1
|
Liu X, Mei L, Wang J, Liu X, Yang Y, Wu Z, Ji Y. Cutting-edge insights into the mechanistic understanding of plant-derived exosome-like nanoparticles: Implications for intestinal homeostasis. Food Res Int 2025; 208:116186. [PMID: 40263791 DOI: 10.1016/j.foodres.2025.116186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/11/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
Plant-derived exosome-like nanoparticles (PDELNs) are extracted from plants such as ginger, garlic, broccoli, and others, attracting attention for their therapeutic potential due to their availability and capacity for large-scale production. Their unique physicochemical properties position PDELNs as ideal candidates for targeted gut delivery, improving intestinal health by modulating mucosal immunity, gut microbiota, and intestinal barrier integrity, all essential for maintaining intestinal homeostasis. PDELNs regulate intestinal barrier function through their bioactive components (e.g. microRNAs, lipids, and proteins). These vesicles enhance the expression of tight junction proteins and stimulate mucin production. Additionally, they promote intestinal stem cell proliferation and increase the secretion of antimicrobial peptides. PDELNs also modulate inflammatory cytokine levels and immune cell activity, fostering a balanced immune response. Further, they support the growth of beneficial gut microbiota and their metabolites, while suppressing the proliferation of pathogenic bacteria. This review summarizes recent advancements in understanding the roles of PDELNs in regulating intestinal homeostasis, focusing on their impact on mucosal immunity, intestinal barrier function, and gut microbiota composition, along with underlying molecular mechanisms and therapeutic implications. Overall, PDELNs show promise as a novel approach for treating and preventing intestinal diseases, paving the way for effective gut health interventions.
Collapse
Affiliation(s)
- Xiyuan Liu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Lihua Mei
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Jiaxin Wang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Xuelian Liu
- State Key Laboratory of Direct-Fed Microbial Engineering, Beijing, 100192, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Yun Ji
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Wang D, Mei Z, Zhao T, Tian H, Peng Z, Kang X, Zhang Y, Qi X. The roles of plant-derived nanovesicles in malignant tumours: A bibliometric analysis. Int J Biol Macromol 2025; 305:141112. [PMID: 39971079 DOI: 10.1016/j.ijbiomac.2025.141112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/09/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
Malignant tumours remain one of the most intractable health problems worldwide. Recently, plant-derived nanovesicles (PDNVs) have emerged as a promising tool in the treatment of malignant tumours, leveraging their high biosafety and potential mechanisms such as cancer-selective apoptosis induction and cell cycle arrest. This paper presents a systematic review of the research progress of nanovesicles in malignant tumours, with a focus on plant-derived vesicles (PDVs) and their potential applications in cancer treatment, based on bibliometric analysis. In this review, the research on PDNVs in malignant tumours was identified and analysed through various countries/institutions, authors, references and research hotspots. Furthermore, we summarized the diverse biological functions and applications of PDNVs sourced from various origins in malignant tumours, both when acting independently and as carriers. Lastly, we provide an outlook on the potential applications of PDNVs in malignant tumours. The purpose of this paper is to summarize the research progress of the role of PDNVs in malignant tumours, and to provide new ideas and clues for overcoming the difficulties of tumour treatment.
Collapse
Affiliation(s)
- Dandan Wang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zifan Mei
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Tingting Zhao
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Hao Tian
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zaihui Peng
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xia Kang
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, Sichuan, China.
| | - Yi Zhang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China.
| | - Xiaowei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
3
|
Yuan Y, Cao K, Gao P, Wang Y, An W, Dong Y. Extracellular vesicles and bioactive peptides for regenerative medicine in cosmetology. Ageing Res Rev 2025; 107:102712. [PMID: 40032214 DOI: 10.1016/j.arr.2025.102712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/10/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025]
Abstract
As life quality improves and the life pressure increases, people's awareness of maintaining healthy skin and hair grows. However, the use of bioactive peptides in regenerative medical aesthetics is often constrained by the high molecular weight, which impedes skin penetration. In contrast, extracellular vesicles not only possess regenerative properties but also serve as effective carriers for bioactive peptides. Given their anti-inflammatory and bactericidal properties, capacity to promote angiogenesis, optimize collagen alignment, facilitate re-epithelialization and stimulate hair growth, extracellular vesicles become an emerging and promising solution for skin regeneration treatments. The combination of peptides and extracellular vesicles enhances therapeutic efficacy and improves the bioavailability of bioactive peptides. In this review, we summarize the functions of bioactive peptides and plant- and animal-derived extracellular vesicles in regenerative medicine with cosmetology, along with examples of their combined applications. Additionally, we provide an overview of peptides and extracellular vesicles currently available on the market and in clinical practice, discussing the challenges and solutions associated with their use.
Collapse
Affiliation(s)
- Yize Yuan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kailu Cao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peifen Gao
- National Vaccine & Serum Institute, China National Biotech Group, Sinopharm Group, Beijing 101111, China
| | - Yinan Wang
- National Vaccine & Serum Institute, China National Biotech Group, Sinopharm Group, Beijing 101111, China
| | - Wenlin An
- National Vaccine & Serum Institute, China National Biotech Group, Sinopharm Group, Beijing 101111, China.
| | - Yiyang Dong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
4
|
Jung D, Kim NE, Kim S, Bae JH, Jung IY, Doh KW, Lee B, Kim DK, Cho YE, Baek MC. Plant-derived nanovesicles and therapeutic application. Pharmacol Ther 2025; 269:108832. [PMID: 40023319 DOI: 10.1016/j.pharmthera.2025.108832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/27/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Plant-derived nanovesicles (PDNVs) are becoming more popular as promising therapeutic tools owing to their diversity, cost-effectiveness, and biocompatibility with very low toxicity. Therefore, this review aims to discuss the methods for isolating and characterizing PDNVs and emphasize their versatile roles in direct therapeutic applications and drug delivery systems. Their ability to effectively encapsulate and deliver large nucleic acids, proteins, and small-molecule drugs was highlighted. Moreover, advanced engineering strategies, such as surface modification and fusion with other vesicles, have been developed to enhance the therapeutic effects of PDNVs. Additionally, we describe key challenges related to this field, encouraging further research to optimize PDNVs for various clinical applications for prevention and therapeutic purposes. The distinctive properties and diverse applications of PDNVs could play a crucial role in the future of personalized medicine, fostering the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Dokyung Jung
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Na-Eun Kim
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Sua Kim
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Ju-Hyun Bae
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Il-Young Jung
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Kyung-Won Doh
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Byungheon Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Do-Kyun Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea
| | - Young-Eun Cho
- Department of Food and Nutrition, Andong National University, Andong 36729, Republic of Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea.
| |
Collapse
|
5
|
Zhong M, Liao T, Zeng Z, Mei J, Wu B, Lin S, Zhao Y, Tan Y, Li N, Xiu Q, Liu C, Wu X, Nie C, Lin H, Zhang Y, Li W, Li B, Pan W, Zheng L. Natural Turmeric-Derived Nanovesicles-Laden Metal-Polyphenol Hydrogel Synergistically Restores Skin Barrier in Atopic Dermatitis via a Dual-Repair Strategy. Adv Healthc Mater 2025:e2500081. [PMID: 40302269 DOI: 10.1002/adhm.202500081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/10/2025] [Indexed: 05/02/2025]
Abstract
Skin barrier impairment is critical in the development of atopic dermatitis (AD), increasing vulnerability to external pathogens and disrupting cell metabolism, which leads to inflammatory stress and immune imbalance. In this study, a natural turmeric-derived nanovesicle (TDNV)-laden metal polyphenol hydrogel, termed Fe-HD@TDNV is proposed, to synergistically restore the compromised skin barrier in AD through a dual-repair strategy. The TDNV effectively regulates metabolic activity by upregulating the expression of skin barrier proteins, antioxidant enzymes, and antimicrobial peptides (AMPs) in keratinocytes, thereby reinforcing barrier integrity and combating pathogens. Simultaneously, the Fe-HD hydrogel, cross-linked by Fe3⁺ ions and hyaluronic acid-graft-dopamine (HD), provides superior skin compatibility and establishes a low oxidative stress environment for potentiating the therapeutic efficacy of TDNV. By improving skin barrier conditions, the Fe-HD@TDNV hydrogel exhibited desirable performance in maintaining better skin hydration, reducing epidermal thickness, and decreasing abnormal immune responses in acute skin disruption models and AD models. This work is expected to offer insights into the cross-kingdom regulation between plant-derived nanovesicles and mammals, as well as the design of disease-specific dual-functional repair strategies.
Collapse
Affiliation(s)
- Mingzhen Zhong
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single-cell and Extracellular Vesicles, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Tong Liao
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single-cell and Extracellular Vesicles, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zehan Zeng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiangang Mei
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single-cell and Extracellular Vesicles, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bodeng Wu
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single-cell and Extracellular Vesicles, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shan Lin
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single-cell and Extracellular Vesicles, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yitao Zhao
- Department of Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Yong Tan
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single-cell and Extracellular Vesicles, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ningcen Li
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single-cell and Extracellular Vesicles, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qi Xiu
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single-cell and Extracellular Vesicles, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chunchen Liu
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single-cell and Extracellular Vesicles, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiuhua Wu
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single-cell and Extracellular Vesicles, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chengtao Nie
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single-cell and Extracellular Vesicles, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Huixian Lin
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single-cell and Extracellular Vesicles, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ye Zhang
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single-cell and Extracellular Vesicles, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenbin Li
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single-cell and Extracellular Vesicles, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bo Li
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single-cell and Extracellular Vesicles, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Weilun Pan
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single-cell and Extracellular Vesicles, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lei Zheng
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single-cell and Extracellular Vesicles, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
6
|
Li Q, Wang M, Huang X, Wang S, Li C, Li P, Xiang W, Yao L, Deng C, Zhang M, Wang J. 6-Gingerol, an active compound of ginger, attenuates NASH-HCC progression by reprogramming tumor-associated macrophage via the NOX2/Src/MAPK signaling pathway. BMC Complement Med Ther 2025; 25:154. [PMID: 40269843 PMCID: PMC12020160 DOI: 10.1186/s12906-025-04890-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 04/10/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Non-alcoholic steatohepatitis-associated hepatocellular carcinoma (NASH-HCC) accounts for an increasing proportion of HCC cases. Currently, effective pharmacological options for treating both NASH and NASH-HCC remain limited, necessitating the identification of novel therapeutic agents. Our previous studies have demonstrated that ginger can ameliorate nonalcoholic fatty liver disease (NAFLD) and prevent the occurrence of NASH. The therapeutic effects and underlying mechanisms of NASH-HCC, however, remain poorly understood. METHODS Network pharmacology, bioinformatics, single-cell RNA sequencing analysis, and molecular docking were used to identify the main active compounds, targets, and possible mechanisms of ginger in treating NASH-HCC. The anti-tumor efficacy and underlying mechanisms of the selected compound in treating NASH-HCC were validated through in vitro experimentation. RESULTS Network pharmacology, bioinformatics, and molecular docking have revealed that 6-gingerol is the main active compound of ginger in treating NASH-HCC. SRC can be an essential target gene for ginger attenuating NASH-HCC progression, while the mitogen-activated protein kinase (MAPK) signaling pathway and reactive oxygen species (ROS) play equally important roles. Single-cell RNA sequencing of the HCC patients shows that the key targets of ginger in treating NASH-HCC are distributed in tumor-associated macrophage (TAMs). It has been reported that NOX2-derived ROS in macrophages can activate Src and then regulate downstream MAPK signaling cascades. 6-Gingerol can inhibit the proliferation, migration and reduce lipid deposition of liver cancer cells in vitro. More importantly, it induces polarization TAMs to M1 and enhances proinflammatory function, which may be achieved via the NOX2/Src/MAPK signaling pathway. CONCLUSION This study proves that 6-gingerol, the primary active compound in ginger, plays a role in attenuating the progression of NASH-HCC by inhibiting the proliferation and migration of tumor cells, or reprogramming TAMs to the M1 phenotype via the NOX2/Src/MAPK signaling pathway and activating the TAM-mediated immune responses.
Collapse
Affiliation(s)
- Qiurui Li
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Meng Wang
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Xuekuan Huang
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Shang Wang
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Chunli Li
- School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Pan Li
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Wei Xiang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing University of Chinese Medicine, No. 61 Puguobao Road, Bishan District, Chongqing, 402760, China
| | - Ling Yao
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing University of Chinese Medicine, No. 61 Puguobao Road, Bishan District, Chongqing, 402760, China
| | - Chengdan Deng
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing University of Chinese Medicine, No. 61 Puguobao Road, Bishan District, Chongqing, 402760, China
| | - Mingming Zhang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing University of Chinese Medicine, No. 61 Puguobao Road, Bishan District, Chongqing, 402760, China.
| | - Jianwei Wang
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing University of Chinese Medicine, No. 61 Puguobao Road, Bishan District, Chongqing, 402760, China.
| |
Collapse
|
7
|
Xu S, Zhang Z, Zhou X, Liao Y, Peng Z, Meng Z, Nüssler AK, Ma L, Xia H, Liu L, Yang W. Gouqi-derived Nanovesicles (GqDNVs) promoted MC3T3-E1 cells proliferation and improve fracture healing. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156755. [PMID: 40252435 DOI: 10.1016/j.phymed.2025.156755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 03/25/2025] [Accepted: 04/10/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND Lycium barbarum L., also known as Gouqi, a traditional Chinese herbal medicine, is widely utilized in health care products and clinical therapies. Its muscle and bone strengthening efficacy has been recorded in medical classics for a long time. In addition, plant exosome-like nanovesicles (PELNVs) have attracted more and more attention owing to their biological traits. Therefore, we intended to explore the functions, regulatory role, and underlying mechanism of Gouqi-derived Nanovesicles (GqDNVs) on fracture healing. METHODS In this study, we employed the sucrose density gradient differential ultracentrifugation to isolate GqDNVs. The effects of GqDNVs on the proliferation and differentiation of MC3T3-E1 cells were evaluated using the CCK-8 assay, ALP activity measurement, and cell scratch assay. Additionally, leveraging a fracture mouse model, we utilized Micro-CT, immunological staining, and histologic analyses to comprehensively assess the impact of GqDNVs on fracture healing in mice. RESULTS GqDNVs stimulated cell viability, increased ALP activity, and promoted cellular osteogenic protein expression (OPN, ALP, and RUNX2). Subsequently, in the mouse fracture model, trabecular thickness, and bone marrow density were increased in the GqDNVs treatment group after 28 days of injection. Meanwhile, the expressions of OPN and BGP were significantly elevated after both 14 and 28 days. Additionally, the expressions of p-PI3K/PI3K, p-Akt/Akt, p-mTOR/mTOR, p-4EBP1/4EBP1 and p-p70S6K/ p70S6K were also increased after14 days of treatment. CONCLUSIONS GqDNVs effectively promoted the proliferation and differentiation of MC3T3-E1 cells. Furthermore, GqDNVs could improve fracture healing, which is associated with PI3K/Akt/mTOR/p70S6K/4EBP1 signaling pathway.
Collapse
Affiliation(s)
- Shiyin Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Zixuan Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Xiaolei Zhou
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Zitong Meng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Andreas K Nüssler
- Department of Traumatology, BG Trauma Center, University of Tübingen, Schnarrenbergstr. 95, Tübingen 72076, Germany
| | - Liang Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hui Xia
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China.
| |
Collapse
|
8
|
Li C, Zeng A, Li L, Zhao W. Emerging Roles of Plant-Derived Extracellular Vesicles in Biotherapeutics: Advances, Applications, and Future Perspectives. Adv Biol (Weinh) 2025:e2500008. [PMID: 40197701 DOI: 10.1002/adbi.202500008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/27/2025] [Indexed: 04/10/2025]
Abstract
Extracellular vesicles (EVs) are nanoscale luminal vesicles, which play an important role in intercellular communication through surface signaling and molecular cargo delivery (proteins, lipids, nucleic acids, etc.). Recently, plant-derived extracellular vesicles (PDVs) containing multiple biological activities have received increasing attention due to their better biocompatibility and lower cytotoxicity in healthy tissues. In the biomedical field, PDVs are employed as cargo delivery vehicles, enabling diverse functionalities through engineering modification techniques. Nonetheless, there are certain issues with the study of PDVs, such as the lack of standardization in the identification and isolation criteria. This review provides a quick overview of the biogenesis, physicochemical properties, isolation techniques, and biomedical applications of PDVs in current studies, while critically analyzing the current challenges and opportunities. This paper is expected to provide some theoretical guidance for the development of PDVs and further biomedical applications.
Collapse
Affiliation(s)
- Cheng Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Aoqiong Zeng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Li Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
9
|
Tiwari A, Soni N, Dongre S, Chaudhary M, Bissa B. The role of plant-derived extracellular vesicles in ameliorating chronic diseases. Mol Biol Rep 2025; 52:360. [PMID: 40180626 DOI: 10.1007/s11033-025-10466-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025]
Abstract
Plant-derived extracellular vesicles (PDEVs) have been shown to have a promising role in treating chronic illnesses. Plants secrete these vesicles containing bioactive chemicals such as proteins, lipids, nucleic acids, and small metabolites. Because of their unique structure, PDEVs affect many biological processes, which makes them an ideal candidate for treating the complex pathophysiology of chronic diseases. Recent studies have shown that PDEVs have anti-inflammatory and antioxidant properties. Extracellular vesicles (EVs) possess diverse therapeutic potential, including anti-inflammatory, antioxidant, and regenerative properties. By regulating immune responses, scavenging free radicals, and promoting tissue repair, EVs can address various chronic diseases such as cardiovascular disorders, neurological conditions, skin diseases, and inflammatory ailments. In preclinical models, PDEVs have been demonstrated to improve heart function and minimize the size of myocardial infarctions. In neurodegenerative illnesses, they can pass through the blood-brain barrier and deliver neuroprotective medicines to the brain. Furthermore, PDEVs have shown promise in enhancing insulin sensitivity and lowering hyperglycemia in diabetic animals. In this review article, we attempt to explain the diverse therapeutic potential of PDEVs in ameliorating chronic diseases.
Collapse
Affiliation(s)
- Ashwani Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Naveen Soni
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Shweta Dongre
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Megha Chaudhary
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Bhawana Bissa
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India.
| |
Collapse
|
10
|
Yang J, Ai X, Zhang C, Guo T, Feng N. Application of plant-derived extracellular vesicles as novel carriers in drug delivery systems: a review. Expert Opin Drug Deliv 2025:1-17. [PMID: 40159727 DOI: 10.1080/17425247.2025.2487589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/19/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION Plant-derived extracellular vesicles (P-EVs) are nanoscale, lipid bilayer vesicles capable of transporting diverse bioactive substances, enabling intercellular and interspecies communication and material transfer. With inherent pharmacological effects, targeting abilities, high safety, biocompatibility, and low production costs, P-EVs are promising candidates for drug delivery systems, offering significant application potential. AREAS COVERED A comprehensive review of studies on P-EVs was conducted through extensive database searches, including PubMed and Web of Science, spanning the years 1959 to 2025. Drawing on animal and cellular model research, this review systematically analyzes the pharmacological activities of P-EVs and their advantages as drug delivery carriers. It also explores P-EVs' drug loading methods, extraction techniques, and application prospects, including their benefits, clinical potential, and feasibility for commercial expansion. EXPERT OPINION Establishing unified preparation standards and conducting a more comprehensive analysis of molecular composition, structural characteristics, and mechanisms of P-EVs are essential for their widespread application. Greater attention should be given to the potential synergistic or antagonistic effects between P-EVs as carriers and the drugs they deliver, as this understanding will enhance their practical applications. In conclusion, P-EVs-based drug delivery systems represent a promising strategy to improve treatment efficacy, reduce side effects, and ensure drug stability.
Collapse
Affiliation(s)
- Jiayi Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyi Ai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenming Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Teng Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nianping Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Sun Z, Zheng Y, Wang T, Zhang J, Li J, Wu Z, Zhang F, Gao T, Yu L, Xu X, Qian H, Tan Y. Aloe Vera Gel and Rind-Derived Nanoparticles Mitigate Skin Photoaging via Activation of Nrf2/ARE Pathway. Int J Nanomedicine 2025; 20:4051-4067. [PMID: 40191040 PMCID: PMC11972608 DOI: 10.2147/ijn.s510352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/21/2025] [Indexed: 04/09/2025] Open
Abstract
Background Skin aging is the primary external manifestation of human aging, and long-term exposure to ultraviolet radiation is the leading cause of photoaging, which can lead to actinic keratosis and skin cancer in severe cases. Traditional treatments may pose safety risks and cause side effects. As an emerging research direction, plant-derived exosome-like nanoparticles (PDNPs) show promise in combating aging. Aloe vera, known for its natural active ingredients that benefit the skin, aloe-derived exosome-like nanoparticles (ADNPs) have not yet been studied for their potential in delaying skin aging. Methods In this study, nanoparticles were isolated from two different sites, aloe vera gel and aloe vera rind (gADNPs and rADNPs), and characterized by TEM, SEM, AFM, NTA and BCA. The effects were evaluated by constructing in vitro and in vivo models and using RT-qPCR, immunofluorescence, and histopathological analysis. Results The results first revealed the exceptional anti-aging effects of ADNPs. We found that ADNPs promoted the nuclear translocation of Nrf2, alleviated oxidative stress and DNA damage induced by UV exposure, and inhibited the elevation of β-gal and SASP. In vivo, ADNPs reduced MDA and SOD levels in mouse skin tissue and delayed skin photoaging. Moreover, safety assessments confirmed the excellent biocompatibility of ADNPs. Conclusion ADNPs delay skin photoaging through the Nrf2/ARE pathway, holding potential clinical application value, and may provide new therapeutic strategies for future medical cosmetology and skin disease prevention.
Collapse
Affiliation(s)
- Zixuan Sun
- Department of General Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213017, People’s Republic of China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, People’s Republic of China
| | - Yuzhou Zheng
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, People’s Republic of China
| | - Tangrong Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, People’s Republic of China
| | - Jiaxin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, People’s Republic of China
| | - Jiali Li
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, People’s Republic of China
| | - Zhijing Wu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, People’s Republic of China
| | - Fan Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, People’s Republic of China
| | - Tingxin Gao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, People’s Republic of China
| | - Li Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, People’s Republic of China
| | - XueZhong Xu
- Department of General Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213017, People’s Republic of China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, People’s Republic of China
| | - Yulin Tan
- Department of General Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213017, People’s Republic of China
| |
Collapse
|
12
|
Yu Z, Swift KA, Hedges MA, Theiss AL, Andres SF. Microscopic messengers: Extracellular vesicles shaping gastrointestinal health and disease. Physiol Rep 2025; 13:e70292. [PMID: 40165585 PMCID: PMC11959161 DOI: 10.14814/phy2.70292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025] Open
Abstract
The field of extracellular vesicles (EVs) is advancing rapidly, and this review aims to synthesize the latest research connected to EVs and the gastrointestinal tract. We will address new and emerging roles for EVs derived from internal sources such as the pancreas and immune system and how these miniature messengers alter organismal health or the inflammatory response within the GI tract. We will examine what is known about external EVs from dietary and bacterial sources and the immense anti-inflammatory, immune-modulatory, and proliferative potential within these nano-sized information carriers. EV interactions with the intestinal and colonic epithelium and associated immune cells at homeostatic and disease states, such as necrotizing enterocolitis (NEC) and inflammatory bowel disease (IBD) will also be covered. We will discuss how EVs are being leveraged as therapeutics or for drug delivery and conclude with a series of unanswered questions in the field.
Collapse
Affiliation(s)
- Zhantao Yu
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation ProgramUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Kevin A. Swift
- Department of Pediatrics, Pediatric GI Division, School of MedicineOregon Health and Science UniversityPortlandOregonUSA
| | - Madeline A. Hedges
- Department of Neonatology, School of MedicineOregon Health and Science UniversityPortlandOregonUSA
| | - Arianne L. Theiss
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation ProgramUniversity of Colorado School of MedicineAuroraColoradoUSA
- Rocky Mountain Regional Veterans Affairs Medical CenterAuroraColoradoUSA
| | - Sarah F. Andres
- Department of Pediatrics, Pediatric GI Division, School of MedicineOregon Health and Science UniversityPortlandOregonUSA
| |
Collapse
|
13
|
Wang F, Li L, Deng J, Ai J, Mo S, Ding D, Xiao Y, Hu S, Zhu D, Li Q, Zeng Y, Chen Z, Cheng K, Li Z. Lipidomic analysis of plant-derived extracellular vesicles for guidance of potential anti-cancer therapy. Bioact Mater 2025; 46:82-96. [PMID: 39737211 PMCID: PMC11683192 DOI: 10.1016/j.bioactmat.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/27/2024] [Accepted: 12/01/2024] [Indexed: 01/01/2025] Open
Abstract
Plant-derived extracellular vesicles (PEVs) have been regarded as a superior source for nanomedicine and drug delivery systems. Nevertheless, their clinical translation is hindered by the lack of clarity and even contradiction in their biomedical applications. Herein, we conducted a comprehensive compositional analysis of four commonly used PEVs to fully understand their functional lipid contents and assess their potential therapeutic applications. The lipidomic analysis revealed the presence of cytotoxic gingerols and shogaols in ginger-derived EVs (GEVs). Subsequent in vitro and in vivo investigations substantiated the remarkable tumor cell inhibitory and tumor growth suppression efficacy of GEVs. The transcriptomic analysis indicated that GEVs regulate the cell cycle and p53 signaling pathways, thereby inducing cancer cell apoptosis. The supplementary proteomic analysis suggested the potential protein markers in PEV research. These findings highlight the value of multi-omics analyses in elucidating the potential therapeutic effects of PEVs and in advancing the development of PEV-based therapies.
Collapse
Affiliation(s)
- Fei Wang
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), 523059, Dongguan, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515, Guangzhou, China
| | - Lanya Li
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), 523059, Dongguan, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515, Guangzhou, China
| | - Junyao Deng
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), 523059, Dongguan, China
- The First School of Clinical Medicine, Southern Medical University, 510515, Guangzhou, China
| | - Jiacong Ai
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), 523059, Dongguan, China
- The First School of Clinical Medicine, Southern Medical University, 510515, Guangzhou, China
| | - Shushan Mo
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), 523059, Dongguan, China
| | - Dandan Ding
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), 523059, Dongguan, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515, Guangzhou, China
| | - Yingxian Xiao
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), 523059, Dongguan, China
- The First School of Clinical Medicine, Southern Medical University, 510515, Guangzhou, China
| | - Shiqi Hu
- Department of Biomedical Engineering, Columbia University, 10032, New York, NY, USA
| | - Dashuai Zhu
- Department of Biomedical Engineering, Columbia University, 10032, New York, NY, USA
| | - Qishan Li
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), 523059, Dongguan, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515, Guangzhou, China
| | - Yan Zeng
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), 523059, Dongguan, China
| | - Zhitong Chen
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, 10032, New York, NY, USA
| | - Zhenhua Li
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), 523059, Dongguan, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515, Guangzhou, China
| |
Collapse
|
14
|
Gao B, Huang X, Fu J, Chen L, Deng Z, Wang S, Zhu Y, Xu C, Zhang Y, Zhang M, Chen L, Cui M, Zhang M. Oral administration of Momordica charantia-derived extracellular vesicles alleviates ulcerative colitis through comprehensive renovation of the intestinal microenvironment. J Nanobiotechnology 2025; 23:261. [PMID: 40170075 PMCID: PMC11959773 DOI: 10.1186/s12951-025-03346-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/23/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is an inflammatory bowel disease (IBD), accompanied by intense inflammation, oxidative stress, and intestinal microbiota dysbiosis. Current treatments using chemotherapeutic drugs or immunosuppressants have limited effectiveness and side effects. Therefore, the development of safe, effective, and multi-targeting therapies for IBD is of great importance. Momordica charantia exhibits antioxidant, anti-inflammatory, and intestinal microbiota-regulating properties, suggesting that Momordica charantia-derived extracellular vesicles (MCEVs) have the potential for UC management. RESULTS We extracted MCEVs using differential centrifugation and density gradient centrifugation. The results showed that MCEVs possessed high purity, even particle size, and excellent stability. In vitro, MCEVs were shown to inhibit macrophage inflammatory responses, scavenge reactive oxygen species (ROS), and protect cells from oxidative damage. Transcriptomics analysis revealed that MCEVs may alleviate mitochondria-dependent apoptosis by safeguarding the integrity of the mitochondrial structure and regulating the expression of apoptosis-related proteins. Furthermore, all components of MCEVs contributed to their pharmacological activity. In vivo, MCEVs had better retention in the inflamed colon and significantly alleviated UC through a comprehensive renovation of the intestinal microenvironment. CONCLUSION These findings suggested that MCEVs own considerable potential as natural nanotherapeutics for UC treatment.
Collapse
Affiliation(s)
- Bowen Gao
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xiaoling Huang
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, 830001, China
| | - Junlong Fu
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Liyuan Chen
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zhichao Deng
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Shuhui Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yuanyuan Zhu
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Chenxi Xu
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yujie Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Mingxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710077, China
| | - Lina Chen
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Manli Cui
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710077, China.
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
15
|
Liu X, Zhang X, Liu H, Fu H, Liu Y, Ge Y, Deng S, Tang Z, Mei L, Wang J, Liu X, Yang Y, Wu Z, Ji Y. Garlic-Derived Exosome-Like Nanoparticles Enhance Gut Homeostasis in Stressed Piglets: Involvement of Lactobacillus reuteri Modulation and Indole-3-propionic Acid Induction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7228-7243. [PMID: 40082245 DOI: 10.1021/acs.jafc.4c11506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
The occurrence of pediatric diarrhea is frequently associated with inflammatory responses, compromised barrier function, and dysbiosis in the gut. These conditions are commonly triggered by stressors, similar to postweaning diarrhea observed in piglets. Garlic-derived exosome-like nanoparticles (GELNs) hold the potential for ameliorating stress-induced diarrhea, yet supporting evidence remains scarce. Following the successful isolation of GELNs, this study employed weaned piglets as a model to evaluate the regulatory effects of GELNs on intestinal barrier integrity, mucosal inflammation, and the gut microbiota and its metabolites. Weaned Bama miniature piglets were orally administered phosphate buffer saline (PBS) or GELNs, and 1 week later, samples were collected following slaughter. Histological and molecular biological techniques were performed to examine intestinal structure, tight junction protein expression, mucin secretion, T lymphocyte infiltration, and the levels of pro-inflammatory cytokines. The composition of the gut microbiota was analyzed using 16S rRNA sequencing, while its derived metabolites were profiled via untargeted metabolomics. Subsequently, correlation analyses were performed to evaluate the associations between the microbiota and its derived metabolites, as well as between the microbiota and the key indicators of intestinal barrier function and cytokine levels in response to GELNs. The isolated GELNs exhibit typical exosome characteristics in size and morphology, alongside a rich content of proteins and RNAs. The incidence of diarrhea in weaned piglets was reduced with supplementation of GELNs at a dosage of 50 mg/kg body weight, compared to the control group. In addition, piglets receiving GELNs displayed an increase in mucin content within the tissues of the jejunum, ileum, and colon, a decrease in CD8+ T lymphocyte counts in the colon, and suppression of pro-inflammatory cytokines (IL-8 and TNF-α) levels in the mucosal layers of both the jejunum and ileum. Furthermore, 16S rRNA sequencing unveiled that GELNs reshaped the colonic microbiota in weaned piglets by augmenting beneficial bacteria, notably Lactobacillus and Lactobacillus reuteri, correlating strongly with diminished TNF-α protein levels and heightened mucin expression. Metabolite analysis demonstrated a significant increase in indole-3-propionic acid, derived from the gut microbiota, in piglets supplemented with GELNs. This increase was positively correlated with the abundance of Lactobacillus and Lactobacillus reuteri and negatively linked with the protein levels of IL-8 and TNF-α in the gut. In summary, our study demonstrates that GELNs mitigate stress-related intestinal mucosal inflammation and enhance mucin production in the gut of weaned piglets, which is potentially achieved through the optimization of gut microbiota composition, specifically by increasing the abundance of Lactobacillus and Lactobacillus reuteri, as well as via the induction of the anti-inflammatory microbial metabolite indole-3-propionic acid. The findings presented here provide essential groundwork for the future development of GELNs as a therapeutic strategy aimed at enhancing gut homeostasis disruption caused by stress in both weaned piglets and children.
Collapse
Affiliation(s)
- Xiyuan Liu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Xinyu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Haozhen Liu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Huiyang Fu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Yanan Liu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Yao Ge
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Siwei Deng
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Zhining Tang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Lihua Mei
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Jiaxin Wang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Xuelian Liu
- State Key Laboratory of Direct-Fed Microbial Engineering, Beijing 100192, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Yun Ji
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
16
|
Xiao Q, Tan M, Yan G, Peng L. Revolutionizing lung cancer treatment: harnessing exosomes as early diagnostic biomarkers, therapeutics and nano-delivery platforms. J Nanobiotechnology 2025; 23:232. [PMID: 40119368 PMCID: PMC11929271 DOI: 10.1186/s12951-025-03306-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 03/08/2025] [Indexed: 03/24/2025] Open
Abstract
Lung cancer, known for its high morbidity and mortality rates, remains one of the most critical health challenges globally. Conventional treatment options, such as chemotherapy and surgery, are often limited by high costs, significant side effects, and often yield a poor prognosis. Notably, recent research has shed light on the potential therapeutic roles of exosomes, which essentially influence lung cancer's development, diagnosis, treatment, and prognosis. Exosomes have been revealed for their exceptional properties, including natural intercellular communication, excellent biocompatibility, minimal toxicity, prolonged blood circulation ability, and biodegradability. These unique characteristics position exosomes as highly effective drug delivery systems, nanotherapeutics, and potential diagnostic and prognostic biomarkers in lung cancer. This review provides a comprehensive review of the physiological and pathological roles of exosomes in lung cancer, emphasizing their potential as innovative diagnostic biomarkers, therapeutics, and delivery platforms. By harnessing their unique properties, exosomes are poised to revolutionize the diagnosis and treatment of lung cancer, offering a promising avenue for more personalized and effective therapies.
Collapse
Affiliation(s)
- Qiyao Xiao
- College of Pharmaceutical Sciences, Zhejiang University, 866# Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Minhong Tan
- College of Pharmaceutical Sciences, Zhejiang University, 866# Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Ge Yan
- College of Pharmaceutical Sciences, Zhejiang University, 866# Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Lihua Peng
- College of Pharmaceutical Sciences, Zhejiang University, 866# Yuhangtang Road, Hangzhou, 310058, People's Republic of China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China.
| |
Collapse
|
17
|
Liu R, Zhang F, He X, Huang K. Plant Derived Exosome-Like Nanoparticles and Their Therapeutic Applications in Glucolipid Metabolism Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6385-6399. [PMID: 40048449 DOI: 10.1021/acs.jafc.4c12480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Plant derived exosome-like nanoparticles (PELNs) are membrane structures isolated from different plants, which encapsulate many active substances such as proteins, lipids, and nucleic acids, which exert a substantial influence on many physiological processes such as plant growth and development, self-defense, and tissue repair. Compared with synthetic nanoparticles and mammalian cell derived exosomes (MDEs), PELNs have lower toxicity and immunogenicity and possess excellent biocompatibility. The intrinsic properties of PELNs establish a robust basis for their applications in the therapeutic management of a diverse array of pathologies. It is worth mentioning that PELNs have good biological targeting, which promotes them to load and deliver drugs to specific tissues, offering a superior development pathway for the construction of a new drug delivery system (DDS). Glucose and lipid metabolism is a vital life process for the body's energy and material supply. The maintenance of homeostatic balance provides a fundamental basis for the body's ability to adjust to modifications in both its internal and external environment. Conversely, homeostatic imbalance can lead to a range of severe metabolic disorders. This work provides a comprehensive overview of the extraction and representation methods of PELNs, their transportation and storage characteristics, and their applications as therapeutic agents for direct treatment and as delivery vehicles to enhance nutrition and health. Additionally, it examines the therapeutic efficacy and practical applications of PELNs in addressing abnormalities in glucose and lipid metabolism. Finally, combined with the above contents, the paper summarizes and provides a conceptual framework for the better application of PELNs in clinical disease treatment.
Collapse
Affiliation(s)
- Ruolan Liu
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Feng Zhang
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
| |
Collapse
|
18
|
Han Y, Guo X, Ji Z, Guo Y, Ma W, Du H, Guo Y, Xiao H. Colon health benefits of plant-derived exosome-like nanoparticles via modulating gut microbiota and immunity. Crit Rev Food Sci Nutr 2025:1-21. [PMID: 40105379 DOI: 10.1080/10408398.2025.2479066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Exosomes are nanoscale particles with a lipid bilayer membrane that were first identified in mammalian cells. Plant-derived exosome-like nanoparticles (PELNs) share structural and molecular similarities with mammalian exosomes, including lipids, proteins, microRNA (miRNA), and plant-derived metabolites. Owing to their unique characteristics, such as outstanding stability, low immunogenicity, high biocompatibility, and sustainability, PELNs have emerged as promising natural bioactive agents with the capacity for cross-kingdom cellular regulation. Dietary supplementation with PELNs, particularly from fruits and vegetables, has demonstrated health benefits. An increasing number of studies have indicated the beneficial effects of PELNs on colon health. This review summarizes the isolation and characterization of PELNs, and their stability, uptake, and distribution after oral ingestion. Furthermore, this review emphasizes the interactions between PELNs, gut microbiota, and the gut immune system, including the uptake of PELNs by gut microbiota, modulation of gut bacteria metabolism, and immune responses by PELNs. Additionally, the applications of PELNs as bioactive components and drug carriers targeting the colon are reviewed. In summary, PELNs represent a versatile and natural approach to improve colon health, with potential applications in both therapeutic and preventive healthcare strategies.
Collapse
Affiliation(s)
- Yanhui Han
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, PR China
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, Xi'an, PR China
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Xiaojing Guo
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Zhengmei Ji
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, PR China
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, Xi'an, PR China
| | - Yuxin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
| | - Wenjun Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, PR China
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, Xi'an, PR China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Yurong Guo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, PR China
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, Xi'an, PR China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
19
|
Yang J, Yang Y, Zhang X, Qin Y, Sato T, Qing S, Wang Y, Ye X, Xu M, Liu Y, He Q, Zheng Y. The role of mitochondrial dysfunction in the protective effect of ginger derived extracellular vesicles on hepatic stellate cells against cytotoxicity. Mol Cell Biochem 2025:10.1007/s11010-025-05232-z. [PMID: 40097886 DOI: 10.1007/s11010-025-05232-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/14/2025] [Indexed: 03/19/2025]
Abstract
Previous studies have shown that ginger-derived extracellular vesicles (Gin-EVs) can alleviate alcohol-induced liver injury. It remained unknown and needs to be further verified that whether the vesicles has therapeutic potential to alleviate the progression of liver fibrosis. Moreover, the relevant mechanisms need to be further studied. Herein, we provide evidence that Gin-EVs effectively interact with human hepatic stellate cells (LX-2), offering protection against carbon tetrachloride (CCL4) or lipopolysaccharides (LPS)-induced liver fibrosis. The treatment with Gin-EVs was observed to mitigate fibrosis and enhance cell viability in LX-2 cells exposed to CCL4 or LPS. Mechanistically, Gin-EVs counteracted mitochondrial dysfunction by restoring mitochondrial dynamics imbalance characterized by enhanced fusion and reduced fission events while promoting mitochondrial biogenesis, thereby potentially preventing fibrotic processes in LX-2 cells. Collectively, the findings highlight the direct cytoprotective effects of Gin-EVs on LX-2 cells and suggest their promising role as a therapeutic option for hepatic fibrosis.
Collapse
Affiliation(s)
- Jing Yang
- Department of Pharmacy, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610014, China
| | - Yujie Yang
- Department of Pharmacy, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610014, China
| | - Xiqian Zhang
- Department of Pharmacy, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610014, China
| | - Yuan Qin
- Obesity and Metabolism Medicine-Engineering Integration Laboratory, Department of General Surgery, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610014, China
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610014, China
| | - Toshihiro Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, 980-8574, Japan
| | - Shuyun Qing
- Department of Pharmacy, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610014, China
| | - Yirong Wang
- Department of Pharmacy, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610014, China
| | - Xiang Ye
- Department of Pharmacy, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610014, China
| | - Min Xu
- Department of Pharmacy, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610014, China
| | - Ying Liu
- Ultrasound Department, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610014, China
| | - Qin He
- Department of Pharmacy, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610014, China
| | - Yaxian Zheng
- Department of Pharmacy, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610014, China.
| |
Collapse
|
20
|
Su X, Wang H, Li Q, Chen Z. Extracellular Vesicles: A Review of Their Therapeutic Potentials, Sources, Biodistribution, and Administration Routes. Int J Nanomedicine 2025; 20:3175-3199. [PMID: 40098717 PMCID: PMC11913029 DOI: 10.2147/ijn.s502591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/18/2025] [Indexed: 03/19/2025] Open
Abstract
Extracellular vesicles (EVs) participate in intercellular communication and play an essential role in physiological and pathological processes. In recent years, EVs have garnered significant attention as cell-free therapeutic alternatives, vectors for drug and gene delivery, biomarkers for disease diagnosis and prognosis, vaccine development, and nutraceuticals. The biodistribution of EVs critically influences their efficacy and toxicity. Therefore, this review aims to discuss the main factors influencing the biodistribution of unmodified EVs, highlighting their distribution patterns, advantages, limitations, and applications under different routes of administration. In addition, we provide a comprehensive discussion of the currently available sources of EVs and summarize the current status of the therapeutic potentials of EVs. By optimizing administration routes and selecting appropriate EV sources, we aim to offer valuable insights to enhance the delivery efficiency and therapeutic efficacy of EVs to target tissues.
Collapse
Affiliation(s)
- Xiaorong Su
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Hongxiang Wang
- Department of Hematology, Key Laboratory for Molecular Diagnosis of Hubei Province, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, People's Republic of China
| | - Qiubai Li
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
- Hubei Engineering Research Center for Application of Extracellular Vesicle, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Zhichao Chen
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| |
Collapse
|
21
|
Sánchez SV, Otavalo GN, Gazeau F, Silva AKA, Morales JO. Intranasal delivery of extracellular vesicles: A promising new approach for treating neurological and respiratory disorders. J Control Release 2025; 379:489-523. [PMID: 39800240 DOI: 10.1016/j.jconrel.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Extracellular vesicles (EVs) are membrane vesicles secreted by all types of cells, including bacteria, animals, and plants. These vesicles contain proteins, nucleic acids, and lipids from their parent cells and can transfer these components between cells. EVs have attracted attention for their potential use in diagnosis and therapy due to their natural properties, such as low immunogenicity, high biocompatibility, and ability to cross the blood-brain barrier. They can also be engineered to carry therapeutic molecules. EVs can be delivered via various routes. The intranasal route is particularly advantageous for delivering them to the central nervous system, making it a promising approach for treating neurological disorders. SCOPE OF REVIEW This review delves into the promising potential of intranasally administered EVs-based therapies for various medical conditions, with a particular focus on those affecting the brain and central nervous system. Additionally, the potential use of these therapies for pulmonary conditions, cancer, and allergies is examined, offering a hopeful outlook for the future of medical treatments. MAJOR CONCLUSIONS The intranasal administration of EVs offers significant advantages over other delivery methods. By directly delivering EVs to the brain, specifically targeting areas that have been injured, this administration proves to be highly efficient and effective, providing reassurance about the progress in medical treatments. Intranasal delivery is not limited to brain-related conditions. It can also benefit other organs like the lungs and stimulate a mucosal immune response against various pathogens due to the highly vascularized nature of the nasal cavity and airways. Moreover, it has the added benefit of minimizing toxicity to non-targeted organs and allows the EVs to remain longer in the body. As a result, there is a growing emphasis on conducting clinical trials for intranasal administration of EVs, particularly in treating respiratory tract pathologies such as coronavirus disease.
Collapse
Affiliation(s)
- Sofía V Sánchez
- Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile; Center of New Drugs for Hypertension and Heart Failure (CENDHY), Santiago, Chile
| | - Gabriela N Otavalo
- Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile; Center of New Drugs for Hypertension and Heart Failure (CENDHY), Santiago, Chile
| | - Florence Gazeau
- Université Paris Cité, CNRS UMR8175, INSERM U1334, Laboratory NABI (Nanomédecine, Biologie Extracellulaire, Intégratome et Innovations en santé), Paris, France
| | - Amanda K A Silva
- Université Paris Cité, CNRS UMR8175, INSERM U1334, Laboratory NABI (Nanomédecine, Biologie Extracellulaire, Intégratome et Innovations en santé), Paris, France
| | - Javier O Morales
- Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile; Center of New Drugs for Hypertension and Heart Failure (CENDHY), Santiago, Chile.
| |
Collapse
|
22
|
Karabay AZ, Barar J, Hekmatshoar Y, Rahbar Saadat Y. Multifaceted Therapeutic Potential of Plant-Derived Exosomes: Immunomodulation, Anticancer, Anti-Aging, Anti-Melanogenesis, Detoxification, and Drug Delivery. Biomolecules 2025; 15:394. [PMID: 40149930 PMCID: PMC11940522 DOI: 10.3390/biom15030394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
Most eukaryotic and prokaryotic cells have the potential to secrete a group of structures/membrane-bound organelles, collectively referred to as extracellular vesicles (EVs), which offer several advantages to producer/receiver cells. This review provides an overview of EVs from plant sources with emphasis on their health-promoting potential and possible use as therapeutic agents. This review highlights the essential biological effects of plant-derived extracellular vesicles, including immune modulation, anticancer activities, protection against chemical toxicity and pathogens, as well as anti-aging, anti-melanogenesis, and anti-arthritic effects, along with ongoing clinical studies. Evidence revealed that plant-derived EVs' contents exert their beneficial properties through regulating important signaling pathways by transferring miRNAs and other components. Taken all together, the data proposed that plant-derived EVs can be utilized as nutritional compounds and therapeutic agents, such as drug carriers. However, this emerging research area requires further in vitro/in vivo studies and clinical trials to determine the exact underlying mechanisms of EVs' positive health effects in treating various diseases.
Collapse
Affiliation(s)
- Arzu Zeynep Karabay
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Türkiye;
| | - Jaleh Barar
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | - Yalda Hekmatshoar
- Department of Medical Biology, Faculty of Medicine, Altinbas University, 34217 Istanbul, Türkiye;
| | - Yalda Rahbar Saadat
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| |
Collapse
|
23
|
Che K, Wang C, Chen H. Advancing functional foods: a systematic analysis of plant-derived exosome-like nanoparticles and their health-promoting properties. Front Nutr 2025; 12:1544746. [PMID: 40115388 PMCID: PMC11924939 DOI: 10.3389/fnut.2025.1544746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/12/2025] [Indexed: 03/23/2025] Open
Abstract
Plant-derived exosome-like nanoparticles (PDENs), emerging as novel bioactive agents, exhibit significant potential in food science and nutritional health. These nanoparticles, enriched with plant-specific biomolecules such as proteins, lipids, nucleic acids, and secondary metabolites, demonstrate unique cross-species regulatory capabilities, enabling interactions with mammalian cells and gut microbiota. PDENs enhance nutrient bioavailability by protecting sensitive compounds during digestion, modulate metabolic pathways through miRNA-mediated gene regulation, and exhibit anti-inflammatory and antioxidant properties. For instance, grape-derived PDENs reduce plasma triglycerides in high-fat diets, while ginger-derived nanoparticles alleviate colitis by downregulating pro-inflammatory cytokines. Additionally, PDENs serve as natural drug carriers, with applications in delivering therapeutic agents like doxorubicin and paclitaxel. Despite these advancements, challenges remain in standardizing extraction methods (ultracentrifugation, immunoaffinity), ensuring stability during food processing and storage, and evaluating long-term safety. Current research highlights the need for optimizing lyophilization techniques and understanding interactions between PDENs and food matrices. Furthermore, while PDENs show promise in functional food development-such as fortified beverages and probiotic formulations-their clinical translation requires rigorous pharmacokinetic studies and regulatory clarity. This review synthesizes existing knowledge on PDENs' composition, biological activities, and applications, while identifying gaps in scalability, stability, and safety assessments. Future directions emphasize interdisciplinary collaboration to harness PDENs' potential in combating metabolic disorders, enhancing food functionality, and advancing personalized nutrition strategies.
Collapse
Affiliation(s)
- Ke Che
- College of Food Engineering, Anhui Science and Technology University, Fengyang, China
| | - Cong Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - Hao Chen
- College of Food Engineering, Anhui Science and Technology University, Fengyang, China
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang, China
- Planting Department, Jiuhua Huayuan Pharmaceutical Co., Ltd., Chuzhou, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
24
|
Njoku GC, Forkan CP, Soltysik FM, Nejsum PL, Pociot F, Yarani R. Unleashing the potential of extracellular vesicles for ulcerative colitis and Crohn's disease therapy. Bioact Mater 2025; 45:41-57. [PMID: 39610953 PMCID: PMC11602541 DOI: 10.1016/j.bioactmat.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
Image 1.
Collapse
Affiliation(s)
- George Chigozie Njoku
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Medical Biotechnology, University of Naples Federico II, Naples, Italy
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, USA
| | - Cathal Patrick Forkan
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Pharmacy, Université Grenoble Alpes, France
| | - Fumie Mitani Soltysik
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Peter Lindberg Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| |
Collapse
|
25
|
Yan L, Cao Y, Hou L, Luo T, Li M, Gao S, Wang L, Sheng K, Zheng L. Ginger exosome-like nanoparticle-derived miRNA therapeutics: A strategic inhibitor of intestinal inflammation. J Adv Res 2025; 69:1-15. [PMID: 38588850 PMCID: PMC11954804 DOI: 10.1016/j.jare.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024] Open
Abstract
INTRODUCTION MicroRNAs (miRNAs) involve in destabilising messenger RNA or repressing translation of target molecules. Ginger-derived exosome-like nanoparticles (GELNs) play a crucial role in modulating intestinal inflammation. Moreover, GELNs contain highly heterogeneous miRNA. However, the role of miRNAs derived from GELNs in immunomodulation remains unclear. OBJECTIVES This study aimed to elucidate the molecular basis of the unique biological effects mediated by miRNA derived from GELNs on macrophages. METHODS GELNs were isolated using a combination of commercial exosome isolation kits and the differential centrifugation method, and the lipid composition of GELNs was determined using liquid chromatography-mass spectrometry. Subsequently, PKH26 labelled GELNs were taken up by macrophages. Furthermore, the modulation of inflammatory and immune responses by GELNs or osa-miR164d was assessed through the RNA-seq, RT-qPCR, online databases, and dual luciferase reporter assays to explore the underlying mechanisms of osa-miR164d. Biomimetic exosomes loaded with osa-miR164d were prepared using a microfluidic mixing device and systematically characterized. The therapeutic effects of osa-miR164d on relieving colitis were evaluated. RESULTS We report for the first time that GELNs-derived osa-miR164d is a regulatory factor of reprogramming macrophage polarization, thereby inhibiting the intestinal inflammatory response. Mechanistically, osa-miR164d directly targets the 3'-UTRs of TAB1, which regulates macrophage polarization through the downregulation of NF-κB expression. In addition, We have designed a biomimetic exosome mimicking GELNs to deliver osa-miR164d (osa-miR164d-MGELNs). Notably, the osa-miR164d-MGELNs can efficiently reprogram macrophages to alleviate colitis-related symptoms. CONCLUSION Our findings enhance the systematic understanding of how GELNs-derived osa-miR164d mediates cross-kingdom communication and provide an original engineering paradigm for mimicking GELNs to transfer miRNA.
Collapse
Affiliation(s)
- Ling Yan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yaqi Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Linhai Hou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Tianyu Luo
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Meiqi Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shengjie Gao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lei Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kangliang Sheng
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China.
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
26
|
Muhammad Z, Muhammad SA, Abbas AY, Achor M, Adeyemi SA, Choonara YE, Saidu Y, Bilbis LS. Isolation and characterization of medicinal plant-based extracellular vesicles as nano delivery systems for ascorbic acid. J Microencapsul 2025; 42:120-131. [PMID: 39716732 DOI: 10.1080/02652048.2024.2443430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024]
Abstract
AIM Plant-derived extracellular vesicles (EVs) are natural nanovesicles for drug delivery. This study isolated and characterised EVs from medicinal plants as delivery vehicles. METHODS Precipitation method was employed for the isolation and characterised using DLS, SEM, and TEM. The encapsulation efficiency (EE) and antioxidant activity of ascorbic acid (AA)-EVs were evaluated. RESULTS The total yields of lyophilised vesicles per weight of the sample were 6.0, 8.6 and 9.2 mg/g for garlic, turmeric and ginger, respectively. Mean size of garlic-derived EVs, ginger-derived EVs, and turmeric-derived EVs were 101.0 ± 6.7, 226.4 ± 62.2 and 90.7 ± 2.5 nm, respectively. The zeta potential of the EVs was between -33.2 ± 10.9 and -28.8 ± 8.43 mV. Spherical morphology of the nanovesicles was confirmed by SEM and TEM. The EE of the EVs was between 78.1 ± 2.8% and 87.2 ± 1.4%. CONCLUSION Overall, the antioxidant activity of AA-loaded EVs was better compared to free AA. This study provides evidence that these medicinal plants are rich sources for developing nanotherapeutics.
Collapse
Affiliation(s)
- Zainab Muhammad
- Department of Biochemistry and Molecular Biology, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Suleiman A Muhammad
- Department of Biochemistry and Molecular Biology, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Abdullahi Y Abbas
- Department of Biochemistry and Molecular Biology, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Mohammed Achor
- Department of Pharmaceutics and Pharmaceutical Technology, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Samson A Adeyemi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Yusuf Saidu
- Department of Biochemistry and Molecular Biology, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Lawal S Bilbis
- Department of Biochemistry and Molecular Biology, Usmanu Danfodiyo University, Sokoto, Nigeria
| |
Collapse
|
27
|
Langellotto MD, Rassu G, Serri C, Demartis S, Giunchedi P, Gavini E. Plant-derived extracellular vesicles: a synergetic combination of a drug delivery system and a source of natural bioactive compounds. Drug Deliv Transl Res 2025; 15:831-845. [PMID: 39196501 PMCID: PMC11782344 DOI: 10.1007/s13346-024-01698-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
Exosomes are extracellular nanovesicles secreted by all cell types and have been studied to understand and treat many human diseases. Exosomes are involved in numerous physiological and pathological processes, intercellular communication, and the transfer of substances. Over the years, several studies have explored mammalian-derived exosomes for therapeutic and diagnostic uses. Only recently have plant-derived extracellular vesicles (EVs) attracted attention for their ability to overcome many defects associated with using mammalian-derived extracellular vesicles, such as safety and scale-up issues. The ease of large-scale production, low toxicity, low immunogenicity, efficient cellular uptake, high biocompatibility, and high stability of these nanovesicles make them attractive for drug delivery systems. In addition, their native contents of proteins, miRNAs and secondary metabolites could be exploited for pharmaceutical applications in combination with other drugs. The present review intends to provide adequate tools for studying and developing drug delivery systems based on plant-derived EVs. Therefore, indications concerning extraction methods, characterisation, and drug loading will be offered. Their biological composition and content will also be reported. Finally, the current applications of these systems as nanocarriers for pharmacologically active substances will be shown.
Collapse
Affiliation(s)
- Mattia D Langellotto
- PhD Program in Biomedical Sciences - Neuroscience, Department of Biomedical Sciences, University of Sassari, Sassari, 07100, Italy
| | - Giovanna Rassu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/a, Sassari, 07100, Italy.
| | - Carla Serri
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/a, Sassari, 07100, Italy
| | - Sara Demartis
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/a, Sassari, 07100, Italy
| | - Paolo Giunchedi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/a, Sassari, 07100, Italy
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/a, Sassari, 07100, Italy
| |
Collapse
|
28
|
Wang R, Zhang Y, Guo Y, Zeng W, Li J, Wu J, Li N, Zhu A, Li J, Di L, Cao P. Plant-derived nanovesicles: Promising therapeutics and drug delivery nanoplatforms for brain disorders. FUNDAMENTAL RESEARCH 2025; 5:830-850. [PMID: 40242551 PMCID: PMC11997602 DOI: 10.1016/j.fmre.2023.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/17/2023] [Accepted: 09/10/2023] [Indexed: 04/18/2025] Open
Abstract
Plant-derived nanovesicles (PDNVs), including plant extracellular vesicles (EVs) and plant exosome-like nanovesicles (ELNs), are natural nano-sized membranous vesicles containing bioactive molecules. PDNVs consist of a bilayer of lipids that can effectively encapsulate hydrophilic and lipophilic drugs, improving drug stability and solubility as well as providing increased bioavailability, reduced systemic toxicity, and enhanced target accumulation. Bioengineering strategies can also be exploited to modify the PDNVs to achieve precise targeting, controlled drug release, and massive production. Meanwhile, they are capable of crossing the blood-brain barrier (BBB) to transport the cargo to the lesion sites without harboring human pathogens, making them excellent therapeutic agents and drug delivery nanoplatform candidates for brain diseases. Herein, this article provides an initial exposition on the fundamental characteristics of PDNVs, including biogenesis, uptake process, isolation, purification, characterization methods, and source. Additionally, it sheds light on the investigation of PDNVs' utilization in brain diseases while also presenting novel perspectives on the obstacles and clinical advancements associated with PDNVs.
Collapse
Affiliation(s)
- Ruoning Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Yingjie Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Yumiao Guo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Wei Zeng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Jinge Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Jie Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Nengjin Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Anran Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Jiale Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Peng Cao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| |
Collapse
|
29
|
Rashidi N, Liu C, Guillot PV, Tamaddon M. Isolation, Characterization, and In Vitro Cell Studies of Plant-Based Exosome-like Nanovesicles for Treatment of Early Osteoarthritis. Int J Mol Sci 2025; 26:2211. [PMID: 40076829 PMCID: PMC11900001 DOI: 10.3390/ijms26052211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Osteoarthritis, affecting over 8 million people in the UK, remains a debilitating condition with limited treatment options. Current therapies primarily address symptoms and can exacerbate joint damage over time. Developing disease-modifying drugs that alleviate inflammation and promote joint regeneration is crucial for long-term patient benefit. This study investigates the potential of exosome-like nano-vesicles isolated from grapefruit juice (GEVs) as a novel therapeutic approach for osteoarthritis. GEVs possess regenerative properties and present a promising avenue for clinical translation. In this study, nano-vesicles were isolated and characterized in terms of protein quantification, size, and morphology. In vitro studies demonstrated the safety and efficacy of GEVs, showing an enhancement in human chondrocyte migratory activity of over 13%. GEVs exhibited a dual mechanism of action, reducing inflammation and oxidative stress while promoting cellular regeneration. Specifically, they reduced the expression of COX2 and PTGS2, markers associated with inflammation and pain sensitization, and enhanced the expression of antioxidant genes SD2 and GPX in osteoarthritic-like chondrocytes. Additionally, GEVs downregulated the expression of ADAMTS-5 and hypertrophic COL10 while upregulating chondrogenic markers ACAN, COL2, and SOX9. This research signifies a significant advancement in osteoarthritis therapy, offering a natural, safe, and cost-effective treatment option with the potential for long-lasting benefits. Clinical translation of GEV therapy holds promise for improving patient outcomes and reducing the burden on healthcare systems.
Collapse
Affiliation(s)
- Narjes Rashidi
- Institute of Orthopaedic & Musculoskeletal Science, Division of Surgery & Interventional Science, Royal National Orthopaedic Hospital, University College London, London HA7 4LP, UK; (N.R.); (C.L.)
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, Division of Surgery & Interventional Science, Royal National Orthopaedic Hospital, University College London, London HA7 4LP, UK; (N.R.); (C.L.)
| | - Pascale V. Guillot
- Research Department of Maternal and Fetal Medicine, Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London WC1E 6DB, UK;
| | - Maryam Tamaddon
- Institute of Orthopaedic & Musculoskeletal Science, Division of Surgery & Interventional Science, Royal National Orthopaedic Hospital, University College London, London HA7 4LP, UK; (N.R.); (C.L.)
| |
Collapse
|
30
|
Feng Z, Chen Z, Wang X, Zhou M, Liu S. Immune-Mediated Bidirectional Causality Between Inflammatory Bowel Disease and Chronic Periodontitis: Evidence from Mendelian Randomization and Integrative Bioinformatics Analysis. Biomedicines 2025; 13:476. [PMID: 40002889 PMCID: PMC11853167 DOI: 10.3390/biomedicines13020476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/03/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: A bidirectional association between inflammatory bowel disease (IBD) and periodontitis has been observed, yet their causal relationship remains unclear. This study aimed to investigate the potential causal links between these two inflammatory conditions through comprehensive genetic and molecular analyses. Methods: We conducted a bidirectional Mendelian randomization (MR) analysis integrated with bioinformatics approaches. The causal relationships were primarily evaluated using inverse variance weighting (IVW), complemented by multiple sensitivity analyses to assess the robustness of the findings. Additionally, we performed differential gene expression analysis using RNA sequencing data to identify co-expressed genes and shared inflammatory mediators between IBD and periodontitis, followed by pathway enrichment analysis. Results: Bidirectional MR analysis revealed significant causal associations between IBD and periodontitis (p-value < 0.05). Sensitivity analyses demonstrated the consistency of these findings, with no evidence of significant heterogeneity or horizontal pleiotropy (p-value > 0.05). Integrated bioinformatics analysis identified key immune regulators, particularly interleukin 1 beta (IL1B) and C-X-C motif chemokine receptor 4 (CXCR4), and inflammatory signaling pathways, including tumor necrosis factor (TNF-α) and interleukin 17 (IL17), as potential molecular mechanisms underlying the bidirectional relationship between these conditions. Conclusions: Our findings provide genetic evidence supporting a bidirectional causal relationship between IBD and periodontitis. Transcriptomic analysis revealed shared pathological mechanisms and identified crucial immune regulatory factors common to both diseases. These insights enhance our understanding of the molecular interplay between IBD and periodontitis, potentially informing new therapeutic strategies for both conditions.
Collapse
Affiliation(s)
| | | | | | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (Z.F.); (Z.C.); (X.W.)
| | - Shupeng Liu
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (Z.F.); (Z.C.); (X.W.)
| |
Collapse
|
31
|
Yao Y, Xu Z, Ding H, Yang S, Chen B, Zhou M, Zhu Y, Yang A, Yan X, Liang C, Kou X, Chen B, Huang W, Li Y. Carrier-free nanoparticles-new strategy of improving druggability of natural products. J Nanobiotechnology 2025; 23:108. [PMID: 39953594 PMCID: PMC11827262 DOI: 10.1186/s12951-025-03146-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/22/2025] [Indexed: 02/17/2025] Open
Abstract
There are abundant natural products resources and extensive clinical use experience in China. However, the active components of natural products generally have problems such as poor water solubility and low bioavailability, which limit their druggability. Carrier-free nanoparticles, such as nanocrystals, self-assembled nanoparticles, and extracellular vesicles derived from both animal and plant sources, have great application potential in improving the safety and efficacy of drugs due to their simple and flexible preparation methods, high drug loading capacity and delivery efficiency, as well as long half-life in blood circulation. It has been widely used in biomedical fields such as anti-tumor, anti-bacterial, anti-inflammatory and anti-oxidation. Therefore, based on the natural products that have been used in clinic, this review focuses on the advantages of carrier-free nanoparticles in delivering active compounds, in order to improve the delivery process of natural products in vivo and improve their draggability.
Collapse
Affiliation(s)
- Yaqi Yao
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhenna Xu
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Haoran Ding
- College of Pharmacy, Shandong Xiandai University, Jinan, 250104, China
| | - Shenshen Yang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Bohan Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Mengjiao Zhou
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yehan Zhu
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Aihong Yang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xingxu Yan
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Chenrui Liang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaodi Kou
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Bo Chen
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yubo Li
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
32
|
Gao C, Chen Y, Wen X, Han R, Qin Y, Li S, Tang R, Zhou W, Zhao J, Sun J, Li Z, Tan Z, Wang D, Zhou C. Plant-derived exosome-like nanoparticles in tissue repair and regeneration. J Mater Chem B 2025; 13:2254-2271. [PMID: 39817682 DOI: 10.1039/d4tb02394c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
This article reviews plant-derived exosome-like nanoparticles (ELNs), and highlights their potential in regenerative medicine. Various extraction techniques, including ultracentrifugation and ultrafiltration, and their impact on ELN purity and yield were discussed. Characterization methods such as microscopy and particle analysis are found to play crucial roles in defining ELN properties. This review is focused on exploring the therapeutic potential of ELNs in tissue repair, immune regulation, and antioxidant activities. Further research and optimization methods for extraction of ELNs to realize clinical potential applications are necessary.
Collapse
Affiliation(s)
- Canyu Gao
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Yang Chen
- Center of Medical Product Technical Inspection, Chengdu, 610015, China
| | - Xingyue Wen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ruiying Han
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuxiang Qin
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Sijie Li
- Department of Burn and Plastic Reconstructive Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rong Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Weikai Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Junyu Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jianxun Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhengyong Li
- Department of Burn and Plastic Reconstructive Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhen Tan
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Deli Wang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Changchun Zhou
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
33
|
Lei X, Li H, Chen S, Li B, Xia H, Li J, Guan F, Ge J. Tea leaf exosome-like nanoparticles (TELNs) improve oleic acid-induced lipid metabolism by regulating miRNAs in HepG-2 cells. BIORESOUR BIOPROCESS 2025; 12:9. [PMID: 39930300 PMCID: PMC11810870 DOI: 10.1186/s40643-025-00844-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
Tea is a widely consumed beverage globally, but the tea industry faces a significant waste management challenge. In this study, we developed tea leaf exosome-like nanoparticles (TELNs) with an average size of 274 ± 24.7 nm and a zeta potential of -20.6 ± 0.78 mV, using polyethylene glycol (PEG) 6000 precipitation followed by ultracentrifugation. Structural analysis confirmed that TELNs are composed of lipids, proteins, and RNAs. In vitro assays on HepG-2 cells revealed that TELNs are non-toxic at concentrations up to 300 µg/mL and can be efficiently internalized. TELNs exhibited significant antioxidant capacity and were able to significantly ameliorate H2O2-induced oxidative stress, increase the viability and reduce the accumulation of ROS in Hepg-2 cells. Notably, TELNs significantly alleviated OA-induced lipid metabolic disorders and hepatocellular injury. Further molecular analysis revealed that TELNs downregulated the expression of miR-21-5p, miR-17-3p, and miR-107, leading to the upregulation of their target genes PPARα, CYP7A1, and CPT-1A, which contributed to the improvement of lipid metabolism. This study is the first to demonstrate the lipid metabolism regulation potential of TELNs, providing new insights into their underlying mechanisms and helping to develop new therapeutic strategies for lipid metabolism-related diseases. Furthermore, it expands the scope of tea use and helps to reuse tea residues.
Collapse
Affiliation(s)
- Xuanhao Lei
- College of Life Sciences, China Jiliang University, 258 XueYuan Street, XiaSha Higher Education Zone, Hangzhou, 310018, Zhejiang Province, People's Republic of China
| | - Haonan Li
- College of Life Sciences, China Jiliang University, 258 XueYuan Street, XiaSha Higher Education Zone, Hangzhou, 310018, Zhejiang Province, People's Republic of China
| | - Sibei Chen
- College of Life Sciences, China Jiliang University, 258 XueYuan Street, XiaSha Higher Education Zone, Hangzhou, 310018, Zhejiang Province, People's Republic of China
| | - Bing Li
- College of Life Sciences, China Jiliang University, 258 XueYuan Street, XiaSha Higher Education Zone, Hangzhou, 310018, Zhejiang Province, People's Republic of China
| | - Huili Xia
- Taizhou Food and Drug Inspection and Research Institute, Taizhou, 318000, Zhejiang Province, People's Republic of China
| | - Jun Li
- Taizhou Food and Drug Inspection and Research Institute, Taizhou, 318000, Zhejiang Province, People's Republic of China
| | - Feng Guan
- College of Life Sciences, China Jiliang University, 258 XueYuan Street, XiaSha Higher Education Zone, Hangzhou, 310018, Zhejiang Province, People's Republic of China
| | - Jian Ge
- College of Life Sciences, China Jiliang University, 258 XueYuan Street, XiaSha Higher Education Zone, Hangzhou, 310018, Zhejiang Province, People's Republic of China.
| |
Collapse
|
34
|
Wang X, Zhang G, Bian Z, Chow V, Grimaldi M, Carivenc C, Sirounian S, Li H, Sladekova L, Motta S, Luperi Y, Gong Y, Costello C, Li L, Jachimowicz M, Guo M, Hu S, Wilson D, Balaguer P, Bourguet W, Mani S, Bonati L, Peng H, March J, Wang H, Wang S, Krause HM, Liu J. An abundant ginger compound furanodienone alleviates gut inflammation via the xenobiotic nuclear receptor PXR in mice. Nat Commun 2025; 16:1280. [PMID: 39900639 PMCID: PMC11791082 DOI: 10.1038/s41467-025-56624-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/22/2025] [Indexed: 02/05/2025] Open
Abstract
The literature documenting the value of drug-like molecules found in natural products is vast. Although many dietary and herbal remedies have been found to be effective for treating intestinal inflammation, the identification of their active components has lagged behind. In this study, we find that a major ginger component, furanodienone (FDN), is a selective pregnane X receptor (PXR) ligand with agonistic transcriptional outcomes. We show that FDN binds within a sub-pocket of the PXR ligand binding domain (LBD), with subsequent alterations in LBD structure. Using male mice, we show that orally provided FDN has potent PXR-dependant anti-inflammatory outcomes that are colon-specific. Increased affinity and target gene activation in the presence of synergistically acting agonists indicates further opportunities for augmenting FDN activity, efficacy and safety. Collectively, these results support the translational potential of FDN as a therapeutic agent for the treatment and prevention of colonic diseases.
Collapse
Affiliation(s)
- Xiaojuan Wang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Guohui Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
| | - Zhiwei Bian
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Vimanda Chow
- Department of Chemistry, York University, Toronto, ON, Canada
| | - Marina Grimaldi
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Coralie Carivenc
- Centre de Biologie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, France
| | - Savannah Sirounian
- Centre de Biologie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, France
| | - Hao Li
- Department of Molecular Pharmacology; Department of Genetics; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Lucia Sladekova
- Department of Molecular Pharmacology; Department of Genetics; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Stefano Motta
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Yulia Luperi
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Yufeng Gong
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Cait Costello
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Linhao Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Matthew Jachimowicz
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Miao Guo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
| | - Shian Hu
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Derek Wilson
- Department of Chemistry, York University, Toronto, ON, Canada
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - William Bourguet
- Centre de Biologie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, France
| | - Sridhar Mani
- Department of Molecular Pharmacology; Department of Genetics; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Laura Bonati
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- School of the Environment, University of Toronto, Toronto, ON, Canada
| | - John March
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China.
| | - Henry M Krause
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| | - Jiabao Liu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
35
|
Huang Z, Whitehead B, Nejsum P, Corredig M, Rasmussen MK. Tomato-derived extracellular vesicles increase intestinal zinc transportation by potentially down-regulating the expression of the metallothionein family. Food Res Int 2025; 203:115804. [PMID: 40022334 DOI: 10.1016/j.foodres.2025.115804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 03/03/2025]
Abstract
Extracellular vesicles (EVs) have the ability to regulate physiological and pathological processes across species and have been shown to be present in plants. Tomatoes are one of the most widespread vegetables on the market and exhibit a broad range of health-promoting effects, including antioxidant and anti-inflammatory properties. However, little is known about the bioactivity of tomato-derived EVs. Here, we isolated EVs from tomatoes and explored their gene regulatory potential using array-based transcriptomics. Interestingly, using a differentiated Caco-2 monolayer model, tomato-derived EVs were shown to upregulate the transportation of zinc, which may involve the down-regulation of metallothionein proteins (MTs). Differentiated Caco-2 cells internalized tomato-derived EVs. Post-EV treatment the relative expression levels of MT-related mRNAs within the cells decreased by approximately threefold, accompanied by an approximately twofold reduction in intracellular zinc concentration. Additionally, the amount of secreted zinc in the basolateral medium increased by approximately threefold. Moreover, tomato-derived EV regulation of MT gene expression occurred only in differentiated epithelial cells. This effect was observed in differentiated Caco-2 and HIEC-6 cells, whereas no impact was seen on the MT gene in undifferentiated cells. This mechanistic study uniquely demonstrates the bioactivity of tomato-derived EVs, and for the first time, reveals the ability of plant-derived EVs to modify zinc regulation across the intestinal epithelia. This further suggests the potential of plant-derived EVs as functional food supplements in the future.
Collapse
Affiliation(s)
- Ziyu Huang
- Department of Food Science Aarhus University Denmark
| | - Bradley Whitehead
- Department of Clinical Medicine Aarhus University Aarhus Denmark; Department of Infectious Diseases Aarhus University Hospital Aarhus Denmark
| | - Peter Nejsum
- Department of Clinical Medicine Aarhus University Aarhus Denmark; Department of Infectious Diseases Aarhus University Hospital Aarhus Denmark
| | | | | |
Collapse
|
36
|
Li J, Luo T, Wang D, Zhao Y, Jin Y, Yang G, Zhang X. Therapeutic application and potential mechanism of plant-derived extracellular vesicles in inflammatory bowel disease. J Adv Res 2025; 68:63-74. [PMID: 38341033 PMCID: PMC11785581 DOI: 10.1016/j.jare.2024.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/09/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Plant-derived extracellular vesicles (PDEVs) are membrane vesicles characterized by a phospholipid bilayer as the basic skeleton that is wrapped by various functional components of proteins and nucleic acids. An increasing number of studies have confirmed that PDEVs can be a potential treatment of inflammatory bowel disease (IBD) and can, to some extent, compensate for the limitations of existing therapies. AIM OF REVIEW This review summarizes the recent advances and potential mechanisms underlying PDEVs obtained from different sources to alleviate IBD. In addition, the review discusses the possible applications and challenges of PDEVs, providing a theoretical basis for exploring novel and practical therapeutic strategies for IBD. KEY SCIENTIFIC CONCEPTS OF REVIEW In IBD, the crosstalk mechanism of PDEVs may regulate the intestinal microenvironment homeostasis, especially immune responses, the intestinal barrier, and the gut microbiota. In addition, drug loading enhances the therapeutic potential of PDEVs, particularly regarding improved tissue targeting and stability. In the future, not only immunotherapy based on PDEVs may be an effective treatment for IBD, but also the intestinal barrier and intestinal microbiota will be a new direction for the treatment of IBD.
Collapse
Affiliation(s)
- Jinling Li
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, Zhejiang Province, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang Province, China
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang Province, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang Province, China
| | - Yao Zhao
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou 311231, Zhejiang Province, China
| | - Yuanxiang Jin
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou 311231, Zhejiang Province, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang Province, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang Province, China; Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou 311231, Zhejiang Province, China.
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, Zhejiang Province, China.
| |
Collapse
|
37
|
Guo Z, Li G, Shen L, Pan J, Dou D, Gong Y, Shi W, Sun Y, Zhang Y, Ma K, Cui C, Li W, Liu Q, Zhu X. Ginger-Derived Exosome-Like Nanoparticles Loaded With Indocyanine Green Enhances Phototherapy Efficacy for Breast Cancer. Int J Nanomedicine 2025; 20:1147-1169. [PMID: 39902066 PMCID: PMC11789776 DOI: 10.2147/ijn.s478435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/15/2025] [Indexed: 02/05/2025] Open
Abstract
PURPOSE Phototherapy has remarkable advantages in cancer treatment, owing to its high efficiency and minimal invasiveness. Indocyanine green (ICG) plays an important role in photo-mediated therapy. However, it has several disadvantages such as poor stability in aqueous solutions, easy aggregation of molecules, and short plasma half-life. This study aimed to develop an efficient nanoplatform to enhance the effects of photo-mediated therapy. METHODS We developed a novel bio-nanoplatform by integrating edible ginger-derived exosome-like nanoparticles (GDNPs) and the photosensitizer, ICG (GDNPs@ICG). GDNPs were isolated from ginger juice and loaded with ICG by co-incubation. The size distribution, zeta potential, morphology, total lipid content, and drug release behavior of the GDNPs@ICG were characterized. The photothermal performance, cellular uptake and distribution, cytotoxicity, anti-tumor effects, and mechanism of action of GDNPs@ICG were investigated both in vitro and in vivo. RESULTS GDNPs@ICG were taken up by tumor cells via a lipid-dependent pathway. When irradiated by an 808 nm NIR laser, GDNPs@ICG generated high levels of ROS, MDA, and local hyperthermia within the tumor, which caused lipid peroxidation and ER stress, thus enhancing the photo-mediated breast tumor therapy effect. Furthermore, in vivo studies demonstrated that engineered GDNPs@ICG significantly inhibited breast tumor growth and presented limited toxicity. Moreover, by detecting the expression of CD31, N-cadherin, IL-6, IFN-γ, CD8, p16, p21, and p53 in tumor tissues, we found that GDNPs@ICG substantially reduced angiogenesis, inhibited metastasis, activated the anti-tumor immune response, and promoted cell senescence in breast tumor. CONCLUSION Our study demonstrated that the novel bio-nanoplatform GDNPs@ICG enhanced the photo-mediated therapeutic effect in breast tumor. GDNPs@ICG could be an alternative for precise and efficient anti-tumor phototherapy.
Collapse
Affiliation(s)
- Zhaoming Guo
- Department of General Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, People’s Republic of China
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin, Liaoning, 124221, People’s Republic of China
| | - Guqing Li
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin, Liaoning, 124221, People’s Republic of China
| | - Lanjun Shen
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin, Liaoning, 124221, People’s Republic of China
| | - Jiawei Pan
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin, Liaoning, 124221, People’s Republic of China
| | - Danni Dou
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin, Liaoning, 124221, People’s Republic of China
| | - Yuwei Gong
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin, Liaoning, 124221, People’s Republic of China
| | - Wanwan Shi
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin, Liaoning, 124221, People’s Republic of China
| | - Yuhua Sun
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin, Liaoning, 124221, People’s Republic of China
| | - Yi Zhang
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin, Liaoning, 124221, People’s Republic of China
| | - Kun Ma
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin, Liaoning, 124221, People’s Republic of China
| | - Changhao Cui
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin, Liaoning, 124221, People’s Republic of China
| | - Wenxin Li
- The second Department of Hepatopancreatobiliary Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, People’s Republic of China
- Liaoning Provincial Key Laboratory of Precision Medicine for Malignant Tumors, Shenyang, Liaoning, 110042, People’s Republic of China
| | - Qiang Liu
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, 116024, People’s Republic of China
| | - Xudong Zhu
- Department of General Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, People’s Republic of China
- Liaoning Provincial Key Laboratory of Precision Medicine for Malignant Tumors, Shenyang, Liaoning, 110042, People’s Republic of China
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People’s Republic of China
| |
Collapse
|
38
|
Tang X, He M, Ren Y, Ji M, Yan X, Zeng W, Lv Y, Li Y, He Y. Traditional Chinese Medicine formulas-based interventions on colorectal carcinoma prevention: The efficacies, mechanisms and advantages. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:119008. [PMID: 39471879 DOI: 10.1016/j.jep.2024.119008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/08/2024] [Accepted: 10/26/2024] [Indexed: 11/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Traditional Chinese Medicine Formulas (TCMFs) represent a distinctive medical approach to disease treatment and have been utilized in clinical practice for treating intestinal diseases for thousands of years. Recently, TCMFs have received increasing attention due to their advantages of high efficiency, safety, as well as low toxicity, providing promising strategies for preventing colorectal carcinoma (CRC). Nonetheless, the potential mechanism of TCMFs in preventing CRC has not been fully elucidated. AIM OF THE STUDY The literature from the past three years was reviewed to highlight the therapeutic effects and underlying mechanisms of TCMFs in preventing CRC. MATERIALS AND METHODS The keywords have been searched, including "traditional Chinese medicine formulas," "herb pairs," "Herbal plant-derived nanoparticles," et al. in "PubMed" and "China National Knowledge Infrastructure (CNKI)," and screened published articles related to the treatment of intestinal precancerous lesions. This review primarily examined the effectiveness and mechanisms of TCMFs in treating intestinal precancerous lesions, highlighting their significant potential in preventing CRC. RESULTS Gegen Qinlian decoction, Shaoyao decoction, Wu Wei Wan, etc., exert substantial therapeutic effects on intestinal precancerous lesions. These therapeutic effects are demonstrated by a reduction in disease activity index scores, suppression of intestinal inflammation, and preservation of body weight and intestinal function, all of which contribute to the effective prevention of CRC. Besides, the classic Chinese herbal pairs and the extracellular vesicle-like nanoparticles of herbaceous plants have demonstrated superior efficacy in the treatment of intestinal precancerous lesions. Mechanistically, protecting the epithelial barrier, regulating gut microbiota as well as related metabolism, modulating macrophage polarization, and maintaining immune balance contribute to the role of TCMFs in CRC prevention. CONCLUSIONS This review demonstrates the great potential and mechanism of TCMFs in CRC prevention and provides a scientific basis for their utilization in CRC prevention.
Collapse
Affiliation(s)
- Xiaojuan Tang
- School of biomedical sciences, Hunan University, Changsha, 410012, Hunan, China; Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China.
| | - Min He
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yuan Ren
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Meng Ji
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Xiaoqi Yan
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China
| | - Wen Zeng
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yuan Lv
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China
| | - Yongmin Li
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China
| | - Yongheng He
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China; Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
39
|
Shirani N, Abdi N, Chehelgerdi M, Yaghoobi H, Chehelgerdi M. Investigating the role of exosomal long non-coding RNAs in drug resistance within female reproductive system cancers. Front Cell Dev Biol 2025; 13:1485422. [PMID: 39925739 PMCID: PMC11802832 DOI: 10.3389/fcell.2025.1485422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025] Open
Abstract
Exosomes, as key mediators of intercellular communication, have been increasingly recognized for their role in the oncogenic processes, particularly in facilitating drug resistance. This article delves into the emerging evidence linking exosomal lncRNAs to the modulation of drug resistance mechanisms in cancers such as ovarian, cervical, and endometrial cancer. It synthesizes current research findings on how these lncRNAs influence cancer cell survival, tumor microenvironment, and chemotherapy efficacy. Additionally, the review highlights potential therapeutic strategies targeting exosomal lncRNAs, proposing a new frontier in overcoming drug resistance. By mapping the interface of exosomal lncRNAs and drug resistance, this article aims to provide a comprehensive understanding that could pave the way for innovative treatments and improved patient outcomes in female reproductive system cancers.
Collapse
Affiliation(s)
- Nooshafarin Shirani
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Neda Abdi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Hajar Yaghoobi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
40
|
Yamasaki M, Yamasaki Y, Oshima T. Nanovesicles derived from edible plants: a new player that contributes to the function of foods. Biosci Biotechnol Biochem 2025; 89:179-186. [PMID: 39730148 DOI: 10.1093/bbb/zbae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/22/2024] [Indexed: 12/29/2024]
Abstract
Nano-sized vesicles are ubiquitous in vegetables, fruits, and other edible plants. We have successfully prepared nanovesicles (NVs) from over 150 edible plants. These results suggest that the daily intake of NVs from various foods and their roles in food function are promising novel approaches for explaining the health-promoting properties of edible plants. These vesicles contain RNAs, including miRNAs, similar to extracellular NVs, which play pivotal roles in cell-cell communication. Intriguingly, NVs also contain phytochemicals such as polyphenols and carotenoids that are specific to each edible plant. In conclusion, these dietary NVs have the potential to serve as functional packages to deliver RNAs or phytochemicals to target cells across species from plants to humans.
Collapse
Affiliation(s)
- Masao Yamasaki
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki, Japan
| | - Yumi Yamasaki
- Faculty of Regional Innovation, University of Miyazaki, Miyazaki, Japan
| | - Tatsuya Oshima
- Department of Applied Chemistry, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
41
|
Han R, Zhou D, Ji N, Yin Z, Wang J, Zhang Q, Zhang H, Liu J, Liu X, Liu H, Han Q, Su J. Folic acid-modified ginger-derived extracellular vesicles for targeted treatment of rheumatoid arthritis by remodeling immune microenvironment via the PI3K-AKT pathway. J Nanobiotechnology 2025; 23:41. [PMID: 39849554 PMCID: PMC11756199 DOI: 10.1186/s12951-025-03096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/04/2025] [Indexed: 01/25/2025] Open
Abstract
Rheumatoid arthritis (RA), a form of autoimmune inflammation, is marked by enduring synovial inflammation and the subsequent impairment of joint function. Despite the availability of conventional treatments, they are often marred by significant side effects and the associated high costs. Plant-derived extracellular vesicles (PEVs) offer a compelling alternative, owing to their abundant availability, affordability, low immunogenicity, high biocompatibility, and feasibility for large-scale production. These vesicles enhance intercellular communication by transferring intrinsic bioactive molecules. In our research, we delve into the capacity of PEVs to treat RA, highlighting the role of ginger-derived extracellular vesicles (GDEVs). By conjugating GDEVs with folic acid (FA), we have developed FA-GDEVs that maintain their inherent immunomodulatory properties. FA-GDEVs are designed to selectively target M1 macrophages in inflamed joints via the folate receptors (FRs). Our in vitro findings indicate that FA-GDEVs promote the polarization towards a reparative M2 macrophage phenotype by modulating the PI3K-AKT pathway. Further corroboration comes from in vivo studies, which demonstrate that FA-GDEVs not only concentrate efficiently in the affected joints but also markedly reduce the manifestations of RA. Synthesizing these findings, it is evident that FA-GDEVs emerge as a hopeful candidate for RA treatment, offering benefits such as safety, affordability, and therapeutic efficacy.
Collapse
Affiliation(s)
- Ruina Han
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Dongyang Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Ning Ji
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200941, China
| | - Jian Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Orthopedic Trauma Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Qin Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Hao Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Orthopedic Trauma Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jinlong Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Xinru Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China.
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China.
| | - Qinglin Han
- Department of Orthopedics, The Affiliated Hospital of Nantong University, Jiangsu, 226001, China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China.
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- Orthopedic Trauma Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
42
|
Liu H, Jin X, Liu S, Liu X, Pei X, Sun K, Li M, Wang P, Chang Y, Wang T, Wang B, Yu XA. Recent advances in self-targeting natural product-based nanomedicines. J Nanobiotechnology 2025; 23:31. [PMID: 39833846 PMCID: PMC11749302 DOI: 10.1186/s12951-025-03092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025] Open
Abstract
Natural products, recognized for their potential in disease prevention and treatment, have been integrated with advanced nano-delivery systems to create natural product-based nanomedicines, offering innovative approaches for various diseases. Natural products derived from traditional Chinese medicine have their own targeting effect and remarkable therapeutic effect on many diseases, but there are some shortcomings such as poor physical and chemical properties. The construction of nanomedicines using the active ingredients of natural products has become a key step in the modernization research process, which could be used to make up for the defects of natural products such as low solubility, large dosage, poor bioavailability and poor targeting. Nanotechnology enhances the safety, selectivity, and efficacy of natural products, positioning natural product-based nanomedicines as promising candidates in medicine. This review outlines the current status of development, the application in different diseases, and safety evaluation of natural product-based nanomedicines, providing essential insights for further exploration of the synergy between natural products and nano-delivery systems in disease treatment.
Collapse
Affiliation(s)
- Haifan Liu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xingyue Jin
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Suyi Liu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xinyue Liu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiao Pei
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Kunhui Sun
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Meifang Li
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Ping Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Yanxu Chang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tiejie Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Bing Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Xie-An Yu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
| |
Collapse
|
43
|
Jiang HY, Shao B, Wang HD, Zhao WQ, Ren SH, Xu YN, Liu T, Sun CL, Xiao YY, Li YC, Chen Q, Zhao PY, Yang GM, Liu X, Ren YF, Wang H. Analysis of nanomedicine applications for inflammatory bowel disease: structural and temporal dynamics, research hotspots, and emerging trends. Front Pharmacol 2025; 15:1523052. [PMID: 39845796 PMCID: PMC11750799 DOI: 10.3389/fphar.2024.1523052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025] Open
Abstract
Background The application of nanomedicine in inflammatory bowel disease (IBD) has gained significant attention in the recent years. As the field rapidly evolves, analyzing research trends and identifying research hotpots are essential for guiding future advancements, and a comprehensive bibliometric can provide valuable insights. Methods The current research focused on publications from 2001 to 2024, and was sourced from the Web of Science Core Collection (WoSCC). CiteSpace and VOSviewer were employed to visualize authors, institutions, countries, co-cited references, and keywords, thereby mapping the intellectual structure and identifying emerging trends in the field. Results The analysis covered 1,518 literature across 447 journals, authored by 9,334 researchers from 5,459 institutions and 287 countries/regions. The global publication numbers exhibited an upward trend, particularly in the last decade, with China leading as the top publishing country and the Chinese Academy of Sciences emerging as the foremost institution. Dr. Xiao Bo is the prominent figure in advanced drug delivery systems. This interdisciplinary field, which spans materials science, pharmacy, and medicine, has seen influential publications mainly concentrated on targeted nanoparticles treatment for IBD. Keyword analysis revealed that current research hotspots include drug delivery, immune cell regulation, antioxidant damage, intestinal microbiota homeostasis, and nanovesicles. Conclusion This study offers a comprehensive overview of global research landscape, emphasizing the rapid growth and increasing complexity of this field. It identifies key research hotspots and trends, including efforts to enhance the precision, efficacy, and safety of nanomedicine applications. Emerging directions are highlighted as crucial for further progress in this evolving area.
Collapse
Affiliation(s)
- Hong-Yu Jiang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong-Da Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Wen-Qi Zhao
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin, China
| | - Shao-Hua Ren
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of General Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yi-Ni Xu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Tong Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Cheng-Lu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yi-Yi Xiao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yi-Cheng Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Chen
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng-Yu Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Guang-Mei Yang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xu Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yu-Fan Ren
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin, China
| |
Collapse
|
44
|
Bajaj G, Choudhary D, Singh V, Priyadarshi N, Garg P, Mantri SS, Rishi V, Singhal NK. MicroRNAs Dependent G-ELNs Based Intervention Improves Glucose and Fatty Acid Metabolism While Protecting Pancreatic β-Cells in Type 2 Diabetic Mice. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409501. [PMID: 39648555 DOI: 10.1002/smll.202409501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/19/2024] [Indexed: 12/10/2024]
Abstract
Metabolic disorders such as Type 2 diabetes mellitus (T2DM) imposes a significant global health burden. Plant-derived exosome like nanoparticles (P-ELNs) have emerged as a promising therapeutic alternate for various diseases. Present data demonstrates that treatment with Ginger-derived exosome like nanoparticles (G-ELNs) enhance insulin dependent glucose uptake, downregulate gluconeogenesis and oxidative stress in insulin resistant HepG2 cells. Furthermore, oral administration of G-ELNs in T2DM mice decreases fasting blood glucose levels and improves glucose tolerance as effectively as metformin. These improvements are attributed to the enhanced phosphorylation of Protein kinase B (Akt-2), the phosphatidylinositol 3-kinase at serine 474 which consequently leads to increase in hepatic insulin sensitivity, improvement in glucose homeostasis and decrease in ectopic fat deposition. Oral administration of G-ELNs also exerts protective effect on Streptozotocin (STZ)-induced pancreatic β-cells damage, contributing to systemic amelioration of T2DM. Further, as per computational tools, miRNAs present in G-ELNs modulate the phosphatidylinositol 3-kinase (PI3K)/Akt-2 pathway and exhibit strong interactions with various target mRNAs responsible for hepatic gluconeogenesis, ectopic fat deposition and oxidative stress. Furthermore, synthetic mimic of G-ELNs miRNA effectively downregulates its target mRNA in insulin resistant HepG2 cells. Overall, the results indicate that the miRNAs present in G-ELNs target hepatic metabolism thus, exerting therapeutic effects in T2DM.
Collapse
Affiliation(s)
- Geetika Bajaj
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S Nagar, Mohali, Punjab, 140306, India
- Department of Biotechnology, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Diksha Choudhary
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S Nagar, Mohali, Punjab, 140306, India
- Regional Centre for Biotechnology, Faridabad, Haryana, 121001, India
| | - Vishal Singh
- National Institute for Implementation Research on Non-Communicable Diseases, Jodhpur, 342005, India
| | - Nitesh Priyadarshi
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S Nagar, Mohali, Punjab, 140306, India
| | - Priyanka Garg
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S Nagar, Mohali, Punjab, 140306, India
- Department of Biotechnology, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Shrikant Subhash Mantri
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S Nagar, Mohali, Punjab, 140306, India
| | - Vikas Rishi
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S Nagar, Mohali, Punjab, 140306, India
| | - Nitin Kumar Singhal
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S Nagar, Mohali, Punjab, 140306, India
| |
Collapse
|
45
|
Zhang J, Pang H, Tang H, Tu Q, Xia F, Zhang H, Meng Y, Han G, Wang J, Qiu C. The pharmacodynamic and pharmacological mechanisms underlying nanovesicles of natural products: Developments and challenges. Pharmacol Ther 2025; 265:108754. [PMID: 39566562 DOI: 10.1016/j.pharmthera.2024.108754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 10/23/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024]
Abstract
Natural products such as Traditional Chinese Medicines (TCMs) show great advantages in the treatment and prevention of diseases, but the unclear effective ingredients and mechanisms are key obstacles to restrict their rapid development. Under the guidance of the theoretical guidance of reductionism and the theoretical of allopathic medicine, some researches have indeed achieved some breakthrough results. However, these incomplete methods mainly limited to direct actions or indirect actions (such as the intermediated substances mediated cross-organ or cross-system regulation) mechanism of single active ingredient derived from natural products, which are often inconsistent with Systemism and Harmonizing Medicine and make it difficult to reasonably explain the pharmacodynamics and pharmacological mechanism of most natural products. Actually, effective pharmaceutical ingredients often do not exist in the form of free monomers, but prefer to assembly nanovesicles (NVs) for a combinational pharmacological effect, mainly including self-assembled nanoparticles (SANs) and exosome-like nanoparticles (ELNs). These developments of NVs-based application are a good supplement to existing pharmacological mechanism research. Hence, this review focuses on the developments and strategies of the pharmacodynamics and pharmacological mechanism of NVs-based TCMs under the combining theory of traditional Chinese and western medicine. On this basis, a novel "multidimensional combination" research approach is proposed firstly, which will provide new strategies and directions for breaking through the bottleneck of pharmacological mechanism research, and promote the clinical application of innovative natural products including TCMs.
Collapse
Affiliation(s)
- Junzhe Zhang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huanhuan Pang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huan Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qingchao Tu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hao Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuqing Meng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guang Han
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Jigang Wang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Department of Biological Sciences, National University of Singapore, Singapore 119077, Singapore.
| | - Chong Qiu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
46
|
Yi C, Lu L, Li Z, Guo Q, Ou L, Wang R, Tian X. Plant-derived exosome-like nanoparticles for microRNA delivery in cancer treatment. Drug Deliv Transl Res 2025; 15:84-101. [PMID: 38758499 DOI: 10.1007/s13346-024-01621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
Plant-derived exosome-like nanoparticles (PELNs) are natural nanocarriers and effective delivery systems for plant microRNAs (miRNAs). These PELN-carrying plant miRNAs can regulate mammalian genes across species, thereby increasing the diversity of miRNAs in mammals and exerting multi-target effects that play a crucial role in diseases, particularly cancer. PELNs demonstrate exceptional stability, biocompatibility, and targeting capabilities that protect and facilitate the up-take and cross-kingdom communication of plant miRNAs in mammals. Primarily ingested and absorbed within the gastrointestinal tract of mammals, PELNs preferentially act on the intestine to regulate intestinal homeostasis through functional miRNA activity. The oncogenesis and progression of cancer are closely associated with disruptions in intestinal barriers, ecological imbalances, as well as secondary changes, such as abnormal inflammatory reactions caused by them. Therefore, it is imperative to investigate whether PELNs exert their anticancer effects by regulating mammalian intestinal homeostasis and inflammation. This review aims to elucidate the intrinsic crosstalk relationships and mechanisms of PELNs-mediated miRNAs in maintaining intestinal homeostasis, regulating inflammation and cancer treatment. Furthermore, serving as exceptional drug delivery systems for miRNAs molecules, PELNs offer broad prospects for future applications, including new drug research and development along with drug carrier selection within targeted drug delivery approaches for cancer therapy.
Collapse
Affiliation(s)
- Chun Yi
- Department of Pathology, Faculty of Medicine, Hunan University of Chinese Medicine, 410208, Changsha, Hunan, China
| | - Linzhu Lu
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, 410208, Changsha, Hunan Province, China
| | - Zhaosheng Li
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, 410208, Changsha, Hunan Province, China
| | - Qianqian Guo
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, 410208, Changsha, Hunan Province, China
| | - Longyun Ou
- The First Hospital of Hunan University of Chinese Medicine, 410208, Changsha, Hunan, China
| | - Ruoyu Wang
- Department of Infectious Diseases, Department of Liver Diseases, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Rd, Hunan, 410208, Changsha, China.
| | - Xuefei Tian
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, 410208, Changsha, Hunan Province, China.
- Hunan Province University Key Laboratory of Oncology of Tradional Chinese Medicine, 410208, Changsha, Hunan, China.
| |
Collapse
|
47
|
Kırbaş OK, Sağraç D, Çiftçi ÖC, Özdemir G, Öztürkoğlu D, Bozkurt BT, Derman ÜC, Taşkan E, Taşlı PN, Özdemir BS, Şahin F. Unveiling the potential: Extracellular vesicles from plant cell suspension cultures as a promising source. Biofactors 2025; 51:e2090. [PMID: 38989918 PMCID: PMC11680973 DOI: 10.1002/biof.2090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024]
Abstract
Extracellular vesicles are secreted by all eukaryotic cells and they have an important role in intercellular signaling. Plant extracellular vesicles (PEVs) are a novel area of research that has gained attention due to their potential implications in biomolecule transport and therapeutic applications. PEVs are lipid bilayer-enclosed structures that contain a diverse cargo of biomolecules such as proteins and lipids. Moreover, it is known that PEVs have a noticeable therapeutic potential for various conditions such as inflammation and oxidative stress. However, there are critical problems such as removing the endosomes and plant-derived biomolecules that decrease the standardization and therapeutic efficacy of PEVs. In our study, the aim was to characterize plant cell suspension-derived extracellular vesicles (PCSEVs) obtained from two different plant cell suspension cultures: Stevia rebaudiana and Vaccaria hispanica. These vesicles were isolated using ultrafiltration and characterized with nanoparticle tracking analysis (NTA) and atomic force microscopy (AFM). The molecular composition of PCSEVs was profiled and the cellular uptake assay was performed. Our results demonstrated that PCSEVs have a spherical shape, less than 200 nm. In the fatty acid analysis, the primary components in PCSEVs were palmitic acid, linoleic acid, and cis-vaccenic acid. The protein content of Stevia rebaudiana-derived EVs (SDEVs) was largely associated with proteins involved in extracellular structures and functions. Conversely, Vaccaria hispanica-derived EVs (HDEVs) displayed a higher presence of cytosolic proteins. These findings contribute to the understanding of PCSEVs and open up potential avenues in extracellular vesicle research, pointing to promising prospects for future innovations in various fields.
Collapse
Affiliation(s)
- Oğuz Kaan Kırbaş
- Faculty of Engineering, Department of Genetics and BioengineeringYeditepe UniversityIstanbulTurkey
| | - Derya Sağraç
- Faculty of Engineering, Department of Genetics and BioengineeringYeditepe UniversityIstanbulTurkey
| | - Özgün Cem Çiftçi
- Faculty of Engineering, Department of Genetics and BioengineeringYeditepe UniversityIstanbulTurkey
| | - Gökçeçiçek Özdemir
- Faculty of Engineering, Department of Genetics and BioengineeringYeditepe UniversityIstanbulTurkey
| | - Dilek Öztürkoğlu
- Faculty of Engineering, Department of Genetics and BioengineeringYeditepe UniversityIstanbulTurkey
| | - Batuhan Turhan Bozkurt
- Faculty of Engineering, Department of Genetics and BioengineeringYeditepe UniversityIstanbulTurkey
| | - Ümit Cem Derman
- Faculty of Engineering, Department of Genetics and BioengineeringYeditepe UniversityIstanbulTurkey
| | - Ezgi Taşkan
- Faculty of Engineering, Department of Genetics and BioengineeringYeditepe UniversityIstanbulTurkey
| | - Pakize Neslihan Taşlı
- Faculty of Engineering, Department of Genetics and BioengineeringYeditepe UniversityIstanbulTurkey
| | - Bahar Soğutmaz Özdemir
- Faculty of Engineering, Department of Genetics and BioengineeringYeditepe UniversityIstanbulTurkey
| | - Fikrettin Şahin
- Faculty of Engineering, Department of Genetics and BioengineeringYeditepe UniversityIstanbulTurkey
| |
Collapse
|
48
|
Majewska L, Dorosz K, Kijowski J. Efficacy of Rose Stem Cell-Derived Exosomes (RSCEs) in Skin Treatment: From Healing to Hyperpigmentation Management: Case Series and Review. J Cosmet Dermatol 2025; 24:e16776. [PMID: 39815650 PMCID: PMC11736088 DOI: 10.1111/jocd.16776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/03/2024] [Accepted: 12/26/2024] [Indexed: 01/18/2025]
Abstract
OBJECTIVE To present and analyze eight clinical cases illustrating the use of rose stem cell-derived exosomes (RSCEs) in treating various dermatological conditions and to review current literature on plant-derived exosomes in medicine and dermatology. BACKGROUND RSCEs possess low cytotoxicity, high biocompatibility, and effective cellular uptake, making them promising agents for dermatological therapies. A literature review included in the introduction and discussion covers the broader role of plant-derived exosomes, highlighting their therapeutic potential in skin treatment. METHODS A case-by-case analysis was conducted on eight patients with conditions including atopic dermatitis (AD), hyperpigmentation, scarring, wounds, melasma, and antiaging concerns. Each case provided insights into RSCEs' efficacy, with a focus on their antioxidant and anti-inflammatory properties, as well as specific learning points derived from clinical observations. RESULTS The cases demonstrated RSCEs' multifaceted therapeutic effects across different skin conditions, supporting their role in enhancing skin regeneration, wound healing, and reducing hyperpigmentation and scarring. The literature review underscored RSCEs' unique bioactivity, suggesting mechanisms for their observed effects, including anti-inflammatory and rejuvenating properties, which contributed to favorable clinical outcomes. CONCLUSION RSCEs show potential as a valuable treatment in dermatology, as evidenced by the positive results across multiple skin conditions and their alignment with existing literature on plant-derived exosomes. This case series emphasizes the need for further randomized and controlled clinical trials to confirm these preliminary findings and expand RSCEs' clinical application in dermatology.
Collapse
Affiliation(s)
| | | | - Jacek Kijowski
- Małopolska Centre of Biotechnology, Stem Cell LaboratoryJagiellonian UniversityKrakówPoland
| |
Collapse
|
49
|
Yue L, Ye P, Zhang Y, Guo R, Xu W, Huang S, Xiu Y, Huang Y, Wang B. An enhanced bioactive chitosan-modified microemulsion for mucosal healing of ulcerative colitis. Int J Biol Macromol 2025; 284:137847. [PMID: 39581424 DOI: 10.1016/j.ijbiomac.2024.137847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/10/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
The intestinal mucus layer plays a crucial role in the systemic absorption of drugs. While penetration through this layer traditionally constitutes a pivotal phase in drug absorption, the approach for treating ulcerative colitis (UC) shifts towards facilitating the direct delivery of drugs to the colon. In this study, we engineered a chitosan-modified microemulsion encapsulated nobiletin (NOB-CS-ME) characterized by small particle dimensions and positive charge specifically, designed to enable targeted delivery. In vitro experiments demonstrated that this NOB-CS-ME effectively became less into the intestinal mucus layer, thus achieving successful escape of the intestinal mucus barrier absorption. After circumventing this barrier, NOB-CS-ME exhibited heightened cellular uptake by colonic epithelial cells, displaying an approximately 1.3-fold increase compared to the unmodified microemulsion. Collectively, these observations imply enhanced drug bioavailability, potentially resulting in more efficacious mucosal healing, providing a promising avenue for natural small-molecule drug delivery in UC treatment.
Collapse
Affiliation(s)
- Lixia Yue
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ping Ye
- Shanghai Institute for Minimally Invasive Therapy, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yi Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Department of Implant Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Ru Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Weihua Xu
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Shaogang Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 501405, China
| | - Yanfeng Xiu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China.
| |
Collapse
|
50
|
Lorite P, Domínguez JN, Palomeque T, Torres MI. Extracellular Vesicles: Advanced Tools for Disease Diagnosis, Monitoring, and Therapies. Int J Mol Sci 2024; 26:189. [PMID: 39796048 PMCID: PMC11720073 DOI: 10.3390/ijms26010189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of membrane-encapsulated vesicles released by cells into the extracellular space. They play a crucial role in intercellular communication by transporting bioactive molecules such as proteins, lipids, and nucleic acids. EVs can be detected in body fluids, including blood plasma, urine, saliva, amniotic fluid, breast milk, and pleural ascites. The complexity and diversity of EVs require a robust and standardized approach. By adhering to standardized protocols and guidelines, researchers can ensure the consistency, purity, and reproducibility of isolated EVs, facilitating their use in diagnostics, therapies, and research. Exosomes and microvesicles represent an exciting frontier in modern medicine, with significant potential to transform the diagnosis and treatment of various diseases with an important role in personalized medicine and precision therapy. The primary objective of this review is to provide an updated analysis of the significance of EVs by highlighting their mechanisms of action and exploring their applications in the diagnosis and treatment of various diseases. Additionally, the review addresses the existing limitations and future potential of EVs, offering practical recommendations to resolve current challenges and enhance their viability for clinical use. This comprehensive approach aims to bridge the gap between EV research and its practical application in healthcare.
Collapse
Affiliation(s)
| | | | | | - María Isabel Torres
- Department of Experimental Biology, Faculty of Health Sciences, University of Jaén, 23071 Jaén, Spain; (P.L.); (J.N.D.); (T.P.)
| |
Collapse
|