1
|
Wang H, Lin F, Zhang Y, Lin Y, Gao B, Kang D. Biomaterial-based vascularization strategies for enhanced treatment of peripheral arterial disease. J Nanobiotechnology 2025; 23:103. [PMID: 39940018 PMCID: PMC11823048 DOI: 10.1186/s12951-025-03140-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/19/2025] [Indexed: 02/14/2025] Open
Abstract
Peripheral arterial disease (PAD) poses a global health challenge, particularly in its advanced stages known as critical limb ischemia (CLI). Conventional treatments often fail to achieve satisfactory outcomes. Patients with CLI face high rates of morbidity and mortality, underscoring the urgent need for innovative therapeutic strategies. Recent advancements in biomaterials and biotechnology have positioned biomaterial-based vascularization strategies as promising approaches to improve blood perfusion and ameliorate ischemic conditions in affected tissues. These materials have shown potential to enhance therapeutic outcomes while mitigating toxicity concerns. This work summarizes the current status of PAD and highlights emerging biomaterial-based strategies for its treatment, focusing on functional genes, cells, proteins, and metal ions, as well as their delivery and controlled release systems. Additionally, the limitations associated with these approaches are discussed. This review provides a framework for designing therapeutic biomaterials and offers insights into their potential for clinical translation, contributing to the advancement of PAD treatments.
Collapse
Affiliation(s)
- Haojie Wang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Fujian Provincial Clinical Research Center for Neurological Diseases, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Department of Neurosurgery, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, China
| | - Fuxin Lin
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Fujian Provincial Clinical Research Center for Neurological Diseases, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Department of Neurosurgery, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, China
| | - Yibin Zhang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Fujian Provincial Clinical Research Center for Neurological Diseases, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Department of Neurosurgery, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, China
| | - Yuanxiang Lin
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Fujian Provincial Clinical Research Center for Neurological Diseases, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Department of Neurosurgery, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, China
| | - Bin Gao
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China.
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China.
- Fujian Provincial Clinical Research Center for Neurological Diseases, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China.
- Department of Neurosurgery, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, China.
| | - Dezhi Kang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China.
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China.
- Fujian Provincial Clinical Research Center for Neurological Diseases, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China.
- Department of Neurosurgery, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
2
|
Eweje F, Walsh ML, Ahmad K, Ibrahim V, Alrefai A, Chen J, Chaikof EL. Protein-based nanoparticles for therapeutic nucleic acid delivery. Biomaterials 2024; 305:122464. [PMID: 38181574 PMCID: PMC10872380 DOI: 10.1016/j.biomaterials.2023.122464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/25/2023] [Accepted: 12/31/2023] [Indexed: 01/07/2024]
Abstract
To realize the full potential of emerging nucleic acid therapies, there is a need for effective delivery agents to transport cargo to cells of interest. Protein materials exhibit several unique properties, including biodegradability, biocompatibility, ease of functionalization via recombinant and chemical modifications, among other features, which establish a promising basis for therapeutic nucleic acid delivery systems. In this review, we highlight progress made in the use of non-viral protein-based nanoparticles for nucleic acid delivery in vitro and in vivo, while elaborating on key physicochemical properties that have enabled the use of these materials for nanoparticle formulation and drug delivery. To conclude, we comment on the prospects and unresolved challenges associated with the translation of protein-based nucleic acid delivery systems for therapeutic applications.
Collapse
Affiliation(s)
- Feyisayo Eweje
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Harvard and MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Harvard/MIT MD-PhD Program, Boston, MA, USA, 02115; Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Michelle L Walsh
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Harvard and MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Harvard/MIT MD-PhD Program, Boston, MA, USA, 02115
| | - Kiran Ahmad
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Vanessa Ibrahim
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Assma Alrefai
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Jiaxuan Chen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Xu Z, Zhang W, Quesada C, Wang X, Fabiilli M. Longitudinal Monitoring of Angiogenesis in a Murine Window Chamber Model In Vivo. Tissue Eng Part C Methods 2024; 30:93-101. [PMID: 38117158 PMCID: PMC10924188 DOI: 10.1089/ten.tec.2023.0289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023] Open
Abstract
Angiogenesis induced by growth factor administration, which can augment the blood supply in regenerative applications, has drawn wide attention in medical research. Longitudinal monitoring of vascular structure and development in vivo is important for understanding and evaluating the dynamics of involved biological processes. In this work, a dual-modality imaging system consisting of photoacoustic microscopy (PAM) and optical coherence tomography (OCT) was applied for noninvasive in vivo imaging of angiogenesis in a murine model. Fibrin scaffolds, with and without basic fibroblast growth factor (bFGF), were implanted in a flexible imaging window and longitudinally observed over 9 days. Imaging was conducted at 3, 5, 7, and 9 days after implantation to monitor vascularization in and around the scaffold. Several morphometric parameters were derived from the PAM images, including vessel area density (VAD), total vessel length (TVL), and vessel mean diameter (VMD). On days 7 and 9, mice receiving bFGF-laden fibrin gels exhibited significantly larger VAD and TVL compared to mice with fibrin-only gels. In addition, VMD significantly decreased in +bFGF mice versus fibrin-only mice on days 7 and 9. Blood vessel density, evaluated using immunohistochemical staining of explanted gels and underlying tissue on day 9, corroborated the findings from the PAM images. Overall, the experimental results highlight the utility of a dual-modality imaging system in longitudinally monitoring of vasculature in vivo with high resolution and sensitivity, thereby providing an effective tool to study angiogenesis.
Collapse
Affiliation(s)
- Zhanpeng Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Wei Zhang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Carole Quesada
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Mario Fabiilli
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Scaffold Production and Bone Tissue Healing Using Electrospinning: Trends and Gap of Knowledge. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00260-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Application of Bio-Active Elastin-like Polypeptide on Regulation of Human Mesenchymal Stem Cell Behavior. Biomedicines 2022; 10:biomedicines10051151. [PMID: 35625887 PMCID: PMC9138580 DOI: 10.3390/biomedicines10051151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
Regenerative medicine using stem cells offers promising strategies for treating a variety of degenerative diseases. Regulation of stem cell behavior and rejuvenate senescence are required for stem cells to be clinically effective. The extracellular matrix (ECM) components have a significant impact on the stem cell’s function and fate mimicking the local environment to maintain cells or generate a distinct phenotype. Here, human elastin-like polypeptide-based ECM-mimic biopolymer was designed by incorporating various cell-adhesion ligands, such as RGD and YIGSR. The significant effects of bioactive fusion ELPs named R-ELP, Y-ELP, and RY-ELP were analyzed for human bone-marrow-derived stem cell adhesion, proliferation, maintenance of stemness properties, and differentiation. Multivalent presentation of variable cell-adhesive ligands on RY-ELP polymers indeed promote efficient cell attachment and proliferation of human fibroblast cells dose-dependently. Similarly, surface modified with RY-ELP promoted strong mesenchymal stem cell (MSCs) attachment with greater focal adhesion (FA) complex formation at 6 h post-incubation. The rate of cell proliferation, migration, population doubling time, and collagen I deposition were significantly enhanced in the presence of RY-ELP compared with other fusion ELPs. Together, the expression of multipotent markers and differentiation capacity of MSCs remained unaffected, clearly demonstrating that stemness properties of MSCs were well preserved when cultured on a RY-ELP-modified surface. Hence, bioactive RY-ELP offers an anchorage support system and effectively induces stimulatory response to support stem cell proliferation.
Collapse
|
6
|
Zhang G, Han S, Wang L, Yao Y, Chen K, Chen S. A Ternary Synergistic eNOS Gene Delivery System Based on Calcium Ion and L-Arginine for Accelerating Angiogenesis by Maximizing NO Production. Int J Nanomedicine 2022; 17:1987-2000. [PMID: 35530975 PMCID: PMC9075900 DOI: 10.2147/ijn.s363168] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/27/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose This study aimed to construct a delivery system based on L-arginine-modified calcium phosphate (CaP) to load eNOS plasmids (peNOS), which could amply nitric oxide (NO) to repair endothelial damage, promote angiogenic activities and alleviate inflammation. Methods pDNA-loaded CaP nanocomplex (CaP/pDNA) were prepared by co-precipitation method, subsequently modified by L-arginine. The gene transfection efficiency, pro-angiogenic and anti-inflammatory ability were investigated in vivo and in vitro. The therapeutic effect on ischemic hindlimb in vivo was assessed. Results L-arginine modification augmented the transfection efficiency of CaP/peNOS to elevate the eNOS expression, and then served as NO substrate catalyzed by eNOS. At the same time, calcium ions produced by degradation of CaP carriers enhanced the activity of eNOS. In vitro experiments, the loading capability and transfection performance of R(L)-CaP were confirmed to be superior to that of CaP. Additionally, HUVECs treated with R(L)-CaP/peNOS showed the strongest NO release, cell migration, tube formation and the lowest inflammatory levels compared to the CaP/peNOS and R(D)-CaP/peNOS groups. We also demonstrated the advantages of R(L)-CaP/peNOS in increasing blood reperfusion in hindlimb ischemia mice by accelerating angiogenesis and reducing inflammation, which can be attributed to the highest eNOS-derived NO production. Conclusion The combination strategy of peNOS transfection, L-arginine supplement and calcium ions addition is a promising therapeutic approach for certain vascular diseases, based on the synergistic NO production.
Collapse
Affiliation(s)
- Guiming Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, People’s Republic of China
- Correspondence: Guiming Zhang, Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, People’s Republic of China, Email
| | - Shangcong Han
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, People’s Republic of China
| | - Lisheng Wang
- Department of Molecular Diagnosis and Regenerative Medicine, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, People’s Republic of China
| | - Yu Yao
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, People’s Republic of China
| | - Kai Chen
- Department of Clinical Research, Characteristic Medical Center of Chinese People’s Armed Police Force, Tianjin, 300162, People’s Republic of China
| | - Si Chen
- Department of Anesthesiology, the 991th Hospital of PLA, Xiangyang, 441000, People’s Republic of China
| |
Collapse
|
7
|
Xing Z, Zhao C, Wu S, Yang D, Zhang C, Wei X, Wei X, Su H, Liu H, Fan Y. Hydrogel Loaded with VEGF/TFEB-Engineered Extracellular Vesicles for Rescuing Critical Limb Ischemia by a Dual-Pathway Activation Strategy. Adv Healthc Mater 2022; 11:e2100334. [PMID: 34297471 DOI: 10.1002/adhm.202100334] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/03/2021] [Indexed: 02/05/2023]
Abstract
Critical limb ischemia (CLI) is the most severe clinical manifestation of peripheral arterial disease, which causes many amputations and deaths. Conventional treatment strategies for CLI (e.g., stent implantation and vascular surgery) bring surgical risk, which are not suitable for each patient. Extracellular vesicles (EVs) can be a potential solution for CLI. Herein, vascular endothelial growth factor (VEGF; i.e., a crucial molecule related to angiogenesis) and transcription factor EB (TFEB; i.e., a pivotal regulator of autophagy) are chosen as the target gene to improve the bioactivity of EVs derived from endothelial cells. The VEGF/TFEB-engineered EVs (Engineered-EVs) are fabricated by genetically engineering the parent cells, and their versatile functions are confirmed using three cell models (human umbilical vein endothelial cells, myoblast, and monocytes). Injectable thermal-responsive hydrogel are then combined with Engineered-EVs to combat CLI. These results reveal that the hydrogel can enhance the stability of Engineered-EVs in vivo and release EVs at different temperatures. Moreover, the results of animal studies indicate that Engineered-EV/Hydrogel can significantly improve neovascularization, attenuate muscle injury, and recover limb function after CLI. Finally, mechanistic studies shed light on the therapeutic effect of Engineered-EV/Hydrogel due to the activated VEGF/VEGFR pathway and autophagy-lysosomal pathway.
Collapse
Affiliation(s)
- Zheng Xing
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Centre for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100191 P. R. China
| | - Chen Zhao
- School of Pharmaceutical Sciences Tsinghua University Beijing 100084 P. R. China
| | - Siwen Wu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Depeng Yang
- School of Life Sciences and Technology Harbin Institute of Technology Harbin Heilongjiang 150001 P. R. China
| | - Chunchen Zhang
- Key Laboratory of Biomedical Engineering of Ministry of Education Zhejiang University Hangzhou 310027 China
| | - Xinbo Wei
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Centre for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100191 P. R. China
| | - Xinran Wei
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Centre for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100191 P. R. China
| | - Haoran Su
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Centre for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100191 P. R. China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Centre for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100191 P. R. China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Centre for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100191 P. R. China
| |
Collapse
|
8
|
Tu Z, Zhong Y, Hu H, Shao D, Haag R, Schirner M, Lee J, Sullenger B, Leong KW. Design of therapeutic biomaterials to control inflammation. NATURE REVIEWS. MATERIALS 2022; 7:557-574. [PMID: 35251702 PMCID: PMC8884103 DOI: 10.1038/s41578-022-00426-z] [Citation(s) in RCA: 251] [Impact Index Per Article: 83.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 05/03/2023]
Abstract
Inflammation plays an important role in the response to danger signals arising from damage to our body and in restoring homeostasis. Dysregulated inflammatory responses occur in many diseases, including cancer, sepsis and autoimmunity. The efficacy of anti-inflammatory drugs, developed for the treatment of dysregulated inflammation, can be potentiated using biomaterials, by improving the bioavailability of drugs and by reducing side effects. In this Review, we first outline key elements and stages of the inflammatory environment and then discuss the design of biomaterials for different anti-inflammatory therapeutic strategies. Biomaterials can be engineered to scavenge danger signals, such as reactive oxygen and nitrogen species and cell-free DNA, in the early stages of inflammation. Materials can also be designed to prevent adhesive interactions of leukocytes and endothelial cells that initiate inflammatory responses. Furthermore, nanoscale platforms can deliver anti-inflammatory agents to inflammation sites. We conclude by discussing the challenges and opportunities for biomaterial innovations in addressing inflammation.
Collapse
Affiliation(s)
- Zhaoxu Tu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
- Department of Biomedical Engineering, Columbia University, New York, NY USA
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Yiling Zhong
- Department of Biomedical Engineering, Columbia University, New York, NY USA
- School of Chemistry, University of New South Wales, Sydney, New South Wales Australia
| | - Hanze Hu
- Department of Biomedical Engineering, Columbia University, New York, NY USA
| | - Dan Shao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Michael Schirner
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Jaewoo Lee
- School of Medicine, Duke University, Durham, NC USA
| | | | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY USA
- Department of Systems Biology, Columbia University, New York, NY USA
| |
Collapse
|
9
|
Gui L, Chen Y, Diao Y, Chen Z, Duan J, Liang X, Li H, Liu K, Miao Y, Gao Q, Li Z, Yang J, Li Y. ROS-responsive nanoparticle-mediated delivery of CYP2J2 gene for therapeutic angiogenesis in severe hindlimb ischemia. Mater Today Bio 2022; 13:100192. [PMID: 34988419 PMCID: PMC8695365 DOI: 10.1016/j.mtbio.2021.100192] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/07/2021] [Accepted: 12/17/2021] [Indexed: 11/21/2022] Open
Abstract
With critical limb ischemia (CLI) being a multi-factorial disease, it is becoming evident that gene therapy with a multiple bio-functional growth factor could achieve better therapeutic outcomes. Cytochrome P450 epoxygenase-2J2 (CYP2J2) and its catalytic products epoxyeicosatrienoic acids (EETs) exhibit pleiotropic biological activities, including pro-angiogenic, anti-inflammatory and cardiovascular protective effects, which are considerably beneficial for reversing ischemia and restoring local blood flow in CLI. Here, we designed a nanoparticle-based pcDNA3.1-CYP2J2 plasmid DNA (pDNA) delivery system (nanoparticle/pDNA complex) composed of a novel three-arm star block copolymer (3S-PLGA-po-PEG), which was achieved by conjugating three-armed PLGA to PEG via the peroxalate ester bond. Considering the multiple bio-functions of CYP2J2-EETs and the sensitivity of the peroxalate ester bond to H2O2, this nanoparticle-based gene delivery system is expected to exhibit excellent pro-angiogenic effects while improving the high oxidative stress and inflammatory micro-environment in ischemic hindlimb. Our study reports the first application of CYP2J2 in the field of therapeutic angiogenesis for CLI treatment and our findings demonstrated good biocompatibility, stability and sustained release properties of the CYP2J2 nano-delivery system. In addition, this nanoparticle-based gene delivery system showed high transfection efficiency and efficient VEGF expression in vitro and in vivo. Intramuscular injection of nanoparticle/pDNA complexes into mice with hindlimb ischemia resulted in significant rapid blood flow recovery and improved muscle repair compared to mice treated with naked pDNA. In summary, 3S-PLGA-po-PEG/CYP2J2-pDNA complexes have tremendous potential and provide a practical strategy for the treatment of limb ischemia. Moreover, 3S-PLGA-po-PEG nanoparticles might be useful as a potential non-viral carrier for other gene delivery applications. Cytochrome P450 epoxygenase-2J2 (CYP2J2) was first applied in the field of therapeutic angiogenesis for critical limb ischemia treatment. The ROS-responsive three-arm star block copolymer (3S-PLGA-po-PEG) was synthesized with peroxalate ester as H2O2-responsive linkages through the esterification reaction of oxalyl chloride and hydroxyl group. The CYP2J2 nano-delivery system achieved high transfection efficiency and significant therapeutic angiogenesis effect.
Collapse
Affiliation(s)
- Liang Gui
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China.,Graduate School of Peking Union Medical College, Beijing, 100730, PR China.,Department of Vascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China
| | - Youlu Chen
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, PR China
| | - Yongpeng Diao
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China
| | - Zuoguan Chen
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China
| | - Jianwei Duan
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, PR China
| | - Xiaoyu Liang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, PR China
| | - Huiyang Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, PR China
| | - Kaijing Liu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, PR China
| | - Yuqing Miao
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China
| | - Qing Gao
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China
| | - Zhichao Li
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China
| | - Jing Yang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, PR China
| | - Yongjun Li
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China
| |
Collapse
|
10
|
Wang X, Gao B, Feng Y. Recent advances in inhibiting atherosclerosis and restenosis: from pathogenic factors, therapeutic agents to nano-delivery strategies. J Mater Chem B 2022; 10:1685-1708. [DOI: 10.1039/d2tb00003b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to dominant atherosclerosis etiology, cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality worldwide. In clinical trials, advanced atherosclerotic plaques can be removed by angioplasty and vascular...
Collapse
|
11
|
Er S, Laraib U, Arshad R, Sargazi S, Rahdar A, Pandey S, Thakur VK, Díez-Pascual AM. Amino Acids, Peptides, and Proteins: Implications for Nanotechnological Applications in Biosensing and Drug/Gene Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3002. [PMID: 34835766 PMCID: PMC8622868 DOI: 10.3390/nano11113002] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Over various scientific fields in biochemistry, amino acids have been highlighted in research works. Protein, peptide- and amino acid-based drug delivery systems have proficiently transformed nanotechnology via immense flexibility in their features for attaching various drug molecules and biodegradable polymers. In this regard, novel nanostructures including carbon nanotubes, electrospun carbon nanofibers, gold nanoislands, and metal-based nanoparticles have been introduced as nanosensors for accurate detection of these organic compounds. These nanostructures can bind the biological receptor to the sensor surface and increase the surface area of the working electrode, significantly enhancing the biosensor performance. Interestingly, protein-based nanocarriers have also emerged as useful drug and gene delivery platforms. This is important since, despite recent advancements, there are still biological barriers and other obstacles limiting gene and drug delivery efficacy. Currently available strategies for gene therapy are not cost-effective, and they do not deliver the genetic cargo effectively to target sites. With rapid advancements in nanotechnology, novel gene delivery systems are introduced as nonviral vectors such as protein, peptide, and amino acid-based nanostructures. These nano-based delivery platforms can be tailored into functional transformation using proteins and peptides ligands based nanocarriers, usually overexpressed in the specified diseases. The purpose of this review is to shed light on traditional and nanotechnology-based methods to detect amino acids, peptides, and proteins. Furthermore, new insights into the potential of amino protein-based nanoassemblies for targeted drug delivery or gene transfer are presented.
Collapse
Affiliation(s)
- Simge Er
- Biochemistry Department, Faculty of Science, Ege University, Bornova-Izmir 35100, Turkey;
| | - Ushna Laraib
- Department of Pharmacy, College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan;
| | - Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea;
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK;
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
12
|
Marsico G, Martin‐Saldaña S, Pandit A. Therapeutic Biomaterial Approaches to Alleviate Chronic Limb Threatening Ischemia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003119. [PMID: 33854887 PMCID: PMC8025020 DOI: 10.1002/advs.202003119] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/24/2020] [Indexed: 05/14/2023]
Abstract
Chronic limb threatening ischemia (CLTI) is a severe condition defined by the blockage of arteries in the lower extremities that leads to the degeneration of blood vessels and is characterized by the formation of non-healing ulcers and necrosis. The gold standard therapies such as bypass and endovascular surgery aim at the removal of the blockage. These therapies are not suitable for the so-called "no option patients" which present multiple artery occlusions with a likelihood of significant limb amputation. Therefore, CLTI represents a significant clinical challenge, and the efforts of developing new treatments have been focused on stimulating angiogenesis in the ischemic muscle. The delivery of pro-angiogenic nucleic acid, protein, and stem cell-based interventions have limited efficacy due to their short survival. Engineered biomaterials have emerged as a promising method to improve the effectiveness of these latter strategies. Several synthetic and natural biomaterials are tested in different formulations aiming to incorporate nucleic acid, proteins, stem cells, macrophages, or endothelial cells in supportive matrices. In this review, an overview of the biomaterials used alone and in combination with growth factors, nucleic acid, and cells in preclinical models is provided and their potential to induce revascularization and regeneration for CLTI applications is discussed.
Collapse
Affiliation(s)
- Grazia Marsico
- CÚRAM SFI Research Centre for Medical DevicesNational University of IrelandGalwayIreland
| | - Sergio Martin‐Saldaña
- CÚRAM SFI Research Centre for Medical DevicesNational University of IrelandGalwayIreland
| | - Abhay Pandit
- CÚRAM SFI Research Centre for Medical DevicesNational University of IrelandGalwayIreland
| |
Collapse
|
13
|
Olvera D, Monaghan MG. Electroactive material-based biosensors for detection and drug delivery. Adv Drug Deliv Rev 2021; 170:396-424. [PMID: 32987096 DOI: 10.1016/j.addr.2020.09.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/22/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022]
Abstract
Electroactive materials are employed at the interface of biology and electronics due to their advantageous intrinsic properties as soft organic electronics. We examine the most recent literature of electroactive material-based biosensors and their emerging role as theranostic devices for the delivery of therapeutic agents. We consider electroactive materials through the lens of smart drug delivery systems as materials that enable the release of therapeutic cargo in response to specific physiological and external stimuli and discuss the way these mechanisms are integrated into medical devices with examples of the latest advances. Studies that harness features unique to conductive polymers are emphasized; lastly, we highlight new perspectives and future research direction for this emerging technology and the challenges that remain to overcome.
Collapse
|
14
|
Marsico G, Jin C, Abbah SA, Brauchle EM, Thomas D, Rebelo AL, Orbanić D, Chantepie S, Contessotto P, Papy-Garcia D, Rodriguez-Cabello C, Kilcoyne M, Schenke-Layland K, Karlsson NG, McCullagh KJA, Pandit A. Elastin-like hydrogel stimulates angiogenesis in a severe model of critical limb ischemia (CLI): An insight into the glyco-host response. Biomaterials 2021; 269:120641. [PMID: 33493768 DOI: 10.1016/j.biomaterials.2020.120641] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022]
Abstract
Critical limb ischemia (CLI) is characterized by the impairment of microcirculation, necrosis and inflammation of the muscular tissue. Although the role of glycans in mediating inflammation has been reported, changes in the glycosylation following muscle ischemia remains poorly understood. Here, a murine CLI model was used to show the increase of high mannose, α-(2, 6)-sialic acid and the decrease of hybrid and bisected N-glycans as glycosylation associated with the ischemic environment. Using this model, the efficacy of an elastin-like recombinamers (ELR) hydrogel was assessed. The hydrogel modulates key angiogenic signaling pathways, resulting in capillary formation, and ECM remodeling. Arterioles formation, reduction of fibrosis and anti-inflammatory macrophage polarization wa also induced by the hydrogel administration. Modulation of glycosylation was observed, suggesting, in particular, a role for mannosylation and sialylation in the mediation of tissue repair. Our study elucidates the angiogenic potential of the ELR hydrogel for CLI applications and identifies glycosylation alterations as potential new therapeutic targets.
Collapse
Affiliation(s)
- Grazia Marsico
- CÚRAM SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway H92 W2TY, Ireland
| | - Chunseng Jin
- Department of Medical Biochemistry and Cell Biology at Institute of Biomedicine, Sahlgrenska Academy, The University of Gothenburg, Sweden
| | - Sunny A Abbah
- CÚRAM SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway H92 W2TY, Ireland
| | - Eva M Brauchle
- Department of Women's Health, Research Institute for Women's Health, The Eberhard-Karls-University Tuebingen, Germany; The Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany
| | - Dilip Thomas
- CÚRAM SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway H92 W2TY, Ireland
| | - Ana Lúcia Rebelo
- CÚRAM SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway H92 W2TY, Ireland
| | | | - Sandrine Chantepie
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| | - Paolo Contessotto
- CÚRAM SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway H92 W2TY, Ireland
| | - Dulce Papy-Garcia
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| | | | - Michelle Kilcoyne
- CÚRAM SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway H92 W2TY, Ireland; Carbohydrate Signalling Group, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway H92 W2TY, Ireland
| | - K Schenke-Layland
- Department of Women's Health, Research Institute for Women's Health, The Eberhard-Karls-University Tuebingen, Germany; The Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany
| | - N G Karlsson
- Department of Medical Biochemistry and Cell Biology at Institute of Biomedicine, Sahlgrenska Academy, The University of Gothenburg, Sweden
| | - Karl J A McCullagh
- Physiology Department, National University of Ireland Galway, Galway H92 W2TY, Ireland
| | - Abhay Pandit
- CÚRAM SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway H92 W2TY, Ireland.
| |
Collapse
|
15
|
Abstract
Buerger’s disease or Thromboangiitis Obliterans (TAO) is a nonatherosclerotic segmental vascular disease which affects small and medium arteries and veins in the upper and lower extremities. Based on pathological findings, TAO can be considered as a distinct form of vasculitis that is most prevalent in young male smokers. There is no definitive cure for this disease as therapeutic modalities are limited in number and efficacy. Surgical bypass has limited utility and 24% of patients will ultimately require amputation. Recently, studies have shown that therapeutic angiogenesis and immunomodulatory approaches through the delivery of stem cells to target tissues are potential options for ischemic lesion treatment. In this review, we summarize the current knowledge of TAO treatment and provide an overview of stem cell-based treatment modalities.
Collapse
|
16
|
Wang X, Gao B, Zhou J, Ren XK, Guo J, Xia S, Zhang W, Feng Y. Unexpected Amplification of Synergistic Gene Expression to Boom Vascular Flow in Advantageous Dual-Gene Co-expression Plasmid Delivery Systems over Physically Mixed Strategy. ACS APPLIED BIO MATERIALS 2020; 3:7228-7235. [PMID: 35019381 DOI: 10.1021/acsabm.0c01023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Gene therapy exerts powerful potential in the treatment of various diseases, such as overexpressing pro-angiogenic gene to accelerate angiogenesis and restore vascular flow of ischemic tissue. Tremendous efforts have been invested in developing gene carriers for high transfection efficiency, while little research has been devoted to synergistically expressing functional proteins via optimizing therapeutic genes. Actually, the amplified gene expression is the ultimate goal of gene delivery. Dual-gene co-delivery and coordinate expression become a "breach" of strengthened gene expression. Herein, we explored the synergistic effects on gene expression and pro-angiogenesis by two typical dual-gene delivery strategies to determine which one is more efficient. The physical mixing method used ZNF580 and VEGF165 plasmids with a 1/1 weight ratio (p1:1), and the other strategy involved chemically inserting ZNF580 and VEGF165 genes into one plasmid as a dual-gene co-expression plasmid (pZNF-VEGF). p1:1 and pZNF-VEGF were loaded by REDV-TAT-NLS-H12 carrier, a promising peptide carrier, to form corresponding dual-gene delivery systems. Both systems exhibited approximately similar size and zeta potential, guaranteeing almost the same cellular uptake. We comprehensively evaluated two delivery systems through gene expression at mRNA and protein levels and angiogenesis-related activities in vitro and in vivo. Interestingly, the pZNF-VEGF group showed a remarkably amplified synergistic effect in the expression of ZNF580 and VEGF165 genes in comparison with the p1:1 group. More importantly, the unexpected amplified synergistic effect of dual-gene co-expression plasmid was further verified for proliferation, migration, and angiogenesis in vitro and in vivo. Accordingly, we believed that the co-delivery of dual genes via constructing co-expression plasmids offers a better option for gene therapy, which can more effectively enhance the synergistic expression of target genes than the physical mixing method.
Collapse
Affiliation(s)
- Xiaoyu Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China
| | - Bin Gao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China
| | - Jiaying Zhou
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China
| | - Xiang-Kui Ren
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.,Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, P. R. China
| | - Jintang Guo
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.,Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, P. R. China
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, Chenglin Road 220, Tianjin 300162, P. R. China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology, Logistics University of People's Armed Police Force, Chenglin Road 220, Tianjin 300162, P. R. China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.,Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, P. R. China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
17
|
Sarvari R, Nouri M, Agbolaghi S, Roshangar L, Sadrhaghighi A, Seifalian AM, Keyhanvar P. A summary on non-viral systems for gene delivery based on natural and synthetic polymers. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1825081] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Raana Sarvari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell And Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Agbolaghi
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Laila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhouman Sadrhaghighi
- Department of Orthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alexander M. Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre (Ltd), The London Innovation Bio Science Centre, London, UK
| | - Peyman Keyhanvar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Convergence of Knowledge, Technology and Society Network (CKTSN), Universal Scientific Education and Research Network (USERN), Tabriz, Iran
- ARTAN110 Startup Accelerator, Tabriz, Iran
| |
Collapse
|
18
|
Moreno-Estar S, Serrano S, Arévalo-Martínez M, Cidad P, López-López JR, Santos M, Pérez-Garcia MT, Arias FJ. Elastin-like recombinamer-based devices releasing Kv1.3 blockers for the prevention of intimal hyperplasia: An in vitro and in vivo study. Acta Biomater 2020; 115:264-274. [PMID: 32771595 DOI: 10.1016/j.actbio.2020.07.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022]
Abstract
Coronary artery disease (CAD) is the most common cardiovascular disorder. Vascular surgery strategies for coronary revascularization (either percutaneous or open) show a high rate of failure because of restenosis of the vessel, due to phenotypic switch of vascular smooth muscle cells (VSMCs) leading to proliferation and migration. We have previously reported that the inhibition of Kv1.3 channel function with selective blockers represents an effective strategy for the prevention of restenosis in human vessels used for coronary angioplasty procedures. However, delivery systems for controlled release of these drugs have not been investigated. Here we tested the efficacy of several formulations of elastin like recombinamers (ELRs) hydrogels to deliver the Kv1.3 blocker PAP-1 in various restenosis models. The dose and time course of PAP-1 release from ELRs click hydrogels was able to inhibit human VSMC proliferation in vitro as well as remodeling of human vessels in organ culture and restenosis in in vivo models. We conclude that this combination of active compound and advanced delivery method could improve the outcomes of vascular surgery in patients. STATEMENT OF SIGNIFICANCE: Vascular surgery strategies for coronary revascularization show a high rate of failure, because of occlusion (restenosis) of the vessel, due to vascular smooth muscle cells proliferation and migration. We have previously reported that blockers of Kv1.3 channels represent an effective anti-restenosis therapy, but delivery systems for their controlled release have not being explored. Here we tested the efficacy of several formulations of elastin like recombinamers (ELRs) hydrogels to deliver the Kv1.3 blocker PAP-1 in various restenosis models, both in vivo and in vitro, and also in human vessels. We demonstrated that combination of active compound and advanced delivery method could improve the outcomes of vascular surgery in patients.
Collapse
|
19
|
Ran P, Chen W, Wei J, Qiu B, Chen M, Xie S, Li X. Macrophage Spheroids with Chronological Phenotype Shifting To Promote Therapeutic Angiogenesis in Critical Limb Ischemia. ACS APPLIED BIO MATERIALS 2020; 3:3707-3717. [DOI: 10.1021/acsabm.0c00333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pan Ran
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Weijia Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Jiaojun Wei
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Bo Qiu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Maohua Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Songzhi Xie
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Xiaohong Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| |
Collapse
|
20
|
Park IS, Mahapatra C, Park JS, Dashnyam K, Kim JW, Ahn JC, Chung PS, Yoon DS, Mandakhbayar N, Singh RK, Lee JH, Leong KW, Kim HW. Revascularization and limb salvage following critical limb ischemia by nanoceria-induced Ref-1/APE1-dependent angiogenesis. Biomaterials 2020; 242:119919. [PMID: 32146371 DOI: 10.1016/j.biomaterials.2020.119919] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/06/2020] [Accepted: 02/24/2020] [Indexed: 01/10/2023]
Abstract
In critical limb ischemia (CLI), overproduction of reactive oxygen species (ROS) and impairment of neovascularization contribute to muscle damage and limb loss. Cerium oxide nanoparticles (CNP, or 'nanoceria') possess oxygen-modulating properties which have shown therapeutic utility in various disease models. Here we show that CNP exhibit pro-angiogenic activity in a mouse hindlimb ischemia model, and investigate the molecular mechanism underlying the pro-angiogenic effect. CNP were injected into a ligated region of a femoral artery, and tissue reperfusion and hindlimb salvage were monitored for 3 weeks. Tissue analysis revealed stimulation of pro-angiogenic markers, maturation of blood vessels, and remodeling of muscle tissue following CNP administration. At a dose of 0.6 mg CNP, mice showed reperfusion of blood vessels in the hindlimb and a high rate of limb salvage (71%, n = 7), while all untreated mice (n = 7) suffered foot necrosis or limb loss. In vitro, CNP promoted endothelial cell tubule formation via the Ref-1/APE1 signaling pathway, and the involvement of this pathway in the CNP response was confirmed in vivo using immunocompetent and immunodeficient mice and by siRNA knockdown of APE1. These results demonstrate that CNP provide an effective treatment of CLI with excessive ROS by scavenging ROS to improve endothelial survival and by inducing Ref-1/APE1-dependent angiogenesis to revascularize an ischemic limb.
Collapse
Affiliation(s)
- In-Su Park
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Beckman Laser Institute Korea, Dankook University, Cheonan, 31116, South Korea; Cell Therapy Center, Ajou University Medical Center, Suwon, South Korea
| | - Chinmaya Mahapatra
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
| | - Ji Sun Park
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Khandmaa Dashnyam
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
| | - Jong-Wan Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea
| | - Jin Chul Ahn
- Beckman Laser Institute Korea, Dankook University, Cheonan, 31116, South Korea; Department of Biomedical Science, Dankook University, Cheonan, 31116, South Korea; Biomedical Translational Research Institute, Dankook University, Cheonan, 31116, South Korea
| | - Phil-Sang Chung
- Beckman Laser Institute Korea, Dankook University, Cheonan, 31116, South Korea; Department of Otolaryngology-Head and Neck Surgery, Dankook University, Cheonan, 31116, South Korea
| | - Dong Suk Yoon
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
| | - Rajendra K Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea; Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, South Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, South Korea.
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA; Department of System Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea; Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, South Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, South Korea.
| |
Collapse
|
21
|
Peddi S, Roberts SK, MacKay JA. Nanotoxicology of an Elastin-like Polypeptide Rapamycin Formulation for Breast Cancer. Biomacromolecules 2020; 21:1091-1102. [PMID: 31927993 PMCID: PMC7219203 DOI: 10.1021/acs.biomac.9b01431] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The clinical utility of rapamycin (Rapa) is limited by solubility, bioavailability, and side effects. To overcome this, our team recently reported an elastin-like polypeptide (ELP) nanoparticle with high affinity, noncovalent drug binding, and integrin-mediated cellular uptake. Given the scarcity of pharmacology/toxicology studies of ELP-based drug carriers, this article explores safety and efficacy of ELP-Rapa. ELP-Rapa nanoparticles tested negative for hemolysis, did not interfere in plasma coagulation nor in platelet function, and did not activate the complement. Upon incubation with HepG2 cells, ELP-Rapa revealed significant cellular uptake and trafficking to acidic organelles, consistent with lysosomes. Internalized ELP-Rapa nanoparticles increased oxidative stress 4-fold compared to free drug or free ELP controls. However, mice bearing orthotopic hormone receptor positive BT-474 breast tumors, given a high dose (∼10-fold above therapeutic dose) of 1 month administration of ELP-Rapa, did not induce hepatotoxicity. On the other hand, tumor growth and mTOR signaling were suppressed without affecting body weight. Nanoparticles assembled using ELP technology appear to be a safe and efficient strategy for delivering Rapa.
Collapse
Affiliation(s)
- Santosh Peddi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy at the University of Southern California, Los Angeles, California 90033-9121, United States
| | - S Kenny Roberts
- Eunoia Biotech LLC, Wynnewood, Pennsylvania 19096, United States
| | - John Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy at the University of Southern California, Los Angeles, California 90033-9121, United States
- Department of Biomedical Engineering, Viterbi School of Engineering at the University of Southern California, Los Angeles, California 90089, United States
- Department of Ophthalmology, Keck School of Medicine at the University of Southern California, Los Angeles, California 90089-9020, United States
| |
Collapse
|
22
|
Wang X, Su B, Gao B, Zhou J, Ren XK, Guo J, Xia S, Zhang W, Feng Y. Cascaded bio-responsive delivery of eNOS gene and ZNF580 gene to collaboratively treat hindlimb ischemia via pro-angiogenesis and anti-inflammation. Biomater Sci 2020; 8:6545-6560. [DOI: 10.1039/d0bm01573c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The cascaded, bio-responsively delivered eNOS gene and ZNF580 gene overcome transfection bottlenecks and collaboratively exert anti-ischemic function via promoting angiogenesis and alleviating inflammation.
Collapse
Affiliation(s)
- Xiaoyu Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Bin Su
- Department of Clinical Research
- Characteristic Medical Center of Chinese People's Armed Police Force
- Tianjin 300162
- P. R. China
| | - Bin Gao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Jiaying Zhou
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Xiang-kui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Jintang Guo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine
- Affiliated Hospital
- Logistics University of People's Armed Police Force
- Tianjin 300162
- P. R. China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology
- Logistics University of People's Armed Police Force
- Tianjin 300162
- P. R. China
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| |
Collapse
|
23
|
Bravo-Anaya L, Garbay B, Nando-Rodríguez J, Carvajal Ramos F, Ibarboure E, Bathany K, Xia Y, Rosselgong J, Joucla G, Garanger E, Lecommandoux S. Nucleic acids complexation with cationic elastin-like polypeptides: Stoichiometry and stability of nano-assemblies. J Colloid Interface Sci 2019; 557:777-792. [DOI: 10.1016/j.jcis.2019.09.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 02/01/2023]
|
24
|
Veith AP, Henderson K, Spencer A, Sligar AD, Baker AB. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv Drug Deliv Rev 2019; 146:97-125. [PMID: 30267742 DOI: 10.1016/j.addr.2018.09.010] [Citation(s) in RCA: 581] [Impact Index Per Article: 96.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 09/15/2018] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
Abstract
The enhancement of wound healing has been a goal of medical practitioners for thousands of years. The development of chronic, non-healing wounds is a persistent medical problem that drives patient morbidity and increases healthcare costs. A key aspect of many non-healing wounds is the reduced presence of vessel growth through the process of angiogenesis. This review surveys the creation of new treatments for healing cutaneous wounds through therapeutic angiogenesis. In particular, we discuss the challenges and advancement that have been made in delivering biologic, pharmaceutical and cell-based therapies as enhancers of wound vascularity and healing.
Collapse
|
25
|
Garcia Garcia C, Kiick KL. Methods for producing microstructured hydrogels for targeted applications in biology. Acta Biomater 2019; 84:34-48. [PMID: 30465923 PMCID: PMC6326863 DOI: 10.1016/j.actbio.2018.11.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 12/29/2022]
Abstract
Hydrogels have been broadly studied for applications in clinically motivated fields such as tissue regeneration, drug delivery, and wound healing, as well as in a wide variety of consumer and industry uses. While the control of mechanical properties and network structures are important in all of these applications, for regenerative medicine applications in particular, matching the chemical, topographical and mechanical properties for the target use/tissue is critical. There have been multiple alternatives developed for fabricating materials with microstructures with goals of controlling the spatial location, phenotypic evolution, and signaling of cells. The commonly employed polymers such as poly(ethylene glycol) (PEG), polypeptides, and polysaccharides (as well as others) can be processed by various methods in order to control material heterogeneity and microscale structures. We review here the more commonly used polymers, chemistries, and methods for generating microstructures in biomaterials, highlighting the range of possible morphologies that can be produced, and the limitations of each method. With a focus in liquid-liquid phase separation, methods and chemistries well suited for stabilizing the interface and arresting the phase separation are covered. As the microstructures can affect cell behavior, examples of such effects are reviewed as well. STATEMENT OF SIGNIFICANCE: Heterogeneous hydrogels with enhanced matrix complexity have been studied for a variety of biomimetic materials. A range of materials based on poly(ethylene glycol), polypeptides, proteins, and/or polysaccharides, have been employed in the studies of materials that by virtue of their microstructure, can control the behaviors of cells. Methods including microfluidics, photolithography, gelation in the presence of porogens, and liquid-liquid phase separation, are presented as possible strategies for producing materials, and their relative advantages and disadvantages are discussed. We also describe in more detail the various processes involved in LLPS, and how they can be manipulated to alter the kinetics of phase separation and to yield different microstructured materials.
Collapse
Affiliation(s)
- Cristobal Garcia Garcia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; Biomedical Engineering, University of Delaware, Newark, DE 19176, USA; Delaware Biotechnology Institute, Newark, DE 19716, USA
| |
Collapse
|
26
|
Uscátegui YL, Díaz LE, Gómez-Tejedor JA, Vallés-Lluch A, Vilariño-Feltrer G, Serrano MA, Valero MF. Candidate Polyurethanes Based on Castor Oil ( Ricinus communis), with Polycaprolactone Diol and Chitosan Additions, for Use in Biomedical Applications. Molecules 2019; 24:E237. [PMID: 30634633 PMCID: PMC6359294 DOI: 10.3390/molecules24020237] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 12/12/2022] Open
Abstract
Polyurethanes are widely used in the development of medical devices due to their biocompatibility, degradability, non-toxicity and chemical versatility. Polyurethanes were obtained from polyols derived from castor oil, and isophorone diisocyanate, with the incorporation of polycaprolactone-diol (15% w/w) and chitosan (3% w/w). The objective of this research was to evaluate the effect of the type of polyol and the incorporation of polycaprolactone-diol and chitosan on the mechanical and biological properties of the polyurethanes to identify the optimal ones for applications such as wound dressings or tissue engineering. Polyurethanes were characterized by stress-strain, contact angle by sessile drop method, thermogravimetric analysis, differential scanning calorimetry, water uptake and in vitro degradation by enzymatic processes. In vitro biological properties were evaluated by a 24 h cytotoxicity test using the colorimetric assay MTT and the LIVE/DEAD kit with cell line L-929 (mouse embryonic fibroblasts). In vitro evaluation of the possible inflammatory effect of polyurethane-based materials was evaluated by means of the expression of anti-inflammatory and proinflammatory cytokines expressed in a cellular model such as THP-1 cells by means of the MILLIPLEX® MAP kit. The modification of polyols derived from castor oil increases the mechanical properties of interest for a wide range of applications. The polyurethanes evaluated did not generate a cytotoxic effect on the evaluated cell line. The assessed polyurethanes are suggested as possible candidate biomaterials for wound dressings due to their improved mechanical properties and biocompatibility.
Collapse
Affiliation(s)
- Yomaira L Uscátegui
- Doctoral Program of Biosciences, Universidad de La Sabana, Chía 140013, Colombia.
- Energy, Materials and Environment Group, Faculty of Engineering, Universidad de La Sabana, Chía 140013, Colombia.
| | - Luis E Díaz
- Bioprospecting Research Group, Faculty of Engineering, Universidad de La Sabana, Chía 140013, Colombia.
| | - José A Gómez-Tejedor
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain.
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 46022 Valencia, Spain.
| | - Ana Vallés-Lluch
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain.
| | - Guillermo Vilariño-Feltrer
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain.
| | - María A Serrano
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain.
| | - Manuel F Valero
- Energy, Materials and Environment Group, Faculty of Engineering, Universidad de La Sabana, Chía 140013, Colombia.
| |
Collapse
|
27
|
Morey M, Pandit A. Responsive triggering systems for delivery in chronic wound healing. Adv Drug Deliv Rev 2018; 129:169-193. [PMID: 29501700 DOI: 10.1016/j.addr.2018.02.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/27/2018] [Accepted: 02/26/2018] [Indexed: 12/31/2022]
Abstract
Non-communicable diseases including cancer, cardiovascular disease, diabetes, and neuropathy are chronic in nature. Treatment of these diseases with traditional delivery systems is limited due to lack of site-specificity, non-spatiotemporal release and insufficient doses. Numerous responsive delivery systems which respond to both physiological and external stimuli have been reported in the literature. However, effective strategies incorporating a multifactorial approach are required to control these complex wounds. This can be achieved by fabricating spatiotemporal release systems, multimodal systems or dual/multi-stimuli responsive delivery systems loaded with one or more bioactive components. Critically, these next generation stimuli responsive delivery systems that are at present not feasible are required to treat chronic wounds. This review provides a critical assessment of recent developments in the field of responsive delivery systems, highlighting their limitations and providing a perspective on how these challenges can be overcome.
Collapse
Affiliation(s)
- Mangesh Morey
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland.
| | - Abhay Pandit
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
28
|
Larrañaga A, Isa ILM, Patil V, Thamboo S, Lomora M, Fernández-Yague MA, Sarasua JR, Palivan CG, Pandit A. Antioxidant functionalized polymer capsules to prevent oxidative stress. Acta Biomater 2018; 67:21-31. [PMID: 29258803 DOI: 10.1016/j.actbio.2017.12.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/18/2017] [Accepted: 12/11/2017] [Indexed: 12/23/2022]
Abstract
Polymeric capsules exhibit significant potential for therapeutic applications as microreactors, where the bio-chemical reactions of interest are efficiently performed in a spatial and time defined manner due to the encapsulation of an active biomolecule (e.g., enzyme) and control over the transfer of reagents and products through the capsular membrane. In this work, catalase loaded polymer capsules functionalized with an external layer of tannic acid (TA) are fabricated via a layer-by-layer approach using calcium carbonate as a sacrificial template. The capsules functionalised with TA exhibit a higher scavenging capacity for hydrogen peroxide and hydroxyl radicals, suggesting that the external layer of TA shows intrinsic antioxidant properties, and represents a valid strategy to increase the overall antioxidant potential of the developed capsules. Additionally, the hydrogen peroxide scavenging capacity of the capsules is enhanced in the presence of the encapsulated catalase. The capsules prevent oxidative stress in an in vitro inflammation model of degenerative disc disease. Moreover, the expression of matrix metalloproteinase-3 (MMP-3), and disintegrin and metalloproteinase with thrombospondin motif-5 (ADAMTS-5), which represents the major proteolytic enzymes in intervertebral disc, are attenuated in the presence of the polymer capsules. This platform technology exhibits potential to reduce oxidative stress, a key modulator in the pathology of a broad range of inflammatory diseases. STATEMENT OF SIGNIFICANCE Oxidative stress damages important cell structures leading to cellular apoptosis and senescence, for numerous disease pathologies including cancer, neurodegeneration or osteoarthritis. Thus, the development of biomaterials-based systems to control oxidative stress has gained an increasing interest. Herein, polymer capsules loaded with catalase and functionalized with an external layer of tannic acid are fabricated, which can efficiently scavenge important reactive oxygen species (i.e., hydroxyl radicals and hydrogen peroxide) and modulate extracellular matrix activity in an in vitro inflammation model of nucleus pulposus. The present work represents accordingly, an important advance in the development and application of polymer capsules with antioxidant properties for the treatment of oxidative stress, which is applicable for multiple inflammatory disease targets.
Collapse
Affiliation(s)
- Aitor Larrañaga
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland; Department of Mining-Metallurgy Engineering and Materials Science & POLYMAT, University of the Basque Country, Bilbao, Spain
| | - Isma Liza Mohd Isa
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Vaibhav Patil
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Sagana Thamboo
- Chemistry Department, University of Basel, Basel, Switzerland
| | - Mihai Lomora
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Marc A Fernández-Yague
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Jose-Ramon Sarasua
- Department of Mining-Metallurgy Engineering and Materials Science & POLYMAT, University of the Basque Country, Bilbao, Spain
| | | | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland.
| |
Collapse
|
29
|
Abstract
Angiogenesis plays an important role not only in the growth and regeneration of tissues in humans but also in pathological conditions such as inflammation, degenerative disease and the formation of tumors. Angiogenesis is also vital in thick engineered tissues and constructs, such as those for the heart and bone, as these can face difficulties in successful implantation if they are insufficiently vascularized or unable to connect to the host vasculature. Considerable research has been carried out on angiogenic processes using a variety of approaches. Pathological angiogenesis has been analyzed at the cellular level through investigation of cell migration and interactions, modeling tissue level interactions between engineered blood vessels and whole organs, and elucidating signaling pathways involved in different angiogenic stimuli. Approaches to regenerative angiogenesis in ischemic tissues or wound repair focus on the vascularization of tissues, which can be broadly classified into two categories: scaffolds to direct and facilitate tissue growth and targeted delivery of genes, cells, growth factors or drugs that promote the regeneration. With technological advancement, models have been designed and fabricated to recapitulate the innate microenvironment. Moreover, engineered constructs provide not only a scaffold for tissue ingrowth but a reservoir of agents that can be controllably released for therapeutic purposes. This review summarizes the current approaches for modeling pathological and regenerative angiogenesis in the context of micro-/nanotechnology and seeks to bridge these two seemingly distant aspects of angiogenesis. The ultimate aim is to provide insights and advances from various models in the realm of angiogenesis studies that can be applied to clinical situations.
Collapse
Affiliation(s)
- Li-Jiun Chen
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| | | |
Collapse
|
30
|
Browne S, Pandit A. Engineered systems for therapeutic angiogenesis. Curr Opin Pharmacol 2017; 36:34-43. [DOI: 10.1016/j.coph.2017.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 12/17/2022]
|
31
|
Devalliere J, Dooley K, Hu Y, Kelangi SS, Uygun BE, Yarmush ML. Co-delivery of a growth factor and a tissue-protective molecule using elastin biopolymers accelerates wound healing in diabetic mice. Biomaterials 2017; 141:149-160. [DOI: 10.1016/j.biomaterials.2017.06.043] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/29/2017] [Accepted: 06/29/2017] [Indexed: 01/14/2023]
|
32
|
Kim J, Mirando AC, Popel AS, Green JJ. Gene delivery nanoparticles to modulate angiogenesis. Adv Drug Deliv Rev 2017; 119:20-43. [PMID: 27913120 PMCID: PMC5449271 DOI: 10.1016/j.addr.2016.11.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/01/2016] [Accepted: 11/24/2016] [Indexed: 01/19/2023]
Abstract
Angiogenesis is naturally balanced by many pro- and anti-angiogenic factors while an imbalance of these factors leads to aberrant angiogenesis, which is closely associated with many diseases. Gene therapy has become a promising strategy for the treatment of such a disordered state through the introduction of exogenous nucleic acids that express or silence the target agents, thereby engineering neovascularization in both directions. Numerous non-viral gene delivery nanoparticles have been investigated towards this goal, but their clinical translation has been hampered by issues associated with safety, delivery efficiency, and therapeutic effect. This review summarizes key factors targeted for therapeutic angiogenesis and anti-angiogenesis gene therapy, non-viral nanoparticle-mediated approaches to gene delivery, and recent gene therapy applications in pre-clinical and clinical trials for ischemia, tissue regeneration, cancer, and wet age-related macular degeneration. Enhanced nanoparticle design strategies are also proposed to further improve the efficacy of gene delivery nanoparticles to modulate angiogenesis.
Collapse
Affiliation(s)
- Jayoung Kim
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Adam C Mirando
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jordan J Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Departments of Ophthalmology, Neurosurgery, and Materials Science & Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
33
|
Milcovich G, Antunes FE, Farra R, Grassi G, Grassi M, Asaro F. Modulating carbohydrate-based hydrogels as viscoelastic lubricant substitute for articular cartilages. Int J Biol Macromol 2017; 102:796-804. [PMID: 28450242 DOI: 10.1016/j.ijbiomac.2017.04.079] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 04/20/2017] [Accepted: 04/22/2017] [Indexed: 10/19/2022]
Abstract
Viscosupplementation is a therapeutic approach for osteoarthritis treatment, where the synovial fluid, the natural lubricant of the joints, is replaced by viscoelastic solutions with rheological properties comparable or better than the starting material. This study presents the development of an innovative platform for viscosupplementation, based on the optimization of polysaccharide-based colloidal hydrogel, aiming to reduce on-site enzyme degradation and enhance the possibility of hyaluronic acid substitution with alternative biomaterials. Catanionic vesicles are proposed as physical crosslinker that can guarantee the formation of a 'soft', tunable network, offering a dual-therapeutic approach: on the mechanical relief perspective, as well as on the drug/gene delivery strategy. This research focuses on the fabrication and optimization of colloidal networks, driven by the synergistic interaction among catanionic vesicles and cationic modified cellulose polymers. This study tests the hypothesis that cellulose-like polymers can be arranged into functional matrix, mimicking the mechanical properties of healthy synovial fluids.
Collapse
Affiliation(s)
- Gesmi Milcovich
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, I-34127 Trieste, Italy
| | - Filipe E Antunes
- Chemistry Department, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Rossella Farra
- Department of Engineering and Architecture, University of Trieste, Via A. Valerio 6/A, I-34127 Trieste, Italy
| | - Gabriele Grassi
- Department of Life Sciences, University Hospital of Cattinara, Strada di Fiume 447, 34100 Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via A. Valerio 6/A, I-34127 Trieste, Italy.
| | - Fioretta Asaro
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, I-34127 Trieste, Italy
| |
Collapse
|
34
|
Riley MK, Vermerris W. Recent Advances in Nanomaterials for Gene Delivery-A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E94. [PMID: 28452950 PMCID: PMC5449975 DOI: 10.3390/nano7050094] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 01/02/2023]
Abstract
With the rapid development of nanotechnology in the recent decade, novel DNA and RNA delivery systems for gene therapy have become available that can be used instead of viral vectors. These non-viral vectors can be made of a variety of materials, including inorganic nanoparticles, carbon nanotubes, liposomes, protein and peptide-based nanoparticles, as well as nanoscale polymeric materials. They have as advantages over viral vectors a decreased immune response, and additionally offer flexibility in design, allowing them to be functionalized and targeted to specific sites in a biological system with low cytotoxicity. The focus of this review is to provide an overview of novel nanotechnology-based methods to deliver DNA and small interfering RNAs into biological systems.
Collapse
Affiliation(s)
- Michael K Riley
- Graduate Program in Plant Cellular and Molecular Biology, University of Florida, Gainesville, FL 32611, USA.
- UF Genetics Institute, University of Florida, Gainesville, FL 32611, USA.
| | - Wilfred Vermerris
- Graduate Program in Plant Cellular and Molecular Biology, University of Florida, Gainesville, FL 32611, USA.
- UF Genetics Institute, University of Florida, Gainesville, FL 32611, USA.
- Department of Microbiology & Cell Science, University of Florida, Cancer/Genetics Research Complex 302, 2033 Mowry Road, Gainesville, FL 32610, USA.
| |
Collapse
|
35
|
Lakshmanan R, Ukani G, Rishi MT, Maulik N. Trimodal rescue of hind limb ischemia with growth factors, cells, and nanocarriers: fundamentals to clinical trials. Can J Physiol Pharmacol 2017; 95:1125-1140. [PMID: 28407473 DOI: 10.1139/cjpp-2016-0713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Peripheral artery disease is a severe medical condition commonly characterized by critical or acute limb ischemia. Gradual accumulation of thrombotic plaques in peripheral arteries of the lower limb may lead to intermittent claudication or ischemia in muscle tissue. Ischemic muscle tissue with lesions may become infected, resulting in a non-healing wound. Stable progression of the non-healing wound associated with severe ischemia might lead to functional deterioration of the limb, which, depending on the severity, can result in amputation. Immediate rescue of ischemic muscles through revascularization strategies is considered the gold standard to treat critical limb ischemia. Growth factors offer multiple levels of protection in revascularization of ischemic tissue. In this review, the basic mechanism through which growth factors exert their beneficial properties to rescue the ischemic limb is extensively discussed. Moreover, clinical trials based on growth factor and stem cell therapy to treat critical limb ischemia are considered. The clinical utility of stem cell therapy for the treatment of limb ischemia is explained and recent advances in nanocarrier technology for selective growth factor and stem cell supplementation are summarized.
Collapse
Affiliation(s)
- Rajesh Lakshmanan
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Gopi Ukani
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Muhammad Tipu Rishi
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Nilanjana Maulik
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| |
Collapse
|
36
|
Despanie J, Dhandhukia JP, Hamm-Alvarez SF, MacKay JA. Elastin-like polypeptides: Therapeutic applications for an emerging class of nanomedicines. J Control Release 2016; 240:93-108. [PMID: 26578439 PMCID: PMC5767577 DOI: 10.1016/j.jconrel.2015.11.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023]
Abstract
Elastin-like polypeptides (ELPs) constitute a genetically engineered class of 'protein polymers' derived from human tropoelastin. They exhibit a reversible phase separation whereby samples remain soluble below a transition temperature (Tt) but form amorphous coacervates above Tt. Their phase behavior has many possible applications in purification, sensing, activation, and nanoassembly. As humanized polypeptides, they are non-immunogenic, substrates for proteolytic biodegradation, and can be decorated with pharmacologically active peptides, proteins, and small molecules. Recombinant synthesis additionally allows precise control over ELP architecture and molecular weight, resulting in protein polymers with uniform physicochemical properties suited to the design of multifunctional biologics. As such, ELPs have been employed for various uses including as anti-cancer agents, ocular drug delivery vehicles, and protein trafficking modulators. This review aims to offer the reader a catalogue of ELPs, their various applications, and potential for commercialization across a broad spectrum of fields.
Collapse
Affiliation(s)
- Jordan Despanie
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033-9121, USA
| | - Jugal P Dhandhukia
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033-9121, USA
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033-9121, USA; Department of Ophthalmology, University of Southern California, Los Angeles, CA, 90033, USA
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033-9121, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
37
|
Lam GC, Sefton MV. Harnessing gene and drug delivery for vascularizing engineered tissue platforms. Drug Discov Today 2016; 21:1532-1539. [PMID: 27319292 DOI: 10.1016/j.drudis.2016.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/04/2016] [Accepted: 06/06/2016] [Indexed: 01/19/2023]
Abstract
Enhancement of tissue vascularization is a therapeutic target for many ischemic conditions, and is crucial for successful engraftment of therapeutic cells for tissue regeneration. The authors present opportunities for using these platforms for dissecting the role of angiogenic mechanisms and highlight recent gene and drug delivery strategies for enhancing vascularization of engineered tissues. Modular tissue engineering is featured as an example.
Collapse
Affiliation(s)
- Gabrielle C Lam
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Michael V Sefton
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
38
|
Preparation and properties of pH-responsive, self-assembled colloidal nanoparticles from guanidine-containing polypeptide and chitosan for antibiotic delivery. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.01.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Monaghan MG, Holeiter M, Layland SL, Schenke-Layland K. Cardiomyocyte generation from somatic sources - current status and future directions. Curr Opin Biotechnol 2016; 40:49-55. [PMID: 26945640 DOI: 10.1016/j.copbio.2016.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 12/16/2022]
Abstract
Transdifferentiation of one cell type to another has garnered significant research efforts in recent years. As cardiomyocyte loss following myocardial infarction becomes debilitating for cardiac patients, the option of an autologous source of cardiomyocytes not derived from multi/pluripotent stem cell sources is an attractive option. Such direct programming has been clearly realized with the use of transcription factors, microRNAs and more recently small molecule delivery to enhance epigenetic modifications, all albeit with low efficiencies in vitro. In this review, we aim to present a brief overview of the current in vitro and in vivo transdifferentiation strategies in the generation of cardiomyocytes from somatic sources. The interdisciplinary fields of tissue, cell, material and regenerative engineering offer many opportunities to synergistically achieve directly programmed cardiac tissue in vitro and enhance transdifferentiation in vivo. This review aims to present a concise outlook on this topic with these fields in mind.
Collapse
Affiliation(s)
- Michael G Monaghan
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Tübingen, Germany
| | - Monika Holeiter
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Tübingen, Germany
| | - Shannon L Layland
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Tübingen, Germany; Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany
| | - Katja Schenke-Layland
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Tübingen, Germany; Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany; Department of Medicine/Cardiology, Cardiovascular Research Laboratories, University of California, Los Angeles, CA, USA.
| |
Collapse
|
40
|
Abbah SA, Thomas D, Browne S, O’Brien T, Pandit A, Zeugolis DI. Co-transfection of decorin and interleukin-10 modulates pro-fibrotic extracellular matrix gene expression in human tenocyte culture. Sci Rep 2016; 6:20922. [PMID: 26860065 PMCID: PMC4748261 DOI: 10.1038/srep20922] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/13/2016] [Indexed: 12/22/2022] Open
Abstract
Extracellular matrix synthesis and remodelling are driven by increased activity of transforming growth factor beta 1 (TGF-β1). In tendon tissue repair, increased activity of TGF-β1 leads to progressive fibrosis. Decorin (DCN) and interleukin 10 (IL-10) antagonise pathological collagen synthesis by exerting a neutralising effect via downregulation of TGF-β1. Herein, we report that the delivery of DCN and IL-10 transgenes from a collagen hydrogel system supresses the constitutive expression of TGF-β1 and a range of pro-fibrotic extracellular matrix genes.
Collapse
Affiliation(s)
- Sunny A. Abbah
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Centre for Research in Medical Devices (CÚRAM), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dilip Thomas
- Centre for Research in Medical Devices (CÚRAM), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Regenerative Medicine Institute (REMEDI), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Shane Browne
- Centre for Research in Medical Devices (CÚRAM), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Timothy O’Brien
- Centre for Research in Medical Devices (CÚRAM), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Regenerative Medicine Institute (REMEDI), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Centre for Research in Medical Devices (CÚRAM), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| |
Collapse
|
41
|
Rodríguez-Cabello JC, Arias FJ, Rodrigo MA, Girotti A. Elastin-like polypeptides in drug delivery. Adv Drug Deliv Rev 2016; 97:85-100. [PMID: 26705126 DOI: 10.1016/j.addr.2015.12.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 12/12/2022]
Abstract
The use of recombinant elastin-like materials, or elastin-like recombinamers (ELRs), in drug-delivery applications is reviewed in this work. Although ELRs were initially used in similar ways to other, more conventional kinds of polymeric carriers, their unique properties soon gave rise to systems of unparalleled functionality and efficiency, with the stimuli responsiveness of ELRs and their ability to self-assemble readily allowing the creation of advanced systems. However, their recombinant nature is likely the most important factor that has driven the current breakthrough properties of ELR-based delivery systems. Recombinant technology allows an unprecedented degree of complexity in macromolecular design and synthesis. In addition, recombinant materials easily incorporate any functional domain present in natural proteins. Therefore, ELR-based delivery systems can exhibit complex interactions with both their drug load and the tissues and cells towards which this load is directed. Selected examples, ranging from highly functional nanocarriers to macrodepots, will be presented.
Collapse
|
42
|
Yang J, Liu W, Lv J, Feng Y, Ren X, Zhang W. REDV–polyethyleneimine complexes for selectively enhancing gene delivery in endothelial cells. J Mater Chem B 2016; 4:3365-3376. [DOI: 10.1039/c6tb00686h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gene therapy provides a new strategy for promoting endothelialization, and rapid endothelialization has attracted increasing attention for inhibiting thrombosis and restenosis in artificial vascular implants.
Collapse
Affiliation(s)
- Jing Yang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Wen Liu
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Juan Lv
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Xiangkui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Tianjin University-Helmholtz-Zentrum Geesthacht
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology
- Logistics University of Chinese People's Armed Police Force
- Tianjin 300162
- China
| |
Collapse
|
43
|
Thomas D, Gaspar D, Sorushanova A, Milcovich G, Spanoudes K, Mullen AM, O'Brien T, Pandit A, Zeugolis DI. Scaffold and scaffold-free self-assembled systems in regenerative medicine. Biotechnol Bioeng 2015; 113:1155-63. [PMID: 26498484 DOI: 10.1002/bit.25869] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/19/2015] [Accepted: 10/23/2015] [Indexed: 01/09/2023]
Abstract
Self-assembly in tissue engineering refers to the spontaneous chemical or biological association of components to form a distinct functional construct, reminiscent of native tissue. Such self-assembled systems have been widely used to develop platforms for the delivery of therapeutic and/or bioactive molecules and various cell populations. Tissue morphology and functional characteristics have been recapitulated in several self-assembled constructs, designed to incorporate stimuli responsiveness and controlled architecture through spatial confinement or field manipulation. In parallel, owing to substantial functional properties, scaffold-free cell-assembled devices have aided in the development of functional neotissues for various clinical targets. Herein, we discuss recent advancements and future aspirations in scaffold and scaffold-free self-assembled devices for regenerative medicine purposes. Biotechnol. Bioeng. 2016;113: 1155-1163. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dilip Thomas
- Centre for Research in Medical Devices (CÚRAM), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Regenerative Medicine Institute (REMEDI), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Diana Gaspar
- Centre for Research in Medical Devices (CÚRAM), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Anna Sorushanova
- Centre for Research in Medical Devices (CÚRAM), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Gesmi Milcovich
- Centre for Research in Medical Devices (CÚRAM), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Kyriakos Spanoudes
- Centre for Research in Medical Devices (CÚRAM), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | | | - Timothy O'Brien
- Centre for Research in Medical Devices (CÚRAM), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Regenerative Medicine Institute (REMEDI), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios I Zeugolis
- Centre for Research in Medical Devices (CÚRAM), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland. .,Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.
| |
Collapse
|