1
|
Shao J, Liu Y, Li R, Deng Z, Liu L, Wang J, Dai S, Su Z, Cui J, Chen Y, Yan X, Yang P, Maitz MF, Zhao A. PEGNB-Heparin-Liposome composite hydrogels for in situ spraying and ultra-fast adhesion: meeting the challenges of endothelial repair of vascular injury. Acta Biomater 2025:S1742-7061(25)00311-3. [PMID: 40381928 DOI: 10.1016/j.actbio.2025.04.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 04/13/2025] [Accepted: 04/30/2025] [Indexed: 05/20/2025]
Abstract
Carotid atherosclerosis is an essential cause of transient cerebral ischemia, stroke, and other cerebrovascular diseases, and carotid endarterectomy (CEA) is currently the most effective treatment for removing plaque and restoring the vascular lumen. However, the CEA disrupts the integrity and functionality of the endothelium and predisposes it to complications such as restenosis and thrombosis. Hydrogels can closely mimic the natural extracellular matrix, allowing a wide tuning of physical and chemical properties. These properties make hydrogels the most promising candidate materials for the repair of vascular injured intima. In this study, a multifunctional intimal repair hydrogel of poly(ethylene glycol)-norbornene (PEGNB)/ Heparin/ Liposome is proposed with the advantages of ultra-rapid adhesion to the wet tissue of the vascular inner wall, maintenance of adhesion stability under continuous erosion by blood flow. The hydrogel was supplemented with poly(vinyl butyral) (PVB) to reduce its swelling rate, and Rapamycin (RAPA) was encapsulated in this study as the drug into the cationic liposomes. This composite multifunctional (PNHB@Lip(RAPA)) hydrogel has exhibited outstanding anti-coagulation properties, markedly suppressed the proliferation and migration of SMCs, and displayed favourable cytocompatibility and blood compatibility. Concurrently, the capacity of the PNHB@Lip(RAPA) hydrogel to stimulate endovascular regeneration and deter restenosis and thrombus formation was validated through carotid intima damage repair experiments. These findings collectively indicate that the PNHB@Lip(RAPA) hydrogel represents a promising material for intimal injury repair, offering innovative insights into intimal repair methodologies. STATEMENT OF SIGNIFICANCE: Carotid atherosclerosis is a leading cause of transient cerebral ischemia, stroke, and cerebrovascular disorders. Although carotid endarterectomy (CEA) effectively removes plaques, it damages endothelial integrity, increasing the risk of restenosis and thrombosis. To address this, we developed PNHB@Lip(RAPA), a multifunctional intimal repair hydrogel composed of PEGNB, heparin, and rapamycin-encapsulated liposomes. This hydrogel rapidly adheres to wet vascular walls, resists blood flow erosion, and exhibits low swelling. The hydrogel demonstrates superior anticoagulation, inhibits smooth muscle cell proliferation and migration, and shows favourable cytocompatibility. Experimental results confirm its ability to promote endovascular regeneration while preventing restenosis and thrombosis. In summary, PNHB@Lip(RAPA) hydrogel is a promising material for intimal repair, offering innovative solutions to improve CEA postoperative outcomes.
Collapse
Affiliation(s)
- Jiang Shao
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.; Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yanqiu Liu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Ruolan Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zengyi Deng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Luying Liu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Jingyue Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Sheng Dai
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Zhaogui Su
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Jiawei Cui
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Yian Chen
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Xiaoling Yan
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Ping Yang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Manfred F Maitz
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.; Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6. 01069 Dresden., German
| | - Ansha Zhao
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China..
| |
Collapse
|
2
|
Mayasin YP, Osinnikova MN, Kharisova CB, Kitaeva KV, Filin IY, Gorodilova AV, Kutovoi GI, Solovyeva VV, Golubev AI, Rizvanov AA. Extracellular Matrix as a Target in Melanoma Therapy: From Hypothesis to Clinical Trials. Cells 2024; 13:1917. [PMID: 39594665 PMCID: PMC11592585 DOI: 10.3390/cells13221917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Melanoma is a malignant, highly metastatic neoplasm showing increasing morbidity and mortality. Tumor invasion and angiogenesis are based on remodeling of the extracellular matrix (ECM). Selective inhibition of functional components of cell-ECM interaction, such as hyaluronic acid (HA), matrix metalloproteinases (MMPs), and integrins, may inhibit tumor progression and enhance the efficacy of combination treatment with immune checkpoint inhibitors (ICIs), chemotherapy, or immunotherapy. In this review, we combine the results of different approaches targeting extracellular matrix elements in melanoma in preclinical and clinical studies. The identified limitations of many approaches, including side effects, low selectivity, and toxicity, indicate the need for further studies to optimize therapy. Nevertheless, significant progress in expanding our understanding of tumor biology and the development of targeted therapies holds great promise for the early approaches developed several decades ago to inhibit metastasis through ECM targeting.
Collapse
Affiliation(s)
- Yuriy P. Mayasin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Maria N. Osinnikova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Chulpan B. Kharisova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Kristina V. Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Ivan Y. Filin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Anna V. Gorodilova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Grigorii I. Kutovoi
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Anatolii I. Golubev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| |
Collapse
|
3
|
Shen Z, Liu Z, Li M, Han L, Wang J, Wu X, Sang S. Effects of TET2-mediated methylation reconstruction on A2058 melanoma cell sensitivity to matrix stiffness in a 3D culture system. Exp Cell Res 2024; 442:114224. [PMID: 39187151 DOI: 10.1016/j.yexcr.2024.114224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Matrix stiffness is a crucial factor in the tumor microenvironment, impacting tumor progression and development. TET2 is vital for epigenetic regulation in melanoma and is significantly reduced in advanced melanomas compared with nevi and thin melanomas. However, it is unclear how TET2 mediates the effect of matrix stiffness on melanoma cells. This study utilized A2058 cell lines and prepared different stiffness collagen hydrogels to evaluate TET2 overexpression (TET2OE) and mutant (TET2M) melanoma cells' activity, proliferation, and invasion. A2058 melanoma cells' viability and invasion decreased with increased matrix stiffness, with TET2OE cells experiencing a more significant impact than TET2M cells. Methylation analysis revealed that TET2 determines gene methylation levels, influencing cell-ECM interactions. Transcriptome analysis confirmed that TET2 promotes matrix stiffness's effect on melanoma cell fate. This research provides promising directions and opportunities for melanoma treatment.
Collapse
Affiliation(s)
- Zhizhong Shen
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zixian Liu
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Meng Li
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan, 030031, China
| | - Lu Han
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan, 030031, China
| | - Jianming Wang
- General Hospital of TISCO, North Street, Xinghualing District, Taiyuan, 030809, China
| | - Xunwei Wu
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo, China; Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China; Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
4
|
He A, Wu M, Pu Y, Li R, Zhang Y, He J, Xia Y, Ma Y. Fluoxetine as a Potential Therapeutic Agent for Inhibiting Melanoma Brain and Lung Metastasis: Induction of Apoptosis, G0/G1 Cell Cycle Arrest, and Disruption of Autophagy Flux. J Cancer 2024; 15:3825-3840. [PMID: 38911391 PMCID: PMC11190770 DOI: 10.7150/jca.95592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/01/2024] [Indexed: 06/25/2024] Open
Abstract
Brain metastases and lung metastases are major causes of treatment failure and related mortality in melanoma. Fluoxetine hydrochloride (FXT), a widely-used antidepressant, has emerged as a potential anticancer agent in preclinical studies. Previous research has shown its potential to inhibit melanoma. However, its efficacy and the underlying mechanisms in melanoma metastasis, especially concerning brain metastases and lung metastases, remain underexplored. This study investigates FXT's inhibitory effects on melanoma growth and metastasis to the lung and brain. Employing a combination of in vitro assays, we demonstrate FXT's potent suppression of melanoma growth through induction of intrinsic apoptosis, disruption of autophagic flux, and cell cycle arrest at the G0/G1 phase. In in vivo mouse models, we found that FXT exhibits strong inhibitory activity against melanoma brain metastases and lung metastases. Our findings provide a foundation for future clinical exploration of FXT as a novel treatment strategy for melanoma, underscoring its ability to target both primary and metastatic lesions.
Collapse
Affiliation(s)
- Anqi He
- Department of Rehabilitation Medicine and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mengling Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yamin Pu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ru Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yiwen Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing He
- Department of Rehabilitation Medicine and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yong Xia
- Department of Rehabilitation Medicine and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yimei Ma
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
5
|
Deng H, Wang Y, Yin Y, Shu J, Zhang J, Shu X, Wu F, He J. Effects of matrix viscoelasticity on cell-matrix interaction, actin cytoskeleton organization, and apoptosis of osteosarcoma MG-63 cells. J Mater Chem B 2023; 12:222-232. [PMID: 38079114 DOI: 10.1039/d3tb02001k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Many recent reports have shown the effects of viscoelasticity of the extracellular matrix on the spreading, migration, proliferation, survival and cell-matrix interaction of mesenchymal stem cells and normal cells. However, the effect of matrix viscoelasticity on the behavior of tumor cells is still in the state of preliminary exploration. To this aim, we prepared a viscoelastic hydrogel matrix with a storage modulus of about 2 kPa and a loss modulus adjustable from 0 to 600 Pa, through adding linear alginate and regulating the compactness of a polyacrylamide covalent network. Overall, the addition of viscous components inhibited the apoptosis of osteosarcoma MG-63 cells, while it promoted their spreading and proliferation and in particular led to a well-developed cytoskeleton organization. However, with the increase of the viscous fraction, this trend was reversed, and the apoptosis of MG-63 cells gradually increased with gradually decreased spreading and proliferation, accompanied by a surprising manner change of the cytoskeleton from fusiform cells dominated by focal adhesion to dendritic cells dominated by pseudopodia. Besides the upregulation of MAPK, Ras, Rap1 and PI3K-Akt pathways commonly involved in mechanotransduction, the upregulation of the Wnt pathway and inhibited endoplasmic reticulum stress-mediated apoptosis were observed for the viscous matrix with a low loss modulus. The high viscosity matrix showed additional involvement of Hippo and NF-kappa B signaling pathways related to the cell-matrix interaction, with downregulation of the endoplasmic reticulum stress pathway and upregulation related to mitochondrial organization. Our study would provide insight into the effect of viscosity on fundamental behaviors of tumor cells and might have important implications in designing antitumor materials.
Collapse
Affiliation(s)
- Huan Deng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China.
| | - Yao Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China.
| | - Yue Yin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China.
| | - Jun Shu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China.
| | - Junwei Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China.
| | - Xuedong Shu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China.
| | - Fang Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China.
| | - Jing He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China.
| |
Collapse
|
6
|
Liu F, Wang L, Zhai X, Ji S, Ye J, Zhu Z, Teng C, Dong W, Wei W. A multi-functional double cross-linked chitosan hydrogel with tunable mechanical and antibacterial properties for skin wound dressing. Carbohydr Polym 2023; 322:121344. [PMID: 37839832 DOI: 10.1016/j.carbpol.2023.121344] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/16/2023] [Accepted: 08/27/2023] [Indexed: 10/17/2023]
Abstract
Chitosan hydrogels with essential antibacterial properties and biocompatibility have great potential in tissue engineering and regeneration medicine. However, pure chitosan hydrogel could be limited by insufficient mechanical properties. In this work, we designed a multi-functional chitosan hydrogel based on the combination of chitosan methacrylate (CTSMA) and sulfhydrated chitosan (CTSSH), which is cross-linked simultaneously by free-radical polymerization reaction and Thiol-ene reaction. The CTSMA/CTSSH (CMS) hydrogels displayed superior tissue adhesive and mechanical properties when compared to pure CTSMA hydrogel. Additionally, the resulting hydrogels exhibited potent antimicrobial effects against both E. coli and S. aureus. Besides, the CMS hydrogels exhibited good biocompatibility as demonstrated by cytotoxicity and cell proliferation experiments using fibroblasts cells (L929) and adipose-derived stem cells (ADSCs). In vivo experiment, the repairing effect of hydrogels on full-thickness skin defect model in rats was studied. Histological and immunohistochemical staining results showed that CMS hydrogels promoted angiogenesis, dermal repair and epidermal regeneration. Overall, the study highlights the potential of the CMS hydrogels as a promising biomaterial in wound healing applications.
Collapse
Affiliation(s)
- Fengling Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China; Department of Orthopaedic Surgery, the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Lu Wang
- Department of Orthopaedic Surgery, the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Xinrang Zhai
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China; Department of Orthopaedic Surgery, the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Shunxian Ji
- Department of Orthopaedic Surgery, the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Jingjia Ye
- Department of Orthopaedic Surgery, the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Zhiqiang Zhu
- Department of Orthopaedic Surgery, the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Chong Teng
- Department of Orthopaedic Surgery, the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China.
| | - Wei Dong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Wei Wei
- Department of Orthopaedic Surgery, the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China.
| |
Collapse
|
7
|
Buonvino S, Arciero I, Martinelli E, Seliktar D, Melino S. Modelling the disease: H 2S-sensitivity and drug-resistance of triple negative breast cancer cells can be modulated by embedding in isotropic micro-environment. Mater Today Bio 2023; 23:100862. [PMID: 38046276 PMCID: PMC10689286 DOI: 10.1016/j.mtbio.2023.100862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/26/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Abstract
Three-dimensional (3D) cell culture systems provide more physiologically relevant information, representing more accurately the actual microenvironment where cells reside in tissues. However, the differences between the tissue culture plate (TCP) and 3D culture systems in terms of tumour cell growth, proliferation, migration, differentiation and response to the treatment have not been fully elucidated. Tumoroid microspheres containing the MDA-MB 231 breast cancer cell line were prepared using either tunable PEG-fibrinogen (PFs) or tunable PEG-silk fibroin (PSFs) hydrogels, respectively named MDAPFs and MDAPSFs. The cancer cells in the tumoroids showed changes both in globular morphology and at the protein expression level. A decrease of both Histone H3 acetylation and cyclin D1 expression in all 3D systems, compared to the 2D cell culture, was detected in parallel to changes of the matrix stiffness. The effects of a glutathionylated garlic extract (GSGa), a slow H2S-releasing donor, were investigated on both tumoroid systems. A pro-apoptotic effect of GSGa on tumour cell growth in 2D culture was observed as opposed to a pro-proliferative effect apparent in both MDAPFs and MDAPSFs. A dedicated ad hoc 3D cell migration chip was designed and optimized for studying tumour cell invasion in a gel-in-gel configuration. An anti-cell-invasion effect of the GSGa was observed in the 2D cell culture, whereas a pro-migratory effect in both MDAPFs and MDAPSFs was observed in the 3D cell migration chip assay. An increase of cyclin D1 expression after GSGa treatment was observed in agreement with an increase of the cell invasion index. Our results suggest that the "dimensionality" and the stiffness of the 3D cell culture milieu can change the response to both the gasotransmitter H2S and doxorubicin due to differences in both H2S diffusion and changes in protein expression. Moreover, we uncovered a direct relation between the cyclin D1 expression and the stiffness of the 3D cell culture milieu, suggesting the potential causal involvement of the cyclin D1 as a bio-marker for sensitivity of the tumour cells to their matrix stiffness. Therefore, our hydrogel-based tumoroids represent a valid tunable model for studying the physically induced transdifferentiation (PiT) of cancer cells and as a more reliable and predictive in vitro screening platform to investigate the effects of anti-tumour drugs.
Collapse
Affiliation(s)
- Silvia Buonvino
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, via della Ricerca Scientifica, 00133, Rome, Italy
| | - Ilaria Arciero
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, via della Ricerca Scientifica, 00133, Rome, Italy
| | - Eugenio Martinelli
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
- Interdisciplinary Center for Advanced Studies on Lab-on -Chip and Organ-on-Chip Applications, University of Rome Tor Vergata, Rome, Italy
| | - Dror Seliktar
- Department of Biomedical Engineering, Technion Israel Institute of Technology, 3200003, Haifa, Israel
| | - Sonia Melino
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, via della Ricerca Scientifica, 00133, Rome, Italy
- NAST Centre, University of Rome ‘Tor Vergata’, Rome, Italy
| |
Collapse
|
8
|
Stöberl S, Balles M, Kellerer T, Rädler JO. Photolithographic microfabrication of hydrogel clefts for cell invasion studies. LAB ON A CHIP 2023; 23:1886-1895. [PMID: 36867426 DOI: 10.1039/d2lc01105k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Invasion of migrating cells into surrounding tissue plays a key role in cancer metastasis and immune response. In order to assess invasiveness, most in vitro invasion assays measure the degree to which cells migrate between microchambers that provide a chemoattractant gradient across a polymeric membrane with defined pores. However, in real tissue cells experience soft, mechanically deformable microenvironments. Here we introduce RGD-functionalized hydrogel structures that present pressurized clefts for invasive migration of cells between reservoirs maintaining a chemotactic gradient. Using UV-photolithography, equally spaced blocks of polyethylene glycol-norbornene (PEG-NB) hydrogels are formed, which subsequently swell and close the interjacent gaps. The swelling ratio and final contours of the hydrogel blocks were determined using confocal microscopy confirming a swelling induced closure of the structures. The velocity profile of cancer cells transmigrating through the clefts, which we name 'sponge clamp', is found to depend on the elastic modulus as well as the gap size between the swollen blocks. The 'sponge clamp' discriminates the invasiveness of two distinct cell lines, MDA-MB-231 and HT-1080. The approach provides soft 3D-microstructures mimicking invasion conditions in extracellular matrix.
Collapse
Affiliation(s)
- Stefan Stöberl
- Faculty of Physics and Center for NanoScience, Ludwig Maximilians-University, Munich, Germany.
| | - Miriam Balles
- Faculty of Physics and Center for NanoScience, Ludwig Maximilians-University, Munich, Germany.
| | - Thomas Kellerer
- Faculty of Physics and Center for NanoScience, Ludwig Maximilians-University, Munich, Germany.
- Department of Applied Science and Mechatronics, University of Applied Science, Munich, Germany
| | - Joachim O Rädler
- Faculty of Physics and Center for NanoScience, Ludwig Maximilians-University, Munich, Germany.
| |
Collapse
|
9
|
Marzi M, Rostami Chijan M, Zarenezhad E. Hydrogels as promising therapeutic strategy for the treatment of skin cancer. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
McGlynn JA, Schultz KM. Characterizing Nonuniform Hydrogel Elastic Moduli Using Autofluorescence. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- John A. McGlynn
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - Kelly M. Schultz
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
11
|
Breaking through the barrier: Modelling and exploiting the physical microenvironment to enhance drug transport and efficacy. Adv Drug Deliv Rev 2022; 184:114183. [PMID: 35278523 DOI: 10.1016/j.addr.2022.114183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/03/2022] [Accepted: 03/06/2022] [Indexed: 02/08/2023]
Abstract
Pharmaceutical compounds are the main pillar in the treatment of various illnesses. To administer these drugs in the therapeutic setting, multiple routes of administration have been defined, including ingestion, inhalation, and injection. After administration, drugs need to find their way to the intended target for high effectiveness, and this penetration is greatly dependent on obstacles the drugs encounter along their path. Key hurdles include the physical barriers that are present within the body and knowledge of those is indispensable for progress in the development of drugs with increased therapeutic efficacy. In this review, we examine several important physical barriers, such as the blood-brain barrier, the gut-mucosal barrier, and the extracellular matrix barrier, and evaluate their influence on drug transport and efficacy. We explore various in vitro model systems that aid in understanding how parameters within the barrier model affect drug transfer and therapeutic effect. We conclude that physical barriers in the body restrict the quantity of drugs that can pass through, mainly as a consequence of the barrier architecture. In addition, the specific physical properties of the tissue can trigger intracellular changes, altering cell behavior in response to drugs. Though the barriers negatively influence drug distribution, physical stimulation of the surrounding environment may also be exploited as a mechanism to control drug release. This drug delivery approach is explored in this review as a potential alternative to the conventional ways of delivering therapeutics.
Collapse
|
12
|
Liu XQ, Chen XT, Liu ZZ, Gu SS, He LJ, Wang KP, Tang RZ. Biomimetic Matrix Stiffness Modulates Hepatocellular Carcinoma Malignant Phenotypes and Macrophage Polarization through Multiple Modes of Mechanical Feedbacks. ACS Biomater Sci Eng 2020; 6:3994-4004. [DOI: 10.1021/acsbiomaterials.0c00669] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xi-Qiu Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Xin-Ting Chen
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Zhen-Zhen Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Sai-Sai Gu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Li-Jie He
- Graphitene Ltd., Flixborough, North Lincolnshire DN15 8SJ, United Kingdom
| | - Kai-Ping Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Rui-Zhi Tang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| |
Collapse
|
13
|
Di Caprio N, Bellas E. Collagen Stiffness and Architecture Regulate Fibrotic Gene Expression in Engineered Adipose Tissue. ACTA ACUST UNITED AC 2020; 4:e1900286. [PMID: 32529801 DOI: 10.1002/adbi.201900286] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/24/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022]
Abstract
Adipose tissue (AT) has a dynamic extracellular matrix (ECM) surrounding adipocytes that allows for remodeling during metabolic fluctuations. During the progression of obesity, AT has increased ECM deposition, stiffening, and remodeling, resulting in a pro-fibrotic dysfunctional state. Here, the incorporation of ethylene glycol-bis-succinic acid N-hydroxysuccinimide ester (PEGDS) allows for control over 3D collagen hydrogel stiffness and architecture to investigate its influence on adipocyte metabolic and fibrotic function. Upon stiffening and altering ECM architecture, adipocytes did not alter their expression of key adipokines, leptin, and adiponectin. However, they do increase actin cytoskeletal fiber formation, pro-fibrotic gene expression, ECM deposition, and remodeling within a stiffer, 3D collagen hydrogel. For example, COL6A3 gene expression is upregulated approximately twofold, resulting in increased deposition of pericellular collagen VI alpha 3 surrounding adipocytes. Furthermore, inhibition of actin contractility results in a reversal of pro-fibrotic gene expression and ECM deposition, indicating that adipocytes are mediating mechanical cues through actin cytoskeletal networks. This study demonstrates that ECM stiffness and architecture plays a critical regulatory role in adipocyte fibrotic function and contributes to the overall pro-fibrotic dysfunctional state of AT during the progression of obesity and AT fibrosis.
Collapse
Affiliation(s)
- Nikolas Di Caprio
- Department of Bioengineering, Temple University, 1947 N. 12th St, Philadelphia, PA, 19122, USA
| | - Evangelia Bellas
- Department of Bioengineering, Temple University, 1947 N. 12th St, Philadelphia, PA, 19122, USA
| |
Collapse
|
14
|
Girard CA, Lecacheur M, Ben Jouira R, Berestjuk I, Diazzi S, Prod'homme V, Mallavialle A, Larbret F, Gesson M, Schaub S, Pisano S, Audebert S, Mari B, Gaggioli C, Leucci E, Marine JC, Deckert M, Tartare-Deckert S. A Feed-Forward Mechanosignaling Loop Confers Resistance to Therapies Targeting the MAPK Pathway in BRAF-Mutant Melanoma. Cancer Res 2020; 80:1927-1941. [PMID: 32179513 DOI: 10.1158/0008-5472.can-19-2914] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/15/2020] [Accepted: 03/06/2020] [Indexed: 11/16/2022]
Abstract
Aberrant extracellular matrix (ECM) deposition and stiffening is a physical hallmark of several solid cancers and is associated with therapy failure. BRAF-mutant melanomas treated with BRAF and MEK inhibitors almost invariably develop resistance that is frequently associated with transcriptional reprogramming and a de-differentiated cell state. Melanoma cells secrete their own ECM proteins, an event that is promoted by oncogenic BRAF inhibition. Yet, the contribution of cancer cell-derived ECM and tumor mechanics to drug adaptation and therapy resistance remains poorly understood. Here, we show that melanoma cells can adapt to targeted therapies through a mechanosignaling loop involving the autocrine remodeling of a drug-protective ECM. Analyses revealed that therapy-resistant cells associated with a mesenchymal dedifferentiated state displayed elevated responsiveness to collagen stiffening and force-mediated ECM remodeling through activation of actin-dependent mechanosensors Yes-associated protein (YAP) and myocardin-related transcription factor (MRTF). Short-term inhibition of MAPK pathway also induced mechanosignaling associated with deposition and remodeling of an aligned fibrillar matrix. This provided a favored ECM reorganization that promoted tolerance to BRAF inhibition in a YAP- and MRTF-dependent manner. Matrix remodeling and tumor stiffening were also observed in vivo upon exposure of BRAF-mutant melanoma cell lines or patient-derived xenograft models to MAPK pathway inhibition. Importantly, pharmacologic targeting of YAP reversed treatment-induced excessive collagen deposition, leading to enhancement of BRAF inhibitor efficacy. We conclude that MAPK pathway targeting therapies mechanically reprogram melanoma cells to confer a drug-protective matrix environment. Preventing melanoma cell mechanical reprogramming might be a promising therapeutic strategy for patients on targeted therapies. SIGNIFICANCE: These findings reveal a biomechanical adaptation of melanoma cells to oncogenic BRAF pathway inhibition, which fuels a YAP/MRTF-dependent feed-forward loop associated with tumor stiffening, mechanosensing, and therapy resistance. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/10/1927/F1.large.jpg.
Collapse
Affiliation(s)
- Christophe A Girard
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | - Margaux Lecacheur
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | - Rania Ben Jouira
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | - Ilona Berestjuk
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | - Serena Diazzi
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | - Virginie Prod'homme
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | - Aude Mallavialle
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | - Frédéric Larbret
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | - Maéva Gesson
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | | | - Sabrina Pisano
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Stéphane Audebert
- Aix-Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Bernard Mari
- Université Côte d'Azur, CNRS, IPMC, Sophia Antipolis, France
| | | | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium.,TRACE, LKI Leuven Cancer Institute, KU Leuven
| | - Jean-Christophe Marine
- Laboratory For Molecular Cancer Biology, VIB Center for Cancer Biology, VIB, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Marcel Deckert
- Université Côte d'Azur, INSERM, C3M, Nice, France. .,Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | - Sophie Tartare-Deckert
- Université Côte d'Azur, INSERM, C3M, Nice, France. .,Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| |
Collapse
|
15
|
Taghavi S, Amsden BG. In vivo degradation behavior of enzyme-degradable poly(trimethylene carbonate)-based biohybrid networks of varying water content. ACTA ACUST UNITED AC 2020; 15:025001. [PMID: 31846945 DOI: 10.1088/1748-605x/ab62ff] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polymeric biohybrid networks have significant potential as supportive materials for soft connective tissue regeneration. Their success in this regard is determined by their initial mechanical properties, which are dependent on their water content, as well as the rate at which these properties change with time due to cell mediated degradation. In this study the in vivo degradation and tissue response following implantation of matrix metalloproteinase (MMP)-degradable poly(trimethylene carbonate) (PTMC)-based biohybrid networks were assessed in a Wistar rat model. The networks examined varied in equilibrium water content from circa 20% to 70% w/w. The networks degraded through MMP secretion by inflammatory cells at the tissue-material interface, generating a mass loss profile consistent with surface erosion but modulus and sol content changes consistent with a bulk erosion process. This degradation profile was explained in terms of a population gradient in MMP concentration from the surface to the bulk of the networks due to diffusion restrictions. A histological analysis of the tissue surrounding the implants confirmed a moderate tissue response comparable to that observed towards a VicrylTM suture, suggesting that these new materials can be considered biocompatible.
Collapse
Affiliation(s)
- Shadi Taghavi
- Department of Chemical Engineering and Human Mobility Research Centre Queen's University, Kingston ON K7L 3N6, Canada
| | | |
Collapse
|
16
|
Young J, Hua X, Somsel H, Reichart F, Kessler H, Spatz JP. Integrin Subtypes and Nanoscale Ligand Presentation Influence Drug Sensitivity in Cancer Cells. NANO LETTERS 2020; 20:1183-1191. [PMID: 31908168 PMCID: PMC7020138 DOI: 10.1021/acs.nanolett.9b04607] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Cancer cell-matrix interactions have been shown to enhance cancer cell survival via the activation of pro-survival signaling pathways. These pathways are initiated at the site of interaction, i.e., integrins, and thus, their inhibition has been the target of therapeutic strategies. Individual roles for fibronectin-binding integrin subtypes αvβ3 and α5β1 have been shown for various cellular processes; however, a systematic comparison of their function in adhesion-dependent chemoresistance is lacking. Here, we utilize integrin subtype-specific peptidomimetics for αvβ3 and α5β1, both as blocking agents on fibronectin-coated surfaces and as surface-immobilized adhesion sites, in order to parse out their role in breast cancer cell survival. Block copolymer micelle nanolithography is utilized to immobilize peptidomimetics onto highly ordered gold nanoparticle arrays with biologically relevant interparticle spacings (35, 50, or 70 nm), thereby providing a platform for ascertaining the dependence of ligand spacing in chemoprotection. We show that several cellular properties-morphology, focal adhesion formation, and migration-are intricately linked to both the integrin subtype and their nanospacing. Importantly, we show that chemotherapeutic drug sensitivity is highly dependent on both parameters, with smaller ligand spacing generally hindering survival. Furthermore, we identify ligand type-specific patterns of drug sensitivity, with enhanced chemosurvival when cells engage αvβ3 vs α5β1 on fibronectin; however, this is heavily reliant on nanoscale spacing, as the opposite is observed when ligands are spaced at 70 nm. These data imply that even nanoscale alterations in extracellular matrix properties have profound effects on cancer cell survival and can thus inform future therapies and drug testing platforms.
Collapse
Affiliation(s)
- Jennifer
L. Young
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, 69120 Heidelberg, Germany
- Department
of Biophysical Chemistry, Heidelberg University, 69120 Heidelberg, Germany
| | - Ximeng Hua
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, 69120 Heidelberg, Germany
- Department
of Biophysical Chemistry, Heidelberg University, 69120 Heidelberg, Germany
| | - Heidi Somsel
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, 69120 Heidelberg, Germany
- Department
of Biophysical Chemistry, Heidelberg University, 69120 Heidelberg, Germany
| | - Florian Reichart
- Department
of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Horst Kessler
- Department
of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Joachim P. Spatz
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, 69120 Heidelberg, Germany
- Department
of Biophysical Chemistry, Heidelberg University, 69120 Heidelberg, Germany
- E-mail: . Phone: +49 6221 486-420
| |
Collapse
|
17
|
Deville SS, Cordes N. The Extracellular, Cellular, and Nuclear Stiffness, a Trinity in the Cancer Resistome-A Review. Front Oncol 2019; 9:1376. [PMID: 31867279 PMCID: PMC6908495 DOI: 10.3389/fonc.2019.01376] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Abstract
Alterations in mechano-physiological properties of a tissue instigate cancer burdens in parallel to common genetic and epigenetic alterations. The chronological and mechanistic interrelation between the various extra- and intracellular aspects remains largely elusive. Mechano-physiologically, integrins and other cell adhesion molecules present the main mediators for transferring and distributing forces between cells and the extracellular matrix (ECM). These cues are channeled via focal adhesion proteins, termed the focal adhesomes, to cytoskeleton and nucleus and vice versa thereby affecting the pathophysiology of multicellular cancer tissues. In combination with simultaneous activation of diverse downstream signaling pathways, the phenotypes of cancer cells are created and driven characterized by deregulated transcriptional and biochemical cues that elicit the hallmarks of cancer. It, however, remains unclear how elastostatic modifications, i.e., stiffness, in the extracellular, intracellular, and nuclear compartment contribute and control the resistance of cancer cells to therapy. In this review, we discuss how stiffness of unique tumor components dictates therapy response and what is known about the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Sara Sofia Deville
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Helmholtz-Zentrum Dresden - Rossendorf, Technische Universität Dresden, Dresden, Germany
- Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Nils Cordes
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Helmholtz-Zentrum Dresden - Rossendorf, Technische Universität Dresden, Dresden, Germany
- Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- Germany German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
18
|
Hunckler MD, Medina JD, Coronel MM, Weaver JD, Stabler CL, García AJ. Linkage Groups within Thiol-Ene Photoclickable PEG Hydrogels Control In Vivo Stability. Adv Healthc Mater 2019; 8:e1900371. [PMID: 31111689 DOI: 10.1002/adhm.201900371] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/06/2019] [Indexed: 11/11/2022]
Abstract
Thiol-norbornene (thiol-ene) photoclickable poly(ethylene glycol) (PEG) hydrogels are a versatile biomaterial for cell encapsulation, drug delivery, and regenerative medicine. Numerous in vitro studies with these 4-arm ester-linked PEG-norbornene (PEG-4eNB) hydrogels demonstrate robust cytocompatibility and ability to retain long-term integrity with nondegradable crosslinkers. However, when transplanted in vivo into the subcutaneous or intraperitoneal space, these PEG-4eNB hydrogels with nondegradable crosslinkers rapidly degrade within 24 h. This characteristic limits the usefulness of PEG-4eNB hydrogels in biomedical applications. Replacing the ester linkage with an amide linkage (PEG-4aNB) mitigates this rapid in vivo degradation, and the PEG-4aNB hydrogels maintain long-term in vivo stability for months. Furthermore, when compared to PEG-4eNB, the PEG-4aNB hydrogels demonstrate equivalent mechanical properties, crosslinking kinetics, and high cytocompatibility with rat islets and human mesenchymal stem cells. Thus, the PEG-4aNB hydrogels may be a suitable replacement platform without necessitating critical design changes or sacrificing key properties relevant to the well-established PEG-4eNB hydrogels.
Collapse
Affiliation(s)
- Michael D. Hunckler
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology 315 Ferst Dr. NW Atlanta GA 30332 USA
| | - Juan D. Medina
- Coulter Department of Biomedical Engineering Georgia Institute of Technology 313 Ferst Dr. NW Atlanta GA 30332 USA
| | - Maria M. Coronel
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology 315 Ferst Dr. NW Atlanta GA 30332 USA
| | - Jessica D. Weaver
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology 315 Ferst Dr. NW Atlanta GA 30332 USA
| | - Cherie L. Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering University of Florida 1275 Center Dr. Gainesville FL 32611 USA
| | - Andrés J. García
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology 315 Ferst Dr. NW Atlanta GA 30332 USA
| |
Collapse
|
19
|
Regier MC, Olszewski E, Carter CC, Aitchison JD, Kaushansky A, Davis J, Berthier E, Beebe DJ, Stevens KR. Spatial presentation of biological molecules to cells by localized diffusive transfer. LAB ON A CHIP 2019; 19:2114-2126. [PMID: 31111131 PMCID: PMC6755031 DOI: 10.1039/c9lc00122k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cellular decisions in human development, homeostasis, regeneration, and disease are coordinated in large part by signals that are spatially localized in tissues. These signals are often soluble, such that biomolecules produced by one cell diffuse to receiving cells. To recapitulate soluble factor patterning in vitro, several microscale strategies have been developed. However, these techniques often introduce new variables into cell culture experiments (e.g., fluid flow) or are limited in their ability to pattern diverse solutes in a user-defined manner. To address these challenges, we developed an adaptable method that facilitates spatial presentation of biomolecules across cells in traditional open cultures in vitro. This technique employs device inserts that are placed in standard culture wells, which support localized diffusive pattern transmission through microscale spaces between device features and adherent cells. Devices can be removed and cultures can be returned to standard media following patterning. We use this method to spatially control cell labeling with pattern features ranging in scale from several hundred microns to millimeters and with sequential application of multiple patterns. To better understand the method we investigate relationships between pattern fidelity, device geometry, and consumption and diffusion kinetics using finite element modeling. We then apply the method to spatially defining reporter cell heterogeneity by patterning a small molecule modulator of genetic recombination with the requisite sustained exposure. Finally, we demonstrate use of this method for patterning larger and more slowly diffusing particles by creating focal sites of gene delivery and infection with adenoviral, lentiviral, and Zika virus particles. Thus, our method leverages devices that interface with standard culture vessels to pattern diverse diffusible factors, geometries, exposure dynamics, and recipient cell types, making it well poised for adoption by researchers across various fields of biological research.
Collapse
Affiliation(s)
- Mary C Regier
- Department of Bioengineering, University of Washington, 98195 Seattle, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sun Han Chang R, Lee JCW, Pedron S, Harley BAC, Rogers SA. Rheological Analysis of the Gelation Kinetics of an Enzyme Cross-linked PEG Hydrogel. Biomacromolecules 2019; 20:2198-2206. [PMID: 31046247 PMCID: PMC6765384 DOI: 10.1021/acs.biomac.9b00116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The diverse requirements of hydrogels for tissue engineering motivate the development of cross-linking reactions to fabricate hydrogel networks with specific features, particularly those amenable to the activity of biological materials (e.g., cells, proteins) that do not require exposure to UV light. We describe gelation kinetics for a library of thiolated poly(ethylene glycol) sulfhydryl hydrogels undergoing enzymatic cross-linking via horseradish peroxidase, a catalyst-driven reaction activated by hydrogen peroxide. We report the use of small-amplitude oscillatory shear (SAOS) to quantify gelation kinetics as a function of reaction conditions (hydrogen peroxide and polymer concentrations). We employ a novel approach to monitor the change of viscoelastic properties of hydrogels over the course of gelation (Δ tgel) via the time derivative of the storage modulus (d G'/d t). This approach, fundamentally distinct from traditional methods for defining a gel point, quantifies the time interval over which gelation events occur. We report that gelation depends on peroxide and polymer concentrations as well as system temperature, where the effects of hydrogen peroxide tend to saturate over a critical concentration. Further, this cross-linking reaction can be reversed using l-cysteine for rapid cell isolation, and the rate of hydrogel dissolution can be monitored using SAOS.
Collapse
Affiliation(s)
- Raul Sun Han Chang
- Department Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Johnny Ching-Wei Lee
- Department Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sara Pedron
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Brendan A. C. Harley
- Department Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Simon A. Rogers
- Department Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
21
|
Van den Broeck L, Piluso S, Soultan AH, De Volder M, Patterson J. Cytocompatible carbon nanotube reinforced polyethylene glycol composite hydrogels for tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:1133-1144. [DOI: 10.1016/j.msec.2019.01.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/01/2018] [Accepted: 01/07/2019] [Indexed: 12/11/2022]
|
22
|
Medina SH, Bush B, Cam M, Sevcik E, DelRio FW, Nandy K, Schneider JP. Identification of a mechanogenetic link between substrate stiffness and chemotherapeutic response in breast cancer. Biomaterials 2019; 202:1-11. [PMID: 30818087 PMCID: PMC6474249 DOI: 10.1016/j.biomaterials.2019.02.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 01/24/2023]
Abstract
Mechanical feedback from the tumor microenvironment regulates an array of processes underlying cancer biology. For example, increased stiffness of mammary extracellular matrix (ECM) drives malignancy and alters the phenotypes of breast cancer cells. Despite this link, the role of substrate stiffness in chemotherapeutic response in breast cancer remains unclear. This is complicated by routine culture and adaptation of cancer cell lines to unnaturally rigid plastic or glass substrates, leading to profound changes in their growth, metastatic potential and, as we show here, chemotherapeutic response. We demonstrate that primary breast cancer cells undergo dramatic phenotypic changes when removed from the host microenvironment and cultured on rigid surfaces, and that drug responses are profoundly altered by the mechanical feedback cells receive from the culture substrate. Conversely, primary breast cancer cells cultured on substrates mimicking the mechanics of their host tumor ECM have a similar genetic profile to the in situ cells with respect to drug activity and resistance pathways. These results suggest substrate stiffness plays a significant role in susceptibility of breast cancer to clinically-approved chemotherapeutics, and presents an opportunity to improve drug discovery efforts by integrating mechanical rigidity as a parameter in screening campaigns.
Collapse
Affiliation(s)
- Scott H Medina
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, United States.
| | - Brian Bush
- Materials Measurement Science Division, Nanomechanical Properties Group, National Institute of Standards and Technology, Gaithersburg, MD, 20899, United States
| | - Maggie Cam
- Office of Science and Technology Resources, Center for Cancer Research, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Emily Sevcik
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, United States
| | - Frank W DelRio
- Applied Chemicals and Materials Division, Nanoscale Reliability Group, National Institute of Standards and Technology, Boulder, CO 80305, United States
| | - Kaustav Nandy
- Optical Microscopy and Analysis Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, United States
| | - Joel P Schneider
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, United States.
| |
Collapse
|
23
|
Jahangir S, Hosseini S, Mostafaei F, Sayahpour FA, Baghaban Eslaminejad M. 3D-porous β-tricalcium phosphate-alginate-gelatin scaffold with DMOG delivery promotes angiogenesis and bone formation in rat calvarial defects. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 30:1. [PMID: 30564959 DOI: 10.1007/s10856-018-6202-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
Hypoxia-inducible factor-1α (HIF-1α), a well-studied angiogenesis pathway, plays an essential role in angiogenesis-osteogenesis coupling. Targeting the HIF-1a pathway frequently leads to successful reconstruction of large-sized bone defects through promotion of angiogenesis. Dimethyloxalylglycine (DMOG) small molecule regulates the stability of HIF-1α at normal oxygen tension by mimicking hypoxia, which subsequently accelerates angiogenesis. The current study aims to develop a novel construct by seeding adipose derived mesenchymal stem cells (ADMSCs) onto a scaffold that contains DMOG to induce angiogenesis and regeneration of a critical size calvarial defect in a rat model. The spongy scaffolds have been synthesized in the presence and absence of DMOG and analyzed in terms of morphology, porosity, pore size, mechanical properties and DMOG release profile. The effect of DMOG delivery on cellular behaviors of adhesion, viability, osteogenic differentiation, and angiogenesis were subsequently evaluated under in vitro conditions. Histological analysis of cell-scaffold constructs were also performed following transplantation into the calvarial defect. Physical characteristics of fabricated scaffolds confirmed higher mechanical strength and surface roughness of DMOG-loaded scaffolds. Scanning electron microscopy (SEM) images and MTT assay demonstrated the attachment and viability of ADMSCs in the presence of DMOG, respectively. Osteogenic activity of ADMSCs that included alkaline phosphatase (ALP) activity and calcium deposition significantly increased in the DMOG-loaded scaffold. Computed tomography (CT) imaging combined with histomorphometry and immunohistochemistry analysis showed enhanced bone formation and angiogenesis in the DMOG-loaded scaffolds. Therefore, spongy scaffolds that contained DMOG and had angiogenesis ability could be utilized to enhance bone regeneration of large-sized bone defects.
Collapse
Affiliation(s)
- Shahrbanoo Jahangir
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
- Department of Tissue engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samaneh Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| | - Farhad Mostafaei
- Animal Core Facility, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Tehran, 1665659911, Iran
| | - Forough Azam Sayahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran.
| |
Collapse
|
24
|
Wu L, Virdee J, Maughan E, Darbyshire A, Jell G, Loizidou M, Emberton M, Butler P, Howkins A, Reynolds A, Boyd IW, Birchall M, Song W. Stiffness memory nanohybrid scaffolds generated by indirect 3D printing for biologically responsive soft implants. Acta Biomater 2018; 80:188-202. [PMID: 30223094 DOI: 10.1016/j.actbio.2018.09.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/13/2018] [Accepted: 09/13/2018] [Indexed: 11/20/2022]
Abstract
Cell and tissue stiffness is an important biomechanical signalling parameter for dynamic biological processes; responsive polymeric materials conferring responsive functionality are therefore appealing for in vivo implants. We have developed thermoresponsive poly(urea-urethane) nanohybrid scaffolds with 'stiffness memory' through a versatile 3D printing-guided thermally induced phase separation (3D-TIPS) technique. 3D-TIPS, a combination of 3D printing with phase separation, allows uniform phase-separation and phase transition of the polymer solution at a large interface of network within the printed sacrificial preform, leading to the creation of full-scale scaffolds with bespoke anatomical complex geometry. A wide range of hyperelastic mechanical properties of the soft elastomer scaffolds with interconnected pores at multi-scale, controlled porosity and crystallinity have been manufactured, not previously achievable via direct printing techniques or phase-separation alone. Semi-crystalline polymeric reverse self-assembly to a ground-stated quasi-random nanophase structure, throughout a hierarchical structure of internal pores, contributes to gradual stiffness relaxation during in vitro cell culture with minimal changes to shape. This 'stiffness memory' provides initial mechanical support to surrounding tissues before gradually softening to a better mechanical match, raising hopes for personalized and biologically responsive soft tissue implants which promote human fibroblast cells growth as model and potential scaffold tissue integration. STATEMENT OF SIGNIFICANCE: Biological processes are dynamic in nature, however current medical implants are often stronger and stiffer than the surrounding tissue, with little adaptability in response to biological and physical stimuli. This work has contributed to the development of a range of thermoresponsive nanohybrid elastomer scaffolds, with tuneable stiffness and hierarchically interconnected porous structure, manufactured by a versatile indirect 3D printing technique. For the first time, stiffness memory of the scaffold was observed to be driven by phase transition and a reverse self-assembly from a semicrystalline phase to a quasi-random nanostructured rubber phase. Early insight into cell response during the stiffness relaxation of the scaffolds in vitro holds promise for personalized biologically responsive soft implants.
Collapse
Affiliation(s)
- Linxiao Wu
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London NW3 2PF, UK
| | - Jatinder Virdee
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London NW3 2PF, UK
| | - Elizabeth Maughan
- UCL Ear Institute, Royal National Throat Nose and Ear Hospital and University College London, London, UK
| | - Arnold Darbyshire
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London NW3 2PF, UK
| | - Gavin Jell
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London NW3 2PF, UK
| | - Marilena Loizidou
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London NW3 2PF, UK
| | - Mark Emberton
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London NW3 2PF, UK
| | - Peter Butler
- UCL Ear Institute, Royal National Throat Nose and Ear Hospital and University College London, London, UK; Department of Plastic and Reconstructive Surgery, Royal Free London NHS Foundation Trust, London NW3 2PF, UK
| | - Ashley Howkins
- Experimental Technique Centre, Brunel University London, UB8 3PH, UK
| | - Alan Reynolds
- Experimental Technique Centre, Brunel University London, UB8 3PH, UK
| | - Ian W Boyd
- Experimental Technique Centre, Brunel University London, UB8 3PH, UK
| | - Martin Birchall
- UCL Ear Institute, Royal National Throat Nose and Ear Hospital and University College London, London, UK
| | - Wenhui Song
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London NW3 2PF, UK.
| |
Collapse
|
25
|
Jiang Z, Jiang K, McBride R, Oakey JS. Comparative cytocompatibility of multiple candidate cell types to photoencapsulation in PEGNB/PEGDA macroscale or microscale hydrogels. Biomed Mater 2018; 13:065012. [PMID: 30191888 PMCID: PMC6215765 DOI: 10.1088/1748-605x/aadf9a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The encapsulation of live cells into photopolymerized hydrogel scaffolds has the potential to augment or repair tissue defects, establish versatile regenerative medicine strategies, and be developed as well-defined, yet tunable microenvironments to study fundamental cellular behavior. However, hydrogel fabrication limitations constrain most studies to macroscale hydrogel scaffolds encapsulating millions of cells. These macroscale materials possess regions of heterogeneous photopolymerization conditions and are therefore poor platforms to identify the response of individual cells to encapsulation. Recently, microfluidic droplet-based hydrogel miniaturization and cell encapsulation offers high-throughput, reproducible, and continuous fabrication. Reports of post-encapsulation cell viability, however, vary widely among specific techniques. Furthermore, different cell types often exhibit different level of tolerance to photoencapsulation-induced toxicity. Accordingly, we evaluate the cellular tolerance of various encapsulation techniques and photopolymerization parameters for four mammalian cell types, with potential applications in tissue regeneration, using polyethylene glycol diacrylate or polyethylene glycol norbornene (PEGNB) hydrogels on micro- and macro-length scales. We found PEGNB provides excellent cellular tolerance and supports long-term cell survival by mitigating the deleterious effects of acrylate photopolymerization, which are exacerbated at diminishing volumes. PEGNB, therefore, is an excellent candidate for hydrogel miniaturization. PEGNB hydrogel properties, however, were found to have variable effects on encapsulating different cell candidates. This study could provide guidance for cell encapsulation practices in tissue engineering and regenerative medicine research.
Collapse
Affiliation(s)
- Zhongliang Jiang
- Department of Chemical Engineering, University of Wyoming, Laramie, United States of America
| | | | | | | |
Collapse
|
26
|
Dietrich M, Le Roy H, Brückner DB, Engelke H, Zantl R, Rädler JO, Broedersz CP. Guiding 3D cell migration in deformed synthetic hydrogel microstructures. SOFT MATTER 2018; 14:2816-2826. [PMID: 29595213 DOI: 10.1039/c8sm00018b] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The ability of cells to navigate through the extracellular matrix, a network of biopolymers, is controlled by an interplay of cellular activity and mechanical network properties. Synthetic hydrogels with highly tuneable compositions and elastic properties are convenient model systems for the investigation of cell migration in 3D polymer networks. To study the impact of macroscopic deformations on single cell migration, we present a novel method to introduce uniaxial strain in matrices by microstructuring photo-polymerizable hydrogel strips with embedded cells in a channel slide. We find that such confined swelling results in a strained matrix in which cells exhibit an anisotropic migration response parallel to the strain direction. Surprisingly, however, the anisotropy of migration reaches a maximum at intermediate strain levels and decreases strongly at higher strains. We account for this non-monotonic response in the migration anisotropy with a computational model, in which we describe a cell performing durotactic and proteolytic migration in a deformable elastic meshwork. Our simulations reveal that the macroscopically applied strain induces a local geometric anisotropic stiffening of the matrix. This local anisotropic stiffening acts as a guidance cue for directed cell migration, resulting in a non-monotonic dependence on strain, as observed in our experiments. Our findings provide a mechanism for mechanical guidance that connects network properties on the cellular scale to cell migration behaviour.
Collapse
Affiliation(s)
- Miriam Dietrich
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-University, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
27
|
Rosales AM, Rodell CB, Chen MH, Morrow MG, Anseth KS, Burdick JA. Reversible Control of Network Properties in Azobenzene-Containing Hyaluronic Acid-Based Hydrogels. Bioconjug Chem 2018; 29:905-913. [PMID: 29406696 DOI: 10.1021/acs.bioconjchem.7b00802] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Biomimetic hydrogels fabricated from biologically derived polymers, such as hyaluronic acid (HA), are useful for numerous biomedical applications. Due to the dynamic nature of biological processes, it is of great interest to synthesize hydrogels with dynamically tunable network properties where various functions (e.g., cargo delivery, mechanical signaling) can be changed over time. Among the various stimuli developed to control hydrogel properties, light stands out for its exquisite spatiotemporal control; however, most light-based chemistries are unidirectional in their ability to manipulate network changes. Here, we report a strategy to reversibly modulate HA hydrogel properties with light, using supramolecular cross-links formed via azobenzene bound to β-cyclodextrin. Upon isomerization with 365 nm or 400-500 nm light, the binding affinity between azobenzene and β-cyclodextrin changed and altered the network connectivity. The hydrogel mechanical properties depended on both the azobenzene modification and isomeric state (lower for cis state), with up to a 60% change in storage modulus with light exposure. Furthermore, the release of a fluorescently labeled protein was accelerated with light exposure under conditions that were cytocompatible to encapsulated cells. These results indicate that the developed hydrogels may be suitable for applications in which temporal regulation of material properties is important, such as drug delivery or mechanobiology studies.
Collapse
Affiliation(s)
- Adrianne M Rosales
- Department of Chemical and Biological Engineering & BioFrontiers Institute , University of Colorado Boulder , Boulder , Colorado 80303 , United States
| | - Christopher B Rodell
- Department of Bioengineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Minna H Chen
- Department of Bioengineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Matthew G Morrow
- Department of Bioengineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering & BioFrontiers Institute , University of Colorado Boulder , Boulder , Colorado 80303 , United States
| | - Jason A Burdick
- Department of Bioengineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
28
|
Abstract
In their native environment, cells are immersed in a complex milieu of biochemical and biophysical cues. These cues may include growth factors, the extracellular matrix, cell-cell contacts, stiffness, and topography, and they are responsible for regulating cellular behaviors such as adhesion, proliferation, migration, apoptosis, and differentiation. The decision-making process used to convert these extracellular inputs into actions is highly complex and sensitive to changes both in the type of individual cue (e.g., growth factor dose/level, timing) and in how these individual cues are combined (e.g., homotypic/heterotypic combinations). In this review, we highlight recent advances in the development of engineering-based approaches to study the cellular decision-making process. Specifically, we discuss the use of biomaterial platforms that enable controlled and tailored delivery of individual and combined cues, as well as the application of computational modeling to analyses of the complex cellular decision-making networks.
Collapse
Affiliation(s)
- Pamela K Kreeger
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , .,Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin 53705, USA.,Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705, USA.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792, USA
| | - Laura E Strong
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; ,
| | - Kristyn S Masters
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , .,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792, USA.,Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792, USA
| |
Collapse
|
29
|
Hao Y, Fowler EW, Jia X. Chemical Synthesis of Biomimetic Hydrogels for Tissue Engineering. POLYM INT 2017; 66:1787-1799. [PMID: 31080322 PMCID: PMC6510501 DOI: 10.1002/pi.5407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Owing to the high water content, porous structure, biocompatibility and tissue-like viscoelasticity, hydrogels have become attractive and promising biomaterials for use in drug delivery, 3D cell culture and tissue engineering applications. Various chemical approaches have been developed for hydrogel synthesis using monomers or polymers carrying reactive functional groups. For in vivo tissue repair and in vitro cell culture purposes, it is desirable that the crosslinking reactions occur under mild conditions, do not interfere with biological processes and proceed at high yield with exceptional selectivity. Additionally, the cross-linking reaction should allow straightforward incorporation of bioactive motifs or signaling molecules, at the same time, providing tunability of the hydrogel microstructure, mechanical properties, and degradation rates. In this review, we discuss various chemical approaches applied to the synthesis of complex hydrogel networks, highlighting recent developments from our group. The discovery of new chemistries and novel materials fabrication methods will lead to the development of the next generation biomimetic hydrogels with complex structures and diverse functionalities. These materials will likely facilitate the construction of engineered tissue models that may bridge the gap between 2D experiments and animal studies, providing preliminary insight prior to in vivo assessments.
Collapse
Affiliation(s)
- Ying Hao
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Eric W. Fowler
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| |
Collapse
|
30
|
Nelli SR, Chakravarthy RD, Xing YM, Weng JP, Lin HC. Self-assembly of single amino acid/pyrene conjugates with unique structure-morphology relationship. SOFT MATTER 2017; 13:8402-8407. [PMID: 29077128 DOI: 10.1039/c7sm01669g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This article describes the self-assembly of π-conjugated building blocks composed of single amino acid and pyrene (Py) moieties. In aqueous conditions, the Py-capped amino acids undergo self-assembly through various non-covalent interactions such as hydrogen-bonding, π-π stacking as well as electrostatic interactions to form supramolecular nanostructures in acidic and basic conditions. Interestingly, we found that the blend of different Py-gelators with oppositely charged amino acids (Py-Glu and Py-Lys) displays unique nano-structural morphologies and gelation properties of the resulting hydrogels at physiological pH when compared with single Py conjugates, which was attributed to additional electrostatic interactions. Overall, this report illustrates the importance of two-component supramolecular co-assembled hydrogels and their structure-morphology relationship, improved mechanical properties, and biocompatibility and thus provides a new insight into the design of self-assembled nanomaterials.
Collapse
Affiliation(s)
- Srinivasa Rao Nelli
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, 30010, Taiwan, Republic of China.
| | | | | | | | | |
Collapse
|
31
|
Reimer M, Petrova Zustiak S, Sheth S, Martin Schober J. Intrinsic Response Towards Physiologic Stiffness is Cell-Type Dependent. Cell Biochem Biophys 2017; 76:197-208. [PMID: 29067585 DOI: 10.1007/s12013-017-0834-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/13/2017] [Indexed: 11/28/2022]
Abstract
In the continuous search for better tissue engineering scaffolds it has become increasingly clear that the substrate properties dramatically affect cell responses. Here we compared cells from a physiologically stiff tissue, melanoma, to cells isolated from a physiologically soft tissue, brain. We measured the cell line responses to laminin immobilized onto glass or polyacrylamide hydrogels tuned to have a Young's modulus ranging from 1 to 390 kPa. Single cells were analyzed for spreading area, shape, total actin content, actin-based morphological features and modification of immobilized laminin. Both cell types exhibited stiffness- and laminin concentration-dependent responses on polyacrylamide and glass. Melanoma cells exhibited very little spreading and were rounded on soft (1, 5, and 15 kPa) hydrogels while cells on stiff (40, 100, and 390 kPa) hydrogels were spread and had a polarized cell shape with large lamellipodia. On rigid glass surfaces, spreading and actin-based morphological features were not observed until laminin concentration was much higher. Similarly, increased microglia cell spreading and presence of actin-based structures were observed on stiff hydrogels. However, responses on rigid glass surfaces were much different. Microglia cells had large spreading areas and elongated shapes on glass compared to hydrogels even when immobilized laminin density was consistent on all gels. While cell spreading and shape varied with Young's modulus of the hydrogel, the concentration of f-actin was constant. A decrease in laminin immunofluorescence was associated with melanoma and microglia cell spreading on glass with high coating concentration of laminin, indicating modification of immobilized laminin triggered by supraphysiologic stiffness and high ligand density. These results suggest that some cell lines are more sensitive to mechanical properties matching their native tissue environment while other cell lines may require stiffness and extracellular ligand density well above physiologic tissue before saturation in cell spreading, elongation and cytoskeletal re-organization are reached.
Collapse
Affiliation(s)
- Michael Reimer
- Department of Pharmaceutical Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | | | - Saahil Sheth
- Department of Biomedical Engineering, Saint Louis University, St Louis, MO, USA
| | - Joseph Martin Schober
- Department of Pharmaceutical Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA.
| |
Collapse
|
32
|
Shin DS, Tokuda EY, Leight JL, Miksch CE, Brown TE, Anseth KS. Synthesis of microgel sensors for spatial and temporal monitoring of protease activity. ACS Biomater Sci Eng 2017; 4:378-387. [PMID: 29527570 PMCID: PMC5842818 DOI: 10.1021/acsbiomaterials.7b00017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proteases are involved in almost every important cellular activity, from embryonic morphogenesis to apoptosis. To study protease activity in situ, hydrogels provide a synthetic mimic of the extracellular matrix (ECM) and have utility as a platform to study activity, such as those related to cell migration, in three-dimensions. While 3-dimensional visualization of protease activity could prove quite useful to elucidate the proteolytic interaction at the interface between cells and their surrounding environment, there has been no versatile tool to visualize local proteolytic activity in real time. Here, micron-sized gels were synthesized by inverse suspension polymerization using thiolene photo-click chemistry. The size distribution was selected to avoid cellular uptake and to lower cytotoxicity, while simultaneously allowing the integration of peptide-based FRET sensors of local cell activity. Proteolytic activity of collagenase was detected within an hour via changes in fluorescence of embedded microgels; incubation of microgel sensors with A375 melanoma cells showed upregulated MMP activity in the presence of soluble fibronectins in media. The microgel sensors were readily incorporated into both gelatin and poly(ethylene glycol) (PEG) hydrogels and used to successfully detect spatiotemporal proteolytic activity of A375 melanoma cells. Finally, a tumor model was constructed from a hydrogel microwell array that was used to aggregate A375 melanoma cells, and local variations in proteolytic activity were monitored as a function of distance from the cell aggregate center.
Collapse
Affiliation(s)
- Della S. Shin
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, CO 80309, USA
| | - Emi Y. Tokuda
- Suite 100, Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, 1100 Olive Way, Seattle, WA 98101, USA
| | - Jennifer L. Leight
- Department of Biomedical Engineering, Ohio State University, 1080 Carmack Rd., Columbus, OH 43210, USA
| | - Connor E. Miksch
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, CO 80309, USA
| | - Tobin E. Brown
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, CO 80309, USA
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, CO 80309, USA
- Howard Hughes Medical Institute and the BioFrontiers Institute, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, CO 80309, USA
| |
Collapse
|
33
|
Huang WC, Ali F, Zhao J, Rhee K, Mou C, Bettinger CJ. Ultrasound-Mediated Self-Healing Hydrogels Based on Tunable Metal-Organic Bonding. Biomacromolecules 2017; 18:1162-1171. [PMID: 28245355 DOI: 10.1021/acs.biomac.6b01841] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stimulus-responsive hydrogels make up an important class of programmable materials for a wide range of biomedical applications. Ultrasound (US) is a stimulus that offers utility because of its ability to permeate tissue and rapidly induce chemical alterations in aqueous media. Here we report on the synthesis and US-mediated disintegration of stimulus-responsive telechelic Dopa-modified polyethylene glycol-based hydrogels. Fe3+-[PEG-Dopa]4 hydrogels are formed through Fe3+-induced cross-linking of four-arm polyethylene glycol-dopamine precursors to produce networks. The relative amounts of H-bonds, coordination bonds, and covalent bonds can be controlled by the [Fe3+]:[Dopa] molar ratio in precursor solutions. Networks formed from precursors with high [Fe3+]:[Dopa] ratios create mechanically robust networks (G' = 6880 ± 240 Pa) that are largely impervious to US-mediated disintegration at intensities of ≤43 W/cm2. Conversely, lightly cross-linked networks formed through [Fe3+]:[Dopa] molar ratios of <0.73 are susceptible to rapid disintegration upon exposure to US. Pulsatile US exposure allows temporal control over hydrogel disintegration and programmable self-healing. Sustained US energy can also stabilize hydrogels through the formation of additional cross-links via free radical-mediated coupling of pendant catechols. Taken together, the diverse ranges of mechanical behavior, self-healing capability, and differential susceptibility to ultrasonic disintegration suggest that Fe3+-[PEG-Dopa]4 hydrogels yield a class of application-specific stimulus-responsive polymers as smart materials for applications ranging from transient medical implants to matrices for smart drug delivery.
Collapse
Affiliation(s)
- Wei-Chen Huang
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University , 250 Wu-Xing Street, Taipei City, 30010 Taiwan
| | | | | | | | | | | |
Collapse
|
34
|
Leight JL, Drain AP, Weaver VM. Extracellular Matrix Remodeling and Stiffening Modulate Tumor Phenotype and Treatment Response. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2017. [DOI: 10.1146/annurev-cancerbio-050216-034431] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jennifer L. Leight
- Department of Biomedical Engineering and The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210
| | - Allison P. Drain
- University of California, Berkeley–University of California, San Francisco Graduate Program in Bioengineering, Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, California 94143
| | - Valerie M. Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, Department of Anatomy, Department of Bioengineering and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and Helen Diller Comprehensive Cancer Center, University of California, San Francisco, California 94143
| |
Collapse
|
35
|
Tokuda EY, Jones CE, Anseth KS. PEG-peptide hydrogels reveal differential effects of matrix microenvironmental cues on melanoma drug sensitivity. Integr Biol (Camb) 2017; 9:76-87. [PMID: 28001152 PMCID: PMC5258768 DOI: 10.1039/c6ib00229c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metastatic melanoma is highly drug resistant, though the exact mechanisms of this resistance are not completely understood. One method to study melanoma drug responsiveness in vitro is through the use of multicellular spheroids, which have been found to exhibit decreased drug sensitivity compared to traditional 2D culture on various substrates. Because it is unclear whether dimensionality, cell-matrix interactions, and/or cell-cell contacts may influence melanoma drug responsiveness, we utilized a synthetic PEG-based hydrogel to compare the responses of cells cultured on top of or encapsulated within matrices with the same adhesive ligand density, polymer density, and material properties. We found that depending on the stage of progression at which the melanoma cells were derived, the cells responded differently to PLX4032 treatment, a commercially available melanoma drug. In particular, early stage WM35 cells were insensitive to dimensionality (i.e., 2D versus 3D culture), while metastatic A375 cells exhibited decreased responsiveness in 3D compared to 2D. To further understand the role of the microenvironment in early stage melanoma cells, we tested single WM35 cells and multicellular WM35 spheroids in 3D. The results revealed that the spheroids were similarly sensitive to PLX4032 treatment compared to single cell encapsulations. Collectively, this study implicates the role that 3D microenvironments (i.e., dimensionality) may play in observed melanoma drug responsiveness, and the potential lack of influence of cell-matrix interactions over cell-cell contacts in early stages of melanoma resistance to PLX4032-induced apoptosis.
Collapse
Affiliation(s)
- Emi Y Tokuda
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA. and Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Caitlin E Jones
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA. and Department of Biomedical Engineering, Ohio State University, Columbus, OH 43210, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA. and Howard Hughes Medical Institute and The BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
36
|
Lilge I, Schönherr H. Block Copolymer Brushes for Completely Decoupled Control of Determinants of Cell-Surface Interactions. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Inga Lilge
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cμ); University of Siegen; Adolf-Reichwein Strasse 2 57076 Siegen Germany
| | - Holger Schönherr
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cμ); University of Siegen; Adolf-Reichwein Strasse 2 57076 Siegen Germany
| |
Collapse
|
37
|
Lilge I, Schönherr H. Block Copolymer Brushes for Completely Decoupled Control of Determinants of Cell-Surface Interactions. Angew Chem Int Ed Engl 2016; 55:13114-13117. [DOI: 10.1002/anie.201607078] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/18/2016] [Indexed: 02/02/2023]
Affiliation(s)
- Inga Lilge
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cμ); University of Siegen; Adolf-Reichwein Strasse 2 57076 Siegen Germany
| | - Holger Schönherr
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cμ); University of Siegen; Adolf-Reichwein Strasse 2 57076 Siegen Germany
| |
Collapse
|
38
|
Ahmed N, Schober J, Hill L, Zustiak SP. Custom Multiwell Plate Design for Rapid Assembly of Photopatterned Hydrogels. Tissue Eng Part C Methods 2016; 22:543-51. [DOI: 10.1089/ten.tec.2015.0522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Naveed Ahmed
- Department of Biomedical Engineering, Saint Louis University, Saint Louis, Missouri
| | - Joseph Schober
- Department of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| | - Lindsay Hill
- Department of Biomedical Engineering, Saint Louis University, Saint Louis, Missouri
| | - Silviya P. Zustiak
- Department of Biomedical Engineering, Saint Louis University, Saint Louis, Missouri
| |
Collapse
|
39
|
Chang FC, Tsao CT, Lin A, Zhang M, Levengood SL, Zhang M. PEG-chitosan hydrogel with tunable stiffness for study of drug response of breast cancer cells. Polymers (Basel) 2016; 8:112. [PMID: 27595012 PMCID: PMC5004991 DOI: 10.3390/polym8040112] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 03/21/2016] [Indexed: 01/23/2023] Open
Abstract
Mechanical properties of the extracellular matrix have a profound effect on the behavior of anchorage-dependent cells. However, the mechanisms that define the effects of matrix stiffness on cell behavior remains unclear. Therefore, the development and fabrication of synthetic matrices with well-defined stiffness is invaluable for studying the interactions of cells with their biophysical microenvironment in vitro. We demonstrate a methoxypolyethylene glycol (mPEG)-modified chitosan hydrogel network where hydrogel stiffness can be easily modulated under physiological conditions by adjusting the degree of mPEG grafting onto chitosan (PEGylation). We show that the storage modulus of the hydrogel increases as PEGylation decreases and the gels exhibit instant self-recovery after deformation. Breast cancer cells cultured on the stiffest hydrogels adopt a more malignant phenotype with increased resistance to doxorubicin as compared with cells cultured on tissue culture polystyrene or Matrigel. This work demonstrates the utility of mPEG-modified chitosan hydrogel, with tunable mechanical properties, as an improved replacement of conventional culture system for in vitro characterization of breast cancer cell phenotype and evaluation of cancer therapies.
Collapse
Affiliation(s)
- Fei-Chien Chang
- Department of Materials Science and Engineering, University of Washington, 302L Roberts Hall, Seattle, WA 98195, USA; (F.-C.C.); (C.-T.T.); (A.L.); (S.L.L.)
| | - Ching-Ting Tsao
- Department of Materials Science and Engineering, University of Washington, 302L Roberts Hall, Seattle, WA 98195, USA; (F.-C.C.); (C.-T.T.); (A.L.); (S.L.L.)
| | - Anqi Lin
- Department of Materials Science and Engineering, University of Washington, 302L Roberts Hall, Seattle, WA 98195, USA; (F.-C.C.); (C.-T.T.); (A.L.); (S.L.L.)
| | - Mengying Zhang
- Department of Molecular Engineering and Science Institute, University of Washington, Seattle, WA 98195, USA;
| | - Sheeny Lan Levengood
- Department of Materials Science and Engineering, University of Washington, 302L Roberts Hall, Seattle, WA 98195, USA; (F.-C.C.); (C.-T.T.); (A.L.); (S.L.L.)
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, 302L Roberts Hall, Seattle, WA 98195, USA; (F.-C.C.); (C.-T.T.); (A.L.); (S.L.L.)
| |
Collapse
|
40
|
Abstract
Biomaterial scaffolds have been a foundational element of the tissue engineering paradigm since the inception of the field. Over the years there has been a progressive move toward the rational design and fabrication of bio-inspired materials that mimic the composition as well as the architecture and 3D structure of tissues. In this review, we chronicle advances in the field that address key challenges in tissue engineering as well as some emerging applications. Specifically, a summary of the materials and chemistries used to engineer bio-inspired 3D matrices that mimic numerous aspects of the extracellular matrix is provided, along with an overview of bioprinting, an additive manufacturing approach, for the fabrication of engineered tissues with precisely controlled 3D structures and architectures. To emphasize the potential clinical impact of the bio-inspired paradigm in biomaterials engineering, some applications of bio-inspired matrices are discussed in the context of translational tissue engineering. However, focus is also given to recent advances in the use of engineered 3D cellular microenvironments for fundamental studies in cell biology, including photoresponsive systems that are shedding new light on how matrix properties influence cell phenotype and function. In an outlook for future work, the need for high-throughput methods both for screening and fabrication is highlighted. Finally, microscale organ-on-a-chip technologies are highlighted as a promising area for future investment in the application of bio-inspired microenvironments.
Collapse
Affiliation(s)
- Chelsea M Magin
- Sharklet Technologies, Inc. Aurora, CO, USA. These authors contributed equally to the preparation of this manuscript
| | | | | |
Collapse
|
41
|
Hashimoto Y, Mukai SA, Sawada SI, Sasaki Y, Akiyoshi K. Advanced Artificial Extracellular Matrices Using Amphiphilic Nanogel-Cross-Linked Thin Films To Anchor Adhesion Proteins and Cytokines. ACS Biomater Sci Eng 2016; 2:375-384. [DOI: 10.1021/acsbiomaterials.5b00485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yoshihide Hashimoto
- Department
of Polymer Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Japan
Science and Technology Agency (JST), The Exploratory Research for
Advanced Technology (ERATO), Katsura Int’tech Center, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| | - Sada-atsu Mukai
- Department
of Polymer Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Japan
Science and Technology Agency (JST), The Exploratory Research for
Advanced Technology (ERATO), Katsura Int’tech Center, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| | - Shin-ichi Sawada
- Department
of Polymer Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Japan
Science and Technology Agency (JST), The Exploratory Research for
Advanced Technology (ERATO), Katsura Int’tech Center, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| | - Yoshihiro Sasaki
- Department
of Polymer Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazunari Akiyoshi
- Department
of Polymer Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Japan
Science and Technology Agency (JST), The Exploratory Research for
Advanced Technology (ERATO), Katsura Int’tech Center, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| |
Collapse
|
42
|
Holle AW, Young JL, Spatz JP. In vitro cancer cell-ECM interactions inform in vivo cancer treatment. Adv Drug Deliv Rev 2016; 97:270-9. [PMID: 26485156 DOI: 10.1016/j.addr.2015.10.007] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/05/2015] [Accepted: 10/11/2015] [Indexed: 02/07/2023]
Abstract
The general progression of cancer drug development involves in vitro testing followed by safety and efficacy evaluation in clinical trials. Due to the expense of bringing candidate drugs to trials, in vitro models of cancer cells and tumor biology are required to screen drugs. There are many examples of drugs exhibiting cytotoxic behavior in cancer cells in vitro but losing efficacy in vivo, and in many cases, this is the result of poorly understood chemoresistant effects conferred by the cancer microenvironment. To address this, improved methods for culturing cancer cells in biomimetic scaffolds have been developed; along the way, a great deal about the nature of cancer cell-extracellular matrix (ECM) interactions has been discovered. These discoveries will continue to be leveraged both in the development of novel drugs targeting these interactions and in the fabrication of biomimetic substrates for efficient cancer drug screening in vitro.
Collapse
|
43
|
Hapach LA, VanderBurgh JA, Miller JP, Reinhart-King CA. Manipulation of in vitro collagen matrix architecture for scaffolds of improved physiological relevance. Phys Biol 2015; 12:061002. [PMID: 26689380 DOI: 10.1088/1478-3975/12/6/061002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Type I collagen is a versatile biomaterial that is widely used in medical applications due to its weak antigenicity, robust biocompatibility, and its ability to be modified for a wide array of applications. As such, collagen has become a major component of many tissue engineering scaffolds, drug delivery platforms, and substrates for in vitro cell culture. In these applications, collagen constructs are fabricated to recapitulate a diverse set of conditions. Collagen fibrils can be aligned during or post-fabrication, cross-linked via numerous techniques, polymerized to create various fibril sizes and densities, and copolymerized into a wide array of composite scaffolds. Here, we review approaches that have been used to tune collagen to better recapitulate physiological environments for use in tissue engineering applications and studies of basic cell behavior. We discuss techniques to control fibril alignment, methods for cross-linking collagen constructs to modulate stiffness, and composite collagen constructs to better mimic physiological extracellular matrix.
Collapse
|
44
|
Jiang L, Xu D, Sellati TJ, Dong H. Self-assembly of cationic multidomain peptide hydrogels: supramolecular nanostructure and rheological properties dictate antimicrobial activity. NANOSCALE 2015; 7:19160-9. [PMID: 26524425 PMCID: PMC4866592 DOI: 10.1039/c5nr05233e] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would also protect the hydrogel itself from being adversely affected by microbial attachment to its surface. We have previously demonstrated the broad-spectrum antimicrobial activity of supramolecular assemblies of cationic multi-domain peptides (MDPs) in solution. Here, we extend the 1-D soluble supramolecular assembly to 3-D hydrogels to investigate the effect of the supramolecular nanostructure and its rheological properties on the antimicrobial activity of self-assembled hydrogels. Among designed MDPs, the bactericidal activity of peptide hydrogels was found to follow an opposite trend to that in solution. Improved antimicrobial activity of self-assembled peptide hydrogels is dictated by the combined effect of supramolecular surface chemistry and storage modulus of the bulk materials, rather than the ability of individual peptides/peptide assemblies to penetrate bacterial cell membrane as observed in solution. The structure-property-activity relationship developed through this study will provide important guidelines for designing biocompatible peptide hydrogels with built-in antimicrobial activity for various biomedical applications.
Collapse
Affiliation(s)
- Linhai Jiang
- Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA.
| | | | | | | |
Collapse
|
45
|
Singh SP, Schwartz MP, Tokuda EY, Luo Y, Rogers RE, Fujita M, Ahn NG, Anseth KS. A synthetic modular approach for modeling the role of the 3D microenvironment in tumor progression. Sci Rep 2015; 5:17814. [PMID: 26638791 PMCID: PMC4671067 DOI: 10.1038/srep17814] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/22/2015] [Indexed: 11/09/2022] Open
Abstract
Here, we demonstrate the flexibility of peptide-functionalized poly(ethylene glycol) (PEG) hydrogels for modeling tumor progression. The PEG hydrogels were formed using thiol-ene chemistry to incorporate a matrix metalloproteinase-degradable peptide crosslinker (KKCGGPQG↓IWGQGCKK) permissive to proteolytic remodeling and the adhesive CRGDS peptide ligand. Tumor cell function was investigated by culturing WM239A melanoma cells on PEG hydrogel surfaces or encapsulating cells within the hydrogels, and either as monocultures or indirect (non-contact) cocultures with primary human dermal fibroblasts (hDFs). WM239A cluster size and proliferation rate depended on the shear elastic modulus for cells cultured on PEG hydrogels, while growth was inhibited by coculture with hDFs regardless of hydrogel stiffness. Cluster size was also suppressed by hDFs for WM239A cells encapsulated in PEG hydrogels, which is consistent with cells seeded on top of hydrogels. Notably, encapsulated WM239A clusters and single cells adopted invasive phenotypes in the hDF coculture model, which included single cell and collective migration modes that resembled invasion from human melanoma patient-derived xenograft tumors encapsulated in equivalent PEG hydrogels. Our combined results demonstrate that peptide-functionalized PEG hydrogels provide a useful platform for investigating aspects of tumor progression in 2D and 3D microenvironments, including single cell migration, cluster growth and invasion.
Collapse
Affiliation(s)
- S P Singh
- Department of Chemical and Biological Engineering and the BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - M P Schwartz
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - E Y Tokuda
- Department of Chemical and Biological Engineering and the BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Y Luo
- Department of Dermatology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - R E Rogers
- College of Medicine, Texas A&M Health Science Center, Bryan, Texas, United States of America
| | - M Fujita
- Department of Dermatology, University of Colorado School of Medicine, Aurora, Colorado, United States of America.,Denver Veterans Affairs Medical Center, Denver, Colorado, United States of America
| | - N G Ahn
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - K S Anseth
- Department of Chemical and Biological Engineering and the BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado, United States of America.,Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
46
|
Park KM, Gerecht S. Polymeric hydrogels as artificial extracellular microenvironments for cancer research. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.06.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
47
|
Kokot G, Zemljič Jokhadar Š, Batista U, Babič D. Magnetically Self-Assembled Colloidal Three-Dimensional Structures as Cell Growth Scaffold. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9576-9581. [PMID: 26270233 DOI: 10.1021/acs.langmuir.5b02176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Understanding the chemical and physical conditions for cell growth is important from biological and medical aspects. Many tissues and cell types (e.g., epithelial cells and neurons) naturally grow on surfaces that span in three-dimensions and offer structural or mechanical support. The scaffold surface has to promote adhesion and cell proliferation as well as support their weight and retain its structural integrity. Here, we present a flexible method that uses self-assembly of micrometer superparamagnetic particles to produce appropriate scaffold surfaces with controllable general appearance in three dimensions, such as oriented membranes, branched structure, or void network. As a proof of principle, the Chinese hamster ovary epithelial cell line was successfully grown for several days on inclined membranes. Robustness of the oriented membrane architecture was probed with optical tweezers. We measured the magnetic force holding one particle in a self-assembled upright hexagonal sheet and modeled it as a sum of pair interaction forces between spatially arrested static dipoles.
Collapse
Affiliation(s)
- Gašper Kokot
- Jožef Stefan Institute , Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Špela Zemljič Jokhadar
- Faculty of Medicine, Institute of Biophysics, University of Ljubljana , Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Urška Batista
- Faculty of Medicine, Institute of Biophysics, University of Ljubljana , Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Dušan Babič
- Faculty of Mathematics and Physics, University of Ljubljana , Jadranska 19, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
48
|
Affiliation(s)
- Rúben F. Pereira
- Centre for Rapid and Sustainable Product Development (CDRsp), Polytechnic Institute of Leiria; Marinha Grande 2430-028 Portugal
- Instituto de Investigação e Inovação em Saúde, (I3S) Universidade do Porto; Porto 4200-393 Portugal
- Instituto Nacional de Engenharia Biomédica (INEB), Universidade do Porto; Porto 4150-180 Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto; Porto 4050-313 Portugal
| | - Paulo J. Bártolo
- School of Mechanical, Aerospace and Civil Engineering, University of Manchester; Manchester M13 9PL United Kingdom
- Manchester Institute of Biotechnology, University of Manchester; Manchester M1 7DN United Kingdom
| |
Collapse
|
49
|
Pellowe AS, Gonzalez AL. Extracellular matrix biomimicry for the creation of investigational and therapeutic devices. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 8:5-22. [PMID: 26053111 DOI: 10.1002/wnan.1349] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 01/26/2015] [Accepted: 03/27/2015] [Indexed: 01/24/2023]
Abstract
The extracellular matrix (ECM) is a web of fibrous proteins that serves as a scaffold for tissues and organs, and is important for maintaining homeostasis and facilitating cellular adhesion. Integrin transmembrane receptors are the primary adhesion molecules that anchor cells to the ECM, thus integrating cells with their microenvironments. Integrins play a critical role in facilitating cell-matrix interactions and promoting signal transduction, both from the cell to the ECM and vice versa, ultimately mediating cell behavior. For this reason, many advanced biomaterials employ biomimicry by replicating the form and function of fibrous ECM proteins. The ECM also acts as a reservoir for small molecules and growth factors, wherein fibrous proteins directly bind and present these bioactive moieties that facilitate cell activity. Therefore biomimicry can be enhanced by incorporating small molecules into ECM-like substrates. Biomimetic ECM materials have served as invaluable research tools for studying interactions between cells and the surrounding ECM, revealing that cell-matrix signaling is driven by mechanical forces, integrin engagement, and small molecules. Mimicking pathological ECMs has also elucidated disease specific cell behaviors. For example, biomimetic tumor microenvironments have been used to induce metastatic cell behaviors, and have thereby shown promise for in vitro cancer drug testing and targeting. Further, ECM-like substrates have been successfully employed for autologous cell recolonization for tissue engineering and wound healing. As we continue to learn more about the mechanical and biochemical characteristics of the ECM, these properties can be harnessed to develop new biomaterials, biomedical devices, and therapeutics.
Collapse
Affiliation(s)
- Amanda S Pellowe
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | | |
Collapse
|
50
|
Blehm BH, Jiang N, Kotobuki Y, Tanner K. Deconstructing the role of the ECM microenvironment on drug efficacy targeting MAPK signaling in a pre-clinical platform for cutaneous melanoma. Biomaterials 2015; 56:129-39. [PMID: 25934286 DOI: 10.1016/j.biomaterials.2015.03.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 03/16/2015] [Accepted: 03/20/2015] [Indexed: 12/15/2022]
Abstract
Therapeutics targeting the BRAF kinase in cutaneous melanoma have significantly improved patient survival. However, durable responses in the face of metastatic disease are rarely realized where the problem of brain metastases is generally growing in magnitude. Tumor and stromal cells dynamically remodel the extracellular matrix (ECM) during the establishment of a metastatic lesion. We reasoned that ECM composition strongly determines drug efficacy on cell motility, adhesion and viability rendering one drug more potent and another less so. To test this hypothesis, we constructed platforms recreating the ECM composition due to the stroma and tumor cells, mimicking the brain's perivascular niche and hyaluronic acid (HA) rich parenchyma. Using human melanoma cell lines, we observed that cell adhesion was minimally affected by BRAF inhibition but ablated by ERK inhibition. Cell motility was impaired for both drugs. We determined that the composition and architecture of the ECM niche modulated drug efficacy. In one series, potency of BRAF inhibition was blunted in 3D Fibronectin-HA hydrogels whereas Laminin-HA hydrogels protected against ERK inhibition. In the other series, Laminin blunted drug efficacy, despite both series sharing the same BRAF mutation. These data reinforce the importance of contextual drug assessment in designing future therapeutics.
Collapse
Affiliation(s)
- Benjamin H Blehm
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA
| | - Nancy Jiang
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA
| | - Yorihisa Kotobuki
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA
| | - Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA.
| |
Collapse
|