1
|
Lei J, Dong X, Huang Y, Wu Z, Peng Z, Li B, Wang R, Pan Y, Zheng X, Zhao Z, Lu X. Enhanced Vascular Smooth Muscle Cell and Extracellular Matrix Repair Using a Metal-Organic Framework-Based Co-Delivery System for Abdominal Aortic Aneurysm Therapy. Adv Healthc Mater 2025; 14:e2402937. [PMID: 39716826 DOI: 10.1002/adhm.202402937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/30/2024] [Indexed: 12/25/2024]
Abstract
The abdominal aortic aneurysm (AAA) is a severe and complex condition characterized by the pathological dilation of the abdominal aorta. Current therapeutic strategies are limited, with surgical repair being the most effective intervention due to the lack of medications that can slow aneurysmal expansion or prevent adverse events. In this study, an innovative nanoplatform, Mn-UiO-66-NH2@HA, designed to repair vascular smooth muscle cells (VSMCs), and the extracellular matrix (ECM) is developed, thereby enhancing arterial wall integrity. This nanoplatform utilizes the classic metal-organic framework (MOF) UiO-66-NH2, doped with manganese ions (Mn2+) and coated with hyaluronate tetrasaccharide (4-mer HA). The Mn-UiO-66-NH2@HA nanoparticles demonstrates excellent drug-loading efficiency, sustained release properties, and biocompatibility. In vitro, these nanoparticles significantly increases VSMC contractility and up-regulated elastin and lysyl oxidase expressions, crucial for ECM repair, while inhibiting matrix metalloproteinases. In vivo studies on an Ang II-induced AAA mouse model reveals that Mn-UiO-66-NH2@HA effectively reduces aneurysmal expansion and improves aortic structural integrity. This study presents a promising co-delivery system leveraging MOF carriers coated with 4-mer HA and Mn2+, offering a novel therapeutic strategy for the treatment and management of AAA.
Collapse
MESH Headings
- Aortic Aneurysm, Abdominal/drug therapy
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Animals
- Metal-Organic Frameworks/chemistry
- Metal-Organic Frameworks/pharmacology
- Extracellular Matrix/metabolism
- Extracellular Matrix/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Hyaluronic Acid/chemistry
- Nanoparticles/chemistry
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Mice
- Male
- Humans
- Manganese/chemistry
- Drug Delivery Systems
Collapse
Affiliation(s)
- Jiahao Lei
- Department of Vascular Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Xunzhong Dong
- Department of Vascular Surgery, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, 236800, P. R. China
| | - Yong Huang
- Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, and School of Pharmacy, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Zhaoyu Wu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Zhiyou Peng
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Bo Li
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Ruihua Wang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Ying Pan
- Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, and School of Pharmacy, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Xiangtao Zheng
- Department of Vascular Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Zhen Zhao
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Xinwu Lu
- Department of Vascular Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| |
Collapse
|
2
|
Qin YS, Yi J, Chen YJ, Zhang W, Tang SF. Recent Advances in Micro/Nanomotor for the Therapy and Diagnosis of Atherosclerosis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11443-11468. [PMID: 39648908 DOI: 10.1021/acsami.4c15165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Atherosclerotic cardiovascular disease poses a significant global public health threat with a high incidence that can result in severe mortality and disability. The lack of targeted effects from traditional therapeutic drugs on atherosclerosis may cause damage to other organs and tissues, necessitating the need for a more focused approach to address this dilemma. Micro/nanomotors are self-propelled micro/nanoscale devices capable of converting external energy into autonomous movement, which offers advantages in enhancing penetration depth and retention while increasing contact area with abnormal sites, such as atherosclerotic plaque, inflammation, and thrombosis, within blood vessel walls. Recent studies have demonstrated the crucial role micro/nanomotors play in treating atherosclerotic cardiovascular disease. Hence, this review highlights the recent progress of micro/nanomotor technology in atherosclerotic cardiovascular disease, including the effective promotion of micro/nanomotors in the circulatory system, overcoming hemorheological barriers, targeting the atherosclerotic plaque microenvironment, and targeting intracellular drug delivery, to facilitate atherosclerotic plaque localization and therapy. Furthermore, we also describe the potential application of micro/nanomotors in the imaging of vulnerable plaque. Finally, we discuss key challenges and prospects for treating atherosclerotic cardiovascular disease while emphasizing the importance of designing individualized management strategies specific to its causes and microenvironmental factors.
Collapse
Affiliation(s)
- Yu-Sheng Qin
- Department of Laboratory Medicine, Liuzhou Key Laboratory of Precision Medicine for Viral Diseases, Guangxi Health Commission Key Laboratory of Clinical Biotechnology (Liuzhou People's Hospital), Liuzhou People's Hospital, Liuzhou 545006, China
| | - Juan Yi
- Department of Laboratory Medicine, Liuzhou Traditional Chinese Medical Hospital, The Third Affiliated Hospital of Guangxi University of Chinese Medicine, Liuzhou 545006, China
| | - Yan-Jun Chen
- Department of Pathology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Wei Zhang
- Department of Radiology, Liuzhou People's Hospital, Liuzhou 545006, China
| | - Shi-Fu Tang
- Department of Laboratory Medicine, Liuzhou Key Laboratory of Precision Medicine for Viral Diseases, Guangxi Health Commission Key Laboratory of Clinical Biotechnology (Liuzhou People's Hospital), Liuzhou People's Hospital, Liuzhou 545006, China
| |
Collapse
|
3
|
Rong Z, He X, Fan T, Zhang H. Nano Delivery System for Atherosclerosis. J Funct Biomater 2024; 16:2. [PMID: 39852558 PMCID: PMC11766408 DOI: 10.3390/jfb16010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025] Open
Abstract
Atherosclerosis, a pathological process propelled by inflammatory mediators and lipids, is a principal contributor to cardiovascular disease incidents. Currently, drug therapy, the primary therapeutic strategy for atherosclerosis, faces challenges such as poor stability and significant side effects. The advent of nanomaterials has garnered considerable attention from scientific researchers. Nanoparticles, such as liposomes and polymeric nanoparticles, have been developed for drug delivery in atherosclerosis treatment. This review will focus on how nanoparticles effectively improve drug safety and efficacy, as well as the continuous development and optimization of nanoparticles of the same material and further explore current challenges and future opportunities in this field.
Collapse
Affiliation(s)
| | | | | | - Haitao Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
4
|
Wang X, Mu D, Liang J, Xin R, Zhang Y, Liu R, Yao M, Zhang B. Emerging nanoprobes for the features visualization of vulnerable atherosclerotic plaques. SMART MEDICINE 2024; 3:e20240033. [PMID: 39776593 PMCID: PMC11669784 DOI: 10.1002/smmd.20240033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/28/2024] [Indexed: 01/11/2025]
Abstract
Atherosclerosis (AS) is a major cause of cardiovascular disease. In particular, the unpredictable rupture of vulnerable atherosclerotic plaques (VASPs) can cause serious cardiovascular events such as myocardial infarction, stroke, and even sudden death. Therefore, early evaluation of the vulnerability of atherosclerotic plaques is of great importance. However, clinical imaging techniques are only marginally useful in the presence of severe anatomical structural changes, making it difficult to evaluate plaque vulnerability at an early stage. With the development of molecular imaging and nanotechnology, specific nanoprobes constructed for the pathological features of VASPs have attracted much attention for their ability to visualize VASPs early and noninvasively at the cellular and molecular levels. Here, we outline the pathological features of VASPs, analyze the superiority and limitations of current clinical imaging techniques, introduce the rational design principles of nanoprobes, and systematically summarize the application of nanoprobes to visualize the features of VASPs at the cellular and molecular levels. In addition, we discussed the prospects and urgent challenges in this field, and we believe it will provide new ideas for the early and accurate diagnosis of cardiovascular diseases.
Collapse
Affiliation(s)
- Xin Wang
- Department of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Dan Mu
- Department of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Jing Liang
- Department of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Ruijing Xin
- Department of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Yukun Zhang
- Department of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Renyuan Liu
- Department of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Mei Yao
- Department of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Bing Zhang
- Department of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- Medical Imaging CenterAffiliated Drum Tower HospitalMedical School of Nanjing UniversityNanjingChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjingChina
- Department of RadiologyDrum Tower HospitalClinical College of Nanjing Medical UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNanjingChina
- Institute of Brain ScienceNanjing UniversityNanjingChina
| |
Collapse
|
5
|
Donati L, Valicenti ML, Giannoni S, Morena F, Martino S. Biomaterials Mimicking Mechanobiology: A Specific Design for a Specific Biological Application. Int J Mol Sci 2024; 25:10386. [PMID: 39408716 PMCID: PMC11476540 DOI: 10.3390/ijms251910386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Mechanosensing and mechanotransduction pathways between the Extracellular Matrix (ECM) and cells form the essential crosstalk that regulates cell homeostasis, tissue development, morphology, maintenance, and function. Understanding these mechanisms involves creating an appropriate cell support that elicits signals to guide cellular functions. In this context, polymers can serve as ideal molecules for producing biomaterials designed to mimic the characteristics of the ECM, thereby triggering responsive mechanisms that closely resemble those induced by a natural physiological system. The generated specific stimuli depend on the different natural or synthetic origins of the polymers, the chemical composition, the assembly structure, and the physical and surface properties of biomaterials. This review discusses the most widely used polymers and their customization to develop biomaterials with tailored properties. It examines how the characteristics of biomaterials-based polymers can be harnessed to replicate the functions of biological cells, making them suitable for biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Leonardo Donati
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
| | - Maria Luisa Valicenti
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
| | - Samuele Giannoni
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
- Centro di Eccellenza Materiali Innovativi Nanostrutturati per Applicazioni Chimiche Fisiche e Biomediche (CEMIN), University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
6
|
Senobari F, Abolmaali SS, Farahavr G, Tamaddon AM. Targeting inflammation with hyaluronic acid-based micro- and nanotechnology: A disease-oriented review. Int J Biol Macromol 2024; 280:135923. [PMID: 39322155 DOI: 10.1016/j.ijbiomac.2024.135923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 08/29/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Inflammation is a pivotal immune response in numerous diseases and presents therapeutic challenges. Traditional anti-inflammatory drugs and emerging cytokine inhibitors encounter obstacles such as limited bioavailability, poor tissue distribution, and adverse effects. Hyaluronic acid (HA), a versatile biopolymer, is widely employed to deliver therapeutic agents, including anti-inflammatory drugs, genes, and cell therapies owing to its unique properties, such as hydrophilicity, biodegradability, and safety. HA interacts with cell receptors to initiate processes such as angiogenesis, cell proliferation, and immune regulation. HA-based drug delivery systems offer dual strategies for effective inflammation management, capitalizing on passive and active mechanisms. This synergy permits the mitigation of inflammation by lowering the doses of anti-inflammatory drugs and their off-target adverse effects. A diverse array of micro- and nanotechnology techniques enable the fabrication of tailored HA-engineered systems, including hydrogels, microgels, nanogels, microneedles, nanofibers, and 3D-printed scaffolds, for diverse formulations and administration routes. This review explores recent insights into HA pharmacology in inflammatory conditions, material design, and fabrication methods, as well as its applications across a spectrum of inflammatory diseases, such as atherosclerosis, psoriasis, dermatitis, wound healing, rheumatoid arthritis, osteoarthritis, inflammatory bowel disease, and colitis, highlighting its potential for clinical translation.
Collapse
Affiliation(s)
- Fatemeh Senobari
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Samira Sadat Abolmaali
- Associate Professor, Pharmaceutical Nanotechnology Department and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Ghazal Farahavr
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Ali Mohammad Tamaddon
- Professor, Pharmaceutics and Pharmaceutical Nanotechnology Department and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran.
| |
Collapse
|
7
|
Zhou Z, Liu Y, Xie P, Yin Z. A ROS-responsive multifunctional targeted prodrug micelle for atherosclerosis treatment. Int J Pharm 2024; 660:124352. [PMID: 38901540 DOI: 10.1016/j.ijpharm.2024.124352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024]
Abstract
Atherosclerosis is a chronic multifactorial cardiovascular disease. To combat atherosclerosis effectively, it is necessary to develop precision and targeted therapy in the early stages of plaque formation. In this study, a simvastatin (SV)-containing prodrug micelle SPCPV was developed by incorporating a peroxalate ester bond (PO). SPCPV could specifically target VCAM-1 overexpressed at atherosclerotic lesions. SPCPV contains a carrier (CP) composed of cyclodextrin (CD) and polyethylene glycol (PEG). At the lesions, CP and SV exerted multifaceted anti-atherosclerotic effects. In vitro studies demonstrated that intracellular reactive oxygen species (ROS) could induce the release of SV from SPCPV. The uptake of SPCPV was higher in inflammatory cells than in normal cells. Furthermore, in vitro experiments showed that SPCPV effectively reduced ROS levels, possessed anti-inflammatory properties, inhibited foam cell formation, and promoted cholesterol efflux. In vivo studies using atherosclerotic rats showed that SPCPV reduced the thickness of the vascular wall and low-density lipoprotein (LDL). This study developed a drug delivery strategy that could target atherosclerotic plaques and treat atherosclerosis by integrating the carrier with SV. The findings demonstrated that SPCPV possessed high stability and safety and had great therapeutic potential for treating early-stage atherosclerosis.
Collapse
Affiliation(s)
- Zishuo Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yaxue Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Pei Xie
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zongning Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
8
|
Wang S, He H, Mao Y, Zhang Y, Gu N. Advances in Atherosclerosis Theranostics Harnessing Iron Oxide-Based Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308298. [PMID: 38368274 PMCID: PMC11077671 DOI: 10.1002/advs.202308298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/06/2024] [Indexed: 02/19/2024]
Abstract
Atherosclerosis, a multifaceted chronic inflammatory disease, has a profound impact on cardiovascular health. However, the critical limitations of atherosclerosis management include the delayed detection of advanced stages, the intricate assessment of plaque stability, and the absence of efficacious therapeutic strategies. Nanotheranostic based on nanotechnology offers a novel paradigm for addressing these challenges by amalgamating advanced imaging capabilities with targeted therapeutic interventions. Meanwhile, iron oxide nanoparticles have emerged as compelling candidates for theranostic applications in atherosclerosis due to their magnetic resonance imaging capability and biosafety. This review delineates the current state and prospects of iron oxide nanoparticle-based nanotheranostics in the realm of atherosclerosis, including pivotal aspects of atherosclerosis development, the pertinent targeting strategies involved in disease pathogenesis, and the diagnostic and therapeutic roles of iron oxide nanoparticles. Furthermore, this review provides a comprehensive overview of theranostic nanomedicine approaches employing iron oxide nanoparticles, encompassing chemical therapy, physical stimulation therapy, and biological therapy. Finally, this review proposes and discusses the challenges and prospects associated with translating these innovative strategies into clinically viable anti-atherosclerosis interventions. In conclusion, this review offers new insights into the future of atherosclerosis theranostic, showcasing the remarkable potential of iron oxide-based nanoparticles as versatile tools in the battle against atherosclerosis.
Collapse
Affiliation(s)
- Shi Wang
- State Key Laboratory of Digital Medical EngineeringJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Sciences & Medical EngineeringSoutheast UniversityNanjing210009P. R. China
| | - Hongliang He
- State Key Laboratory of Digital Medical EngineeringJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Sciences & Medical EngineeringSoutheast UniversityNanjing210009P. R. China
| | - Yu Mao
- School of MedicineNanjing UniversityNanjing210093P. R. China
| | - Yu Zhang
- State Key Laboratory of Digital Medical EngineeringJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Sciences & Medical EngineeringSoutheast UniversityNanjing210009P. R. China
| | - Ning Gu
- School of MedicineNanjing UniversityNanjing210093P. R. China
| |
Collapse
|
9
|
Zhu Y, Fang Y, Wang Y, Han D, Liu J, Tian L, Xu M, Wang Y, Cao F. Cluster of Differentiation-44-Targeting Prussian Blue Nanoparticles Onloaded with Colchicine for Atherosclerotic Plaque Regression in a Mice Model. ACS Biomater Sci Eng 2024; 10:1530-1543. [PMID: 38372216 DOI: 10.1021/acsbiomaterials.3c01518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Atherosclerosis management heavily relies on the suppression of the inflammatory response of macrophages. Colchicine's potent anti-inflammatory properties make it a promising candidate for secondary prevention against cardiovascular disease. However, its high toxicity and numerous adverse effects limit its clinical use. To address this, there is an urgent need for specific drug delivery systems to boost the level of accumulation of colchicine within atherosclerotic plaques. In this study, the cluster of differentiation-44 receptor was verified to be overexpressed in inflammatory macrophages within plaques both in vitro and in vivo. Subsequently, a Prussian blue-based nanomedical loading system with hyaluronic acid (HA) coating was constructed, and its effects were observed on the atherosclerosis regression. Colchicine and Cy5.5 were encapsulated within Prussian blue nanoparticles through self-assembly, followed by conjugation with hyaluronic acid to create col@PBNP@HA. The formulated col@PBNP@HA displayed a cubic shape and scattered distribution. Importantly, col@PBNP@HA demonstrated specific cellular uptake into lipopolysaccharide-stimulated macrophages. In vitro experiments showed that col@PBNP@HA more effectively inhibited expression of inflammatory factors and scavenged reactive oxygen species compared with the control group, which were treated with colchicine. Furthermore, col@PBNP@HA exhibited its specific and higher accumulation in aortic plaque analysis via fluorescence imaging of aortas. After 4 weeks, administration of col@PBNP@HA resulted in significant atherosclerosis regression in the mice model, with therapeutic effects superior to those of free colchicine. Similar to colchicine, col@PBNP@HA inhibited the secretion of inflammation factors and scavenged ROS through the regulation of the toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (Myd88)/nuclear factor kappa-B (NF-κB) and peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) signaling pathway. In summary, col@PBNP@HA demonstrated specific targeting ability to inflammatory plaques and exerted beneficial effects on atherosclerosis regression through TLR4/Myd88/NF-κB and PGC-1α modulation.
Collapse
Affiliation(s)
- Yan Zhu
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Second Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yan Fang
- Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Second Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yujia Wang
- Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Second Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Dong Han
- Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Second Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Jing Liu
- Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Second Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Lei Tian
- Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Second Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Mengqi Xu
- Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Second Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yabin Wang
- Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Second Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Feng Cao
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Second Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
10
|
Gu Y, Cui M, Wang W, Zhang J, Wang H, Zheng C, Lei L, Ji M, Chen W, Xu Y, Wang P. Visualization of the Ferroptosis in Atherosclerotic Plaques with Nanoprobe Engineered by Macrophage Cell Membranes. Anal Chem 2024; 96:281-291. [PMID: 38153251 DOI: 10.1021/acs.analchem.3c03999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Atherosclerosis (AS) is the root cause of cardiovascular diseases. Ferroptosis is characterized by highly iron-dependent lipid peroxidation and has been reported to play an important role in the pathogenesis of AS. Visualization of the ferroptosis process in atherosclerotic plaques is of great importance for diagnosing and treating AS. In this work, the rationally designed fluorescent probe FAS1 exhibited excellent advantages including large Stokes shift, sensitivity to environmental viscosity, good photostability, and improved water solubility. It also could co-locate with commercial lipid droplets (LDs) probes (BODIPY 493/503) well in RAW264.7 cells treated by the ferroptosis inducer. After self-assembly into nanoparticles and then encapsulation with macrophage membranes, the engineered FAS1@MM NPs could successfully target the atherosclerotic plaques in Western diet-induced apolipoprotein E knockout (ApoE-/-) mice and reveal the association of ferroptosis with AS through fluorescence imaging in vivo. This study may provide additional insights into the roles of ferroptosis in the diagnosis and treatment of AS.
Collapse
Affiliation(s)
- Yinhui Gu
- Department of Nuclear Medicine & Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610044, China
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Mengyuan Cui
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Weizhi Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), Beijing 100050, China
| | - Jiaqi Zhang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Huizhe Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Cheng Zheng
- Department of Nuclear Medicine & Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610044, China
| | - Lijuan Lei
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), Beijing 100050, China
| | - Min Ji
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Wei Chen
- Department of Nuclear Medicine & Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610044, China
| | - Yanni Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), Beijing 100050, China
| | - Peng Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
11
|
Liu H, Lv H, Duan X, Du Y, Tang Y, Xu W. Advancements in Macrophage-Targeted Drug Delivery for Effective Disease Management. Int J Nanomedicine 2023; 18:6915-6940. [PMID: 38026516 PMCID: PMC10680479 DOI: 10.2147/ijn.s430877] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
Macrophages play a crucial role in tissue homeostasis and the innate immune system. They perform essential functions such as presenting antigens, regulating cytokines, and responding to inflammation. However, in diseases like cancer, cardiovascular disorders, and autoimmune conditions, macrophages undergo aberrant polarization, which disrupts tissue regulation and impairs their normal behavior. To address these challenges, there has been growing interest in developing customized targeted drug delivery systems specifically designed for macrophage-related functions in different anatomical locations. Nanomedicine, utilizing nanoscale drug systems, offers numerous advantages including improved stability, enhanced pharmacokinetics, controlled release kinetics, and precise temporal drug delivery. These advantages hold significant promise in achieving heightened therapeutic efficacy, specificity, and reduced side effects in drug delivery and treatment approaches. This review aims to explore the roles of macrophages in major diseases and present an overview of current strategies employed in targeted drug delivery to macrophages. Additionally, this article critically evaluates the design of macrophage-targeted delivery systems, highlighting limitations and discussing prospects in this rapidly evolving field. By assessing the strengths and weaknesses of existing approaches, we can identify areas for improvement and refinement in macrophage-targeted drug delivery.
Collapse
Affiliation(s)
- Hanxiao Liu
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
- Department of Pharmacy, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, People’s Republic of China
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Hui Lv
- Department of Pharmacy, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, People’s Republic of China
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Xuehui Duan
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Yan Du
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Yixuan Tang
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Wei Xu
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
- Department of Pharmacy, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, People’s Republic of China
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| |
Collapse
|
12
|
Tao Y, Lan X, Zhang Y, Fu C, Liu L, Cao F, Guo W. Biomimetic nanomedicines for precise atherosclerosis theranostics. Acta Pharm Sin B 2023; 13:4442-4460. [PMID: 37969739 PMCID: PMC10638499 DOI: 10.1016/j.apsb.2022.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/13/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
Atherosclerosis (AS) is a leading cause of the life-threatening cardiovascular disease (CVD), creating an urgent need for efficient, biocompatible therapeutics for diagnosis and treatment. Biomimetic nanomedicines (bNMs) are moving closer to fulfilling this need, pushing back the frontier of nano-based drug delivery systems design. This review seeks to outline how these nanomedicines (NMs) might work to diagnose and treat atherosclerosis, to trace the trajectory of their development to date and in the coming years, and to provide a foundation for further discussion about atherosclerotic theranostics.
Collapse
Affiliation(s)
- Ying Tao
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Biomedical Engineering & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Xinmiao Lan
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yang Zhang
- Department of Cardiology, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Chenxing Fu
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Lu Liu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR 999077, China
| | - Feng Cao
- Department of Cardiology, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Weisheng Guo
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Biomedical Engineering & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| |
Collapse
|
13
|
Dubashynskaya NV, Bokatyi AN, Trulioff AS, Rubinstein AA, Kudryavtsev IV, Skorik YA. Development and Bioactivity of Zinc Sulfate Cross-Linked Polysaccharide Delivery System of Dexamethasone Phosphate. Pharmaceutics 2023; 15:2396. [PMID: 37896156 PMCID: PMC10610283 DOI: 10.3390/pharmaceutics15102396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Improving the biopharmaceutical properties of glucocorticoids (increasing local bioavailability and reducing systemic toxicity) is an important challenge. The aim of this study was to develop a dexamethasone phosphate (DexP) delivery system based on hyaluronic acid (HA) and a water-soluble cationic chitosan derivative, diethylaminoethyl chitosan (DEAECS). The DexP delivery system was a polyelectrolyte complex (PEC) resulting from interpolymer interactions between the HA polyanion and the DEAECS polycation with simultaneous incorporation of zinc ions as a cross-linking agent into the complex. The developed PECs had a hydrodynamic diameter of 244 nm and a ζ-potential of +24.4 mV; the encapsulation efficiency and DexP content were 75.6% and 45.4 μg/mg, respectively. The designed DexP delivery systems were characterized by both excellent mucoadhesion and prolonged drug release (approximately 70% of DexP was released within 10 h). In vitro experiments showed that encapsulation of DexP in polysaccharide nanocarriers did not reduce its anti-inflammatory activity compared to free DexP.
Collapse
Affiliation(s)
- Natallia V. Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, 199004 Saint Petersburg, Russia; (A.N.B.); (Y.A.S.)
| | - Anton N. Bokatyi
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, 199004 Saint Petersburg, Russia; (A.N.B.); (Y.A.S.)
| | - Andrey S. Trulioff
- Institute of Experimental Medicine, Acad. Pavlov St. 12, 197376 Saint Petersburg, Russia; (A.S.T.); (A.A.R.); (I.V.K.)
| | - Artem A. Rubinstein
- Institute of Experimental Medicine, Acad. Pavlov St. 12, 197376 Saint Petersburg, Russia; (A.S.T.); (A.A.R.); (I.V.K.)
| | - Igor V. Kudryavtsev
- Institute of Experimental Medicine, Acad. Pavlov St. 12, 197376 Saint Petersburg, Russia; (A.S.T.); (A.A.R.); (I.V.K.)
| | - Yury A. Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, 199004 Saint Petersburg, Russia; (A.N.B.); (Y.A.S.)
| |
Collapse
|
14
|
Sowmiya P, Dhas TS, Inbakandan D, Anandakumar N, Nalini S, Suganya KSU, Remya RR, Karthick V, Kumar CMV. Optically active organic and inorganic nanomaterials for biological imaging applications: A review. Micron 2023; 172:103486. [PMID: 37262930 DOI: 10.1016/j.micron.2023.103486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Recent advancements in the field of nanotechnology have enabled targeted delivery of drug agents in vivo with minimal side effects. The use of nanoparticles for bio-imaging has revolutionized the field of nanomedicine by enabling non-invasive targeting and selective delivery of active drug moieties in vivo. Various inorganic nanomaterials like mesoporous silica nanoparticles, gold nanoparticles, magnetite nanoparticles graphene-based nanomaterials etc., have been created for multimodal therapies with varied multi-imaging modalities. These nanomaterials enable us to overcome the disadvantages of conventional imaging contrast agents (organic dyes) such as lack of stability in vitro and in vivo, high reactivity, low-quantum yield and poor photo stability. Inorganic nanomaterials can be easily fabricated, functionalised and modified as per requirements. Recently, advancements in synthesis techniques, such as the ability to generate molecules and construct supramolecular structures for specific functionalities, have boosted the usage of engineered nanomaterials. Their intrinsic physicochemical properties are unique and they possess excellent biocompatibility. Inorganic nanomaterial research has developed as the most actively booming research fields in biotechnology and biomedicine. Inorganic nanomaterials like gold nanoparticles, magnetic nanoparticles, mesoporous silica nanoparticles, graphene-based nanomaterials and quantum dots have shown excellent use in bioimaging, targeted drug delivery and cancer therapies. Biocompatibility of nanomaterials is an important aspect for the evolution of nanomaterials in the bench to bedside transition. The conduction of thorough and meticulous study for safety and efficacy in well-designed clinical trials is absolutely necessary to determine the functional and structural relationship between the engineered nanomaterial and its toxicity. In this article an attempt is made to throw some light on the current scenario and developments made in the field of nanomaterials in bioimaging.
Collapse
Affiliation(s)
- P Sowmiya
- Centre for Ocean Research (DST- FIST Sponsored Centre), MoES-Earth Science and Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - T Stalin Dhas
- Centre for Ocean Research (DST- FIST Sponsored Centre), MoES-Earth Science and Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India.
| | - D Inbakandan
- Centre for Ocean Research (DST- FIST Sponsored Centre), MoES-Earth Science and Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - N Anandakumar
- Department of Education, The Gandhigram Rural Institute, Dindigul 624302, Tamil Nadu, India
| | - S Nalini
- Department of Microbiology, Shree Rahavendra Arts and Science College, Keezhamoongiladi, Chidambaram 608102, Tamil Nadu, India
| | - K S Uma Suganya
- Department of Biotechnology and Biochemical Engineering, Sree Chitra Thirunal College of Engineering, Pappanamcode, Thiruvananthapuram 695018, Kerala, India
| | - R R Remya
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai 600073, Tamil Nadu, India
| | - V Karthick
- Centre for Ocean Research (DST- FIST Sponsored Centre), MoES-Earth Science and Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - C M Vineeth Kumar
- Centre for Ocean Research (DST- FIST Sponsored Centre), MoES-Earth Science and Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| |
Collapse
|
15
|
Sarkar K, Bank S, Chatterjee A, Dutta K, Das A, Chakraborty S, Paul N, Sarkar J, De S, Ghosh S, Acharyya K, Chattopadhyay D, Das M. Hyaluronic acid-graphene oxide quantum dots nanoconjugate as dual purpose drug delivery and therapeutic agent in meta-inflammation. J Nanobiotechnology 2023; 21:246. [PMID: 37528408 PMCID: PMC10394801 DOI: 10.1186/s12951-023-02015-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) predominantly considered a metabolic disease is now being considered an inflammatory disease as well due to the involvement of meta-inflammation. Obesity-induced adipose tissue inflammation (ATI) is one of the earliest phenomena in the case of meta-inflammation, leading to the advent of insulin resistance (IR) and T2DM. The key events of ATI are orchestrated by macrophages, which aggravate the inflammatory state in the tissue upon activation, ultimately leading to systemic chronic low-grade inflammation and Non-Alcoholic Steatohepatitis (NASH) through the involvement of proinflammatory cytokines. The CD44 receptor on macrophages is overexpressed in ATI, NASH, and IR. Therefore, we developed a CD44 targeted Hyaluronic Acid functionalized Graphene Oxide Quantum Dots (GOQD-HA) nanocomposite for tissue-specific delivery of metformin. Metformin-loaded GOQD-HA (GOQD-HA-Met) successfully downregulated the expression of proinflammatory cytokines and restored antioxidant status at lower doses than free metformin in both palmitic acid-induced RAW264.7 cells and diet induced obese mice. Our study revealed that the GOQD-HA nanocarrier enhanced the efficacy of Metformin primarily by acting as a therapeutic agent apart from being a drug delivery platform. The therapeutic properties of GOQD-HA stem from both HA and GOQD having anti-inflammatory and antioxidant properties respectively. This study unravels the function of GOQD-HA as a targeted drug delivery option for metformin in meta-inflammation where the nanocarrier itself acts as a therapeutic agent.
Collapse
Affiliation(s)
- Kunal Sarkar
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Sarbashri Bank
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Arindam Chatterjee
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Koushik Dutta
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Anwesha Das
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Santanu Chakraborty
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Nirvika Paul
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Jit Sarkar
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, 700019, India
| | - Sriparna De
- Department of Allied Health Sciences, Brainware University, Kolkata, 700129, India
| | - Sudakshina Ghosh
- Department of Zoology, Vidyasagar College for Women, Kolkata, 700006, India
| | - Krishnendu Acharyya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, 700019, India
| | - Dipankar Chattopadhyay
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Madhusudan Das
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
16
|
Shen Y, Zhang B, Yi Z, Zhang L, Ling J, Wang S, Sun Z, Iqbal MZ, Kong X. Microfluidic fabrication of X-ray-visible sodium hyaluronate microspheres for embolization. RSC Adv 2023; 13:20512-20519. [PMID: 37435366 PMCID: PMC10331790 DOI: 10.1039/d3ra02812g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023] Open
Abstract
Catheter embolization is a minimally invasive technique that relies on embolic agents and is now widely used to treat various high-prevalence medical diseases. Embolic agents usually need to be combined with exogenous contrasts to visualize the embolotherapy process. However, the exogenous contrasts are quite simply washed away by blood flow, making it impossible to monitor the embolized location. To solve this problem, a series of sodium hyaluronate (SH) loaded with bismuth sulfide (Bi2S3) nanorods (NRs) microspheres (Bi2S3@SH) were prepared in this study by using 1,4-butaneglycol diglycidyl ether (BDDE) as a crosslinker through single-step microfluidics. Bi2S3@SH-1 microspheres showed the best performance among other prepared microspheres. The fabricated microspheres had uniform size and good dispersibility. Furthermore, the introduction of Bi2S3 NRs synthesized by a hydrothermal method as Computed Tomography (CT) contrast agents improved the mechanical properties of Bi2S3@SH-1 microspheres and endowed the microspheres with excellent X-ray impermeability. The blood compatibility and cytotoxicity test showed that the Bi2S3@SH-1 microspheres had good biocompatibility. In particular, the in vitro simulated embolization experiment results indicate that the Bi2S3@SH-1 microspheres had excellent embolization effect, especially for the small-sized blood vessels of 500-300 and 300 μm. The results showed the prepared Bi2S3@SH-1 microspheres have good biocompatibility and mechanical properties, as well as certain X-ray visibility and excellent embolization effects. We believe that the design and combination of this material has good guiding significance in the field of embolotherapy.
Collapse
Affiliation(s)
- Yang Shen
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering Hangzhou 310018 China
| | - Baoqu Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering Hangzhou 310018 China
| | - Zihan Yi
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering Hangzhou 310018 China
| | - Lan Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering Hangzhou 310018 China
| | - Jing Ling
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering Hangzhou 310018 China
| | - Shibo Wang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering Hangzhou 310018 China
| | - Zhichao Sun
- The Department of Medical Imaging, The First Medical College of Zhejiang Chinese Medical University Hangzhou 310053 China
| | - M Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering Hangzhou 310018 China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering Hangzhou 310018 China
| |
Collapse
|
17
|
Iaconisi GN, Lunetti P, Gallo N, Cappello AR, Fiermonte G, Dolce V, Capobianco L. Hyaluronic Acid: A Powerful Biomolecule with Wide-Ranging Applications-A Comprehensive Review. Int J Mol Sci 2023; 24:10296. [PMID: 37373443 DOI: 10.3390/ijms241210296] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Hyaluronic acid (HA) is a glycosaminoglycan widely distributed in the human body, especially in body fluids and the extracellular matrix of tissues. It plays a crucial role not only in maintaining tissue hydration but also in cellular processes such as proliferation, differentiation, and the inflammatory response. HA has demonstrated its efficacy as a powerful bioactive molecule not only for skin antiaging but also in atherosclerosis, cancer, and other pathological conditions. Due to its biocompatibility, biodegradability, non-toxicity, and non-immunogenicity, several HA-based biomedical products have been developed. There is an increasing focus on optimizing HA production processes to achieve high-quality, efficient, and cost-effective products. This review discusses HA's structure, properties, and production through microbial fermentation. Furthermore, it highlights the bioactive applications of HA in emerging sectors of biomedicine.
Collapse
Affiliation(s)
- Giorgia Natalia Iaconisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Paola Lunetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy
| | - Anna Rita Cappello
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Giuseppe Fiermonte
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Vincenza Dolce
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| |
Collapse
|
18
|
Xu H, She P, Zhao Z, Ma B, Li G, Wang Y. Duplex Responsive Nanoplatform with Cascade Targeting for Atherosclerosis Photoacoustic Diagnosis and Multichannel Combination Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300439. [PMID: 36828777 DOI: 10.1002/adma.202300439] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/16/2023] [Indexed: 05/26/2023]
Abstract
The culprits of atherosclerosis are endothelial damage, local disorders of lipid metabolism, and progressive inflammation. Early atherosclerosis is typically difficult to diagnose in time due to the lack of obvious symptoms, thus missing the best period of treatment. In this work, a π-conjugated polymer (PMeTPP-MBT) based on 3,6-bis(4-methylthiophen-2-yl)-2,5-bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione is designed as a novel photoacoustic contrast agent. On this basis, an intelligent responsive theranostic nanoplatform (PA/ASePSD) combining astaxanthin and SS-31 peptide and loading with PMeTPP-MBT is developed. The high affinity between the dextran shell with the broken endothelial surface VCAM-1 and CD44 confers active targeting of PA/ASePSD to atherosclerotic lesions. High levels of ROS in the acidic plaque microenvironment act as an intelligent cascade switch to achieve controlled release of astaxanthin, SS-31 peptide, and PMeTPP-MBT for non-invasive photoacoustic diagnosis, as well as plaque inhibition mediated by anti-inflammation and multichannel regulation (including ABCA1, ABCG1, CD36, and LOX-1) of lipid metabolism. Both in vitro and in vivo evaluations confirm the impressive anti-atherosclerotic capability and the accurate photoacoustic diagnosis of PA/ASePSD nanoparticles, thus promising a candidate for early-stage atherosclerosis theranostics.
Collapse
Affiliation(s)
- Hong Xu
- National Engineering Research Center for Biomaterials, Sichuan university, Chengdu, 610064, P. R. China
| | - Peiyi She
- National Engineering Research Center for Biomaterials, Sichuan university, Chengdu, 610064, P. R. China
| | - Zhiyu Zhao
- National Engineering Research Center for Biomaterials, Sichuan university, Chengdu, 610064, P. R. China
| | - Boxuan Ma
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, P. R. China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, 310016, P. R. China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials, Sichuan university, Chengdu, 610064, P. R. China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan university, Chengdu, 610064, P. R. China
| |
Collapse
|
19
|
Zhang X, Misra SK, Moitra P, Zhang X, Jeong SJ, Stitham J, Rodriguez-Velez A, Park A, Yeh YS, Gillanders WE, Fan D, Diwan A, Cho J, Epelman S, Lodhi IJ, Pan D, Razani B. Use of acidic nanoparticles to rescue macrophage lysosomal dysfunction in atherosclerosis. Autophagy 2023; 19:886-903. [PMID: 35982578 PMCID: PMC9980706 DOI: 10.1080/15548627.2022.2108252] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 12/19/2022] Open
Abstract
Dysfunction in the macrophage lysosomal system including reduced acidity and diminished degradative capacity is a hallmark of atherosclerosis, leading to blunted clearance of excess cellular debris and lipids in plaques and contributing to lesion progression. Devising strategies to rescue this macrophage lysosomal dysfunction is a novel therapeutic measure. Nanoparticles have emerged as an effective platform to both target specific tissues and serve as drug delivery vehicles. In most cases, administered nanoparticles are taken up non-selectively by the mononuclear phagocyte system including monocytes/macrophages leading to the undesirable degradation of cargo in lysosomes. We took advantage of this default route to target macrophage lysosomes to rectify their acidity in disease states such as atherosclerosis. Herein, we develop and test two commonly used acidic nanoparticles, poly-lactide-co-glycolic acid (PLGA) and polylactic acid (PLA), both in vitro and in vivo. Our results in cultured macrophages indicate that the PLGA-based nanoparticles are the most effective at trafficking to and enhancing acidification of lysosomes. PLGA nanoparticles also provide functional benefits including enhanced lysosomal degradation, promotion of macroautophagy/autophagy and protein aggregate removal, and reduced apoptosis and inflammasome activation. We demonstrate the utility of this system in vivo, showing nanoparticle accumulation in, and lysosomal acidification of, macrophages in atherosclerotic plaques. Long-term administration of PLGA nanoparticles results in significant reductions in surrogates of plaque complexity with reduced apoptosis, necrotic core formation, and cytotoxic protein aggregates and increased fibrous cap formation. Taken together, our data support the use of acidic nanoparticles to rescue macrophage lysosomal dysfunction in the treatment of atherosclerosis.Abbreviations: BCA: brachiocephalic arteries; FACS: fluorescence activated cell sorting; FITC: fluorescein-5-isothiocyanatel; IL1B: interleukin 1 beta; LAMP: lysosomal associated membrane protein; LIPA/LAL: lipase A, lysosomal acid type; LSDs: lysosomal storage disorders; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MFI: mean fluorescence intensity; MPS: mononuclear phagocyte system; PEGHDE: polyethylene glycol hexadecyl ether; PLA: polylactic acid; PLGA: poly-lactide-co-glycolic acid; SQSTM1/p62: sequestosome 1.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Cardiovascular Division, Washington University, St. Louis, MO, USA
| | - Santosh Kumar Misra
- Department of Bioengineering, University of Illinois at Urbana Champaign, IL, USA
| | - Parikshit Moitra
- Departments of Diagnostic Radiology and Nuclear Medicine and Pediatrics, Baltimore, Maryland, USA
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania16802, USA
| | - Xiuli Zhang
- Department of Surgery, Washington University, St. Louis, MO, USA
| | - Se-Jin Jeong
- Cardiovascular Division, Washington University, St. Louis, MO, USA
| | - Jeremiah Stitham
- Cardiovascular Division, Washington University, St. Louis, MO, USA
- Division of Endocrinology, Metabolism, and Lipid Research, St. Louis, MO, USA
| | | | - Arick Park
- Cardiovascular Division, Washington University, St. Louis, MO, USA
| | - Yu-Sheng Yeh
- Cardiovascular Division, Washington University, St. Louis, MO, USA
| | | | - Daping Fan
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Abhinav Diwan
- Cardiovascular Division, Washington University, St. Louis, MO, USA
- John Cochran Division, VA Medical Center, St. Louis, MO, USA
| | - Jaehyung Cho
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Slava Epelman
- Peter Munk Cardiac Center, Toronto General Hospital Research Institute, University Health Network, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada
| | - Irfan J. Lodhi
- Division of Endocrinology, Metabolism, and Lipid Research, St. Louis, MO, USA
| | - Dipanjan Pan
- Department of Bioengineering, University of Illinois at Urbana Champaign, IL, USA
- Departments of Diagnostic Radiology and Nuclear Medicine and Pediatrics, Baltimore, Maryland, USA
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania16802, USA
| | - Babak Razani
- Cardiovascular Division, Washington University, St. Louis, MO, USA
- John Cochran Division, VA Medical Center, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
20
|
Zhang X, Centurion F, Misra A, Patel S, Gu Z. Molecularly targeted nanomedicine enabled by inorganic nanoparticles for atherosclerosis diagnosis and treatment. Adv Drug Deliv Rev 2023; 194:114709. [PMID: 36690300 DOI: 10.1016/j.addr.2023.114709] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/20/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Atherosclerosis, a chronic cardiovascular disease caused by plaque development in arteries, remains a leading cause of morbidity and mortality. Atherosclerotic plaques are characterized by the expression and regulation of key molecules such as cell surface receptors, cytokines, and signaling pathway proteins, potentially facilitating precise diagnosis and treatment on a molecular level by specifically targeting the characteristic molecules. In this review, we highlight the recent progress in the past five years on developing molecularly targeted nanomedicine for imaging detection and treatment of atherosclerosis with the use of inorganic nanoparticles. Through targeted delivery of imaging contrast nanoparticles to specific molecules in atherogenesis, atherosclerotic plaque development at different stages could be identified and monitored via various molecular imaging modalities. We also review molecularly targeted therapeutic approaches that target and regulate molecules associated with lipid regulation, inflammation, and apoptosis. The review is concluded with discussion on current challenges and future development of nanomedicine for atherosclerotic diagnosis and treatment.
Collapse
Affiliation(s)
- Xiuwen Zhang
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Franco Centurion
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ashish Misra
- Heart Research Institute, Sydney, NSW 2042, Australia; Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Sanjay Patel
- Heart Research Institute, Sydney, NSW 2042, Australia; Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia; Sydney Medical School, The University of Sydney, NSW 2006, Australia
| | - Zi Gu
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia; Australian Centre for NanoMedicine (ACN), University of New South Wales, Sydney, NSW 2052, Australia; UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
21
|
Alcântara LO, de Sousa JR, Andrade FK, Teixeira EH, Cerqueira MÂ, da Silva ALC, Souza Filho MDSM, de Souza BWS. Extraction and characterization of hyaluronic acid from the eyeball of Nile Tilapia (Oreochromis niloticus). Int J Biol Macromol 2023; 226:172-183. [PMID: 36495987 DOI: 10.1016/j.ijbiomac.2022.12.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/04/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
Hyaluronic acid (HA) is a biopolymer of enormous value aggregation for in general industry. The vitreous humor of the eyeball from Nile tilapia contains appreciable amounts of hyaluronic acid. In this sense, the aim of this work was to extract and characterize hyaluronic acid from the eyeball of the Nile tilapia for biomedical applications, adding value to fish industry residues. The characterization by infra-red (FTIR), 13C nuclear magnetic resonance (NMR) and high performance liquid chromatography (HPLC) confirmed that hyaluronic acid was obtained. The gel permeation chromatography (GPC) showed that the obtained material presents a low molecular mass (37 KDa). Thermogravimetry (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) analysis showed that the materials present a thermal stability superior to the commercial hyaluronic acid from Streptococcus equi, with a partially crystalline character. The cytotoxicity assay (MTT method) with fibroblast cells (L929) demonstrated that the extracted biopolymer besides not being cytotoxic, was able to stimulate cell proliferation. Therefore, the hyaluronic acid extracted from this source of residue constitutes a product with biotechnological potential, which has adequate quality for wide biomedical applications.
Collapse
Affiliation(s)
- Lyndervan Oliveira Alcântara
- Department of Fishing Engineering, Federal University of Ceara, Campus do Pici, 825, CEP: 60356-000 Fortaleza, CE, Brazil
| | - Juliana Rabelo de Sousa
- Department of Fishing Engineering, Federal University of Ceara, Campus do Pici, 825, CEP: 60356-000 Fortaleza, CE, Brazil
| | - Fábia Karine Andrade
- Department of Chemical Engineering, Graduate Program of Chemical Engineering, Federal University of Ceara, Campus do Pici, 709, CEP: 60455-760 Fortaleza, CE, Brazil
| | - Edson Holanda Teixeira
- Department of Pathology and Forensic Medicine, Faculty of Medicine, Federal University of Ceara, UFC, CEP: 60430-160 Fortaleza, CE, Brazil
| | - Miguel Ângelo Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - André Luis Coelho da Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Campus do Pici, 907 CEP: 60451-970, Fortaleza, CE, Brazil
| | | | | |
Collapse
|
22
|
Fang WY, Zhan YY, Wan CL, Li XJ, Xue R, Pei FK. Synthesis and characterization of a macromolecular magnetic resonance imaging and delivery system with hyaluronic acid as a carrier. Biochem Biophys Res Commun 2023; 639:183-188. [PMID: 36502552 DOI: 10.1016/j.bbrc.2022.11.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/16/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022]
Abstract
Using hyaluronic acid (HA) as macromolecular drug carriers, a glutathione-responsive imaging drug delivery system HA-SS-a-Gd-DOTA was formed by conjugating gadolinium chelates and cytarabine. This system exhibited T1-reflexivity (21.9 mmol-1 L s-1, 0.5 T) that was higher than that of gadoterate meglumine. In an acidic environment, in vitro drug release reached 63.4% in 24 h. Low cytotoxicity indicated that this system has good biocompatibility. In vivo mouse imaging studies showed that tumor signaling was significantly enhanced. About 58% of the signal enhancement was obtained 50 min after injection of the drug. The degradation of the hyaluronic acid macromolecular chains in vivo makes it an ideal tumor imaging diagnostic agent because it did not cause damage to important organs of the mice.
Collapse
Affiliation(s)
- Wan-Yun Fang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, 5625 Renmin Street, Changchun, Jilin Province, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - You-Yang Zhan
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, 5625 Renmin Street, Changchun, Jilin Province, China
| | - Chuan-Ling Wan
- College of Science &Technology, Hebei Agricultural University, Huanghua, 061100, China; School of Architecture, Changchun Institute of Technology, Changchun, 130021, China
| | - Xiao-Jing Li
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, 5625 Renmin Street, Changchun, Jilin Province, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| | - Rong Xue
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, 5625 Renmin Street, Changchun, Jilin Province, China
| | - Feng-Kui Pei
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, 5625 Renmin Street, Changchun, Jilin Province, China
| |
Collapse
|
23
|
He J, Zhang W, Zhou X, Xu F, Zou J, Zhang Q, Zhao Y, He H, Yang H, Liu J. Reactive oxygen species (ROS)-responsive size-reducible nanoassemblies for deeper atherosclerotic plaque penetration and enhanced macrophage-targeted drug delivery. Bioact Mater 2023; 19:115-126. [PMID: 35475030 PMCID: PMC9010555 DOI: 10.1016/j.bioactmat.2022.03.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 12/03/2022] Open
Abstract
Nanoparticle-based therapeutics represent potential strategies for treating atherosclerosis; however, the complex plaque microenvironment poses a barrier for nanoparticles to target the dysfunctional cells. Here, we report reactive oxygen species (ROS)-responsive and size-reducible nanoassemblies, formed by multivalent host-guest interactions between β-cyclodextrins (β-CD)-anchored discoidal recombinant high-density lipoprotein (NP3ST) and hyaluronic acid-ferrocene (HA-Fc) conjugates. The HA-Fc/NP3ST nanoassemblies have extended blood circulation time, specifically accumulate in atherosclerotic plaque mediated by the HA receptors CD44 highly expressed in injured endothelium, rapidly disassemble in response to excess ROS in the intimal and release smaller NP3ST, allowing for further plaque penetration, macrophage-targeted cholesterol efflux and drug delivery. In vivo pharmacodynamicses in atherosclerotic mice shows that HA-Fc/NP3ST reduces plaque size by 53%, plaque lipid deposition by 63%, plaque macrophage content by 62% and local inflammatory factor level by 64% compared to the saline group. Meanwhile, HA-Fc/NP3ST alleviates systemic inflammation characterized by reduced serum inflammatory factor levels. Collectively, HA-Fc/NP3ST nanoassemblies with ROS-responsive and size-reducible properties exhibit a deeper penetration in atherosclerotic plaque and enhanced macrophage targeting ability, thus exerting effective cholesterol efflux and drug delivery for atherosclerosis therapy. HA-Fc/NP3ST is designed for long blood circulation and deep plaque penetration. Nanoassemblies are formed by multivalent host-guest interactions of β-CD/ferrocene. Release of NP3ST triggered by excess ROS aims for macrophage-targeted drug delivery. FRET method is utilized to characterize the ROS-responsiveness of nanoassemblies. Biomimic cell coculture model is constructed to simulate the atherosclerotic plaque.
Collapse
|
24
|
Lee WH, Rho JG, Yang Y, Lee S, Kweon S, Kim HM, Yoon J, Choi H, Lee E, Kim SH, You S, Song Y, Oh YS, Kim H, Han HS, Han JH, Jung M, Park YH, Choi YS, Han S, Lee J, Choi S, Kim JW, Park JH, Lee EK, Song WK, Kim E, Kim W. Hyaluronic Acid Nanoparticles as a Topical Agent for Treating Psoriasis. ACS NANO 2022; 16:20057-20074. [PMID: 36373736 DOI: 10.1021/acsnano.2c07843] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Although conventional topical approaches for treating psoriasis have been offered as an alternative, there are still unmet medical needs such as low skin-penetrating efficacy and off-target adverse effects. A hyaluronic acid nanoparticle (HA-NP) formed by self-assembly of HA-hydrophobic moiety conjugates has been broadly studied as a nanocarrier for long-term and target-specific delivery of drugs, owing to their excellent physicochemical and biological characteristics. Here, we identify HA-NPs as topical therapeutics for treating psoriasis using in vivo skin penetration studies and psoriasis animal models. Transcutaneously administered HA-NPs were found to be accumulated and associated with pro-inflammatory macrophages in the inflamed dermis of a psoriasis mouse model. Importantly, HA-NP exerted potent therapeutic efficacy against psoriasis-like skin dermatitis in a size-dependent manner by suppressing innate immune responses and restoring skin barrier function without overt toxicity signs. The therapeutic efficacy of HA-NPs on psoriasis-like skin dermatitis was due to the outermost hydrophilic HA shell layer of HA-NPs, independent of the molecular weight of HA and hydrophobic moiety, and comparable with that of other conventional psoriasis therapeutics widely used in the clinical settings. Overall, HA-NPs have the potential as a topical nanomedicine for treating psoriasis effectively and safely.
Collapse
Affiliation(s)
- Wang Hee Lee
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Jun Gi Rho
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
- Pharmaceutical Institute, FromBIO, Suwon16681, Republic of Korea
| | - Yeyoung Yang
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Seulbi Lee
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Sohui Kweon
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Hyung-Mo Kim
- KIURI Research Center, Ajou University, Suwon16499, Republic of Korea
| | - Juhwan Yoon
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Hongseo Choi
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Eunyoung Lee
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Su Ha Kim
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Sohee You
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Yujin Song
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Young Soo Oh
- Cell Logistics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| | - Hwan Kim
- GIST Central Research Facilities, Bio Imaging Laboratory, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| | - Hwa Seung Han
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon16419, Republic of Korea
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung25451, Republic of Korea
| | - Ji Hye Han
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Myeongwoo Jung
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul06591, Republic of Korea
| | - Young Hwan Park
- KIURI Research Center, Ajou University, Suwon16499, Republic of Korea
| | - Yang Seon Choi
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Sukyoung Han
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul06591, Republic of Korea
| | - Junho Lee
- Pharmaceutical Institute, FromBIO, Suwon16681, Republic of Korea
| | - Sangdun Choi
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Jung-Woong Kim
- Department of Life Science, Chung-Ang University, Seoul06974, Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Eun Kyung Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul06591, Republic of Korea
| | - Woo Keun Song
- Cell Logistics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| | - Eunha Kim
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Wook Kim
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| |
Collapse
|
25
|
Tu S, He W, Han J, Wu A, Ren W. Advances in imaging and treatment of atherosclerosis based on organic nanoparticles. APL Bioeng 2022; 6:041501. [PMCID: PMC9726224 DOI: 10.1063/5.0127835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/31/2022] [Indexed: 12/09/2022] Open
Abstract
Atherosclerosis, a systemic chronic inflammatory disease, can lead to thrombosis and vascular occlusion, thereby inducing a series of serious vascular diseases. Currently, distinguishing unstable plaques early and achieving more effective treatment are the two main clinical concerns in atherosclerosis. Organic nanoparticles have great potential in atherosclerotic imaging and treatment, showing superior biocompatibility, drug-loading capacity, and synthesis. This article illustrates the process of atherosclerosis onset and the key targeted cells, then systematically summarizes recent progress made in organic nanoparticle-based imaging of different types of targeted cells and therapeutic methods for atherosclerosis, including optical and acoustic-induced therapy, drug delivery, gene therapy, and immunotherapy. Finally, we discuss the major impediments that need to be addressed in future clinical practice. We believe this article will help readers to develop a comprehensive and in-depth understanding of organic nanoparticle-based atherosclerotic imaging and treatment, thus advancing further development of anti-atherosclerosis therapies.
Collapse
Affiliation(s)
| | - Wenming He
- Department of Cardiology, The Affiliated Hospital of Medical School, Ningbo University, 247 Renmin Road, Jiangbei District, Ningbo, Zhejiang Province 315020, China,Authors to whom correspondence should be addressed:; ; and
| | | | - Aiguo Wu
- Authors to whom correspondence should be addressed:; ; and
| | - Wenzhi Ren
- Authors to whom correspondence should be addressed:; ; and
| |
Collapse
|
26
|
Fu X, Yu X, Jiang J, Yang J, Chen L, Yang Z, Yu C. Small molecule-assisted assembly of multifunctional ceria nanozymes for synergistic treatment of atherosclerosis. Nat Commun 2022; 13:6528. [PMID: 36319632 PMCID: PMC9626479 DOI: 10.1038/s41467-022-34248-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 10/18/2022] [Indexed: 11/23/2022] Open
Abstract
Considering that intravascular reactive oxygen species (ROS) and inflammation are two characteristic features of the atherosclerotic microenvironment, developing an appropriate strategy to treat atherosclerosis by synergistically regulating ROS and inflammation has attracted widespread attention. Herein, a special molecule, zoledronic acid, containing imidazole and bisphosphonate groups, was selected for the first time to assist the assembly of cerium ions and produce functionalized ceria-zoledronic acid nanocomposites (CZ NCs). It not only serves as a new carrier for different kinds of drugs (e.g. probucol, PB) but also exerts an efficient multienzyme activity to achieve collaborative therapy. More importantly, platelet membrane-coated biomimetic nanoplatform (PCZ@PB NCs) specifically accumulate at inflammatory atherosclerotic lesions, synergistically regulate ROS levels and inflammation, and efficiently inhibit foam cell formation. This novel assembly method can also be applied in the treatment of many other diseases associated with oxidative stress and inflammation.
Collapse
Affiliation(s)
- Xiaoxue Fu
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, 400016 Chongqing, P. R. China
| | - Xiaojuan Yu
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, 400016 Chongqing, P. R. China
| | - Junhao Jiang
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, 400016 Chongqing, P. R. China
| | - Jiaxin Yang
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, 400016 Chongqing, P. R. China
| | - Lu Chen
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, 400016 Chongqing, P. R. China
| | - Zhangyou Yang
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, 400016 Chongqing, P. R. China
| | - Chao Yu
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, 400016 Chongqing, P. R. China
| |
Collapse
|
27
|
Yang F, Xue J, Wang G, Diao Q. Nanoparticle-based drug delivery systems for the treatment of cardiovascular diseases. Front Pharmacol 2022; 13:999404. [PMID: 36172197 PMCID: PMC9512262 DOI: 10.3389/fphar.2022.999404] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease is the most common health problem worldwide and remains the leading cause of morbidity and mortality. Despite recent advances in the management of cardiovascular diseases, pharmaceutical treatment remains suboptimal because of poor pharmacokinetics and high toxicity. However, since being harnessed in the cancer field for the delivery of safer and more effective chemotherapeutics, nanoparticle-based drug delivery systems have offered multiple significant therapeutic effects in treating cardiovascular diseases. Nanoparticle-based drug delivery systems alter the biodistribution of therapeutic agents through site-specific, target-oriented delivery and controlled drug release of precise medicines. Metal-, lipid-, and polymer-based nanoparticles represent ideal materials for use in cardiovascular therapeutics. New developments in the therapeutic potential of drug delivery using nanoparticles and the application of nanomedicine to cardiovascular diseases are described in this review. Furthermore, this review discusses our current understanding of the potential role of nanoparticles in metabolism and toxicity after therapeutic action, with a view to providing a safer and more effective strategy for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Fangyu Yang
- Department of Clinical Laboratory Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Jianjiang Xue
- Department of Clinical Laboratory Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Guixue Wang
- Key Laboratory for Bio-Rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Qizhi Diao
- Department of Clinical Laboratory Medicine, Sanya Women and Children’s Hospital Managed by Shanghai Children’s Medical Center, Hainan, China
- *Correspondence: Qizhi Diao,
| |
Collapse
|
28
|
Rajan R, Pal K, Jayadev D, Jayan JS, U A, Appukuttan S, de Souza FG, Joseph K, Kumar SS. Polymeric Nanoparticles in Hybrid Catalytic Processing and Drug Delivery System. Top Catal 2022. [DOI: 10.1007/s11244-022-01697-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Parayath NN, Gandham SK, Amiji MM. Tumor-targeted miRNA nanomedicine for overcoming challenges in immunity and therapeutic resistance. Nanomedicine (Lond) 2022; 17:1355-1373. [PMID: 36255330 PMCID: PMC9706370 DOI: 10.2217/nnm-2022-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
miRNA are critical messengers in the tumor microenvironment (TME) that influence various processes leading to immune suppression, tumor progression, metastasis and resistance. Strategies to modulate miRNAs in the TME have important implications in overcoming these challenges. However, miR delivery to specific cells in the TME has been challenging. This review discusses nanomedicine strategies to achieve cell-specific delivery of miRNAs. The key goal of delivery is to activate the tumor immune landscape as well as to prevent chemotherapy resistance. Specifically, the use of hyaluronic acid-based nanoparticle miRNA delivery to the TME is discussed. The discussion is focused on miRNA-125b for reprogramming tumor-associated macrophages to overcome immunosuppression and miRNA-let-7b to overcome resistance to anticancer chemotherapeutics because both these miRNAs have been extensively evaluated for delivery with hyaluronic acid-based delivery systems.
Collapse
Affiliation(s)
- Neha N Parayath
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Srujan K Gandham
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA,Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA 02115, USA,Author for correspondence: Tel.: +1 617 373 3137;
| |
Collapse
|
30
|
Cheraga N, Ye Z, Xu MJ, Zou L, Sun NC, Hang Y, Shan CJ, Yang ZZ, Chen LJ, Huang NP. Targeted therapy of atherosclerosis by pH-sensitive hyaluronic acid nanoparticles co-delivering all-trans retinal and rapamycin. NANOSCALE 2022; 14:8709-8726. [PMID: 35673987 DOI: 10.1039/d1nr06514a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Atherosclerosis, the leading cause of death in the elderly worldwide, is typically characterized by elevated reactive oxygen species (ROS) levels and a chronic inflammatory state at the arterial plaques. Herein, pH-sensitive nanoparticles (HRRAP NPs) co-delivering all-trans retinal (ATR), an antioxidant linked to hyaluronic acid (HA) through a pH-sensitive hydrazone bond, and rapamycin (RAP), an anti-atherosclerotic drug loaded into the nanoparticle core, are developed for targeted combination therapy of atherosclerosis. In this way, HRRAP NPs might simultaneously reduce ROS levels via ATR antioxidant activity and reduce inflammation via the anti-inflammatory effect of RAP. In response to mildly acidic conditions mimicking the lesional inflammation in vitro, HRRAP NPs dissociated and both ATR and RAP were effectively released. The developed HRRAP NPs effectively inhibited pro-inflammatory macrophage proliferation, and displayed dose- and time-dependent specific internalization by different cellular models of atherosclerosis. Also, HRRAP NP combination therapy showed an efficient synergetic anti-atherosclerotic effect in vitro by effectively inhibiting the inflammatory response and oxidative stress in inflammatory cells. More importantly, HR NPs specifically accumulated in the atherosclerotic plaques of apolipoprotein E-deficient (ApoE-/-) mice, by active interaction with HA receptors overexpressed by different cells of the plaque. The treatment with HRRAP NPs remarkably inhibited the progression of atherosclerosis in ApoE-/- mice which resulted in stable plaques with considerably smaller necrotic cores, lower matrix metalloproteinase-9, and decreased proliferation of macrophages and smooth muscle cells (SMCs). Furthermore, HRRAP NPs attenuated RAP adverse effects and exhibited a good safety profile after long-term treatment in mice. Consequently, the developed pH-sensitive HRRAP NP represent a promising nanoplatform for atherosclerosis combination therapy.
Collapse
Affiliation(s)
- Nihad Cheraga
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
| | - Zheng Ye
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
| | - Ming-Jie Xu
- Nanjing University Medical School, Nanjing, 210093, China
| | - Lin Zou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
| | - Ning-Cong Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
| | - Yue Hang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
| | - Cong-Jia Shan
- Nanjing University Medical School, Nanjing, 210093, China
| | | | - Li-Juan Chen
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Ning-Ping Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
| |
Collapse
|
31
|
Ju Y, Liao H, Richardson JJ, Guo J, Caruso F. Nanostructured particles assembled from natural building blocks for advanced therapies. Chem Soc Rev 2022; 51:4287-4336. [PMID: 35471996 DOI: 10.1039/d1cs00343g] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Advanced treatments based on immune system manipulation, gene transcription and regulation, specific organ and cell targeting, and/or photon energy conversion have emerged as promising therapeutic strategies against a range of challenging diseases. Naturally derived macromolecules (e.g., proteins, lipids, polysaccharides, and polyphenols) have increasingly found use as fundamental building blocks for nanostructured particles as their advantageous properties, including biocompatibility, biodegradability, inherent bioactivity, and diverse chemical properties make them suitable for advanced therapeutic applications. This review provides a timely and comprehensive summary of the use of a broad range of natural building blocks in the rapidly developing field of advanced therapeutics with insights specific to nanostructured particles. We focus on an up-to-date overview of the assembly of nanostructured particles using natural building blocks and summarize their key scientific and preclinical milestones for advanced therapies, including adoptive cell therapy, immunotherapy, gene therapy, active targeted drug delivery, photoacoustic therapy and imaging, photothermal therapy, and combinational therapy. A cross-comparison of the advantages and disadvantages of different natural building blocks are highlighted to elucidate the key design principles for such bio-derived nanoparticles toward improving their performance and adoption. Current challenges and future research directions are also discussed, which will accelerate our understanding of designing, engineering, and applying nanostructured particles for advanced therapies.
Collapse
Affiliation(s)
- Yi Ju
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia. .,School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Haotian Liao
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Sichuan 610065, China
| | - Joseph J Richardson
- Department of Materials Engineering, University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-8656, Japan
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,Bioproducts Institute, Departments of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
32
|
Chen J, Zhang X, Millican R, Lynd T, Gangasani M, Malhotra S, Sherwood J, Hwang PT, Cho Y, Brott BC, Qin G, Jo H, Yoon YS, Jun HW. Recent Progress in in vitro Models for Atherosclerosis Studies. Front Cardiovasc Med 2022; 8:790529. [PMID: 35155603 PMCID: PMC8829969 DOI: 10.3389/fcvm.2021.790529] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is the primary cause of hardening and narrowing arteries, leading to cardiovascular disease accounting for the high mortality in the United States. For developing effective treatments for atherosclerosis, considerable efforts have been devoted to developing in vitro models. Compared to animal models, in vitro models can provide great opportunities to obtain data more efficiently, economically. Therefore, this review discusses the recent progress in in vitro models for atherosclerosis studies, including traditional two-dimensional (2D) systems cultured on the tissue culture plate, 2D cell sheets, and recently emerged microfluidic chip models with 2D culture. In addition, advanced in vitro three-dimensional models such as spheroids, cell-laden hydrogel constructs, tissue-engineered blood vessels, and vessel-on-a-chip will also be covered. Moreover, the functions of these models are also summarized along with model discussion. Lastly, the future perspectives of this field are discussed.
Collapse
Affiliation(s)
- Jun Chen
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Xixi Zhang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Tyler Lynd
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Manas Gangasani
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Shubh Malhotra
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | | | | | - Younghye Cho
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
- Family Medicine Clinic, Obesity, Metabolism, and Nutrition Center and Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Brigitta C. Brott
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
- Endomimetics, LLC., Birmingham, AL, United States
- Division of Cardiovascular Disease, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Gangjian Qin
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Young-sup Yoon
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Ho-Wook Jun
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
- Endomimetics, LLC., Birmingham, AL, United States
| |
Collapse
|
33
|
Liu S, Zhao Y, Shen M, Hao Y, Wu X, Yao Y, Li Y, Yang Q. Hyaluronic acid targeted and pH-responsive multifunctional nanoparticles for chemo-photothermal synergistic therapy of atherosclerosis. J Mater Chem B 2022; 10:562-570. [PMID: 34982089 DOI: 10.1039/d1tb02000e] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Atherosclerosis is a global disease with an extremely high morbidity and fatality rate, so it is necessary to develop effective treatments to reduce its impact. In this work, we successfully prepared a multifunctional drug-loaded nano-delivery system with pH-responsive, CD44-targeted, and chemical-photothermal synergistic treatment. Dendritic mesoporous silica nanoparticles capped with copper sulfide (CuS) were synthesized via an oil-water biphase stratification reaction system; these served as the carrier material and encapsulated the anticoagulant drug heparin (Hep). The pH-sensitive Schiff base bond was used as a gatekeeper and targeting agent to modify hyaluronic acid (HA) on the surface of the nanocarrier. HA coating endowed the nanocomposite with the ability to respond to pH and target CD44-positive inflammatory macrophages. Based on this multifunctional nanocomposite, we achieved precise drug delivery, controlled drug release, and chemical-photothermal synergistic treatment of atherosclerosis. The in vitro drug release results showed that the nanocarriers exhibited excellent drug-controlled release properties, and could release drugs in the weakly acidic microenvironment of atherosclerotic inflammation. Cytotoxicity and cell uptake experiments indicated that nanocarriers had low cytotoxicity against RAW 264.7 cells. Modification of HA to nanocarriers can be effectively internalized by RAW 264.7 cells stimulated by lipopolysaccharide (LPS). Combining CuS photothermal treatment with anti-atherosclerosis chemotherapy showed better effects than single treatment in vitro and in vivo. In summary, our research proved that H-CuS@DMSN-NC-HA has broad application prospects in anti-atherosclerosis.
Collapse
Affiliation(s)
- Shun Liu
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun 130012, China.
| | - Yun Zhao
- China-Japan Union Hospital of Jilin University, Changchun 130031, P. R. China
| | - Meili Shen
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun 130012, China.
| | - Yujiao Hao
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiaodong Wu
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun 130012, China.
| | - Yixuan Yao
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Yapeng Li
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun 130012, China.
| | - Qingbiao Yang
- College of Chemistry, Jilin University, Changchun 130012, China.,Key Laboratory of Lymphatic Surgery Jilin Province, Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, Changchun 130031, P. R. China
| |
Collapse
|
34
|
Yu H, Hou Z, Xiang M, Yang F, Ma J, Yang L, Ma X, Zhou L, He F, Miao M, Liu X, Wang Y. Arsenic trioxide activates yes-associated protein by lysophosphatidic acid metabolism to selectively induce apoptosis of vascular smooth muscle cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119211. [PMID: 35041860 DOI: 10.1016/j.bbamcr.2022.119211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/24/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023]
Abstract
Inhibition of vascular smooth muscle cells (VSMCs) proliferation without dysregulating endothelial cells (ECs) may provide an ideal therapy for in-stent restenosis. Due to its anti-proliferation effect on VSMCs and pro-endothelium effect, arsenic trioxide (ATO) has been used in a drug-eluting stent in a recent clinical trial. However, the underlying mechanism by which ATO achieves this effect has not been determined. In the present work, we showed that ATO induced apoptosis in VSMCs but not in ECs. Mechanistically, ATO achieved this through modulation of cellular metabolism to increase lysophosphatidic acid (LPA) in VSMCs, while LPA concentration was stable in ECs. The elevated LPA facilitated the nuclear accumulation and initiated the transcriptional function of Yes-associated protein (YAP) in VSMCs. YAP regulated the transcription of N6-Methyladenosine (m6A) modulators (Mettl14 and Wtap) to increase the m6A methylation levels of apoptosis-related genes to induce their high expression and exacerbate VSMCs apoptosis. On the other hand, YAP nuclear accumulation in ECs was not observed. Collectively, our data exhibited the molecular process involved in selective apoptosis of VSMCs induced by ATO.
Collapse
Affiliation(s)
- Hongchi Yu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Zhe Hou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Maolong Xiang
- College of Life Sciences, Sichuan University, 610064 Chengdu, China
| | - Fan Yang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jia Ma
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xiaoyi Ma
- Beijing Key Laboratory of Cardiac Drug Device Technology and Evidence Based Medicine, Beijing 100021, China
| | - Lifeng Zhou
- Beijing Key Laboratory of Cardiac Drug Device Technology and Evidence Based Medicine, Beijing 100021, China
| | - Fugui He
- Beijing Key Laboratory of Cardiac Drug Device Technology and Evidence Based Medicine, Beijing 100021, China
| | - Michael Miao
- Division of Oral & Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC 27599, USA
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
35
|
Li Z, xue C, zhang L, zhang Y, yu Y, guo X, liu Q, zhang Z. H2O2-responsive prodrug-nanosystem based on auto-fluorescent perylenetetracarboxylic diimide hinders foaming progress in RAW264.7 cells. J Mater Chem B 2022; 10:2899-2911. [DOI: 10.1039/d2tb00175f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidative stress can lead to a variety of diseases, and oxalate bond can consume excess reactive oxygen species(ROS)in cells. In this study, the H2O2 responsive prodrug-nanosystem was synthesized by oxalate...
Collapse
|
36
|
Zhou H, You P, Liu H, Fan J, Tong C, Yang A, Jiang Y, Liu B. Artemisinin and Procyanidins loaded multifunctional nanocomplexes alleviate atherosclerosis via simultaneously modulating lipid influx and cholesterol efflux. J Control Release 2021; 341:828-843. [PMID: 34942304 DOI: 10.1016/j.jconrel.2021.12.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/28/2021] [Accepted: 12/16/2021] [Indexed: 12/21/2022]
Abstract
The development of new reagents combining with nanotechnology has become an efficient strategy for improving the immune escaping ability and increasing local drug concentration for natural compounds with low therapy efficiency. In this study, we prepared biomimetic membrane-coated Prussian blue nanoparticles (PB NPs) for the treatment of atherosclerosis, using the function of Artemisinin (ART) and Procyanidins (PC) on the lipid influx and cholesterol efflux of macrophages, two logical steps involved in the plaque progression. In vitro results indicated that the prepared nanocomplexes have significant scavenging effect on ROS and NO, followed by inhibiting NF-κB/NLRP3 pathway, leading to the suppression of lipid influx. Meanwhile, they can notably reduce the uptake and internalization of oxLDL through significantly enhancing AMPK/mTOR/autophagy pathway, accompanied by promoting cholesterol efflux. In vivo study showed that the improved biocompatibility and immune-escape ability of nanocomplexes allowed less drug clearance during the circulation and high drug accumulation in the atherosclerotic plaque of ApoE-/- mice model. More importantly, the ART and PC co-loaded nanocomplexes showed the high efficacy against atherosclerosis of ApoE-/- mice model with both 8-week low dosage treatment or 1-week high dosage treatment. These findings indicated that ART and PC co-loaded nanocomplexes was promising for the targeted treatment of atherosclerosis.
Collapse
Affiliation(s)
- Hongyan Zhou
- College of Biology, Hunan University, Changsha 410082, China
| | - Peidong You
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Hao Liu
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jialong Fan
- College of Biology, Hunan University, Changsha 410082, China
| | - Chunyi Tong
- College of Biology, Hunan University, Changsha 410082, China.
| | - Anning Yang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Yideng Jiang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.
| | - Bin Liu
- College of Biology, Hunan University, Changsha 410082, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
37
|
Hossaini Nasr S, Huang X. Nanotechnology for Targeted Therapy of Atherosclerosis. Front Pharmacol 2021; 12:755569. [PMID: 34867370 PMCID: PMC8633109 DOI: 10.3389/fphar.2021.755569] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/22/2021] [Indexed: 01/20/2023] Open
Abstract
Atherosclerosis is the major cause of heart attack and stroke that are the leading causes of death in the world. Nanomedicine is a powerful tool that can be engineered to target atherosclerotic plaques for therapeutic and diagnosis purposes. In this review, advances in designing nanoparticles with therapeutic effects on atherosclerotic plaques known as atheroprotective nanomedicine have been summarized to stimulate further development and future translation.
Collapse
Affiliation(s)
- Seyedmehdi Hossaini Nasr
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
38
|
Niculescu AG, Grumezescu AM. Polymer-Based Nanosystems-A Versatile Delivery Approach. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6812. [PMID: 34832213 PMCID: PMC8619478 DOI: 10.3390/ma14226812] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/10/2023]
Abstract
Polymer-based nanoparticles of tailored size, morphology, and surface properties have attracted increasing attention as carriers for drugs, biomolecules, and genes. By protecting the payload from degradation and maintaining sustained and controlled release of the drug, polymeric nanoparticles can reduce drug clearance, increase their cargo's stability and solubility, prolong its half-life, and ensure optimal concentration at the target site. The inherent immunomodulatory properties of specific polymer nanoparticles, coupled with their drug encapsulation ability, have raised particular interest in vaccine delivery. This paper aims to review current and emerging drug delivery applications of both branched and linear, natural, and synthetic polymer nanostructures, focusing on their role in vaccine development.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov no. 3, 50044 Bucharest, Romania
| |
Collapse
|
39
|
Guo J, Yang Z, Wang X, Xu Y, Lu Y, Qin Z, Zhang L, Xu J, Wang W, Zhang J, Tang J. Advances in Nanomaterials for Injured Heart Repair. Front Bioeng Biotechnol 2021; 9:686684. [PMID: 34513807 PMCID: PMC8424111 DOI: 10.3389/fbioe.2021.686684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/09/2021] [Indexed: 11/30/2022] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is one of the leading causes of mortality worldwide. Because of the limited regenerative capacity of adult myocardium to compensate for the loss of heart tissue after ischemic infarction, scientists have been exploring the possible mechanisms involved in the pathological process of ASCVD and searching for alternative means to regenerate infarcted cardiac tissue. Although numerous studies have pursued innovative solutions for reversing the pathological process of ASCVD and improving the effectiveness of delivering therapeutics, the translation of those advances into downstream clinical applications remains unsatisfactory because of poor safety and low efficacy. Recently, nanomaterials (NMs) have emerged as a promising new strategy to strengthen both the efficacy and safety of ASCVD therapy. Thus, a comprehensive review of NMs used in ASCVD treatment will be useful. This paper presents an overview of the pathophysiological mechanisms of ASCVD and the multifunctional mechanisms of NM-based therapy, including antioxidative, anti-inflammation and antiapoptosis mechanisms. The technological improvements of NM delivery are summarized and the clinical transformations concerning the use of NMs to treat ASCVD are examined. Finally, this paper discusses the challenges and future perspectives of NMs in cardiac regeneration to provide insightful information for health professionals on the latest advancements in nanotechnologies for ASCVD treatment.
Collapse
Affiliation(s)
- Jiacheng Guo
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Zhenzhen Yang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xu Wang
- Department of Medical Record Management, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanyan Xu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Yongzheng Lu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Zhen Qin
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Li Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Jing Xu
- Department of Cardiac Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Wang
- Henan Medical Association, Zhengzhou, China
| | - Jinying Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Junnan Tang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| |
Collapse
|
40
|
Oshi MA, Haider A, Siddique MI, Zeb A, Jamal SB, Khalil AAK, Naeem M. Nanomaterials for chronic inflammatory diseases: the current status and future prospects. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02019-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Dubashynskaya NV, Raik SV, Dubrovskii YA, Demyanova EV, Shcherbakova ES, Poshina DN, Shasherina AY, Anufrikov YA, Skorik YA. Hyaluronan/Diethylaminoethyl Chitosan Polyelectrolyte Complexes as Carriers for Improved Colistin Delivery. Int J Mol Sci 2021; 22:8381. [PMID: 34445088 PMCID: PMC8395075 DOI: 10.3390/ijms22168381] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/14/2022] Open
Abstract
Improving the therapeutic characteristics of antibiotics is an effective strategy for controlling the growth of multidrug-resistant Gram-negative microorganisms. The purpose of this study was to develop a colistin (CT) delivery system based on hyaluronic acid (HA) and the water-soluble cationic chitosan derivative, diethylaminoethyl chitosan (DEAECS). The CT delivery system was a polyelectrolyte complex (PEC) obtained by interpolymeric interactions between the HA polyanion and the DEAECS polycation, with simultaneous inclusion of positively charged CT molecules into the resulting complex. The developed PEC had a hydrodynamic diameter of 210-250 nm and a negative surface charge (ζ-potential = -19 mV); the encapsulation and loading efficiencies were 100 and 16.7%, respectively. The developed CT delivery systems were characterized by modified release (30-40% and 85-90% of CT released in 15 and 60 min, respectively) compared to pure CT (100% CT released in 15 min). In vitro experiments showed that the encapsulation of CT in polysaccharide carriers did not reduce its antimicrobial activity, as the minimum inhibitory concentrations against Pseudomonas aeruginosa of both encapsulated CT and pure CT were 1 μg/mL.
Collapse
Affiliation(s)
- Natallia V. Dubashynskaya
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia; (N.V.D.); (S.V.R.); (D.N.P.)
| | - Sergei V. Raik
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia; (N.V.D.); (S.V.R.); (D.N.P.)
| | - Yaroslav A. Dubrovskii
- Almazov National Medical Research Centre, Akkuratova 2, 197341 St. Petersburg, Russia;
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, 198504 St. Petersburg, Russia; (A.Y.S.); (Y.A.A.)
- Research and Training Center of Molecular and Cellular Technologies, St. Petersburg State Chemical Pharmaceutical University, Prof. Popova 14, 197376 St. Petersburg, Russia
| | - Elena V. Demyanova
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, 197110 St. Petersburg, Russia; (E.V.D.); (E.S.S.)
| | - Elena S. Shcherbakova
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, 197110 St. Petersburg, Russia; (E.V.D.); (E.S.S.)
| | - Daria N. Poshina
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia; (N.V.D.); (S.V.R.); (D.N.P.)
| | - Anna Y. Shasherina
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, 198504 St. Petersburg, Russia; (A.Y.S.); (Y.A.A.)
| | - Yuri A. Anufrikov
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, 198504 St. Petersburg, Russia; (A.Y.S.); (Y.A.A.)
| | - Yury A. Skorik
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia; (N.V.D.); (S.V.R.); (D.N.P.)
| |
Collapse
|
42
|
Peters LJF, Jans A, Bartneck M, van der Vorst EPC. Immunomodulatory Nanomedicine for the Treatment of Atherosclerosis. J Clin Med 2021; 10:3185. [PMID: 34300351 PMCID: PMC8306310 DOI: 10.3390/jcm10143185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis is the main underlying cause of cardiovascular diseases (CVDs), which remain the number one contributor to mortality worldwide. Although current therapies can slow down disease progression, no treatment is available that can fully cure or reverse atherosclerosis. Nanomedicine, which is the application of nanotechnology in medicine, is an emerging field in the treatment of many pathologies, including CVDs. It enables the production of drugs that interact with cellular receptors, and allows for controlling cellular processes after entering these cells. Nanomedicine aims to repair, control and monitor biological and physiological systems via nanoparticles (NPs), which have been shown to be efficient drug carriers. In this review we will, after a general introduction, highlight the advantages and limitations of the use of such nano-based medicine, the potential applications and targeting strategies via NPs. For example, we will provide a detailed discussion on NPs that can target relevant cellular receptors, such as integrins, or cellular processes related to atherogenesis, such as vascular smooth muscle cell proliferation. Furthermore, we will underline the (ongoing) clinical trials focusing on NPs in CVDs, which might bring new insights into this research field.
Collapse
Affiliation(s)
- Linsey J. F. Peters
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany;
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
| | - Alexander Jans
- Department of Medicine III, University Hospital Aachen, 52074 Aachen, Germany; (A.J.); (M.B.)
| | - Matthias Bartneck
- Department of Medicine III, University Hospital Aachen, 52074 Aachen, Germany; (A.J.); (M.B.)
| | - Emiel P. C. van der Vorst
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany;
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
43
|
Dubashynskaya NV, Raik SV, Dubrovskii YA, Shcherbakova ES, Demyanova EV, Shasherina AY, Anufrikov YA, Poshina DN, Dobrodumov AV, Skorik YA. Hyaluronan/colistin polyelectrolyte complexes: Promising antiinfective drug delivery systems. Int J Biol Macromol 2021; 187:157-165. [PMID: 34298050 DOI: 10.1016/j.ijbiomac.2021.07.114] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023]
Abstract
Nanotechnology-based modification of known antimicrobial agents is a rational and straightforward way to improve their safety and effectiveness. The aim of this study was to develop colistin (CT)-loaded polymeric carriers based on hyaluronic acid (HA) for potential application as antimicrobial agents against multi-resistant gram-negative microorganisms (including ESKAPE pathogens). CT-containing particles were obtained via a polyelectrolyte interaction between protonated CT amino groups and HA carboxyl groups (the CT-HA complex formation constant [logKCT-HA] was about 5.0). The resulting polyelectrolyte complexes had a size of 210-250 nm and a negative charge (ζ-potential -19 mV), with encapsulation and loading efficiencies of 100% and 20%, respectively. The developed CT delivery systems were characterized by modified release (45% and 85% of CT released in 15 and 60 min, respectively) compared to pure CT (100% CT released in 15 min). In vitro tests showed that the encapsulation of CT in polymer particles did not reduce its pharmacological activity; the minimum inhibitory concentrations of both encapsulated CT and pure CT were 1 μg/mL (against Pseudomonas aeruginosa).
Collapse
Affiliation(s)
- Natallia V Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Sergei V Raik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Yaroslav A Dubrovskii
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, St. Petersburg 198504, Russian Federation; Almazov National Medical Research Centre, Akkuratova 2, St. Petersburg 197341, Russian Federation; St. Petersburg State Chemical Pharmaceutical University, Prof. Popova 14, St. Petersburg 197376, Russian Federation
| | - Elena S Shcherbakova
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, St Petersburg 197110, Russian Federation
| | - Elena V Demyanova
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, St Petersburg 197110, Russian Federation
| | - Anna Y Shasherina
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, St. Petersburg 198504, Russian Federation
| | - Yuri A Anufrikov
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, St. Petersburg 198504, Russian Federation
| | - Daria N Poshina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Anatoliy V Dobrodumov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Yury A Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation.
| |
Collapse
|
44
|
Liu J, Zhou B, Guo Y, Zhang A, Yang K, He Y, Wang J, Cheng Y, Cui D. SR-A-Targeted Nanoplatform for Sequential Photothermal/Photodynamic Ablation of Activated Macrophages to Alleviate Atherosclerosis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29349-29362. [PMID: 34133141 DOI: 10.1021/acsami.1c06380] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cardiovascular and cerebrovascular diseases induced by atherosclerosis (AS) have become the dominant cause of disability and mortality throughout the world. The typical early pathological process of AS involves the activation of inflammatory macrophages in the vulnerable plaque. In this work, we first employed chitosan-coated carbon nanocages (CS-CNCs) as nanocarriers to load Chlorin e6 (Ce6) and then linked dextran sulfate (DS) to the outermost layer by electrostatic adsorption to create a multifunctional therapeutic nanoplatform, CS-CNCs@Ce6/DS. The DS of the nanoplatform can recognize and bind to the type A scavenger receptor (SR-A), which is expressed only on the activated macrophages of the arterial plaque, so the proposed nanoplatform selectively targets these macrophages and accumulates there. Furthermore, DS can competitively inhibit cellular endocytosis of oxidized low-density lipoproteins via blocking of SR-A. The rapid photothermal conversion capability of CS-CNCs enables efficient therapeutic delivery during photothermal therapy (PTT). Interestingly, near-infrared-accelerated drug release induced by initial 808-nm laser irradiation was observed, thus enhancing the Ce6 concentration in the atherosclerotic plaque area and the efficiency of photodynamic therapy (PDT). Sequential photothermal/photodynamic ablation of the activated macrophages reduced pro-inflammatory cytokine secretion and alleviated the proliferation and migration of smooth muscle cells. These finally resulted in the stabilization and shrinkage of atherosclerotic plaques, further inhibiting the development and exacerbation of AS. Therefore, this work achieved a "1 + 1 greater than 2" effect by providing a novel approach to the treatment of atherosclerotic plaques, which is promising for the prevention of AS-related diseases.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, P. R. China
| | - Bi Zhou
- Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, P. R. China
| | - Yuliang Guo
- Rehabilitation Department at Shanghai Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P. R. China
| | - Amin Zhang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Kai Yang
- Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, P. R. China
| | - Yu He
- Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, P. R. China
| | - Jianbo Wang
- Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, P. R. China
| | - Yingsheng Cheng
- Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, P. R. China
| | - Daxiang Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
45
|
Role of the interactions of soft hyaluronan nanomaterials with CD44 and supported bilayer membranes in the cellular uptake. Colloids Surf B Biointerfaces 2021; 205:111916. [PMID: 34146785 DOI: 10.1016/j.colsurfb.2021.111916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 11/24/2022]
Abstract
Increasing valence by acting on nanomaterial morphology can enhance the ability of a ligand to specifically bind to targeted cells. Herein, we investigated cell internalization of soft hyaluronic acid (HA) nanoplatelets (NPs) that exhibit a typical hexagonal shape, flat surfaces and high aspect ratio (Γ≈12 to 20), as characterized by atomic force microscopy in hydrated conditions. Fluorescence imaging revealed that internalization of HA-NPs by a T24 tumor cell line and by macrophages was higher than native polysaccharide in a dose-dependent and time-dependent manners. The ability of HA-NPs to efficiently compete with native HA assessed using Bio-layer interferometry showed that NPs had a stronger interaction with recombinant CD44 receptor compared to native HA. The results were discussed regarding physical properties of the NPs and the implication of multivalent interactions in HA binding to CD44. Experiments conducted on supported bilayer membranes with different compositions showed that non-specific interactions of NPs with lipid membranes were negligible. Our findings provide insights into intracellular drug delivery using soft HA-NPs through receptor-mediated multivalent interactions.
Collapse
|
46
|
Li X, Zhang W, Lin J, Wu H, Yao Y, Zhang J, Yang C. T cell membrane cloaking tumor microenvironment-responsive nanoparticles with a smart "membrane escape mechanism" for enhanced immune-chemotherapy of melanoma. Biomater Sci 2021; 9:3453-3464. [PMID: 33949434 DOI: 10.1039/d1bm00331c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The application of combination immune-chemotherapy makes up for the limitation of monotherapy and achieves superior antitumor activity against cancer. However, combinational therapy is always restricted by poor tumor targeted drug delivery efficacy. Herein, novel T cell membrane cloaking tumor microenvironment-responsive nanoparticles (PBA modified T cell membrane cloaking hyaluronic acid (HA)-disulfide bond-vitamin E succinate/curcumin, shortened as RCM@T) were developed. T cell membrane cloaking not only serves as a protection shell for sufficient drug delivery but also acts as a programmed cell death-1(PD-1) "antibody" to selectively bind the PD-L1 of tumor cells. When RCM@T is intravenously administrated into the blood stream, it accumulates at tumor sites and responds to an acidic pH to achieve a "membrane escape effect" and expose the HA residues of RCM for tumor targeted drug delivery. RCM accumulates in the cytoplasm via CD44 receptor mediated endocytosis and intracellularly releases antitumor drug in the intracellular redox microenvironment for tumor chemotherapy. T cell membrane debris targets the PD-L1of tumor cells for tumor immunotherapy, which not only directly kills tumor cells, but also improves the CD8+ T cell level and facilitates effector cytokine release. Taken together, the as-constructed RCM@T creates a new way for the rational design of a drug delivery system via the combination of stimuli-responsive drug release, chemotherapeutical agent delivery and cell membrane based immune checkpoint blockade immunotherapy.
Collapse
Affiliation(s)
- Xiaofang Li
- College Pharmacy, Jiamusi University, 258 Xuefu Street, Jiamusi, Heilongjiang 154007, China.
| | - Wen Zhang
- College Pharmacy, Jiamusi University, 258 Xuefu Street, Jiamusi, Heilongjiang 154007, China.
| | - Jing Lin
- College Pharmacy, Jiamusi University, 258 Xuefu Street, Jiamusi, Heilongjiang 154007, China.
| | - Hao Wu
- College Pharmacy, Jiamusi University, 258 Xuefu Street, Jiamusi, Heilongjiang 154007, China.
| | - Yucen Yao
- College Pharmacy, Jiamusi University, 258 Xuefu Street, Jiamusi, Heilongjiang 154007, China.
| | - Jiayi Zhang
- College Pharmacy, Jiamusi University, 258 Xuefu Street, Jiamusi, Heilongjiang 154007, China.
| | - Chunrong Yang
- College Pharmacy, Jiamusi University, 258 Xuefu Street, Jiamusi, Heilongjiang 154007, China.
| |
Collapse
|
47
|
Chen J, Zhang X, Millican R, Sherwood J, Martin S, Jo H, Yoon YS, Brott BC, Jun HW. Recent advances in nanomaterials for therapy and diagnosis for atherosclerosis. Adv Drug Deliv Rev 2021; 170:142-199. [PMID: 33428994 PMCID: PMC7981266 DOI: 10.1016/j.addr.2021.01.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 12/18/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease driven by lipid accumulation in arteries, leading to narrowing and thrombosis. It affects the heart, brain, and peripheral vessels and is the leading cause of mortality in the United States. Researchers have strived to design nanomaterials of various functions, ranging from non-invasive imaging contrast agents, targeted therapeutic delivery systems to multifunctional nanoagents able to target, diagnose, and treat atherosclerosis. Therefore, this review aims to summarize recent progress (2017-now) in the development of nanomaterials and their applications to improve atherosclerosis diagnosis and therapy during the preclinical and clinical stages of the disease.
Collapse
Affiliation(s)
- Jun Chen
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Xixi Zhang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | | | | | - Sean Martin
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States; Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Young-Sup Yoon
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Brigitta C Brott
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ho-Wook Jun
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
48
|
Meschi SS, Farghadan A, Arzani A. Flow topology and targeted drug delivery in cardiovascular disease. J Biomech 2021; 119:110307. [PMID: 33676269 DOI: 10.1016/j.jbiomech.2021.110307] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
Targeted drug delivery is a promising technique to direct the drug to the specific diseased region. Nanoparticles have provided an attractive approach for this purpose. In practice, the major focus of targeted delivery has been on targeting cell receptors. However, the complex fluid mechanics in diseased biomedical flows questions if a sufficient number of nanoparticles can reach the desired region. In this paper, we propose that hidden topological structures in cardiovascular flows identified with Lagrangian coherent structures (LCS) control drug transport and provide valuable information for optimizing targeted drug delivery efficiency. We couple image-based computational fluid dynamics (CFD) with continuum transport models to study nanoparticle transport in coronary artery disease. We simulate nanoparticle transport as well as the recently proposed shear targeted drug delivery system that couples micro-carriers with nanoparticle drugs. The role of the LCS formed near the stenosed artery in controlling drug transport is discussed. Our results motivate the design of smart micro-needles guided by flow topology, which could achieve optimal drug delivery efficiency.
Collapse
Affiliation(s)
- Sara S Meschi
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ, USA
| | - Ali Farghadan
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ, USA; Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Amirhossein Arzani
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ, USA.
| |
Collapse
|
49
|
Czyzynska-Cichon I, Janik-Hazuka M, Szafraniec-Szczęsny J, Jasinski K, Węglarz WP, Zapotoczny S, Chlopicki S. Low Dose Curcumin Administered in Hyaluronic Acid-Based Nanocapsules Induces Hypotensive Effect in Hypertensive Rats. Int J Nanomedicine 2021; 16:1377-1390. [PMID: 33658778 PMCID: PMC7917338 DOI: 10.2147/ijn.s291945] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Background Vascular drug delivery becomes a promising direction in the development of novel therapeutic strategies in the treatment of cardiovascular pathologies, such as hypertension. However, targeted delivery of hydrophobic substances, with poor bioavailability, remains a challenge. Here, we described the hypotensive effects of a low dose of curcumin delivered to the vascular wall using hyaluronic acid-based nanocapsules. Methods The group of hypertensive TGR(m-Ren2)27 rats, was administrated respectively with the vehicle, curcumin solution or curcumin delivered using hyaluronic acid-based nanocapsules (HyC12-Cur), for 7 days each, maintaining the wash-out period between treatments. Arterial blood pressure (systolic - SBP, diastolic – DBP) and heart rate (HR) were monitored continuously using a telemetry system (Data Science International), and Mean Arterial Pressure (MAP) was calculated from SBP and DBP. Results In hypertensive rats, a low dose of curcumin (4.5 mg/kg) administrated in HyC12-Cur for 7 days resulted in a gradual inhibition of SBP, DBP and MAP increase without an effect on HR. At the end of HyC12-Cur – based treatment changes in SBP, DBP and MAP amounted to −2.0±0.8 mmHg, −3.9±0.7 mmHg and −3.3±0.7 mmHg, respectively. In contrast, the administration of a curcumin solution (4.5 mg/kg) did not result in a significant hypotensive effect and the animals constantly developed hypertension. Vascular delivery of capsules with curcumin was confirmed using newly developed fluorine-rich nanocapsules (HyFC10-PFOB) with a shell based on a HA derivative and similar size as HyC12-Cur. HyFC10-PFOB gave fluorine signals in rat aortas analyzed ex vivo with a 19F NMR technique after a single intragastric administration. Conclusion These results suggest that nanocapsules based on hyaluronic acid, the ubiquitous glycosaminoglycan of the extracellular matrix and an integral part of endothelial glycocalyx, may represent a suitable approach to deliver hydrophobic, poorly bioavailable compounds, to the vascular wall.
Collapse
Affiliation(s)
- Izabela Czyzynska-Cichon
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Krakow, 30-348, Poland
| | | | - Joanna Szafraniec-Szczęsny
- Jagiellonian University, Faculty of Chemistry, Krakow, 30-387, Poland.,Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Krakow, 30-688, Poland
| | - Krzysztof Jasinski
- Institute of Nuclear Physics Polish Academy of Sciences, Department of Magnetic Resonance Imaging, Krakow, 31-342, Poland
| | - Władysław P Węglarz
- Institute of Nuclear Physics Polish Academy of Sciences, Department of Magnetic Resonance Imaging, Krakow, 31-342, Poland
| | | | - Stefan Chlopicki
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Krakow, 30-348, Poland.,Jagiellonian University Medical College, Faculty of Medicine, Department of Pharmacology, Krakow, 31-531, Poland
| |
Collapse
|
50
|
Teng C, Zhang B, Yuan Z, Kuang Z, Chai Z, Ren L, Qin C, Yang L, Han X, Yin L. Fibroblast activation protein-α-adaptive micelles deliver anti-cancer drugs and reprogram stroma fibrosis. NANOSCALE 2020; 12:23756-23767. [PMID: 33231238 DOI: 10.1039/d0nr04465b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are the majority cell population of tumor stroma, and they not only play important roles in tumor growth and metastasis, but they also form a protective physical barrier for cancer cells. Herein, we designed a fibroblast activation protein-α (FAP-α)-adaptive polymeric micelle based on hyaluronic acid and curcumin conjugates. The polymeric micelle is composed of a CD44-targeting shell and a FAP-α-cleavable polyethylene glycol (PEG) coating. When FAP-α is encountered on the surface of CAFs in the tumor microenvironment, the PEG layer is released, hyaluronic acid is recovered on the surface of nanoparticles, and the nanoparticles effectively inhibit the growth of tumor cells and CAFs through CD44-mediated endocytosis. The FAP-α-adaptive polymeric micelle exhibited potent anti-cancer efficacy by enhancing CAF apoptosis and reducing collagen in tumor tissues. Collectively, FAP-α-adaptive nanoparticles may be a promising method for antitumor anticancer treatments via reprogramming of stroma fibrosis.
Collapse
Affiliation(s)
- Chao Teng
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|