into cardiomyocytes. RSC Adv 2016. [DOI: 10.1039/c6ra03967g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Increasing molecular mobility of hydrated polyrotaxane (PRX)-coated surfaces was effective to promote the differentiation of mouse induced pluripotent stem cells (iPS cells) into cardiomyocytes.
Collapse
Affiliation(s)
- Ji-Hun Seo
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University
- Tokyo 101-0062
- Japan
- Department of Materials Science and Engineering
| | - Mitsuhi Hirata
- Department of Biomedical Engineering
- National Cerebral and Cardiovascular Center Research Institute
- Osaka 565-8565
- Japan
- JST-CREST
| | - Sachiro Kakinoki
- Department of Biomedical Engineering
- National Cerebral and Cardiovascular Center Research Institute
- Osaka 565-8565
- Japan
- JST-CREST
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering
- National Cerebral and Cardiovascular Center Research Institute
- Osaka 565-8565
- Japan
- JST-CREST
| | - Nobuhiko Yui
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University
- Tokyo 101-0062
- Japan
- JST-CREST
| |
Collapse
|
37
|
Ge A, Seo JH, Qiao L, Yui N, Ye S. Structural Reorganization and Fibrinogen Adsorption Behaviors on the Polyrotaxane Surfaces Investigated by Sum Frequency Generation Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2015; 7:22709-22718. [PMID: 26393413 DOI: 10.1021/acsami.5b07760] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Polyrotaxanes, such as supramolecular assemblies with methylated α-cyclodextrins (α-CDs) as host molecules noncovalently threaded on the linear polymer backbone, are promising materials for biomedical applications because they allow adsorbed proteins possessing a high surface flexibility as well as control of the cellular morphology and adhesion. To provide a general design principle for biomedical materials, we examined the surface reorganization behaviors and adsorption conformations of fibrinogen on the polyrotaxane surfaces with comparison to several random copolymers by sum frequency generation (SFG) vibrational spectroscopy. We showed that the polyrotaxane (OMe-PRX-PMB) with methylated α-CDs as the host molecule exhibited unique surface structures in an aqueous environment. The hydrophobic interaction between the methoxy groups of the methylated α-CD molecules and methyl groups of the n-butyl methacrylate (BMA) side chains may dominate the surface restructuring behavior of the OMe-PRX-PMB. The orientation analysis revealed that the orientation of the fibrinogen adsorbed on the OMe-PRX-PMB surface is close to a single distribution, which is different from the adsorption behaviors of fibrinogen on other polyrotaxane or random copolymer surfaces.
Collapse
Affiliation(s)
- Aimin Ge
- Catalysis Research Center, Hokkaido University , Sapporo 001-0021, Japan
| | - Ji-Hun Seo
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University , Tokyo 101-0062, Japan
| | - Lin Qiao
- Catalysis Research Center, Hokkaido University , Sapporo 001-0021, Japan
| | - Nobuhiko Yui
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University , Tokyo 101-0062, Japan
| | - Shen Ye
- Catalysis Research Center, Hokkaido University , Sapporo 001-0021, Japan
| |
Collapse
|
38
|
Zhou Y, Mao H, Joddar B, Umeki N, Sako Y, Wada KI, Nishioka C, Takahashi E, Wang Y, Ito Y. The significance of membrane fluidity of feeder cell-derived substrates for maintenance of iPS cell stemness. Sci Rep 2015; 5:11386. [PMID: 26065582 PMCID: PMC4464345 DOI: 10.1038/srep11386] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 04/22/2015] [Indexed: 11/09/2022] Open
Abstract
The biological activity of cell-derived substrates to maintain undifferentiated murine-induced pluripotent stem (iPS) cells was correlated to membrane fluidity as a new parameter of cell culture substrates. Murine embryonic fibroblasts (MEFs) were employed as feeder cells and their membrane fluidity was tuned by chemical fixation using formaldehyde (FA). Membrane fluidity was evaluated by real-time single-molecule observations of green fluorescent protein-labeled epidermal growth factor receptors on chemically fixed MEFs. Biological activity was monitored by colony formation of iPS cells. Treatment with a low concentration of FA sustained the membrane fluidity and biological activity, which were comparable to those of mitomycin C-treated MEFs. The biological activity was further confirmed by sustained expression of alkaline phosphatase, SSEA-1, and other pluripotency markers in iPS cells after 3-5 days of culture on FA-fixed MEFs. Chemical fixation of feeder cells has several advantages such as providing ready-to-use culture substrates without contamination by proliferating feeder cells. Therefore, our results provide an important basis for the development of chemically fixed culture substrates for pluripotent stem cell culture as an alternative to conventional treatment by mitomycin C or x-ray irradiation.
Collapse
Affiliation(s)
- Yue Zhou
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- School of Nursing, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu Province 210023, China
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, No.1266 Fujin Road, Changchun 130021, China
| | - Hongli Mao
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Binata Joddar
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Nobuhisa Umeki
- Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ken-Ichi Wada
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Chieko Nishioka
- Support Unit for Animal Experiment, Research Resources Center, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Eiki Takahashi
- Support Unit for Animal Experiment, Research Resources Center, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yi Wang
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, No.1266 Fujin Road, Changchun 130021, China
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
39
|
Kakinoki S, Seo JH, Inoue Y, Ishihara K, Yui N, Yamaoka T. Mobility of the Arg-Gly-Asp ligand on the outermost surface of biomaterials suppresses integrin-mediated mechanotransduction and subsequent cell functions. Acta Biomater 2015; 13:42-51. [PMID: 25463493 DOI: 10.1016/j.actbio.2014.11.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 10/03/2014] [Accepted: 11/12/2014] [Indexed: 11/19/2022]
Abstract
Mechanotransduction in the regulation of cellular responses has been previously studied using elastic hydrogels. Because cells interact only with the surface of biomaterials, we are focusing on the molecular mobility at the outermost surface of biomaterials. In this study, surfaces with the mobile Arg-Gly-Asp-Ser (RGDS) peptide have been constructed. Cell culture substrates were coated with ABA-type block copolymers composed of poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) segments (A) and a polyrotaxane (PRX) unit with RGDS bound to α-cyclodextrin (B). Adhesion, morphological changes and actin filament formation of human umbilical vein endothelial cells were reduced on the surfaces containing mobile PRX-RGDS in comparison to the immobile RGDS surfaces constructed from random copolymers with RGDS side groups (Prop-andom-RGDS). In the neurite outgrowth assay using rat adrenal pheochromocytoma cells (PC12), only ∼20% of adherent PC12 cells had neurites on PRX-RGDS surfaces, but more than 50% did on the Random-RGDS surface. The beating colony of dimethyl-sulfoxide-treated mouse embryonic carcinoma cells (P19CL6) were found 10 and 14 days after induction on PRX-RGDS and Random-RGDS surfaces, respectively. After 22 days, the beating colony disappeared on PRX-RGDS surfaces, but many colonies remained on Random-RGDS surfaces. These data suggest that the molecular mobility of the cell-binding ligand on the outermost surface of materials effectively suppresses the actin filament formation and differentiation of these functional cell lines, and may be used as a culture substrate for immature stem cells or progenitor cells.
Collapse
Affiliation(s)
- Sachiro Kakinoki
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan; JST-CREST, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Ji-Hun Seo
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan; JST-CREST, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Yuuki Inoue
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; JST-CREST, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; JST-CREST, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Nobuhiko Yui
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan; JST-CREST, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan; JST-CREST, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan.
| |
Collapse
|
40
|
Seo JH, Kakinoki S, Yamaoka T, Yui N. Directing stem cell differentiation by changing the molecular mobility of supramolecular surfaces. Adv Healthc Mater 2015; 4:215-22. [PMID: 25044544 DOI: 10.1002/adhm.201400173] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/18/2014] [Indexed: 01/14/2023]
Abstract
Polymer surfaces with a wide range of hydrated surface mobility are developed by a simple deposition method with supramolecular block copolymers. The morphologies of adhering stem cells are greatly dependent on the surface mobility of polymers, and this induces significant changes in the cytoskeletal signaling pathway to direct the downstream stem cell differentiation.
Collapse
Affiliation(s)
- Ji-Hun Seo
- JST-CREST; Tokyo 102-0076 Japan
- Institute of Biomaterials and Bioengineering; Tokyo Medical and Dental University; 2-3-10 Kanda-Surugadai Chiyoda Tokyo 101-0062 Japan
| | - Sachiro Kakinoki
- JST-CREST; Tokyo 102-0076 Japan
- Department of Biomedical Engineering; National Cerebral and Cardiovascular Center Research Institute; Suita Osaka 565-8565 Japan
| | - Tetsuji Yamaoka
- JST-CREST; Tokyo 102-0076 Japan
- Department of Biomedical Engineering; National Cerebral and Cardiovascular Center Research Institute; Suita Osaka 565-8565 Japan
| | - Nobuhiko Yui
- JST-CREST; Tokyo 102-0076 Japan
- Institute of Biomaterials and Bioengineering; Tokyo Medical and Dental University; 2-3-10 Kanda-Surugadai Chiyoda Tokyo 101-0062 Japan
| |
Collapse
|
41
|
Pavlikova N, Weiszenstein M, Pala J, Halada P, Seda O, Elkalaf M, Trnka J, Kovar J, Polak J. The effect of cultureware surfaces on functional and structural components of differentiated 3T3-L1 preadipocytes. ACTA ACUST UNITED AC 2015; 20:919-36. [DOI: 10.1515/cmble-2015-0054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 11/13/2015] [Indexed: 01/21/2023]
Abstract
AbstractExperiments using cultured primary cells or cell lines are a routine in vitro approach used across multiple biological disciplines, However, the structural and functional influences of various cultureware materials on cultured cells is not clearly understood. Surface treatments of cultureware have proven to have profound effects on cell viability and proliferation. In this study, we investigated the impact of polystyrene and fluorocarbon cultureware dishes on the proteomic profile of differentiated 3T3-L1 preadipocytes. After expansion and differentiation of cells on appropriate cultureware dishes, cell lysates were separated using two-dimensional gel electrophoresis and proteins were visualized with Coomassie blue staining. Spots with the highest differential expression between the two culture conditions were subsequently analyzed using matrix-assisted laser desorption/ionization mass spectrometry and the identified proteins were subjected to pathway analysis. We observed that 43% of all spots were differentially expressed depending on the cultureware. Pathway analysis revealed that glucose metabolism, mitochondrial structure and cell differentiation, represented by 14-3-3 protein-mediated signaling and the mitochondrial inner membrane organizing system (MINOS), were significantly affected by cultureware material. These results indicate that cultureware material can have a profound effect on key adipocyte functional pathways. These effects modifications of the cells should be reflected in the design of in vitro experiments and interpretation of their results.
Collapse
|
42
|
ANDO T. Star Polymers for Biomedical Applications. KOBUNSHI RONBUNSHU 2015. [DOI: 10.1295/koron.2015-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tsuyoshi ANDO
- Graduate School of Materials Science, Nara Institute of Science and Technology
| |
Collapse
|
43
|
Relationships between molecular mobility, fibrillogenesis of collagen molecules, and the inflammatory response: An experimental study in vitro and in vivo. J Colloid Interface Sci 2014; 433:16-25. [DOI: 10.1016/j.jcis.2014.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/06/2014] [Accepted: 06/07/2014] [Indexed: 11/21/2022]
|
44
|
Totani M, Ando T, Terada K, Terashima T, Kim IY, Ohtsuki C, Xi C, Kuroda K, Tanihara M. Utilization of star-shaped polymer architecture in the creation of high-density polymer brush coatings for the prevention of platelet and bacteria adhesion. Biomater Sci 2014; 2:1172-1185. [PMID: 25485105 PMCID: PMC4251873 DOI: 10.1039/c4bm00034j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate utilization of star-shaped polymers as high-density polymer brush coatings and their effectiveness to inhibit the adhesion of platelets and bacteria. Star polymers consisting of poly(2-hydroxyethyl methacrylate) (PHEMA) and/or poly(methyl methacrylate) (PMMA), were synthesized using living radical polymerization with a ruthenium catalyst. The polymer coatings were prepared by simple drop casting of the polymer solution onto poly(ethylene terephthalate) (PET) surfaces and then dried. Among the star polymers prepared in this study, the PHEMA star polymer (star-PHEMA) and the PHEMA/PMMA (mol. ratio of 71/29) heteroarm star polymer (star-H71M29) coatings showed the highest percentage of inhibition against platelet adhesion (78-88% relative to noncoated PET surface) and Escherichia coli (94-97%). These coatings also showed anti-adhesion activity against platelets after incubation in Dulbecco's phosphate buffered saline or surfactant solution for 7 days. In addition, the PMMA component of the star polymers increased the scratch resistance of the coating. These results indicate that the star-polymer architecture provides high polymer chain density on PET surfaces to prevent adhesion of platelets and bacteria, as well as coating stability and physical durability to prevent exposure of bare PET surfaces. The star polymers provide a simple and effective approach to preparing anti-adhesion polymer coatings on biomedical materials against the adhesion of platelets and bacteria.
Collapse
Affiliation(s)
- Masayasu Totani
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan
| | - Tsuyoshi Ando
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan
| | - Kayo Terada
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan
| | - Takaya Terashima
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Ill Yong Kim
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Naogya 464-8603, Japan
| | - Chikara Ohtsuki
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Naogya 464-8603, Japan
| | - Chuanwu Xi
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kenichi Kuroda
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Masao Tanihara
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan
| |
Collapse
|
45
|
Tamura A, Tanaka H, Yui N. Supramolecular flower micelle formation of polyrotaxane-containing triblock copolymers prepared from macro-chain transfer agents bearing molecular hooks. Polym Chem 2014. [DOI: 10.1039/c4py00379a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A precise synthesis of polyrotaxanes (PRX)-containing triblock copolymers was achieved using PRX macro-chain transfer agents with terminal hooks. Also, polymeric micelle formation of them in aqueous solution was investigated.
Collapse
Affiliation(s)
- Atsushi Tamura
- Department of Organic Biomaterials
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University
- Chiyoda, Japan
| | - Hajime Tanaka
- Department of Organic Biomaterials
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University
- Chiyoda, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University
- Chiyoda, Japan
| |
Collapse
|