1
|
Kim YJ, Kim H, Lee DH, Kim YH, Park JH, Sim WS, Kim JJ, Ban K, Um SH, Park HJ, Davis ME, Park HJ, Bhang SH. Reinforcing Stromal Cell Spheroid Through Red-Light Preconditioning for Advanced Vascularization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500788. [PMID: 40278796 DOI: 10.1002/advs.202500788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/30/2025] [Indexed: 04/26/2025]
Abstract
Despite the promising potential of stromal cell therapy in treating myocardial infarction (MI), its effectiveness is limited by poor cell retention and engraftment in ischemic environments. This study introduces a novel strategy that combines the preconditioning of human adipose-derived stromal cells (hADSCs) using OLED-based photobiomodulation (OPBM) and culturing these cells into 3D spheroids. The preconditioned 3D spheroids (APCS group) exhibit significantly enhanced angiogenic, arterialized, and tissue remodeling capabilities compared with those of traditional 2D cultures and non-preconditioned spheroids. In vivo transplantation of these spheroids into the border zone of infarcted area significantly improve cardiac function and reduce adverse remodeling by enhancing anti-fibrosis and angiogenesis including arterialization. The combined strategy with OPBM preconditioning and 3D spheroid culture system can enhance therapeutic potential of hADSCs with multiple paracrine effects for cardiac repair. This novel approach provides next generation of cell therapeutics to overcome the limitation of adult stromal cell therapy in patients with post-MI heart failure.
Collapse
Affiliation(s)
- Yu-Jin Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyeok Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Dong-Hyun Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yeong Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jae-Hyun Park
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Woo-Sup Sim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Jin-Ju Kim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Kiwon Ban
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Soong Ho Um
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyun Ji Park
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Michael E Davis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30332, USA
- Children's Heart Research & Outcomes (HeRO) Center, Children's Healthcare of Atlanta & Emory University, Atlanta, GA, 30322, USA
| | - Hun-Jun Park
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
2
|
Xu Y, Yu Y, Guo Z. Hydrogels in cardiac tissue engineering: application and challenges. Mol Cell Biochem 2025; 480:2201-2222. [PMID: 39495368 DOI: 10.1007/s11010-024-05145-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
Cardiovascular disease remains the leading cause of global mortality. Current stem cell therapy and heart transplant therapy have limited long-term stability in cardiac function. Cardiac tissue engineering may be one of the key methods for regenerating damaged myocardial tissue. As an ideal scaffold material, hydrogel has become a viable tissue engineering therapy for the heart. Hydrogel can not only provide mechanical support for infarcted myocardium but also serve as a carrier for various drugs, bioactive factors, and cells to increase myocardial contractility and improve the cell microenvironment in the infarcted area, thereby improving cardiac function. This paper reviews the applications of hydrogels and biomedical mechanisms in cardiac tissue engineering and discusses the challenge of clinical transformation of hydrogel in cardiac tissue engineering, providing new strategies for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Yaping Xu
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Henan, 450016, Zhengzhou, People's Republic of China
| | - Yuexin Yu
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Henan, 450016, Zhengzhou, People's Republic of China
| | - Zhikun Guo
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Henan, 450016, Zhengzhou, People's Republic of China.
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China.
| |
Collapse
|
3
|
Yang P, Xie F, Zhu L, Selvaraj JN, Zhang D, Cai J. Fabrication of chitin-fibrin hydrogels to construct the 3D artificial extracellular matrix scaffold for vascular regeneration and cardiac tissue engineering. J Biomed Mater Res A 2024; 112:2257-2272. [PMID: 39007419 DOI: 10.1002/jbm.a.37774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/07/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024]
Abstract
As the cornerstone of tissue engineering and regeneration medicine research, developing a cost-effective and bionic extracellular matrix (ECM) that can precisely modulate cellular behavior and form functional tissue remains challenging. An artificial ECM combining polysaccharides and fibrillar proteins to mimic the structure and composition of natural ECM provides a promising solution for cardiac tissue regeneration. In this study, we developed a bionic hydrogel scaffold by combining a quaternized β-chitin derivative (QC) and fibrin-matrigel (FM) in different ratios to mimic a natural ECM. We evaluated the stiffness of those composite hydrogels with different mixing ratios and their effects on the growth of human umbilical vein endothelial cells (HUVECs). The optimal hydrogels, QCFM1 hydrogels were further applied to load HUVECs into nude mice for in vivo angiogenesis. Besides, we encapsulated human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) into QCFM hydrogels and employed 3D bioprinting to achieve batch fabrication of human-engineered heart tissue (hEHT). Finally, the myocardial structure and electrophysiological function of hEHT were evaluated by immunofluorescence and optical mapping. Designed artificial ECM has a tunable modulus (220-1380 Pa), which determines the different cellular behavior of HUVECs when encapsulated in these. QCFM1 composite hydrogels with optimal stiffness (800 Pa) and porous architecture were finally identified, which could adapt for in vitro cell spreading and in vivo angiogenesis of HUVECs. Moreover, QCFM1 hydrogels were applied in 3D bioprinting successfully to achieve batch fabrication of both ring-shaped and patch-shaped hEHT. These QCFM1 hydrogels-based hEHTs possess organized sarcomeres and advanced function characteristics comparable to reported hEHTs. The chitin-derived hydrogels are first used for cardiac tissue engineering and achieve the batch fabrication of functionalized artificial myocardium. Specifically, these novel QCFM1 hydrogels provided a reliable and economical choice serving as ideal ECM for application in tissue engineering and regeneration medicine.
Collapse
Affiliation(s)
- Pengcheng Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Science, Hubei University, Wuhan, China
| | - Fang Xie
- Hubei Engineering Center of Natural Polymers-based Medical Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
- Institute of Hepatobiliary Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lihang Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Science, Hubei University, Wuhan, China
| | - Jonathan Nimal Selvaraj
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Science, Hubei University, Wuhan, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Science, Hubei University, Wuhan, China
| | - Jie Cai
- Hubei Engineering Center of Natural Polymers-based Medical Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
- Institute of Hepatobiliary Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Weng PW, Rethi L, Jheng PR, Trung Nguyen H, Chuang AEY. Unveiling the promise of injectable carbohydrate polymeric-based gels: A comprehensive review for enhanced bone and cartilage tissue regeneration. Eur Polym J 2024; 220:113480. [DOI: 10.1016/j.eurpolymj.2024.113480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Xu Z, Li H, Cao G, Li P, Zhou H, Sun Y. The protective role of brown adipose tissue in cardiac cell damage after myocardial infarction and heart failure. Lipids Health Dis 2024; 23:338. [PMID: 39415186 PMCID: PMC11481725 DOI: 10.1186/s12944-024-02326-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/06/2024] [Indexed: 10/18/2024] Open
Abstract
Acute myocardial infarction (AMI) and related cardiovascular disease complications are the leading causes of mortality worldwide. Brown adipose tissue (BAT) is thermogenic and characterized by the uncoupling protein expression. Recent studies have found that in cardiovascular diseases, activated BAT can effectively improve the prognosis of AMI and concurrent heart failure through intercellular communication. However, a clear and systematic understanding of the myocardial protective mechanism of BAT after AMI is lacking, especially in the endocrine function of BAT. This review describes the effects of BAT on various cells in the heart after AMI. BAT plays a protective role on cardiac cells and fibroblasts during ischemia/reperfusion (I/R), myocardial remodeling, and myocardial fibrosis. This review also discusses the changes caused by BAT activation in different stages of heart failure. Finally, this review summarizes the treatment methods that target BAT to improve AMI. Further in-depth researches are still needed to clarify the underlying mechanism of the connection between BAT and different cells in cardiac tissue in order to identify potential therapeutic targets.
Collapse
Affiliation(s)
- Zhe Xu
- Department of Geriatric Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hong Li
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Guojie Cao
- Department of Geriatric Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Panpan Li
- Department of Geriatric Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Haitao Zhou
- Department of Geriatric Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yang Sun
- Department of Geriatric Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
6
|
Luo Q, Li Z, Liu B, Ding J. Hydrogel formulations for orthotopic treatment of myocardial infarction. Expert Opin Drug Deliv 2024; 21:1463-1478. [PMID: 39323051 DOI: 10.1080/17425247.2024.2409906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/25/2024] [Accepted: 09/24/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION Myocardial infarction (MI) causes extensive structural and functional damage to the cardiac tissue due to the significant loss of cardiomyocytes. Early reperfusion is the standard treatment strategy for acute MI, but it is associated with adverse effects. Additionally, current therapies to alleviate pathological changes post-MI are not effective. Subsequent pathological remodeling of the damaged myocardium often results in heart failure. Oral drugs aimed at reducing myocardial damage and remodeling require repeated administration of high doses to maintain therapeutic levels. This compromises efficacy and patient adherence and may cause adverse effects, such as hypotension and liver and/or kidney dysfunction. Hydrogels have emerged as an effective delivery platform for orthotopic treatment of MI due to their high water content and excellent tissue compatibility. AREA COVERED Hydrogels create an optimal microenvironment for delivering drugs, proteins, and cells, preserving their efficacy and increasing their bioavailability. Current research focuses on discovering functional hydrogels for mitigating myocardial damage and regulating repair processes in MI treatment. EXPERT OPINION Hydrogels offer a promising approach in enhancing cardiac repair and improving patient outcomes post-MI. Advancements in hydrogel technology are poised to transform MI therapy, paving the way for personalized treatment strategies and enhanced recovery.
Collapse
Affiliation(s)
- Qiang Luo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, P. R. China
| | - Zhibo Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, P. R. China
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, P. R. China
| |
Collapse
|
7
|
Liang T, Liu J, Liu F, Su X, Li X, Zeng J, Chen F, Wen H, Chen Y, Tao J, Lei Q, Li G, Cheng P. Application of Pro-angiogenic Biomaterials in Myocardial Infarction. ACS OMEGA 2024; 9:37505-37529. [PMID: 39281944 PMCID: PMC11391569 DOI: 10.1021/acsomega.4c04682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024]
Abstract
Biomaterials have potential applications in the treatment of myocardial infarction (MI). These biomaterials have the ability to mechanically support the ventricular wall and to modulate the inflammatory, metabolic, and local electrophysiological microenvironment. In addition, they can play an equally important role in promoting angiogenesis, which is the primary prerequisite for the treatment of MI. A variety of biomaterials are known to exert pro-angiogenic effects, but the pro-angiogenic mechanisms and functions of different biomaterials are complex and diverse, and have not yet been systematically described. This review will focus on the pro-angiogenesis of biomaterials and systematically describe the mechanisms and functions of different biomaterials in promoting angiogenesis in MI.
Collapse
Affiliation(s)
- Tingting Liang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400050, P. R. China
| | - Jun Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400050, P. R. China
| | - Feila Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400050, P. R. China
| | - Xiaohan Su
- Department of Breast and thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Xue Li
- Department of Breast and thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Jiao Zeng
- Department of Breast and thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Fuli Chen
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Heling Wen
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Yu Chen
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Jianhong Tao
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Qian Lei
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Gang Li
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Panke Cheng
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| |
Collapse
|
8
|
Marín LO, Montoya Y, Bustamante J. Biological Evaluation of Thermosensitive Hydrogels of Chitosan/Hydrolyzed Collagen/β-GP in an In Vitro Model of Induced Cardiac Ischemia. Polymers (Basel) 2024; 16:2206. [PMID: 39125232 PMCID: PMC11314826 DOI: 10.3390/polym16152206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 08/12/2024] Open
Abstract
Ischemic events can culminate in acute myocardial infarction, which is generated by irreversible cardiac lesions that cannot be restored due to the limited regenerative capacity of the heart. Cardiac cell therapy aims to replace injured or necrotic cells with healthy and functional cells. Tissue engineering and cardiovascular regenerative medicine propose therapeutic alternatives using biomaterials that mimic the native extracellular environment and improve cellular and tissue functionality. This investigation evaluates the effect of thermosensitive hydrogels, and murine fetal ventricular cardiomyocytes encapsulated in thermosensitive hydrogels, on the contractile function of cardiomyocyte regeneration during an ischemic event. Chitosan and hydrolyzed collagen thermosensitive hydrogels were developed, and they were physically and chemically characterized. Likewise, their biocompatibility was evaluated through cytotoxicity assays by MTT, LDH, and their hemolytic capacity. The hydrogels, and cells inside the hydrogels, were used as an intervention for primary cardiomyocytes under hypoxic conditions to determine the restoration of the contractile capacity by measuring intracellular calcium levels and the expressions of binding proteins, such as a-actinin and connexin 43. These results evidence the potential of natural thermosensitive hydrogels to restore the bioelectrical functionality of ischemic cardiomyocytes.
Collapse
Affiliation(s)
- Lina Orozco Marín
- Tissue Engineering and Cardiovascular Prosthetics Line, Cardiovascular Dynamics Group, Bioengineering Center, Universidad Pontificia Bolivariana, Medellín 050004, Colombia; (L.O.M.); (J.B.)
| | - Yuliet Montoya
- Tissue Engineering and Cardiovascular Prosthetics Line, Cardiovascular Dynamics Group, Bioengineering Center, Universidad Pontificia Bolivariana, Medellín 050004, Colombia; (L.O.M.); (J.B.)
- Working Committee of Cardiovascular Bioengineering, Colombian Society of Cardiology and Cardiovascular Surgery, Bogotá 1013, Colombia
| | - John Bustamante
- Tissue Engineering and Cardiovascular Prosthetics Line, Cardiovascular Dynamics Group, Bioengineering Center, Universidad Pontificia Bolivariana, Medellín 050004, Colombia; (L.O.M.); (J.B.)
- Working Committee of Cardiovascular Bioengineering, Colombian Society of Cardiology and Cardiovascular Surgery, Bogotá 1013, Colombia
| |
Collapse
|
9
|
Aglan HA, Ahmed HH, Beherei HH, Abdel-Hady BM, Ekram B, Kishta MS. Generation of cardiomyocytes from stem cells cultured on nanofibrous scaffold: Experimental approach for attenuation of myocardial infarction. Tissue Cell 2024; 89:102461. [PMID: 38991272 DOI: 10.1016/j.tice.2024.102461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/04/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
The current study was constructed to fabricate polyamide based nanofibrous scaffolds (NS) and to define the most promising one for the generation of cardiomyocytes from adipose tissue derived mesenchymal stem cells (ADMSCs). This purpose was extended to assess the potentiality of the generated cardiomyocytes in relieving myocardial infarction (MI) in rats. Production and characterization of NSs were carried out. ADMSCs were cultured on NS and induced to differentiate into cardiomyocytes by specific growth factors. Molecular analysis for myocyte-specific enhancer factor 2 C (MEF2C) and alpha sarcomeric actin (α-SCA) expression was done to confirm the differentiation of ADMSCs into cardiomyocytes for further transplantation into MI induced rats. Implantation of cells in MI afflicted rats boosted heart rate, ST height and PR interval and lessened P duration, RR, QTc and QRS intervals. Also, this type of medication minified serum lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) enzymes activity as well as serum and cardiac troponin T (Tn-T) levels and upraised serum and cardiac α-SCA and cardiac connexin 43 (CX 43) levels. Microscopic feature of cardiac tissue sections of rats in the treated groups revealed great renovation in the cardiac microarchitecture. Conclusively, this attempt gains insight into a realistic strategy for recovery of MI through systemic employment of in vitro generated cardiomyocytes.
Collapse
Affiliation(s)
- Hadeer A Aglan
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt; Stem Cell Lab., Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt.
| | - Hanaa H Ahmed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt; Stem Cell Lab., Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Hanan H Beherei
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, Giza, Egypt
| | - Bothaina M Abdel-Hady
- Polymers and Pigments Department, Chemical Industries Institute, National Research Centre, Giza, Egypt
| | - Basma Ekram
- Polymers and Pigments Department, Chemical Industries Institute, National Research Centre, Giza, Egypt
| | - Mohamed S Kishta
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt; Stem Cell Lab., Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| |
Collapse
|
10
|
Yu C, Qiu Y, Yao F, Wang C, Li J. Chemically Programmed Hydrogels for Spatiotemporal Modulation of the Cardiac Pathological Microenvironment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404264. [PMID: 38830198 DOI: 10.1002/adma.202404264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/20/2024] [Indexed: 06/05/2024]
Abstract
After myocardial infarction (MI), sustained ischemic events induce pathological microenvironments characterized by ischemia-hypoxia, oxidative stress, inflammatory responses, matrix remodeling, and fibrous scarring. Conventional clinical therapies lack spatially targeted and temporally responsive modulation of the infarct microenvironment, leading to limited myocardial repair. Engineered hydrogels have a chemically programmed toolbox for minimally invasive localization of the pathological microenvironment and personalized responsive modulation over different pathological periods. Chemically programmed strategies for crosslinking interactions, interfacial binding, and topological microstructures in hydrogels enable minimally invasive implantation and in situ integration tailored to the myocardium. This enhances substance exchange and signal interactions within the infarcted microenvironment. Programmed responsive polymer networks, intelligent micro/nanoplatforms, and biological therapeutic cues contribute to the formation of microenvironment-modulated hydrogels with precise targeting, spatiotemporal control, and on-demand feedback. Therefore, this review summarizes the features of the MI microenvironment and chemically programmed schemes for hydrogels to conform, integrate, and modulate the cardiac pathological microenvironment. Chemically programmed strategies for oxygen-generating, antioxidant, anti-inflammatory, provascular, and electrointegrated hydrogels to stimulate iterative and translational cardiac tissue engineering are discussed.
Collapse
Affiliation(s)
- Chaojie Yu
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| | - Yuwei Qiu
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| | - Changyong Wang
- Tissue Engineering Research Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Junjie Li
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
11
|
Patel R, Patel D. Injectable Hydrogels in Cardiovascular Tissue Engineering. Polymers (Basel) 2024; 16:1878. [PMID: 39000733 PMCID: PMC11244148 DOI: 10.3390/polym16131878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024] Open
Abstract
Heart problems are quite prevalent worldwide. Cardiomyocytes and stem cells are two examples of the cells and supporting matrix that are used in the integrated process of cardiac tissue regeneration. The objective is to create innovative materials that can effectively replace or repair damaged cardiac muscle. One of the most effective and appealing 3D/4D scaffolds for creating an appropriate milieu for damaged tissue growth and healing is hydrogel. In order to successfully regenerate heart tissue, bioactive and biocompatible hydrogels are required to preserve cells in the infarcted region and to bid support for the restoration of myocardial wall stress, cell survival and function. Heart tissue engineering uses a variety of hydrogels, such as natural or synthetic polymeric hydrogels. This article provides a quick overview of the various hydrogel types employed in cardiac tissue engineering. Their benefits and drawbacks are discussed. Hydrogel-based techniques for heart regeneration are also addressed, along with their clinical application and future in cardiac tissue engineering.
Collapse
Affiliation(s)
- Raj Patel
- Banas Medical College and Research Institute, Palanpur 385001, India;
| | - Dhruvi Patel
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
12
|
Jiang Z, Yu J, Zhou H, Feng J, Xu Z, Wan M, Zhang W, He Y, Jia C, Shao S, Guo H, Liu B. Research hotspots and emerging trends of mesenchymal stem cells in cardiovascular diseases: a bibliometric-based visual analysis. Front Cardiovasc Med 2024; 11:1394453. [PMID: 38873270 PMCID: PMC11169657 DOI: 10.3389/fcvm.2024.1394453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
Background Mesenchymal stem cells (MSCs) have important research value and broad application prospects in cardiovascular diseases (CVDs). However, few bibliometric analyses on MSCs in cardiovascular diseases are available. This study aims to provide a thorough review of the cooperation and influence of countries, institutions, authors, and journals in the field of MSCs in cardiovascular diseases, with the provision of discoveries in the latest progress, evolution paths, frontier research hotspots, and future research trends in the regarding field. Methods The articles related to MSCs in cardiovascular diseases were retrieved from the Web of Science. The bibliometric study was performed by CiteSpace and VOSviewer, and the knowledge map was generated based on data obtained from retrieved articles. Results In our study, a total of 4,852 publications launched before August 31, 2023 were accessed through the Web of Science Core Collection (WoSCC) database via our searching strategy. Significant fluctuations in global publications were observed in the field of MSCs in CVDs. China emerged as the nation with the largest number of publications, yet a shortage of high-quality articles was noted. The interplay among countries, institutions, journals and authors is visually represented in the enclosed figures. Importantly, current research trends and hotspots are elucidated. Cluster analysis on references has highlighted the considerable interest in exosomes, extracellular vesicles, and microvesicles. Besides, keywords analysis revealed a strong emphasis on myocardial infarction, therapy, and transplantation. Treatment methods-related keywords were prominent, while keywords associated with extracellular vesicles gathered significant attention from the long-term perspective. Conclusion MSCs in CVDs have become a topic of active research interest, showcasing its latent value and potential. By summarizing the latest progress, identifying the research hotspots, and discussing the future trends in the advancement of MSCs in CVDs, we aim to offer valuable insights for considering research prospects.
Collapse
Affiliation(s)
- Zhihang Jiang
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiajing Yu
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Houle Zhou
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaming Feng
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zehui Xu
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Melisandre Wan
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiwei Zhang
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing He
- Department of Preventive Medicine, College of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chengyao Jia
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Shuijin Shao
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haidong Guo
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Baonian Liu
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
13
|
Zhang J, Kibret BG, Vatner DE, Vatner SF. The role of brown adipose tissue in mediating healthful longevity. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:17. [PMID: 39119146 PMCID: PMC11309368 DOI: 10.20517/jca.2024.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
There are two major subtypes of adipose tissue, i.e., white adipose tissue (WAT) and brown adipose tissue (BAT). It has been known for a long time that WAT mediates obesity and impairs healthful longevity. More recently, interest has focused on BAT, which, unlike WAT, actually augments healthful aging. The goal of this review is to examine the role of BAT in mediating healthful longevity. A major role for BAT and its related beige adipose tissue is thermogenesis, as a mechanism to maintain body temperature by producing heat through uncoupling protein 1 (UCP1) or through UCP1-independent thermogenic pathways. Our hypothesis is that healthful longevity is, in part, mediated by BAT. BAT protects against the major causes of impaired healthful longevity, i.e., obesity, diabetes, cardiovascular disorders, cancer, Alzheimer's disease, reduced exercise tolerance, and impaired blood flow. Several genetically engineered mouse models have shown that BAT enhances healthful aging and that their BAT is more potent than wild-type (WT) BAT. For example, when BAT, which increases longevity and exercise performance in mice with disruption of the regulator of G protein signaling 14 (RGS14), is transplanted to WT mice, their exercise capacity is enhanced at 3 days after BAT transplantation, whereas BAT transplantation from WT to WT mice also resulted in increased exercise performance, but only at 8 weeks after transplantation. In view of the ability of BAT to mediate healthful longevity, it is likely that a pharmaceutical analog of BAT will become a novel therapeutic modality.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Berhanu Geresu Kibret
- Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Dorothy E. Vatner
- Department of Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Stephen F. Vatner
- Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
14
|
Omidian H, Chowdhury SD, Wilson RL. Advancements and Challenges in Hydrogel Engineering for Regenerative Medicine. Gels 2024; 10:238. [PMID: 38667657 PMCID: PMC11049258 DOI: 10.3390/gels10040238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
This manuscript covers the latest advancements and persisting challenges in the domain of tissue engineering, with a focus on the development and engineering of hydrogel scaffolds. It highlights the critical role of these scaffolds in emulating the native tissue environment, thereby providing a supportive matrix for cell growth, tissue integration, and reducing adverse reactions. Despite significant progress, this manuscript emphasizes the ongoing struggle to achieve an optimal balance between biocompatibility, biodegradability, and mechanical stability, crucial for clinical success. It also explores the integration of cutting-edge technologies like 3D bioprinting and biofabrication in constructing complex tissue structures, alongside innovative materials and techniques aimed at enhancing tissue growth and functionality. Through a detailed examination of these efforts, the manuscript sheds light on the potential of hydrogels in advancing regenerative medicine and the necessity for multidisciplinary collaboration to navigate the challenges ahead.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (S.D.C.); (R.L.W.)
| | | | | |
Collapse
|
15
|
Quan Y, Lu F, Zhang Y. Use of brown adipose tissue transplantation and engineering as a thermogenic therapy in obesity and metabolic disease. Obes Rev 2024; 25:e13677. [PMID: 38114233 DOI: 10.1111/obr.13677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 12/21/2023]
Abstract
The induction of thermogenesis in brown adipose tissue is emerging as an attractive therapy for obesity and metabolic syndrome. However, the long-term efficacy and safety of clinical pharmaceutical agents have yet to be fully characterized. The transplantation of brown adipose tissue represents an alternative approach that might have a therapeutic effect by inducing a long-term increase in energy expenditure. However, limited tissue resources hinder the development of transplantation. Stem cell-based therapy and brown adipose tissue engineering, in addition to transplantation, represent alternative approaches that might resolve this problem. In this article, we discuss recent advances in understanding the mechanisms and applications of brown adipose tissue transplantation in the treatment of obesity and related metabolic disorders. Specifically, the induction of brown adipocytes and the fabrication of engineered brown adipose tissue as novel transplantation resources have long-term effects on ameliorating metabolic defects in rodent models. Additionally, we explore future prospects regarding the development of three-dimensional engineered brown adipose tissue and the associated challenges.
Collapse
Affiliation(s)
- Yuping Quan
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuteng Zhang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Gao H, Liu S, Qin S, Yang J, Yue T, Ye B, Tang Y, Feng J, Hou J, Danzeng D. Injectable hydrogel-based combination therapy for myocardial infarction: a systematic review and Meta-analysis of preclinical trials. BMC Cardiovasc Disord 2024; 24:119. [PMID: 38383333 PMCID: PMC10882925 DOI: 10.1186/s12872-024-03742-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024] Open
Abstract
INTRODUCTION This study evaluates the effectiveness of a combined regimen involving injectable hydrogels for the treatment of experimental myocardial infarction. PATIENT CONCERNS Myocardial infarction is an acute illness that negatively affects quality of life and increases mortality rates. Experimental models of myocardial infarction can aid in disease research by allowing for the development of therapies that effectively manage disease progression and promote tissue repair. DIAGNOSIS Experimental animal models of myocardial infarction were established using the ligation method on the anterior descending branch of the left coronary artery (LAD). INTERVENTIONS The efficacy of intracardiac injection of hydrogels, combined with cells, drugs, cytokines, extracellular vesicles, or nucleic acid therapies, was evaluated to assess the functional and morphological improvements in the post-infarction heart achieved through the combined hydrogel regimen. OUTCOMES A literature review was conducted using PubMed, Web of Science, Scopus, and Cochrane databases. A total of 83 papers, including studies on 1332 experimental animals (rats, mice, rabbits, sheep, and pigs), were included in the meta-analysis based on the inclusion and exclusion criteria. The overall effect size observed in the group receiving combined hydrogel therapy, compared to the group receiving hydrogel treatment alone, resulted in an ejection fraction (EF) improvement of 8.87% [95% confidence interval (CI): 7.53, 10.21] and a fractional shortening (FS) improvement of 6.31% [95% CI: 5.94, 6.67] in rat models, while in mice models, the improvements were 16.45% [95% CI: 11.29, 21.61] for EF and 5.68% [95% CI: 5.15, 6.22] for FS. The most significant improvements in EF (rats: MD = 9.63% [95% CI: 4.02, 15.23]; mice: MD = 23.93% [95% CI: 17.52, 30.84]) and FS (rats: MD = 8.55% [95% CI: 2.54, 14.56]; mice: MD = 5.68% [95% CI: 5.15, 6.22]) were observed when extracellular vesicle therapy was used. Although there have been significant results in large animal experiments, the number of studies conducted in this area is limited. CONCLUSION The present study demonstrates that combining hydrogel with other therapies effectively improves heart function and morphology. Further preclinical research using large animal models is necessary for additional study and validation.
Collapse
Affiliation(s)
- Han Gao
- School of Medicine, Tibet University, Lhasa, Tibet, China
| | - Song Liu
- School of Medicine, Tibet University, Lhasa, Tibet, China
| | - Shanshan Qin
- School of Medicine, Tibet University, Lhasa, Tibet, China
| | - Jiali Yang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Tian Yue
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Bengui Ye
- West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Yue Tang
- School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jie Feng
- School of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jun Hou
- Department of Cardiology, Chengdu Third People's Hospital, Chengdu, Sichuan, China.
| | - Dunzhu Danzeng
- School of Medicine, Tibet University, Lhasa, Tibet, China.
| |
Collapse
|
17
|
Xiao W, Shi J. Application of adipose-derived stem cells in ischemic heart disease: theory, potency, and advantage. Front Cardiovasc Med 2024; 11:1324447. [PMID: 38312236 PMCID: PMC10834651 DOI: 10.3389/fcvm.2024.1324447] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
Adipose-derived mesenchymal stem cells (ASCs) represent an innovative candidate to treat ischemic heart disease (IHD) due to their abundance, renewable sources, minor invasiveness to obtain, and no ethical limitations. Compared with other mesenchymal stem cells, ASCs have demonstrated great advantages, especially in the commercialization of stem cell-based therapy. Mechanistically, ASCs exert a cardioprotective effect not only through differentiation into functional cells but also via robust paracrine of various bioactive factors that promote angiogenesis and immunomodulation. Exosomes from ASCs also play an indispensable role in this process. However, due to the distinct biological functions of ASCs from different origins or donors with varing health statuses (such as aging, diabetes, or atherosclerosis), the heterogeneity of ASCs deserves more attention. This prompts scientists to select optimal donors for clinical applications. In addition, to overcome the primary obstacle of poor retention and low survival after transplantation, a variety of studies have been dedicated to the engineering of ASCs with biomaterials. Besides, clinical trials have confirmed the safety and efficacy of ASCs therapy in the context of heart failure or myocardial infarction. This article reviews the theory, efficacy, and advantages of ASCs-based therapy, the factors affecting ASCs function, heterogeneity, engineering strategies and clinical application of ASCs.
Collapse
Affiliation(s)
| | - Jiahai Shi
- Department of Cardiothoracic Surgery, Affiliated Hospital and Medical School of Nantong University, Nantong, China
| |
Collapse
|
18
|
Wei X, Wang L, Duan C, Chen K, Li X, Guo X, Chen P, Liu H, Fan Y. Cardiac patches made of brown adipose-derived stem cell sheets and conductive electrospun nanofibers restore infarcted heart for ischemic myocardial infarction. Bioact Mater 2023; 27:271-287. [PMID: 37122901 PMCID: PMC10130885 DOI: 10.1016/j.bioactmat.2023.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Cell sheet engineering has been proven to be a promising strategy for cardiac remodeling post-myocardial infarction. However, insufficient mechanical strength and low cell retention lead to limited therapeutic efficiency. The thickness and area of artificial cardiac patches also affect their therapeutic efficiency. Cardiac patches prepared by combining cell sheets with electrospun nanofibers, which can be transplanted and sutured to the surface of the infarcted heart, promise to solve this problem. Here, we fabricated a novel cardiac patch by stacking brown adipose-derived stem cells (BADSCs) sheet layer by layer, and then they were combined with multi-walled carbon nanotubes (CNTs)-containing electrospun polycaprolactone/silk fibroin nanofibers (CPSN). The results demonstrated that BADSCs tended to generate myocardium-like structures seeded on CPSN. Compared with BADSCs suspension-containing electrospun nanofibers, the transplantation of the CPSN-BADSCs sheets (CNBS) cardiac patches exhibited accelerated angiogenesis and decreased inflammation in a rat myocardial infarction model. In addition, the CNBS cardiac patches could regulate macrophage polarization and promote gap junction remodeling, thus restoring cardiac functions. Overall, the hybrid cardiac patches made of electrospun nanofibers and cell sheets provide a novel solution to cardiac remodeling after ischemic myocardial infarction.
Collapse
Affiliation(s)
- Xinbo Wei
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Li Wang
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Cuimi Duan
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Beijing, 100850, PR China
| | - Kai Chen
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Xia Li
- Beijing Citident Stomatology Hospital, Beijing, 100032, PR China
| | - Ximin Guo
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Beijing, 100850, PR China
| | - Peng Chen
- Department of Ultrasound, The Third Medical Center, Chinese PLA General Hospital, Beijing, PR China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| |
Collapse
|
19
|
Ghandforoushan P, Alehosseini M, Golafshan N, Castilho M, Dolatshahi-Pirouz A, Hanaee J, Davaran S, Orive G. Injectable hydrogels for cartilage and bone tissue regeneration: A review. Int J Biol Macromol 2023; 246:125674. [PMID: 37406921 DOI: 10.1016/j.ijbiomac.2023.125674] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Annually, millions of patients suffer from irreversible injury owing to the loss or failure of an organ or tissue caused by accident, aging, or disease. The combination of injectable hydrogels and the science of stem cells have emerged to address this persistent issue in society by generating minimally invasive treatments to augment tissue function. Hydrogels are composed of a cross-linked network of polymers that exhibit a high-water retention capacity, thereby mimicking the wet environment of native cells. Due to their inherent mechanical softness, hydrogels can be used as needle-injectable stem cell carrier materials to mend tissue defects. Hydrogels are made of different natural or synthetic polymers, displaying a broad portfolio of eligible properties, which include biocompatibility, low cytotoxicity, shear-thinning properties as well as tunable biological and physicochemical properties. Presently, novel ongoing developments and native-like hydrogels are increasingly being used broadly to improve the quality of life of those with disabling tissue-related diseases. The present review outlines various future and in-vitro applications of injectable hydrogel-based biomaterials, focusing on the newest ongoing developments of in-situ forming injectable hydrogels for bone and cartilage tissue engineering purposes.
Collapse
Affiliation(s)
- Parisa Ghandforoushan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran; Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Alehosseini
- Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Nasim Golafshan
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Miguel Castilho
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | | | - Jalal Hanaee
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Soodabeh Davaran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Networking Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; University of the Basque Country, Spain.
| |
Collapse
|
20
|
Bhandari S, Yadav V, Ishaq A, Sanipini S, Ekhator C, Khleif R, Beheshtaein A, Jhajj LK, Khan AW, Al Khalifa A, Naseem MA, Bellegarde SB, Nadeem MA. Trends and Challenges in the Development of 3D-Printed Heart Valves and Other Cardiac Implants: A Review of Current Advances. Cureus 2023; 15:e43204. [PMID: 37565179 PMCID: PMC10411854 DOI: 10.7759/cureus.43204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2023] [Indexed: 08/12/2023] Open
Abstract
This article provides a comprehensive review of the current trends and challenges in the development of 3D-printed heart valves and other cardiac implants. By providing personalized solutions and pushing the limits of regenerative medicine, 3D printing technology has revolutionized the field of cardiac healthcare. The use of several organic and synthetic polymers in 3D printing heart valves is explored in this article, with emphasis on both their benefits and drawbacks. In cardiac tissue engineering, stem cells are essential, and their potential to lessen immunological rejection and thrombogenic consequences is highlighted. In the clinical applications section, the article emphasizes the importance of 3D printing in preoperative planning. Surgery results are enhanced when surgeons can visualize and assess the size and placement of implants using patient-specific anatomical models. Customized implants that are designed to match the anatomy of a particular patient reduce the likelihood of complications and enhance postoperative results. The development of physiologically active cardiac implants, made possible by 3D bioprinting, shows promise by eliminating the need for artificial valves. In conclusion, this paper highlights cutting-edge research and the promise of 3D-printed cardiac implants to improve patient outcomes and revolutionize cardiac treatment.
Collapse
Affiliation(s)
| | - Vikas Yadav
- Internal Medicine, Pt. B.D. Sharma Postgraduate Institute of Medical Sciences, Rohtak, IND
| | - Aqsa Ishaq
- Internal Medicine, Shaheed Mohtarma Benazir Bhutto Medical University, Larkana, PAK
| | | | - Chukwuyem Ekhator
- Neuro-Oncology, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, USA
| | - Rafeef Khleif
- Medicine, Xavier University School of Medicine, Aruba, ABW
| | - Alee Beheshtaein
- Internal Medicine, Xavier University School of Medicine, Chicago, USA
| | - Loveleen K Jhajj
- Internal Medicine, Xavier University School of Medicine, Oranjestad, ABW
| | | | - Ahmed Al Khalifa
- Medicine, College of Medicine, Sulaiman Alrajhi University, Al Bukayriyah, SAU
| | | | - Sophia B Bellegarde
- Pathology and Laboratory Medicine, American University of Antigua, St. John's, ATG
| | | |
Collapse
|
21
|
Dai Y, Qiao K, Li D, Isingizwe P, Liu H, Liu Y, Lim K, Woodfield T, Liu G, Hu J, Yuan J, Tang J, Cui X. Plant-Derived Biomaterials and Their Potential in Cardiac Tissue Repair. Adv Healthc Mater 2023; 12:e2202827. [PMID: 36977522 DOI: 10.1002/adhm.202202827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/19/2023] [Indexed: 03/30/2023]
Abstract
Cardiovascular disease remains the leading cause of mortality worldwide. The inability of cardiac tissue to regenerate after an infarction results in scar tissue formation, leading to cardiac dysfunction. Therefore, cardiac repair has always been a popular research topic. Recent advances in tissue engineering and regenerative medicine offer promising solutions combining stem cells and biomaterials to construct tissue substitutes that could have functions similar to healthy cardiac tissue. Among these biomaterials, plant-derived biomaterials show great promise in supporting cell growth due to their inherent biocompatibility, biodegradability, and mechanical stability. More importantly, plant-derived materials have reduced immunogenic properties compared to popular animal-derived materials (e.g., collagen and gelatin). In addition, they also offer improved wettability compared to synthetic materials. To date, limited literature is available to systemically summarize the progression of plant-derived biomaterials in cardiac tissue repair. Herein, this paper highlights the most common plant-derived biomaterials from both land and marine plants. The beneficial properties of these materials for tissue repair are further discussed. More importantly, the applications of plant-derived biomaterials in cardiac tissue engineering, including tissue-engineered scaffolds, bioink in 3D biofabrication, delivery vehicles, and bioactive molecules, are also summarized using the latest preclinical and clinical examples.
Collapse
Affiliation(s)
- Yichen Dai
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Kai Qiao
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Demin Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Phocas Isingizwe
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Haohao Liu
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Yu Liu
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Khoon Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery, University of Otago, Christchurch, 8011, New Zealand
- School of Medical Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tim Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery, University of Otago, Christchurch, 8011, New Zealand
| | - Guozhen Liu
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230052, China
| | - Jie Yuan
- Department of Cardiology, Shenzhen People's Hospital, Shenzhen, Guangdong, 518001, China
| | - Junnan Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xiaolin Cui
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery, University of Otago, Christchurch, 8011, New Zealand
| |
Collapse
|
22
|
Zhang S, Niu Q, Tong L, Liu S, Wang P, Xu H, Li B, Zhang H. Identification of the susceptible genes and mechanism underlying the comorbid presence of coronary artery disease and rheumatoid arthritis: a network modularization analysis. BMC Genomics 2023; 24:411. [PMID: 37474895 PMCID: PMC10360345 DOI: 10.1186/s12864-023-09519-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023] Open
Abstract
OBJECTIVE The comorbidities of coronary artery disease (CAD) and rheumatoid arthritis (RA) are mutual risk factors, which lead to higher mortality, but the biological mechanisms connecting the two remain unclear. Here, we aimed to identify the risk genes for the comorbid presence of these two complex diseases using a network modularization approach, to offer insights into clinical therapy and drug development for these diseases. METHOD The expression profile data of patients CAD with and without RA were obtained from the GEO database (GSE110008). Based on the differentially expressed genes (DEGs), weighted gene co-expression network analysis (WGCNA) was used to construct a gene network, detect co-expression modules, and explore their relation to clinical traits. The Zsummary index, gene significance (GS), and module membership (MM) were utilized to screen the important differentiated modules and hub genes. The GO and KEGG pathway enrichment analysis were applied to analyze potential mechanisms. RESULT Based on the 278 DEGs obtained, 41 modules were identified, of which 17 and 24 modules were positively and negatively correlated with the comorbid occurrence of CAD and RA (CAD&RA), respectively. Thirteen modules with Zsummary < 2 were found to be the underlying modules, which may be related to CAD&RA. With GS ≥ 0.5 and MM ≥ 0.8, 49 hub genes were identified, such as ADO, ABCA11P, POT1, ZNF141, GPATCH8, ATF6 and MIA3, etc. The area under the curve values of the representative seven hub genes under the three models (LR, KNN, SVM) were greater than 0.88. Enrichment analysis revealed that the biological functions of the targeted modules were mainly involved in cAMP-dependent protein kinase activity, demethylase activity, regulation of calcium ion import, positive regulation of tyrosine, phosphorylation of STAT protein, and tissue migration, etc. CONCLUSION: Thirteen characteristic modules and 49 susceptibility hub genes were identified, and their corresponding molecular functions may reflect the underlying mechanism of CAD&RA, hence providing insights into the development of clinical therapies against these diseases.
Collapse
Affiliation(s)
- Siqi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qikai Niu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lin Tong
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Sihong Liu
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Pengqian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Huamin Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
23
|
Zhang Y, Fang M, Xie W, Zhang YA, Jiang C, Li N, Li L, Tian J, Zhou C. Sprayable alginate hydrogel dressings with oxygen production and exosome loading for the treatment of diabetic wounds. Int J Biol Macromol 2023:125081. [PMID: 37245773 DOI: 10.1016/j.ijbiomac.2023.125081] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Chronic wound unhealing is a common complication in diabetic patients, which is mainly caused by tissue hypoxia, slow vascular recovery, and a long period of inflammation. Here we present a sprayable alginate hydrogel (SA) dressing consisting of oxygen-productive (CP) microspheres and exosomes (EXO) to promote local oxygen generation, accelerate macrophage towards M2 polarization, and improve cell proliferation in diabetic wounds. Results show that the release of oxygen continues for up to 7 days, reducing the expression of hypoxic factors in fibroblasts. In vivo, the diabetic wounds experiment showed that the CP/EXO/SA dressing apparently accelerated full-thickness wound healing characteristics such as the promotion of wound healing efficiency, rapid re-epithelization, favorable collagen deposition, abundant angiogenesis at the wound beds, and shortened inflammation period. EXO synergistic oxygen (CP/EXO/SA) dressing suggests a promising treatment measure for diabetic wounds.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Materials Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632, China
| | - Min Fang
- Department of Materials Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632, China
| | - Weijian Xie
- Department of Materials Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632, China
| | - Yu-Ang Zhang
- Department of Materials Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632, China
| | - Chengye Jiang
- Department of Materials Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632, China
| | - Na Li
- Foshan Stomatology Hospital, School of Medicine, Foshan University, Foshan, China
| | - Lihua Li
- Department of Materials Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632, China.
| | - Jinhuan Tian
- Department of Materials Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632, China
| | - Changren Zhou
- Department of Materials Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632, China
| |
Collapse
|
24
|
Alula K, Adali T, Han Ebedal O. Preparation characterization and blood compatibility studies of silk fibroin/gelatin/curcumin injectable hydrogels. Biomed Mater Eng 2023; 34:77-93. [PMID: 35988211 DOI: 10.3233/bme-221407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Hydrogel is a three-dimensional structure that has the potential to absorb and retain water within the mesh of its porous network structure. Currently hydrogels made from natural biopolymers are preferred in the discipline of biomedical applications because of their blood compatibility, adhesion of platelets and protein binding, ease of administration and delivery of ingredients to the place of action. OBJECTIVE The aim of this work was to prepare a hydrogel from natural biopolymers and evaluate its blood compatibility, swelling nature, prolonged degradation and morphological features in order to further recommend its clinical use. METHODS To prepare hydrogels, different combinations of gelatin, dialyzed SF, curcumin and N, N methylene bisacrylamide (MBA) were evenly mixed on a magnetic stirrer. After an hour of the gelation process it was kept in a refrigerator at 4 °C. For the characterization and biocompatibility studies of hydrogel, the swelling test and biodegradation analysis, SEM, FTIR, in vitro coagulation tests, total serum albumin and cholesterol level analysis were applied. RESULTS Injectable hydrogels were successfully made with significantly correlated combinations of polymers. The analysis of physiochemical biocompatibility studies and morphological characterization were done effectively. CONCLUSION The results of the study indicate that hydrogels made from natural biopolymers are a potential source and suitable matrices with excellent biocompatible nature acting as a useful device in delivering drugs.
Collapse
Affiliation(s)
- Kassahun Alula
- Department of Biomedical Engineering, Faculty of Engineering, Near East University, Mersin, Turkey.,Tissue Engineering and Biomaterials Research Center, Near East University, Mersin, Turkey.,College of Natural and Computational Science, Mizan-Tepi University, Tepi, Ethiopia
| | - Terin Adali
- Department of Biomedical Engineering, Faculty of Engineering, Near East University, Mersin, Turkey.,Tissue Engineering and Biomaterials Research Center, Near East University, Mersin, Turkey.,SUNUM Nanotechnology Research Center, Sabanci University, Istanbul, Turkey
| | - Oğuz Han Ebedal
- Clinical Biochemistry Laboratory, Near East University Hospital, Mersin, Turkey
| |
Collapse
|
25
|
Hodge JG, Robinson JL, Mellott AJ. Novel hydrogel system eliminates subculturing and improves retention of nonsenescent mesenchymal stem cell populations. Regen Med 2023; 18:23-36. [PMID: 36222003 PMCID: PMC9732917 DOI: 10.2217/rme-2022-0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/22/2022] [Indexed: 12/14/2022] Open
Abstract
Aim: To compare the physiological behavior of mesenchymal stem/stromal cells (MSCs) within an expandable tissue-mimetic 3D system relative to in vitro expansion in a traditional 2D system. Methods: Adipose-derived MSCs (ASCs) were continuously cultured for 6 weeks on either 2D culture plastic or in a 3D hydrogel system that eliminated subculturing. ASCs were assessed for senescence, 'stem-like' MSC markers, and ability for their secretome to augment a secondary cell population. Results: The 3D hydrogel system resulted in an enhanced retention of more regenerative, nonsenescent ASC populations that exhibited increased expression of 'stem-like' MSC surface markers. Conclusion: This study introduces a proof-of-concept design for a novel modular 3D system that can improve in vitro expansion of stem-like cell populations for future regenerative therapies.
Collapse
Affiliation(s)
- Jacob G Hodge
- Bioengineering Graduate Program, University of Kansas, Lawrence, KS 66045, USA
- Department of Plastic Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jennifer L Robinson
- Bioengineering Graduate Program, University of Kansas, Lawrence, KS 66045, USA
- Department of Chemical & Petroleum Engineering, University of Kansas, Lawrence, KS 66045, USA
| | - Adam J Mellott
- Department of Plastic Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Ronawk, LLC, Olathe, KS 66062, USA
| |
Collapse
|
26
|
Kazemi Asl S, Rahimzadegan M, Ostadrahimi R. The recent advancement in the chitosan hybrid-based scaffolds for cardiac regeneration after myocardial infarction. Carbohydr Polym 2023; 300:120266. [DOI: 10.1016/j.carbpol.2022.120266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/08/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022]
|
27
|
He Y, Li Q, Chen P, Duan Q, Zhan J, Cai X, Wang L, Hou H, Qiu X. A smart adhesive Janus hydrogel for non-invasive cardiac repair and tissue adhesion prevention. Nat Commun 2022; 13:7666. [PMID: 36509756 PMCID: PMC9744843 DOI: 10.1038/s41467-022-35437-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Multifunctional hydrogel with asymmetric and reversible adhesion characteristics is essential to handle the obstructions towards bioapplications of trauma removal and postoperative tissue synechia. Herein, we developed a responsively reversible and asymmetrically adhesive Janus hydrogel that enables on-demand stimuli-triggered detachment for efficient myocardial infarction (MI) repair, and synchronously prevents tissue synechia and inflammatory intrusion after surgery. In contrast with most irreversibly and hard-to-removable adhesives, this Janus hydrogel exhibited a reversible adhesion capability and can be noninvasively detached on-demand just by slight biologics. It is interesting that the adhesion behaves exhibited a molecularly encoded adhesion-adaptive stiffening feature similar to the self-protective stress-strain effect of biological tissues. In vitro and in vivo experiments demonstrated that Janus hydrogel can promote the maturation and functions of cardiomyocytes, and facilitate MI repair by reducing oxidative damage and inflammatory response, reconstructing electrical conduction and blood supply in infarcted area. Furthermore, no secondary injury and tissue synechia were triggered after transplantation of Janus hydrogel. This smart Janus hydrogel reported herein offers a potential strategy for clinically transformable cardiac patch and anti-postoperative tissue synechia barrier.
Collapse
Affiliation(s)
- Yutong He
- grid.284723.80000 0000 8877 7471The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900 People’s Republic of China ,grid.484195.5Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, Guangdong 510515 People’s Republic of China
| | - Qian Li
- grid.484195.5Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, Guangdong 510515 People’s Republic of China ,grid.284723.80000 0000 8877 7471School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515 People’s Republic of China
| | - Pinger Chen
- grid.484195.5Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, Guangdong 510515 People’s Republic of China ,grid.284723.80000 0000 8877 7471School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515 People’s Republic of China
| | - Qixiang Duan
- grid.484195.5Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, Guangdong 510515 People’s Republic of China ,grid.284723.80000 0000 8877 7471School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515 People’s Republic of China
| | - Jiamian Zhan
- grid.484195.5Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, Guangdong 510515 People’s Republic of China ,grid.284723.80000 0000 8877 7471School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515 People’s Republic of China
| | - Xiaohui Cai
- grid.284723.80000 0000 8877 7471School of Pharmaceutical Science, Southern Medical University, Guangzhou, Guangdong 510515 People’s Republic of China
| | - Leyu Wang
- grid.484195.5Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, Guangdong 510515 People’s Republic of China ,grid.284723.80000 0000 8877 7471Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515 People’s Republic of China
| | - Honghao Hou
- grid.484195.5Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, Guangdong 510515 People’s Republic of China ,grid.284723.80000 0000 8877 7471School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515 People’s Republic of China
| | - Xiaozhong Qiu
- grid.284723.80000 0000 8877 7471The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900 People’s Republic of China ,grid.484195.5Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, Guangdong 510515 People’s Republic of China
| |
Collapse
|
28
|
Jafari A, Ajji Z, Mousavi A, Naghieh S, Bencherif SA, Savoji H. Latest Advances in 3D Bioprinting of Cardiac Tissues. ADVANCED MATERIALS TECHNOLOGIES 2022; 7:2101636. [PMID: 38044954 PMCID: PMC10691862 DOI: 10.1002/admt.202101636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Indexed: 12/05/2023]
Abstract
Cardiovascular diseases (CVDs) are known as the major cause of death worldwide. In spite of tremendous advancements in medical therapy, the gold standard for CVD treatment is still transplantation. Tissue engineering, on the other hand, has emerged as a pioneering field of study with promising results in tissue regeneration using cells, biological cues, and scaffolds. Three-dimensional (3D) bioprinting is a rapidly growing technique in tissue engineering because of its ability to create complex scaffold structures, encapsulate cells, and perform these tasks with precision. More recently, 3D bioprinting has made its debut in cardiac tissue engineering, and scientists are investigating this technique for development of new strategies for cardiac tissue regeneration. In this review, the fundamentals of cardiac tissue biology, available 3D bioprinting techniques and bioinks, and cells implemented for cardiac regeneration are briefly summarized and presented. Afterwards, the pioneering and state-of-the-art works that have utilized 3D bioprinting for cardiac tissue engineering are thoroughly reviewed. Finally, regulatory pathways and their contemporary limitations and challenges for clinical translation are discussed.
Collapse
Affiliation(s)
- Arman Jafari
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
- Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, H3T 1C5, Canada
- Montreal TransMedTech Institute, Montreal, QC, H3T 1J4, Canada
| | - Zineb Ajji
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
- Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, H3T 1C5, Canada
- Montreal TransMedTech Institute, Montreal, QC, H3T 1J4, Canada
| | - Ali Mousavi
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
- Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, H3T 1C5, Canada
- Montreal TransMedTech Institute, Montreal, QC, H3T 1J4, Canada
| | - Saman Naghieh
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States
- Department of Bioengineering, Northeastern University, Boston, MA 02115, United States
- Sorbonne University, UTC CNRS UMR 7338, Biomechanics and Bioengineering (BMBI), University of Technology of Compiègne, 60203 Compiègne, France
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02128, United States
| | - Houman Savoji
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
- Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, H3T 1C5, Canada
- Montreal TransMedTech Institute, Montreal, QC, H3T 1J4, Canada
| |
Collapse
|
29
|
Roacho-Pérez JA, Garza-Treviño EN, Moncada-Saucedo NK, Carriquiry-Chequer PA, Valencia-Gómez LE, Matthews ER, Gómez-Flores V, Simental-Mendía M, Delgado-Gonzalez P, Delgado-Gallegos JL, Padilla-Rivas GR, Islas JF. Artificial Scaffolds in Cardiac Tissue Engineering. Life (Basel) 2022; 12:1117. [PMID: 35892919 PMCID: PMC9331725 DOI: 10.3390/life12081117] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/08/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are a leading cause of death worldwide. Current treatments directed at heart repair have several disadvantages, such as a lack of donors for heart transplantation or non-bioactive inert materials for replacing damaged tissue. Because of the natural lack of regeneration of cardiomyocytes, new treatment strategies involve stimulating heart tissue regeneration. The basic three elements of cardiac tissue engineering (cells, growth factors, and scaffolds) are described in this review, with a highlight on the role of artificial scaffolds. Scaffolds for cardiac tissue engineering are tridimensional porous structures that imitate the extracellular heart matrix, with the ability to promote cell adhesion, migration, differentiation, and proliferation. In the heart, there is an important requirement to provide scaffold cellular attachment, but scaffolds also need to permit mechanical contractility and electrical conductivity. For researchers working in cardiac tissue engineering, there is an important need to choose an adequate artificial scaffold biofabrication technique, as well as the ideal biocompatible biodegradable biomaterial for scaffold construction. Finally, there are many suitable options for researchers to obtain scaffolds that promote cell-electrical interactions and tissue repair, reaching the goal of cardiac tissue engineering.
Collapse
Affiliation(s)
- Jorge A. Roacho-Pérez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Elsa N. Garza-Treviño
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Nidia K. Moncada-Saucedo
- Servicio de Hematología, University Hospital “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico;
| | - Pablo A. Carriquiry-Chequer
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Laura E. Valencia-Gómez
- Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico; (L.E.V.-G.); (V.G.-F.)
| | - Elizabeth Renee Matthews
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA;
| | - Víctor Gómez-Flores
- Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico; (L.E.V.-G.); (V.G.-F.)
| | - Mario Simental-Mendía
- Orthopedic Trauma Service, University Hospital “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico;
| | - Paulina Delgado-Gonzalez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Juan Luis Delgado-Gallegos
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Gerardo R. Padilla-Rivas
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Jose Francisco Islas
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| |
Collapse
|
30
|
Akulo KA, Adali T, Moyo MTG, Bodamyali T. Intravitreal Injectable Hydrogels for Sustained Drug Delivery in Glaucoma Treatment and Therapy. Polymers (Basel) 2022; 14:polym14122359. [PMID: 35745935 PMCID: PMC9230531 DOI: 10.3390/polym14122359] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 12/11/2022] Open
Abstract
Glaucoma is extensively treated with topical eye drops containing drugs. However, the retention time of the loaded drugs and the in vivo bioavailability of the drugs are highly influenced before reaching the targeted area sufficiently, due to physiological and anatomical barriers of the eye, such as rapid nasolacrimal drainage. Poor intraocular penetration and frequent administration may also cause ocular cytotoxicity. A novel approach to overcome these drawbacks is the use of injectable hydrogels administered intravitreously for sustained drug delivery to the target site. These injectable hydrogels are used as nanocarriers to intimately interact with specific diseased ocular tissues to increase the therapeutic efficacy and drug bioavailability of the anti-glaucomic drugs. The human eye is very delicate, and is sensitive to contact with any foreign body material. However, natural biopolymers are non-reactive, biocompatible, biodegradable, and lack immunogenic and inflammatory responses to the host whenever they are incorporated in drug delivery systems. These favorable biomaterial properties have made them widely applicable in biomedical applications, with minimal adversity. This review highlights the importance of using natural biopolymer-based intravitreal hydrogel drug delivery systems for glaucoma treatment over conventional methods.
Collapse
Affiliation(s)
- Kassahun Alula Akulo
- Department of Biomedical Engineering, Faculty of Engineering, Near East University, Mersin 10, Lefkoşa 99138, Turkey; (K.A.A.); (M.T.G.M.)
- Tissue Engineering and Biomaterials Research Center, Near East University, Mersin 10, Lefkoşa 99138, Turkey
| | - Terin Adali
- Department of Biomedical Engineering, Faculty of Engineering, Near East University, Mersin 10, Lefkoşa 99138, Turkey; (K.A.A.); (M.T.G.M.)
- Tissue Engineering and Biomaterials Research Center, Near East University, Mersin 10, Lefkoşa 99138, Turkey
- Nanotechnology Research Center, Sabanci University SUNUM, Istanbul 34956, Turkey
- Correspondence:
| | - Mthabisi Talent George Moyo
- Department of Biomedical Engineering, Faculty of Engineering, Near East University, Mersin 10, Lefkoşa 99138, Turkey; (K.A.A.); (M.T.G.M.)
- Tissue Engineering and Biomaterials Research Center, Near East University, Mersin 10, Lefkoşa 99138, Turkey
| | - Tulin Bodamyali
- Department of Pathology, Faculty of Medicine, Girne American University, Mersin 10, Girne 99428, Turkey;
| |
Collapse
|
31
|
Fan X, Zhan J, Pan X, Liao X, Guo W, Chen P, Li H, Feng W, Cai Y, Chen M. Enzymatic self-assembly nanofibers anchoring mesenchymal stem cells induce cell spheroids and amplify paracrine function for myocardial infarction therapy. CHEMICAL ENGINEERING JOURNAL 2022; 436:135224. [DOI: 10.1016/j.cej.2022.135224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
32
|
Adhesive hydrogels with toughness, stretchability, and conductivity performances for motion monitoring. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04110-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Sharma A, Gupta S, Archana S, Verma RS. Emerging Trends in Mesenchymal Stem Cells Applications for Cardiac Regenerative Therapy: Current Status and Advances. Stem Cell Rev Rep 2022; 18:1546-1602. [PMID: 35122226 DOI: 10.1007/s12015-021-10314-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 12/29/2022]
Abstract
Irreversible myocardium infarction is one of the leading causes of cardiovascular disease (CVD) related death and its quantum is expected to grow in coming years. Pharmacological intervention has been at the forefront to ameliorate injury-related morbidity and mortality. However, its outcomes are highly skewed. As an alternative, stem cell-based tissue engineering/regenerative medicine has been explored quite extensively to regenerate the damaged myocardium. The therapeutic modality that has been most widely studied both preclinically and clinically is based on adult multipotent mesenchymal stem cells (MSC) delivered to the injured heart. However, there is debate over the mechanistic therapeutic role of MSC in generating functional beating cardiomyocytes. This review intends to emphasize the role and use of MSC in cardiac regenerative therapy (CRT). We have elucidated in detail, the various aspects related to the history and progress of MSC use in cardiac tissue engineering and its multiple strategies to drive cardiomyogenesis. We have further discussed with a focus on the various therapeutic mechanism uncovered in recent times that has a significant role in ameliorating heart-related problems. We reviewed recent and advanced technologies using MSC to develop/create tissue construct for use in cardiac regenerative therapy. Finally, we have provided the latest update on the usage of MSC in clinical trials and discussed the outcome of such studies in realizing the full potential of MSC use in clinical management of cardiac injury as a cellular therapy module.
Collapse
Affiliation(s)
- Akriti Sharma
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, 600036, Tamil Nadu, India
| | - Santosh Gupta
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, 600036, Tamil Nadu, India
| | - S Archana
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, 600036, Tamil Nadu, India
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, 600036, Tamil Nadu, India.
| |
Collapse
|
34
|
Esmaeili H, Patino-Guerrero A, Hasany M, Ansari MO, Memic A, Dolatshahi-Pirouz A, Nikkhah M. Electroconductive biomaterials for cardiac tissue engineering. Acta Biomater 2022; 139:118-140. [PMID: 34455109 PMCID: PMC8935982 DOI: 10.1016/j.actbio.2021.08.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022]
Abstract
Myocardial infarction (MI) is still the leading cause of mortality worldwide. The success of cell-based therapies and tissue engineering strategies for treatment of injured myocardium have been notably hindered due to the limitations associated with the selection of a proper cell source, lack of engraftment of engineered tissues and biomaterials with the host myocardium, limited vascularity, as well as immaturity of the injected cells. The first-generation approaches in cardiac tissue engineering (cTE) have mainly relied on the use of desired cells (e.g., stem cells) along with non-conductive natural or synthetic biomaterials for in vitro construction and maturation of functional cardiac tissues, followed by testing the efficacy of the engineered tissues in vivo. However, to better recapitulate the native characteristics and conductivity of the cardiac muscle, recent approaches have utilized electroconductive biomaterials or nanomaterial components within engineered cardiac tissues. This review article will cover the recent advancements in the use of electrically conductive biomaterials in cTE. The specific emphasis will be placed on the use of different types of nanomaterials such as gold nanoparticles (GNPs), silicon-derived nanomaterials, carbon-based nanomaterials (CBNs), as well as electroconductive polymers (ECPs) for engineering of functional and electrically conductive cardiac tissues. We will also cover the recent progress in the use of engineered electroconductive tissues for in vivo cardiac regeneration applications. We will discuss the opportunities and challenges of each approach and provide our perspectives on potential avenues for enhanced cTE. STATEMENT OF SIGNIFICANCE: Myocardial infarction (MI) is still the primary cause of death worldwide. Over the past decade, electroconductive biomaterials have increasingly been applied in the field of cardiac tissue engineering. This review article provides the readers with the leading advances in the in vitro applications of electroconductive biomaterials for cTE along with an in-depth discussion of injectable/transplantable electroconductive biomaterials and their delivery methods for in vivo MI treatment. The article also discusses the knowledge gaps in the field and offers possible novel avenues for improved cardiac tissue engineering.
Collapse
Affiliation(s)
- Hamid Esmaeili
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | | | - Masoud Hasany
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | | | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alireza Dolatshahi-Pirouz
- Department of Health Technology, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark; Department of Health Technology, Technical University of Denmark, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs, Lyngby, Denmark
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA; Biodesign Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
35
|
Fu B, Wang X, Chen Z, Jiang N, Guo Z, Zhang Y, Zhang S, Liu X, Liu L. Improved myocardial performance in infarcted rat heart by injection of disulfide-cross-linked chitosan hydrogels loaded with basic fibroblast growth factor. J Mater Chem B 2022; 10:656-665. [PMID: 35014648 DOI: 10.1039/d1tb01961a] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Myocardial infarction (MI) has been considered as the leading cause of cardiovascular-related deaths worldwide. Basic fibroblast growth factor (bFGF) is a member of the fibroblast growth factor family that promotes angiogenesis after MI; however, it has poor clinical efficacy due to proteolytic degradation, low drug accumulation, and severe drug-induced side effects. In this study, an injectable disulfide-cross-linked chitosan hydrogel loaded with bFGF was prepared via a thiol-disulfide exchange reaction for MI treatment. The thiol-disulfide exchange reaction between pyridyl disulfide-modified carboxymethyl chitosan (CMCS-S-S-Py) and reduced BSA (rBSA) was carried out under physiological conditions (37 °C and pH 7.4). The mechanical properties of the disulfide-cross-linked chitosan hydrogel were evaluated based on the molar ratio of the pyridyl disulfide groups of CMCS-S-S-Py and the thiol groups of rBSA. The disulfide-cross-linked chitosan hydrogel showed good swelling performance, rapid glutathione-triggered degradation behavior and well-defined cell proliferation towards NIH 3T3 fibroblast cells. In the process of establishing a rat MI model, the squeezing heart method was used to make the operation more accurate and the mortality of rats was decreased by using a ventilator. The disulfide-cross-linked chitosan hydrogel loaded with bFGF (bFGF-hydrogel) was injected into a peri-infarcted area of cardiac tissue immediately following MI. Echocardiography demonstrated that the left ventricular functions were improved by the bFGF-hydrogel after 28 days of treatment. Histological results revealed that the hydrogel significantly reduced the fibrotic area of MI, and this was further improved by the bFGF-hydrogel treatment. TUNEL and immunohistochemical staining results showed that the bFGF-hydrogel had a more synergistic effect on antiapoptosis and proangiogenesis than using either bFGF or the hydrogel alone.
Collapse
Affiliation(s)
- Bo Fu
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin 300051, P. R. China. .,Tianjin Medical University, Tianjin 300203, P. R. China
| | - Xiaobei Wang
- Department of Materials Engineering, North China Institute of Aerospace Engineering, Langfang 065000, P. R. China
| | - Zhengda Chen
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin 300051, P. R. China. .,Tianjin Medical University, Tianjin 300203, P. R. China
| | - Nan Jiang
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin 300051, P. R. China.
| | - Zhigang Guo
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin 300051, P. R. China.
| | - Yuhui Zhang
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin 300051, P. R. China.
| | - Shaopeng Zhang
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin 300051, P. R. China.
| | - Xiankun Liu
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin 300051, P. R. China.
| | - Li Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| |
Collapse
|
36
|
Chitosan as Functional Biomaterial for Designing Delivery Systems in Cardiac Therapies. Gels 2021; 7:gels7040253. [PMID: 34940314 PMCID: PMC8702013 DOI: 10.3390/gels7040253] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases are a leading cause of mortality across the globe, and transplant surgeries are not always successful since it is not always possible to replace most of the damaged heart tissues, for example in myocardial infarction. Chitosan, a natural polysaccharide, is an important biomaterial for many biomedical and pharmaceutical industries. Based on the origin, degree of deacetylation, structure, and biological functions, chitosan has emerged for vital tissue engineering applications. Recent studies reported that chitosan coupled with innovative technologies helped to load or deliver drugs or stem cells to repair the damaged heart tissue not just in a myocardial infarction but even in other cardiac therapies. Herein, we outlined the latest advances in cardiac tissue engineering mediated by chitosan overcoming the barriers in cardiac diseases. We reviewed in vitro and in vivo data reported dealing with drug delivery systems, scaffolds, or carriers fabricated using chitosan for stem cell therapy essential in cardiac tissue engineering. This comprehensive review also summarizes the properties of chitosan as a biomaterial substrate having sufficient mechanical stability that can stimulate the native collagen fibril structure for differentiating pluripotent stem cells and mesenchymal stem cells into cardiomyocytes for cardiac tissue engineering.
Collapse
|
37
|
Khan K, Makhoul G, Yu B, Jalani G, Derish I, Rutman AK, Cerruti M, Schwertani A, Cecere R. Amniotic stromal stem cell-loaded hydrogel repairs cardiac tissue in infarcted rat hearts via paracrine mediators. J Tissue Eng Regen Med 2021; 16:110-127. [PMID: 34726328 DOI: 10.1002/term.3262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 09/18/2021] [Accepted: 10/19/2021] [Indexed: 11/07/2022]
Abstract
The use of stem cells to repair the heart after a myocardial infarction (MI) remains promising, yet clinical trials over the past 20 years suggest that cells fail to integrate into the native tissue, resulting in limited improvements in cardiac function. Here, we demonstrate the cardioprotective potential of a composite inserting human amniotic stromal mesenchymal stem cells (ASMCs) in a chitosan and hyaluronic acid (C/HA) based hydrogel in a rat MI model. Mechanical characterization of the C/HA platform indicated a swift elastic conversion at 40°C and a rapid sol-gel transition time at 37°C. Cell viability assay presented active and proliferating AMSCs in the C/HA. The ASMCs + C/HA injected composite significantly increased left ventricular ejection fraction, fractional shortening, and neovessel formation. The encapsulated AMSCs were abundantly detected in the infarcted myocardium 6 weeks post-administration and co-expressed cardiac proteins and notably proliferative markers. Proteomic profiling revealed that extracellular vesicles released from hypoxia preconditioned ASMCs contained proteins involved in cytoprotection, angiogenesis, cardiac differentiation and non-canonical Wnt-signaling. Independent activation of non-canonical Wnt-signaling pathways in ASMCs induced cardiogenesis. Despite a low injected cellular density at baseline, the encapsulated AMSCs were abundantly retained and increased cardiac function. Furthermore, the C/HA hydrogel provided an active milieu for the AMSCs to proliferate, co-express cardiac proteins, and induce new vessel formation. Hence, this novel composite of AMSCs + C/HA scaffold is a conceivable candidate that could restore cardiac function and reduce remodeling.
Collapse
Affiliation(s)
- Kashif Khan
- Divisions of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Georges Makhoul
- Divisions of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Bin Yu
- Divisions of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Ghulam Jalani
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec, Canada
| | - Ida Derish
- Divisions of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Alissa K Rutman
- Human Islet Transplant Laboratory, Department of Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Marta Cerruti
- Divisions of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Adel Schwertani
- Divisions of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Renzo Cecere
- Divisions of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada.,The Royal Victoria Hospital Montreal, Montreal, Quebec, Canada
| |
Collapse
|
38
|
Reshad RAI, Jishan TA, Chowdhury NN. Chitosan and its Broad Applications: A Brief Review. JOURNAL OF CLINICAL AND EXPERIMENTAL INVESTIGATIONS 2021. [DOI: 10.29333/jcei/11268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
39
|
Khazaei S, Soleimani M, Tafti SHA, Aghdam RM, Hojati Z. Improvement of Heart Function After Transplantation of Encapsulated Stem Cells Induced with miR-1/Myocd in Myocardial Infarction Model of Rat. Cell Transplant 2021; 30:9636897211048786. [PMID: 34606735 PMCID: PMC8493326 DOI: 10.1177/09636897211048786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cardiovascular disease is one of the most common causes of death worldwide. Mesenchymal stem cells (MSCs) are one of the most common sources in cell-based therapies in heart regeneration. There are several methods to differentiate MSCs into cardiac-like cells, such as gene induction. Moreover, using a three-dimensional (3D) culture, such as hydrogels increases efficiency of differentiation. In the current study, mouse adipose-derived MSCs were co-transduced with lentiviruses containing microRNA-1 (miR-1) and Myocardin (Myocd). Then, expression of cardiac markers, such as NK2 homeobox 5(Nkx2-5), GATA binding protein 4 (Gata4), and troponin T type 2 (Tnnt2) was investigated, at both gene and protein levels in two-dimensional (2D) culture and chitosan/collagen hydrogel (CS/CO) as a 3D culture. Additionally, after induction of myocardial infarction (MI) in rats, a patch containing the encapsulated induced cardiomyocytes (iCM/P) was implanted to MI zone. Subsequently, 30 days after MI induction, echocardiography, immunohistochemistry staining, and histological examination were performed to evaluate cardiac function. The results of quantitative real -time polymerase chain reaction (qRT-PCR) and immunocytochemistry showed that co-induction of miR-1 and Myocd in MSCs followed by 3D culture of transduced cells increased expression of cardiac markers. Besides, results of in vivo study implicated that heart function was improved in MI model of rats in iCM/P-treated group. The results suggested that miR-1/Myocd induction combined with encapsulation of transduced cells in CS/CO hydrogel increased efficiency of MSCs differentiation into iCMs and could improve heart function in MI model of rats after implantation.
Collapse
Affiliation(s)
- Samaneh Khazaei
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, Isfahan University, Isfahan, Iran
| | - Masoud Soleimani
- Tissue Engineering and Hematology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Tissue Engineering and Nanomedicine Research Center, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Hossein Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zohreh Hojati
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, Isfahan University, Isfahan, Iran
| |
Collapse
|
40
|
Bioactive Scaffolds in Stem Cell-Based Therapies for Myocardial Infarction: a Systematic Review and Meta-Analysis of Preclinical Trials. Stem Cell Rev Rep 2021; 18:2104-2136. [PMID: 34463903 DOI: 10.1007/s12015-021-10186-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2021] [Indexed: 10/20/2022]
Abstract
The use of bioactive scaffolds in conjunction with stem cell therapies for cardiac repair after a myocardial infarction shows significant promise for clinical translation. We performed a systematic review and meta-analysis of preclinical trials that investigated the use of bioactive scaffolds to support stem cell-aided cardiac regeneration, in comparison to stem cell treatment alone. Cochrane Library, Medline, Embase, PubMed, Scopus, Web of Science, and grey literature were searched through April 23, 2020 and 60 articles were included in the final analysis. The overall effect size observed in scaffold and stem cell-treated small animals compared to stem cell-treated controls for ejection fraction (EF) was 7.98 [95% confidence interval (CI): 6.36, 9.59] and for fractional shortening (FS) was 5.50 [95% CI: 4.35, 6.65] in small animal models. The largest improvements in EF and FS were observed when hydrogels were used (MD = 8.45 [95% CI: 6.46, 10.45] and MD = 5.76 [95% CI: 4.46, 7.05], respectively). Subgroup analysis revealed that cardiac progenitor cells had the largest effect size for FS, and was significant from pluripotent, mesenchymal and endothelial stem cell types. In large animal studies, the overall improvement of EF favoured the use of stem cell-embedded scaffolds compared to direct injection of cells (MD = 10.49 [95% CI: 6.30, 14.67]). Significant publication bias was present in the small animal trials for EF and FS. This study supports the use of bioactive scaffolds to aid in stem cell-based cardiac regeneration. Hydrogels should be further investigated in larger animal models for clinical translation.
Collapse
|
41
|
Hemalatha T, Aarthy M, Pandurangan S, Kamini NR, Ayyadurai N. A deep dive into the darning effects of biomaterials in infarct myocardium: current advances and future perspectives. Heart Fail Rev 2021; 27:1443-1467. [PMID: 34342769 DOI: 10.1007/s10741-021-10144-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 12/21/2022]
Abstract
Myocardial infarction (MI) occurs due to the obstruction of coronary arteries, a major crux that restricts blood flow and thereby oxygen to the distal part of the myocardium, leading to loss of cardiomyocytes and eventually, if left untreated, leads to heart failure. MI, a potent cardiovascular disorder, requires intense therapeutic interventions and thereby presents towering challenges. Despite the concerted efforts, the treatment strategies for MI are still demanding, which has paved the way for the genesis of biomaterial applications. Biomaterials exhibit immense potentials for cardiac repair and regeneration, wherein they act as extracellular matrix replacing scaffolds or as delivery vehicles for stem cells, protein, plasmids, etc. This review concentrates on natural, synthetic, and hybrid biomaterials; their function; and interaction with the body, mechanisms of repair by which they are able to improve cardiac function in a MI milieu. We also provide focus on future perspectives that need attention. The cognizance provided by the research results certainly indicates that biomaterials could revolutionize the treatment paradigms for MI with a positive impact on clinical translation.
Collapse
Affiliation(s)
- Thiagarajan Hemalatha
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Mayilvahanan Aarthy
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Suryalakshmi Pandurangan
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Numbi Ramudu Kamini
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Niraikulam Ayyadurai
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India.
| |
Collapse
|
42
|
Parchehbaf-Kashani M, Ansari H, Mahmoudi E, Barekat M, Sepantafar M, Rajabi S, Pahlavan S. Heart Repair Induced by Cardiac Progenitor Cell Delivery within Polypyrrole-Loaded Cardiogel Post-ischemia. ACS APPLIED BIO MATERIALS 2021; 4:4849-4861. [PMID: 35007034 DOI: 10.1021/acsabm.1c00133] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Myocardial infarction (MI) irreversibly injures the heart tissue. Cardiovascular tissue engineering has been developed as a promising therapeutic approach for post-MI repair. Previously, we discovered the ability of a polypyrrole (PPy)-incorporated cardiogel (CG) for improvement of maturity and functional synchrony of rat neonatal cardiomyocytes. Here, we used the cross-linked form of PPy-incorporated CG (CG-PPy), in order to improve electromechanical properties of scaffold, for application in cardiac progenitor cell (CPC) transplantation on post-MI rat hearts. Improved mechanical property and electrical conductivity (sixfold) were evident in the cross-linked CG-PPy (P1) compared to cross-linked CG (C1) scaffolds. Transplantation of CPC-loaded P1 (P1-CPC) resulted in substantial improvement of cardiac functional properties. Furthermore, lower fibrotic tissue and higher CPC retention were observed. The grafted cells showed cardiomyocyte characteristics when stained with human cardiac troponin T and connexin43 antibodies, while neovessel formation was similarly prominent. These findings highlight the therapeutic promise of the P1 scaffold as a CPC carrier for functional restoration of the heart post-MI.
Collapse
Affiliation(s)
- Melika Parchehbaf-Kashani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Hassan Ansari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Elena Mahmoudi
- Massachusetts General Hospital, Harvard Medical School, Boston 02115, Massachusetts, United States
| | - Maryam Barekat
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Mohammadmajid Sepantafar
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Sarah Rajabi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| |
Collapse
|
43
|
Biotherapeutic-loaded injectable hydrogels as a synergistic strategy to support myocardial repair after myocardial infarction. J Control Release 2021; 335:216-236. [PMID: 34022323 DOI: 10.1016/j.jconrel.2021.05.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
Myocardial infarction (MI) has been considered as the leading cause of cardiovascular-related deaths worldwide. Although traditional therapeutic agents including various bioactive species such as growth factors, stem cells, and nucleic acids have demonstrated somewhat usefulness for the restoration of cardiac functions, the therapeutic efficiency remains unsatisfactory most likely due to the off-target-associated side effects and low localized retention of the used therapeutic agents in the infarcted myocardium, which constitutes a substantial barrier for the effective treatment of MI. Injectable hydrogels are regarded as a minimally invasive technology that can overcome the clinical and surgical limitations of traditional stenting by a modulated sol-gel transition and localized transport of a variety of encapsulated cargoes, leading to enhanced therapeutic efficiency and improved patient comfort and compliance. However, the design of injectable hydrogels for myocardial repair and the mechanism of action of bioactive substance-loaded hydrogels for MI repair remain unclear. To elucidate these points, we summarized the recent progresses made on the use of injectable hydrogels for encapsulation of various therapeutic substances for MI treatment with an emphasis on the mechanism of action of hydrogel systems for myocardial repair. Specifically, the pathogenesis of MI and the rational design of injectable hydrogels for myocardial repair were presented. Next, the mechanisms of various biotherapeutic substance-loaded injectable hydrogels for myocardial repair was discussed. Finally, the potential challenges and future prospects for the use of injectable hydrogels for MI treatment were proposed for the purpose of drawing theoretical guidance on the development of novel therapeutic strategies for efficient treatment of MI.
Collapse
|
44
|
Mesenchymal Stem Cells for Cardiac Regeneration: from Differentiation to Cell Delivery. Stem Cell Rev Rep 2021; 17:1666-1694. [PMID: 33954876 DOI: 10.1007/s12015-021-10168-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) are so far the most widely researched stem cells in clinics and used as an experimental cellular therapy module, particularly in cardiac regeneration and repair. Ever since the discovery of cardiomyogenesis induction in MSCs, a wide variety of differentiation protocols have been extensively used in preclinical models. However, pre differentiated MSC-derived cardiomyocytes have not been used in clinical trials; highlighting discrepancies and limitations in its use as a source of derived cardiomyocytes for transplantation to improve the damaged heart function. Therefore, this review article focuses on the strategies used to derive cardiomyocytes-like cells from MSCs isolated from three widely used tissue sources and their differentiation efficiencies. We have further discussed the role of MSCs in inducing angiogenesis as a cellular precursor to endothelial cells and its secretory aspects including exosomes. We have then discussed the strategies used for delivering cells in the damaged heart and how its retention plays a critical role in the overall outcome of the therapy. We have also conversed about the scope of the local and systemic modes of delivery of MSCs and the application of biomaterials to improve the overall delivery efficacy and function. We have finally discussed the advantages and limitations of cell delivery to the heart and the future scope of MSCs in cardiac regenerative therapy.
Collapse
|
45
|
Mousavi A, Mashayekhan S, Baheiraei N, Pourjavadi A. Biohybrid oxidized alginate/myocardial extracellular matrix injectable hydrogels with improved electromechanical properties for cardiac tissue engineering. Int J Biol Macromol 2021; 180:692-708. [PMID: 33753199 DOI: 10.1016/j.ijbiomac.2021.03.097] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
Injectable hydrogels which mimic the physicochemical and electromechanical properties of cardiac tissue is advantageous for cardiac tissue engineering. Here, a newly-developed in situ forming double-network hydrogel derived from biological macromolecules (oxidized alginate (OA) and myocardial extracellular matrix (ECM)) with improved mechanical properties and electrical conductivity was optimized. 3-(2-aminoethyl amino) propyltrimethoxysilane (APTMS)-functionalized reduced graphene oxide (Amine-rGO) was added to this system with varied concentrations to promote electromechanical properties of the hydrogel. Alginate was partially oxidized with an oxidation degree of 5% and the resulting OA was cross-linked via calcium ions which was reacted with amine groups of ECM and Amine-rGO through Schiff-base reaction. In situ forming hydrogels composed of 4% w/v OA and 0.8% w/v ECM showed appropriate gelation time and tensile Young's modulus. The electroactive hydrogels showed electrical conductivity in the range of semi-conductors and a suitable biodegradation profile for cardiac tissue engineering. Cytocompatibility analysis was performed by MTT assay against human umbilical vein endothelial cells (HUVECs), and the optimal hydrogel with 25 μg/ml concentration of Amine-rGO showed higher cell viability than that for other samples. The results of this study present the potential of OA/myocardial ECM-based hydrogel incorporated with Amine-rGO to provide a desirable platform for cardiac tissue engineering.
Collapse
Affiliation(s)
- Ali Mousavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Shohreh Mashayekhan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Ali Pourjavadi
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
46
|
Zhao L, Li X, Li Y, Wang X, Yang W, Ren J. Polypyrrole-Doped Conductive Self-Healing Composite Hydrogels with High Toughness and Stretchability. Biomacromolecules 2021; 22:1273-1281. [PMID: 33596651 DOI: 10.1021/acs.biomac.0c01777] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In recent years, hydrogels with self-healing capability and conductivity have become ideal materials for the design of electrodes, soft robotics, electronic skin, and flexible wearable devices. However, it is still a critical challenge to achieve the synergistic characteristics of high conductivity, excellent self-healing efficiency without any stimulations, and decent mechanical properties. Herein, we developed a ferric-ion (Fe3+) crosslinked acrylic acid and chitosan polymer hydrogel using embedded polypyrrole particles with features of high conductivity (2.61S·m-1) and good mechanical performances (a tensile strength of 628%, a stress of 0.33 MPa, an elastic modulus of 0.146 MPa, and a toughness of 1.14 MJ·m-3). In addition, the self-healing efficiency achieved 93% in tensile strength after healing in the air for 9 h without any external stimuli. Therefore, with these outstanding mechanical, self-healing, and conductive abilities all in one, it is possible to fabricate a new kind of soft material with wide applications.
Collapse
Affiliation(s)
- Lingling Zhao
- Chemistry & Chemical Engineering College, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Northwest Normal University, Lanzhou 730070, PR China
| | - Xin Li
- The High School Attached to Northwest Normal University, Lanzhou 730070, PR China
| | - Yan Li
- Chemistry & Chemical Engineering College, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Northwest Normal University, Lanzhou 730070, PR China
| | - Xuemiao Wang
- Chemistry & Chemical Engineering College, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Northwest Normal University, Lanzhou 730070, PR China
| | - Wu Yang
- Chemistry & Chemical Engineering College, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Northwest Normal University, Lanzhou 730070, PR China
| | - Jie Ren
- Chemistry & Chemical Engineering College, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Northwest Normal University, Lanzhou 730070, PR China
| |
Collapse
|
47
|
Song Y, Wang H, Yue F, Lv Q, Cai B, Dong N, Wang Z, Wang L. Silk-Based Biomaterials for Cardiac Tissue Engineering. Adv Healthc Mater 2020; 9:e2000735. [PMID: 32939999 DOI: 10.1002/adhm.202000735] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/29/2020] [Indexed: 12/18/2022]
Abstract
Cardiovascular diseases are one of the leading causes of death globally. Among various cardiovascular diseases, myocardial infarction is an important one. Compared with conventional treatments, cardiac tissue engineering provides an alternative to repair and regenerate the injured tissue. Among various types of materials used for tissue engineering applications, silk biomaterials have been increasingly utilized due to their biocompatibility, biological functions, and many favorable physical/chemical properties. Silk biomaterials are often used alone or in combination with other materials in the forms of patches or hydrogels, and serve as promising delivery systems for bioactive compounds in tissue engineering repair scenarios. This review focuses primarily on the promising characteristics of silk biomaterials and their recent advances in cardiac tissue engineering.
Collapse
Affiliation(s)
- Yu Song
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huifang Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feifei Yue
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiying Lv
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bo Cai
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zheng Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
48
|
Yuan Z, Qin Q, Yuan M, Wang H, Li R. Development and novel design of clustery graphene oxide formed Conductive Silk hydrogel cell vesicle to repair and routine care of myocardial infarction: Investigation of its biological activity for cell delivery applications. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
49
|
Ma J, Huang C. Composition and Mechanism of Three-Dimensional Hydrogel System in Regulating Stem Cell Fate. TISSUE ENGINEERING. PART B, REVIEWS 2020; 26:498-518. [PMID: 32272868 DOI: 10.1089/ten.teb.2020.0021] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Three-dimensional (3D) hydrogel systems integrating different types of stem cells and scaffolding biomaterials have an important application in tissue engineering. The biomimetic hydrogels that pattern cell suspensions within 3D configurations of biomaterial networks allow for the transport of bioactive factors and mimic the stem cell niche in vivo, thereby supporting the proliferation and differentiation of stem cells. The composition of a 3D hydrogel system determines the physical and chemical characteristics that regulate stem cell function through a biological mechanism. Here, we discuss the natural and synthetic hydrogel compositions that have been employed in 3D scaffolding, focusing on their characteristics, fabrication, biocompatibility, and regulatory effects on stem cell proliferation and differentiation. We also discuss the regulatory mechanisms of cell-matrix interaction and cell-cell interaction in stem cell activities in various types of 3D hydrogel systems. Understanding hydrogel compositions and their cellular mechanisms can yield insights into how scaffolding biomaterials and stem cells interact and can lead to the development of novel hydrogel systems of stem cells in tissue engineering and stem cell-based regenerative medicine. Impact statement Three-dimensional hydrogel system of stem cell mimicking the stemcell niche holds significant promise in tissue engineering and regenerative medicine. Exactly how hydrogel composition regulates stem cell fate is not well understood. This review focuses on the composition of hydrogel, and how the hydrogel composition and its properties regulate the stem cell adhesion, growth, and differentiation. We propose that cell-matrix interaction and cell-cell interaction are important regulatory mechanisms in stem cell activities. Our review provides key insights into how the hydrogel composition regulates the stem cell fate, untangling the engineering of three-dimensional hydrogel systems for stem cells.
Collapse
Affiliation(s)
- Jianrui Ma
- Center for Neurobiology, Shantou University Medical College, Shantou, China
| | - Chengyang Huang
- Center for Neurobiology, Shantou University Medical College, Shantou, China
- Department of Biological Chemistry, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, California, USA
| |
Collapse
|
50
|
He L, Chen X. Cardiomyocyte Induction and Regeneration for Myocardial Infarction Treatment: Cell Sources and Administration Strategies. Adv Healthc Mater 2020; 9:e2001175. [PMID: 33000909 DOI: 10.1002/adhm.202001175] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/15/2020] [Indexed: 02/06/2023]
Abstract
Occlusion of coronary artery and subsequent damage or death of myocardium can lead to myocardial infarction (MI) and even heart failure-one of the leading causes of deaths world wide. Notably, myocardium has extremely limited regeneration potential due to the loss or death of cardiomyocytes (i.e., the cells of which the myocardium is comprised) upon MI. A variety of stem cells and stem cell-derived cardiovascular cells, in situ cardiac fibroblasts and endogenous proliferative epicardium, have been exploited to provide renewable cellular sources to treat injured myocardium. Also, different strategies, including direct injection of cell suspensions, bioactive molecules, or cell-incorporated biomaterials, and implantation of artificial cardiac scaffolds (e.g., cell sheets and cardiac patches), have been developed to deliver renewable cells and/or bioactive molecules to the MI site for the myocardium regeneration. This article briefly surveys cell sources and delivery strategies, along with biomaterials and their processing techniques, developed for MI treatment. Key issues and challenges, as well as recommendations for future research, are also discussed.
Collapse
Affiliation(s)
- Lihong He
- Department of Cell Biology Medical College of Soochow University Suzhou 215123 China
| | - Xiongbiao Chen
- Department of Mechanical Engineering Division of Biomedical Engineering University of Saskatchewan Saskatoon S7N5A9 Canada
| |
Collapse
|