1
|
Lee SH, Li Z, Zhang EY, Kim DH, Huang Z, Heo Y, Lee SJ, Kang HW, Burdick JA, Mauck RL, Heo SC. Precision repair of zone-specific meniscal injuries using a tunable extracellular matrix-based hydrogel system. Bioact Mater 2025; 48:400-413. [PMID: 40083776 PMCID: PMC11904587 DOI: 10.1016/j.bioactmat.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 03/16/2025] Open
Abstract
Meniscus injuries present significant therapeutic challenges due to their limited self-healing capacity and the diverse biological and mechanical properties across the tissue. Conventional repair strategies do not replicate the complex zonal characteristics within the meniscus, resulting in suboptimal outcomes. In this study, we introduce an innovative fetal/adult and stiffness-tunable meniscus decellularized extracellular matrix (DEM)-based hydrogel system designed for precision repair of heterogeneous, zonal-dependent meniscus injuries. By synthesizing fetal and adult DEM hydrogels, we identified distinct cellular responses, including that hydrogels with adult meniscus-derived DEM promote more fibrochondrogenic phenotypes. The incorporation of methacrylated hyaluronic acid (MeHA) further refined the mechanical properties and injectability of the DEM-based hydrogels. The combination of fetal and adult DEM with MeHA allowed for precise tuning of stiffness, influencing cell differentiation and closely mimicking native tissue environments. In vivo tests confirmed the biocompatibility of hydrogels and their integration with native meniscus tissues. Furthermore, advanced 3D bioprinting techniques enabled the fabrication of hybrid hydrogels with biomaterial and mechanical gradients, effectively emulating the zonal properties of meniscus tissue and enhancing cell integration. This study represents a significant advance in meniscus tissue engineering, providing a promising platform for customized regenerative therapies across a range of heterogeneous fibrous connective tissues.
Collapse
Affiliation(s)
- Se-Hwan Lee
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Zizhao Li
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Ellen Y. Zhang
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Dong Hwa Kim
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Ziqi Huang
- Biofunctional Materials, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, PR China
| | - Yuna Heo
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Sang Jin Lee
- Biofunctional Materials, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, PR China
| | - Hyun-Wook Kang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Jason A. Burdick
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, United States
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80309, United States
| | - Robert L. Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, United States
- Translational Musculoskeletal Research Center, Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, 19104, United States
| | - Su Chin Heo
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, United States
- Translational Musculoskeletal Research Center, Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, 19104, United States
| |
Collapse
|
2
|
Sharma C, Raza MA, Purohit SD, Pathak P, Gautam S, Corridon PR, Han SS. Cellulose-based 3D printing bio-inks for biomedical applications: A review. Int J Biol Macromol 2025; 305:141174. [PMID: 39984091 DOI: 10.1016/j.ijbiomac.2025.141174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/25/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025]
Abstract
Cellulose is the most ubiquitous polymer found in nature. In recent years, cellulose derivatives of various kinds, such as cellulose esters and ethers, and nanocelluloses, have become popular bioprintable materials used for making bio-inks because of their affordability, biocompatibility, biodegradability, and printability. Nevertheless, the potential uses of nanocellulose and cellulose derivative-based bio-inks have not been thoroughly explored. This review emphasizes advancements in the design of cellulose-based bio-inks for 3D bioprinting of diverse tissues as well as the physicochemical attributes of cellulose derivatives and nanocellulose that make them a viable choice for bio-inks in 3D bioprinting. Additionally, cellulose bio-inks' current benefits and drawbacks in 3D printing are thoroughly examined. Various cross-linking approaches are offered for multicomponent cellulose and nanocellulose-based bio-inks to control the fidelity of the ink and alter the mechanical stiffness in the printed hydrogel construct as a bioactive cue. By emphasizing the interactions involving cells and the matrix, it additionally examines the effect of functional groups and surface charge on nanocellulose on vital cellular functions (including cell survival, adhesion, and proliferation). Thus, this review aims to offer an integrated platform for 3D bioprinting with cellulose-based materials for the biomedical industry.
Collapse
Affiliation(s)
- Chhavi Sharma
- Department of Biotechnology, University Centre for Research and Development, Chandigarh University, Mohali 140413, Punjab, India
| | - Muhammad Asim Raza
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Shiv Dutt Purohit
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
| | - Puneet Pathak
- Agriliv Research Foundation, Chidana, Sonipat, Haryana, India
| | - Sneh Gautam
- Department of Molecular Biology & Genetic Engineering, CBSH, G. B. Pant University of Agriculture & Technology, Pantnagar, India
| | - Peter R Corridon
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea.
| |
Collapse
|
3
|
Kim JS, Nam H, Kim EC, Jeong HJ, Lee SJ. Bioengineered Approaches for Esophageal Regeneration: Advancing Esophageal Cancer Therapy. Bioengineering (Basel) 2025; 12:479. [PMID: 40428100 PMCID: PMC12109178 DOI: 10.3390/bioengineering12050479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/24/2025] [Accepted: 04/29/2025] [Indexed: 05/29/2025] Open
Abstract
Esophageal cancer (EC) is the eighth leading cause of cancer-related deaths globally, largely due to its late-stage diagnosis and aggressive progression. Esophagectomy remains the primary treatment, typically requiring organ-based reconstruction techniques such as gastric pull-up or colonic interposition. However, these reconstruction methods often lead to severe complications, significantly reducing the quality of life of patients. To address these limitations, tissue engineering has emerged as a promising alternative, offering bioengineered patch-type and tubular-type scaffolds designed to restore both structural integrity and functional regeneration. Recent advancements in three-dimensional (3D) biofabrication-including 3D bioprinting, electrospinning, and other cutting-edge techniques-have facilitated the development of patient-specific constructs with improved biocompatibility. Despite significant advancements, critical challenges persist in achieving mechanical durability, multilayered cellular organization, and physiological resilience post-transplantation. Ongoing research continues to address these limitations and enhance clinical applicability. Therefore, this review aims to examine recent advancements in esophageal tissue engineering, with a focus on key biofabrication techniques, preclinical animal models, and the major translational challenges that must be addressed for successful clinical application.
Collapse
Affiliation(s)
- Jae-Seok Kim
- Department of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Republic of Korea; (J.-S.K.); (E.C.K.)
| | - Hyoryung Nam
- Department of Biomedical Engineering, School of Medicine, Daegu Catholic University, 33 Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea;
| | - Eun Chae Kim
- Department of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Republic of Korea; (J.-S.K.); (E.C.K.)
| | - Hun-Jin Jeong
- College of Dental Medicine, Columbia University Irving Medical Center, 630 W. 168th St., VC12-212A, New York, NY 10032, USA
| | - Seung-Jae Lee
- Department of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Republic of Korea; (J.-S.K.); (E.C.K.)
- Division of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Republic of Korea
- MECHABIO Group, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Republic of Korea
- Advanced Bio-Convergence Research Center, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Republic of Korea
| |
Collapse
|
4
|
Jalandhra GK, Srethbhakdi L, Davies J, Nguyen CC, Phan PT, Och Z, Ashok A, Lim KS, Phan HP, Do TN, Lovell NH, Rnjak-Kovacina J. Materials Advances in Devices for Heart Disease Interventions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2420114. [PMID: 40244561 DOI: 10.1002/adma.202420114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/07/2025] [Indexed: 04/18/2025]
Abstract
Heart disease encompasses a range of conditions that affect the heart, including coronary artery disease, arrhythmias, congenital heart defects, heart valve disease, and conditions that affect the heart muscle. Intervention strategies can be categorized according to when they are administered and include: 1) Monitoring cardiac function using sensor technology to inform diagnosis and treatment, 2) Managing symptoms by restoring cardiac output, electrophysiology, and hemodynamics, and often serving as bridge-to-recovery or bridge-to-transplantation strategies, and 3) Repairing damaged tissue, including myocardium and heart valves, when management strategies are insufficient. Each intervention approach and technology require specific material properties to function optimally, relying on materials that support their action and interface with the body, with new technologies increasingly depending on advances in materials science and engineering. This review explores material properties and requirements driving innovation in advanced intervention strategies for heart disease and highlights key examples of recent progress in the field driven by advances in materials research.
Collapse
Affiliation(s)
- Gagan K Jalandhra
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Lauryn Srethbhakdi
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - James Davies
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chi Cong Nguyen
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Phuoc Thien Phan
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Zachary Och
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Aditya Ashok
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Khoon S Lim
- School of Medical Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Hoang-Phuong Phan
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Thanh Nho Do
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nigel H Lovell
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Tyree Institute of Health Engineering (IHealthE), University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jelena Rnjak-Kovacina
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Tyree Institute of Health Engineering (IHealthE), University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
5
|
Xue B, Xu Z, Li L, Guo K, Mi J, Wu H, Li Y, Xie C, Jin J, Xu J, Jiang C, Gu X, Qin M, Jiang Q, Cao Y, Wang W. Hydrogels with programmed spatiotemporal mechanical cues for stem cell-assisted bone regeneration. Nat Commun 2025; 16:3633. [PMID: 40240370 PMCID: PMC12003706 DOI: 10.1038/s41467-025-59016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 04/08/2025] [Indexed: 04/18/2025] Open
Abstract
Hydrogels are extensively utilized in stem cell-based tissue regeneration, providing a supportive environment that facilitates cell survival, differentiation, and integration with surrounding tissues. However, designing hydrogels for regenerating hard tissues like bone presents significant challenges. Here, we introduce macroporous hydrogels with spatiotemporally programmed mechanical properties for stem cell-driven bone regeneration. Using liquid-liquid phase separation and interfacial supramolecular self-assembly of protein fibres, the macroporous structure of hydrogels provide ample space to prevent contact inhibition during proliferation. The rigid protein fibre-coated pore shell provides sustained mechanical cues for guiding osteodifferentiation and protecting against mechanical loads. Temporally, the hydrogel exhibits tunable degradation rates that can synchronize with new tissue deposition to some extent. By integrating localized mechanical heterogeneity, macroporous structures, surface chemistry, and regenerative degradability, we demonstrate the efficacy of these stem cell-encapsulated hydrogels in rabbit and porcine models. This marks a substantial advancement in tailoring the mechanical properties of hydrogels for stem cell-assisted tissue regeneration.
Collapse
Affiliation(s)
- Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Zhengyu Xu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), MOE Key Laboratory of High Performance Polymer Materials and Technology, and State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Lan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing, China
| | - Kaiqiang Guo
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China
| | - Jing Mi
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Haipeng Wu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China
| | - Yiran Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China
| | - Chunmei Xie
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jing Jin
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Juan Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chunping Jiang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Xiaosong Gu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Meng Qin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
- Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing, China.
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), MOE Key Laboratory of High Performance Polymer Materials and Technology, and State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
6
|
Zhang H, Qu P, Liu J, Cheng P, Lei Q. Application of human cardiac organoids in cardiovascular disease research. Front Cell Dev Biol 2025; 13:1564889. [PMID: 40230411 PMCID: PMC11994664 DOI: 10.3389/fcell.2025.1564889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/19/2025] [Indexed: 04/16/2025] Open
Abstract
With the progression of cardiovascular disease (CVD) treatment technologies, conventional animal models face limitations in clinical translation due to interspecies variations. Recently, human cardiac organoids (hCOs) have emerged as an innovative platform for CVD research. This review provides a comprehensive overview of the definition, characteristics, classifications, application and development of hCOs. Furthermore, this review examines the application of hCOs in models of myocardial infarction, heart failure, arrhythmias, and congenital heart diseases, highlighting their significance in replicating disease mechanisms and pathophysiological processes. It also explores their potential utility in drug screening and the development of therapeutic strategies. Although challenges persist regarding technical complexity and the standardization of models, the integration of multi-omics and artificial intelligence (AI) technologies offers a promising avenue for the clinical translation of hCOs.
Collapse
Affiliation(s)
- Hongyan Zhang
- Department of Anesthesiology, Chengdu Wenjiang District People’s Hospital, Chengdu, China
- Department of Anesthesiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Peng Qu
- Institute of Cardiovascular Diseases and Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Liu
- Institute of Cardiovascular Diseases and Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Panke Cheng
- Institute of Cardiovascular Diseases and Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Chengdu, China
| | - Qian Lei
- Department of Anesthesiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
7
|
Akter MZ, Tufail F, Ahmad A, Oh YW, Kim JM, Kim S, Hasan MM, Li L, Lee DW, Kim YS, Lee SJ, Kim HS, Ahn Y, Choi YJ, Yi HG. Harnessing native blueprints for designing bioinks to bioprint functional cardiac tissue. iScience 2025; 28:111882. [PMID: 40177403 PMCID: PMC11964760 DOI: 10.1016/j.isci.2025.111882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Cardiac tissue lacks regenerative capacity, making heart transplantation the primary treatment for end-stage heart failure. Engineered cardiac tissues developed through three-dimensional bioprinting (3DBP) offer a promising alternative. However, reproducing the native structure, cellular diversity, and functionality of cardiac tissue requires advanced cardiac bioinks. Major obstacles in CTE (cardiac tissue engineering) include accurately characterizing bioink properties, replicating the cardiac microenvironment, and achieving precise spatial organization. Optimizing bioink properties to closely mimic the extracellular matrix (ECM) is essential, as deviations may result in pathological effects. This review encompasses the rheological and electromechanical properties of bioinks and the function of the cardiac microenvironment in the design of functional cardiac constructs. Furthermore, it focuses on improving the rheological characteristics, printability, and functionality of bioinks, offering valuable perspectives for developing new bioinks especially designed for CTE.
Collapse
Affiliation(s)
- Mst Zobaida Akter
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Fatima Tufail
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ashfaq Ahmad
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yoon Wha Oh
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jung Min Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seoyeon Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Md Mehedee Hasan
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Longlong Li
- Department of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dong-Weon Lee
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Center for Next-Generation Sensor Research and Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yong Sook Kim
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Su-jin Lee
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju 61469, Republic of Korea
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Hyung-Seok Kim
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Youngkeun Ahn
- Division of Cardiology, Department of Internal Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Yeong-Jin Choi
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea
- Advanced Materials Engineering, Korea National University of Science and Technology (UST), Changwon, Republic of Korea
| | - Hee-Gyeong Yi
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
8
|
Tanvir MAH, Khaleque MA, Lee J, Park JB, Kim GH, Lee HH, Kim YY. Three-Dimensional Bioprinting for Intervertebral Disc Regeneration. J Funct Biomater 2025; 16:105. [PMID: 40137384 PMCID: PMC11943008 DOI: 10.3390/jfb16030105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
The rising demand for organ transplants and the need for precise tissue models have positioned the in vitro biomanufacturing of tissues and organs as a pivotal area in regenerative treatment. Considerable development has been achieved in growing tissue-engineered intervertebral disc (IVD) scaffolds, designed to meet stringent mechanical and biological compatibility criteria. Among the cutting-edge approaches, 3D bioprinting stands out due to its unparalleled capacity to organize biomaterials, bioactive molecules, and living cells with high precision. Despite these advancements, polymer-based scaffolds still encounter limitations in replicating the extracellular matrix (ECM)-like environment, which is fundamental for optimal cellular activities. To overcome these challenges, integrating polymers with hydrogels has been recommended as a promising solution. This combination enables the advancement of porous scaffolds that nurture cell adhesion, proliferation, as well as differentiation. Additionally, bioinks derived from the decellularized extracellular matrix (dECM) have exhibited potential in replicating biologically relevant microenvironments, enhancing cell viability, differentiation, and motility. Hydrogels, whether derived from natural sources involving collagen and alginate or synthesized chemically, are highly valued for their ECM-like properties and superior biocompatibility. This review will explore recent advancements in techniques and technologies for IVD regeneration. Emphasis will be placed on identifying research gaps and proposing strategies to bridge them, with the goal of accelerating the translation of IVDs into clinical applications.
Collapse
Affiliation(s)
- Md Amit Hasan Tanvir
- Department of Orthopedic Surgery, Daejeon St. Mary’s Hospital, The Catholic University of Korea, Seoul 34943, Republic of Korea; (M.A.H.T.); (M.A.K.); (G.-H.K.)
| | - Md Abdul Khaleque
- Department of Orthopedic Surgery, Daejeon St. Mary’s Hospital, The Catholic University of Korea, Seoul 34943, Republic of Korea; (M.A.H.T.); (M.A.K.); (G.-H.K.)
| | - Junhee Lee
- Department of Bionic Machinery, KIMM Institute of AI Robot, Korea Institute of Machinery and Materials, Daejeon 34103, Republic of Korea;
| | - Jong-Beom Park
- Department of Orthopedic Surgery, Uijeongbu Saint Mary’s Hospital, The Catholic University of Korea, Seoul 11765, Republic of Korea;
| | - Ga-Hyun Kim
- Department of Orthopedic Surgery, Daejeon St. Mary’s Hospital, The Catholic University of Korea, Seoul 34943, Republic of Korea; (M.A.H.T.); (M.A.K.); (G.-H.K.)
| | - Hwan-Hee Lee
- Department of Orthopedic Surgery, Daejeon St. Mary’s Hospital, The Catholic University of Korea, Seoul 34943, Republic of Korea; (M.A.H.T.); (M.A.K.); (G.-H.K.)
| | - Young-Yul Kim
- Department of Orthopedic Surgery, Daejeon St. Mary’s Hospital, The Catholic University of Korea, Seoul 34943, Republic of Korea; (M.A.H.T.); (M.A.K.); (G.-H.K.)
| |
Collapse
|
9
|
Banikarimi SP, Mellati A, Abasi M, Soleimani M, Ghiass MA, Ahmadi Tafti SH, Boroumand S, Hasanzadeh E. Cardiac tissue regeneration by microfluidic generated cardiac cell-laden calcium alginate microgels and mesenchymal stem cell extracted exosomes on myocardial infarction model. Int J Biol Macromol 2025; 292:139247. [PMID: 39733869 DOI: 10.1016/j.ijbiomac.2024.139247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/19/2024] [Accepted: 12/25/2024] [Indexed: 12/31/2024]
Abstract
Regenerative medicine is one of the effective approaches for myocardial infarcted (MI) tissue due to the low capacity of heart for regeneration. However, cell therapy with local administration has shown poor cell retention in the targeted area and limited engraftment capacity at the intended location, resulting in inadequate tissue regeneration. The present study involves mesenchymal stem cell-derived exosomes and encapsulated cells in small and injectable calcium alginate microgels by a specialized microfluidic device to decrease inflammation and increase cell retention in the infarcted tissue. The results have shown that our microfluidic system can produce monodisperse cardiac cell-laden alginate microgels within the size range of <100 μm that are easily injectable. Our in vivo findings on the MI rat model demonstrated that the combination of cardiac cell-laden calcium alginate microgels with mesenchymal stem cells derived exosomes resulted in a higher increase in echocardiography, heart-specific gene expressions, and cardiac markers results compared to the other groups. However, the administration of exosomes or cardiac cells separately has shown a small amount of regeneration. Encapsulating cardiac cells of specific sizes along with exosomes produced from mesenchymal stem cells can be potentially applied as an effective method for regenerating the myocardium following infarction.
Collapse
Affiliation(s)
- Seyedeh Parnian Banikarimi
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amir Mellati
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mozhgan Abasi
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Adel Ghiass
- Tissue Engineering Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Hossein Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Safieh Boroumand
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Hasanzadeh
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
10
|
Liu J, Song Q, Yin W, Li C, An N, Le Y, Wang Q, Feng Y, Hu Y, Wang Y. Bioactive scaffolds for tissue engineering: A review of decellularized extracellular matrix applications and innovations. EXPLORATION (BEIJING, CHINA) 2025; 5:20230078. [PMID: 40040827 PMCID: PMC11875452 DOI: 10.1002/exp.20230078] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/12/2024] [Indexed: 03/06/2025]
Abstract
Decellularized extracellular matrix (dECM) offers a three-dimensional, non-immunogenic scaffold, enriched with bioactive components, making it a suitable candidate for tissue regeneration. Although dECM-based scaffolds have been successfully implemented in preclinical and clinical settings within tissue engineering and regenerative medicine, the mechanisms of tissue remodeling and functional restoration are not fully understood. This review critically assesses the state-of-the-art in dECM scaffolds, including decellularization techniques for various tissues, quality control and cross-linking. It highlights the functional properties of dECM components and their latest applications in multiorgan tissue engineering and biomedicine. Additionally, the review addresses current challenges and limitations of decellularized scaffolds and offers perspectives on future directions in the field.
Collapse
Affiliation(s)
- Juan Liu
- Hepato‐Pancreato‐Biliary CenterBeijing Tsinghua Changgung HospitalSchool of Clinical MedicineTsinghua UniversityBeijingChina
- Key Laboratory of Digital Intelligence HepatologyMinistry of EducationSchool of Clinical MedicineTsinghua UniversityBeijingChina
| | - Qingru Song
- Clinical Translational Science CenterBeijing Tsinghua Changgung HospitalTsinghua UniversityBeijingChina
| | - Wenzhen Yin
- Clinical Translational Science CenterBeijing Tsinghua Changgung HospitalTsinghua UniversityBeijingChina
| | - Chen Li
- Hepato‐Pancreato‐Biliary CenterBeijing Tsinghua Changgung HospitalSchool of Clinical MedicineTsinghua UniversityBeijingChina
- College of Chemistry and Life SciencesBeijing University of TechnologyBeijingChina
| | - Ni An
- Clinical Translational Science CenterBeijing Tsinghua Changgung HospitalTsinghua UniversityBeijingChina
| | - Yinpeng Le
- Hepato‐Pancreato‐Biliary CenterBeijing Tsinghua Changgung HospitalSchool of Clinical MedicineTsinghua UniversityBeijingChina
- Institute of Smart Biomedical MaterialsSchool of Materials Science and EngineeringZhejiang Sci‐Tech UniversityHangzhouPeople's Republic of China
| | - Qi Wang
- Hepato‐Pancreato‐Biliary CenterBeijing Tsinghua Changgung HospitalSchool of Clinical MedicineTsinghua UniversityBeijingChina
- Department of Hepatobiliary and Pancreatic SurgeryThe First Hospital of Jilin UniversityJilin UniversityChangchunChina
| | - Yutian Feng
- Hepato‐Pancreato‐Biliary CenterBeijing Tsinghua Changgung HospitalSchool of Clinical MedicineTsinghua UniversityBeijingChina
| | - Yuelei Hu
- Hepato‐Pancreato‐Biliary CenterBeijing Tsinghua Changgung HospitalSchool of Clinical MedicineTsinghua UniversityBeijingChina
- Department of Hepatobiliary and Pancreatic SurgeryThe First Hospital of Jilin UniversityJilin UniversityChangchunChina
| | - Yunfang Wang
- Hepato‐Pancreato‐Biliary CenterBeijing Tsinghua Changgung HospitalSchool of Clinical MedicineTsinghua UniversityBeijingChina
- Key Laboratory of Digital Intelligence HepatologyMinistry of EducationSchool of Clinical MedicineTsinghua UniversityBeijingChina
- Clinical Translational Science CenterBeijing Tsinghua Changgung HospitalTsinghua UniversityBeijingChina
| |
Collapse
|
11
|
Wang Z, Chen J, Wang J, Xu M, Yang H, Yang H, Zhao C, Sun P, Ji H, Liu J, Shan J, Tian J, Li S, Yu D, Wang C, Yu X, Ding S, Xu W, Zhang Y, Leng X, R-Porter T. MSCs biomimetic ultrasonic phase change nanoparticles promotes cardiac functional recovery after acute myocardial infarction. Biomaterials 2025; 313:122775. [PMID: 39241549 DOI: 10.1016/j.biomaterials.2024.122775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 09/09/2024]
Abstract
Acute Myocardial Infarction (AMI) has seen rising cases, particularly in younger people, leading to public health concerns. Standard treatments, like coronary artery recanalization, often don't fully repair the heart's microvasculature, risking heart failure. Advances show that Mesenchymal Stromal Cells (MSCs) transplantation improves cardiac function after AMI, but the harsh microenvironment post-AMI impacts cell survival and therapeutic results. MSCs aid heart repair via their membrane proteins and paracrine extracellular vesicles that carry microRNA-125b, which regulates multiple targets, preventing cardiomyocyte death, limiting fibroblast growth, and combating myocardial remodeling after AMI. This study introduces ultrasound-responsive phase-change bionic nanoparticles, leveraging MSCs' natural properties. These particles contain MSC membrane and microRNA-125b, with added macrophage membrane for stability. Using Ultrasound Targeted Microbubble Destruction (UTMD), this method targets the delivery of MSC membrane proteins and microRNA-125b to AMI's inflamed areas. This aims to enhance cardiac function recovery and provide precise, targeted AMI therapy.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province (International Cooperation), Harbin, 150086, China; Key Laboratories of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, 150086, China
| | - Jianfeng Chen
- Laboratory Animal Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Jiaxu Wang
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province (International Cooperation), Harbin, 150086, China; Key Laboratories of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, 150086, China
| | - Mingyuan Xu
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province (International Cooperation), Harbin, 150086, China
| | - Haichao Yang
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province (International Cooperation), Harbin, 150086, China; Key Laboratories of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, 150086, China
| | - Haobo Yang
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province (International Cooperation), Harbin, 150086, China; Key Laboratories of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, 150086, China
| | - Chen Zhao
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province (International Cooperation), Harbin, 150086, China
| | - Ping Sun
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province (International Cooperation), Harbin, 150086, China; Key Laboratories of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, 150086, China
| | - Huan Ji
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Jinhong Liu
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province (International Cooperation), Harbin, 150086, China
| | - Jiaxin Shan
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province (International Cooperation), Harbin, 150086, China
| | - Jiawei Tian
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province (International Cooperation), Harbin, 150086, China
| | - Shouqiang Li
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province (International Cooperation), Harbin, 150086, China
| | - Dandan Yu
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Chao Wang
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Xinhong Yu
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Shuo Ding
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Wenjun Xu
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Ying Zhang
- Ultrasound Imaging Department of the Second Affiliated Hospital of Harbin Medical University, and Pharmacology Department of Pharmacy College of Harbin Medical University, Harbin, 150081, China.
| | - Xiaoping Leng
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province (International Cooperation), Harbin, 150086, China.
| | - Thomas R-Porter
- Department of Cardiology, University of Nebraska Medical Center, Omaha, NE, NE 68198, USA
| |
Collapse
|
12
|
Bhullar SK, Thingnam R, Kirshenbaum E, Nematisouldaragh D, Crandall M, Willerth SM, Ramkrishna S, Rabinovich-Nikitin I, Kirshenbaum LA. Living Nanofiber-Enabled Cardiac Patches for Myocardial Injury. JACC Basic Transl Sci 2025; 10:227-240. [PMID: 40131159 PMCID: PMC11897462 DOI: 10.1016/j.jacbts.2024.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 03/26/2025]
Abstract
Because the adult heart has only minimal regenerative capacity, its inability to induce regeneration is well-known in patients with myocardial infarction. However, based on multidisciplinary approaches, it is possible to restore myocardial capability with regenerative medicine via living cardiac patches seeded with therapeutic ingredients ranging from multiple cell types to bioactive molecules, including growth factors, microRNA, and extracellular vesicles to the affected site. Biomaterials, natural and/or synthesized polymers, or in vivo sources such as collagen, fibrin, and decellularized extracellular matrix are used to form these cardiac patches. Herein, we review various techniques where seeded cells and bioactive agents are incorporated within porous nanofibers to create functional cardiac patches that provide myocardial extracellular matrix-like features, mechanical support, and a large surface-to-volume ratio for promoting cellular metabolism as well as compensation for the loss of cardiomyocytes in the infarcted region. We summarize recent advances through electrospinning-generated nanofibers of synthetic and/or natural polymers combined with biological material to create cardiac patches to repair and improve the function of infarcted myocardium. As tailoring designs on cardiac patches have been shown to exhibit deformation mechanisms and enhanced myocardial tissue regeneration, significant roles of various patterns and associated parameters are also discussed. The enhanced delivery of therapeutics offered by tailored nanofiber cardiac patches to treat myocardial infarction and overcome challenges of existing cardiac regeneration therapies such as low stability, short half-lifetime, and delivery methods may promote the potential for their clinical impact on myocardial regeneration.
Collapse
Affiliation(s)
- Sukhwinder K Bhullar
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Department of Pharmacology and Therapeutics, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Raneeta Thingnam
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Department of Pharmacology and Therapeutics, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Eryn Kirshenbaum
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Department of Pharmacology and Therapeutics, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Darya Nematisouldaragh
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Department of Pharmacology and Therapeutics, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Molly Crandall
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Department of Pharmacology and Therapeutics, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Stephanie M Willerth
- Division of Medical Sciences, Centre for Advanced Materials and Technology, University of Victoria, Victoria, British Columbia, Canada
| | - Seeram Ramkrishna
- National University of Singapore, Nanoscience and Nanotechnology Initiative, Engineering Drive, Singapore
| | - Inna Rabinovich-Nikitin
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Department of Pharmacology and Therapeutics, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lorrie A Kirshenbaum
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Department of Pharmacology and Therapeutics, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Pharmacology and Therapeutics, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
13
|
Heo S, Noh M, Kim Y, Park S. Stem Cell-Laden Engineered Patch: Advances and Applications in Tissue Regeneration. ACS APPLIED BIO MATERIALS 2025; 8:62-87. [PMID: 39701826 DOI: 10.1021/acsabm.4c01427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Stem cell-based therapies are emerging as significant approaches in tissue engineering and regenerative medicine, applicable to both fundamental scientific research and clinical practice. Despite remarkable results in clinical studies, challenges such as poor standardization of graft tissues, limited sources, and reduced functionality have hindered the effectiveness of these therapies. In this review, we summarize the engineering approaches involved in fabricating stem cell assisted patches and the substantial strategies for designing stem cell-laden engineered patches (SCP) to complement the existing stem cell-based therapies. We then outline the potential applications of SCP in advancing tissue regeneration and regenerative medicine. By combining living stem cells with engineered patches, SCP can enhance the functions of both components, particularly for tissue engineering applications. Finally, we addressed current challenges, such as ethical considerations, high costs, and regulatory hurdles and proposed future research directions to overcome these barriers.
Collapse
Affiliation(s)
- Seyeong Heo
- Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang 50463, Republic of Korea
| | - Minhyeok Noh
- Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang 50463, Republic of Korea
| | - Yeonseo Kim
- Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang 50463, Republic of Korea
| | - Sunho Park
- Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
14
|
Kim M, Hwang DG, Jang J. Bioprinting approaches in cardiac tissue engineering to reproduce blood-pumping heart function. iScience 2025; 28:111664. [PMID: 39868032 PMCID: PMC11763539 DOI: 10.1016/j.isci.2024.111664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
The heart, with its complex structural and functional characteristics, plays a critical role in sustaining life by pumping blood throughout the entire body to supply nutrients and oxygen. Engineered heart tissues have been introduced to reproduce heart functions to understand the pathophysiological properties of the heart and to test and develop potential therapeutics. Although numerous studies have been conducted in various fields to increase the functionality of heart tissue to be similar to reality, there are still many difficulties in reproducing the blood-pumping function of the heart. In this review, we discuss advancements in cells, biomaterials, and biofabrication in cardiac tissue engineering to achieve cardiac models that closely mimic the pumping function. Moreover, we provide insight into future directions by proposing future perspectives to overcome remaining challenges, such as scaling up and biomimetic patterning of blood vessels and nerves through bioprinting.
Collapse
Affiliation(s)
- Minji Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Dong Gyu Hwang
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| |
Collapse
|
15
|
Brouki Milan P, Masoumi F, Biazar E, Zare Jalise S, Mehrabi A. Exploiting the Potential of Decellularized Extracellular Matrix (ECM) in Tissue Engineering: A Review Study. Macromol Biosci 2025; 25:e2400322. [PMID: 39412772 DOI: 10.1002/mabi.202400322] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/03/2024] [Indexed: 01/14/2025]
Abstract
While significant progress has been made in creating polymeric structures for tissue engineering, the therapeutic application of these scaffolds remains challenging owing to the intricate nature of replicating the conditions of native organs and tissues. The use of human-derived biomaterials for therapeutic purposes closely imitates the properties of natural tissue, thereby assisting in tissue regeneration. Decellularized extracellular matrix (dECM) scaffolds derived from natural tissues have become popular because of their unique biomimetic properties. These dECM scaffolds can enhance the body's ability to heal itself or be used to generate new tissues for restoration, expanding beyond traditional tissue transfers and transplants. Enhanced knowledge of how ECM scaffold materials affect the microenvironment at the injury site is expected to improve clinical outcomes. In this review, recent advancements in dECM scaffolds are explored and relevant perspectives are offered, highlighting the development and application of these scaffolds in tissue engineering for various organs, such as the skin, nerve, bone, heart, liver, lung, and kidney.
Collapse
Affiliation(s)
- Peiman Brouki Milan
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 144-961-4535, Iran
| | - Farimah Masoumi
- School of Medicine, Tonekabon Branch, Islamic Azad University, Tonekabon, 468-416-1167, Iran
| | - Esmaeil Biazar
- Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, 468-416-1167, Iran
| | - Saeedeh Zare Jalise
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, 371-364-9373, Iran
| | - Arezou Mehrabi
- School of Medicine, Tonekabon Branch, Islamic Azad University, Tonekabon, 468-416-1167, Iran
| |
Collapse
|
16
|
Jiang Z, Jin B, Liang Z, Wang Y, Ren S, Huang Y, Li C, Sun H, Li Y, Liu L, Li N, Wang J, Cui Z, Huang P, Yang H, Mao Y, Ye H. Liver bioprinting within a novel support medium with functionalized spheroids, hepatic vein structures, and enhanced post-transplantation vascularization. Biomaterials 2024; 311:122681. [PMID: 38944968 DOI: 10.1016/j.biomaterials.2024.122681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/28/2024] [Accepted: 06/23/2024] [Indexed: 07/02/2024]
Abstract
Cell-laden bioprinting is a promising biofabrication strategy for regenerating bioactive transplants to address organ donor shortages. However, there has been little success in reproducing transplantable artificial organs with multiple distinctive cell types and physiologically relevant architecture. In this study, an omnidirectional printing embedded network (OPEN) is presented as a support medium for embedded 3D printing. The medium is state-of-the-art due to its one-step preparation, fast removal, and versatile ink compatibility. To test the feasibility of OPEN, exceptional primary mouse hepatocytes (PMHs) and endothelial cell line-C166, were used to print hepatospheroid-encapsulated-artificial livers (HEALs) with vein structures following predesigned anatomy-based printing paths in OPEN. PMHs self-organized into hepatocyte spheroids within the ink matrix, whereas the entire cross-linked structure remained intact for a minimum of ten days of cultivation. Cultivated HEALs maintained mature hepatic functions and marker gene expression at a higher level than conventional 2D and 3D conditions in vitro. HEALs with C166-laden vein structures promoted endogenous neovascularization in vivo compared with hepatospheroid-only liver prints within two weeks of transplantation. Collectively, the proposed platform enables the manufacture of bioactive tissues or organs resembling anatomical architecture, and has broad implications for liver function replacement in clinical applications.
Collapse
Affiliation(s)
- Zhuoran Jiang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China; Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, UK
| | - Bao Jin
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Zhu Liang
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK; Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Yinhan Wang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Shuai Ren
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, UK
| | - Yongfa Huang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Changcan Li
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Hang Sun
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Yunzhu Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Li Liu
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, UK
| | - Nianlin Li
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, UK
| | - Jinzhuo Wang
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, UK
| | - Zhanfeng Cui
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, UK; The Oxford Suzhou Centre for Advanced Research (OSCAR), University of Oxford, Suzhou, 215123, China
| | - Pengyu Huang
- Engineering Research Center of Pulmonary and Critical Care Technology and Device (MOE of China), Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| | - Huayu Yang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China.
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China.
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, UK; The Oxford Suzhou Centre for Advanced Research (OSCAR), University of Oxford, Suzhou, 215123, China.
| |
Collapse
|
17
|
Wu Y, Song P, Wang M, Liu H, Jing Y, Su J. Extracellular derivatives for bone metabolism. J Adv Res 2024; 66:329-347. [PMID: 38218580 PMCID: PMC11674789 DOI: 10.1016/j.jare.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Bone metabolism can maintain the normal homeostasis and function of bone tissue. Once the bone metabolism balance is broken, it will cause osteoporosis, osteoarthritis, bone defects, bone tumors, or other bone diseases. However, such orthopedic diseases still have many limitations in clinical treatment, such as drug restrictions, drug tolerance, drug side effects, and implant rejection. AIM OF REVIEW In complex bone therapy and bone regeneration, extracellular derivatives have become a promising research focus to solve the problems of bone metabolic diseases. These derivatives, which include components such as extracellular matrix, growth factors, and extracellular vesicles, have significant therapeutic potential. It has the advantages of good biocompatibility, low immune response, and dynamic demand for bone tissue. The purpose of this review is to provide a comprehensive perspective on extracellular derivatives for bone metabolism and elucidate the intrinsic properties and versatility of extracellular derivatives. Further discussion of them as innovative advanced orthopedic materials for improving the effectiveness of bone therapy and regeneration processes. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, we first listed the types and functions of three extracellular derivatives. Then, we discussed the effects of extracellular derivatives of different cell sources on bone metabolism. Subsequently, we collected applications of extracellular derivatives in the treatment of bone metabolic diseases and summarized the advantages and challenges of extracellular derivatives in clinical applications. Finally, we prospected the extracellular derivatives in novel orthopedic materials and clinical applications. We hope that the comprehensive understanding of extracellular derivatives in bone metabolism will provide new solutions to bone diseases.
Collapse
Affiliation(s)
- Yan Wu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Peiran Song
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Miaomiao Wang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Department of Rehabilitation Medicine, Shanghai Zhongye Hospital, Shanghai 200941, China
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
18
|
Tabatabai TS, Salehi M, Rezakhani L, Arabpour Z, Djalilian AR, Alizadeh M. Decellularization of various tissues and organs through chemical methods. Tissue Cell 2024; 91:102573. [PMID: 39393204 PMCID: PMC11993266 DOI: 10.1016/j.tice.2024.102573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024]
Abstract
Due to the increase in demand for donor organs and tissues during the past 20 years, new approaches have been created. These methods include, for example, tissue engineering in vitro and the production of regenerative biomaterials for transplantation. Applying the natural extracellular matrix (ECM) as a bioactive biomaterial for clinical applications is a unique approach known as decellularization technology. Decellularization is the process of eliminating cells from an extracellular matrix while preserving its natural components including its structural and functional proteins and glycosaminoglycan. This can be achieved by physical, chemical, or biological processes. A naturally formed three-dimensional structure with a biocompatible and regenerative structure is the result of the decellularization process. Decreasing the biological factors and antigens at the transplant site reduces the risk of adverse effects including inflammatory responses and immunological rejection. Regenerative medicine and tissue engineering applications can benefit from the use of decellularization, a promising approach that provides a biomaterial that preserves its extracellular matrix.
Collapse
Affiliation(s)
- Tayebeh Sadat Tabatabai
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Salehi
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh Arabpour
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL 60612, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL 60612, USA
| | - Morteza Alizadeh
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
19
|
Zhou X, Yu X, You T, Zhao B, Dong L, Huang C, Zhou X, Xing M, Qian W, Luo G. 3D Printing-Based Hydrogel Dressings for Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404580. [PMID: 39552255 DOI: 10.1002/advs.202404580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/21/2024] [Indexed: 11/19/2024]
Abstract
Skin wounds have become an important issue that affects human health and burdens global medical care. Hydrogel materials similar to the natural extracellular matrix (ECM) are one of the best candidates for ideal wound dressings and the most feasible choices for printing inks. Distinct from hydrogels made by traditional technologies, which lack bionic and mechanical properties, 3D printing can promptly and accurately create hydrogels with complex bioactive structures and the potential to promote tissue regeneration and wound healing. Herein, a comprehensive review of multi-functional 3D printing-based hydrogel dressings for wound healing is presented. The review first summarizes the 3D printing techniques for wound hydrogel dressings, including photo-curing, extrusion, inkjet, and laser-assisted 3D printing. Then, the properties and design approaches of a series of bioinks composed of natural, synthetic, and composite polymers for 3D printing wound hydrogel dressings are described. Thereafter, the application of multi-functional 3D printing-based hydrogel dressings in a variety of wound environments is discussed in depth, including hemostasis, anti-inflammation, antibacterial, skin appendage regeneration, intelligent monitoring, and machine learning-assisted therapy. Finally, the challenges and prospects of 3D printing-based hydrogel dressings for wound healing are presented.
Collapse
Affiliation(s)
- Xuan Zhou
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Xunzhou Yu
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Tingting You
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Baohua Zhao
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Lanlan Dong
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Can Huang
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Xiaoqing Zhou
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Wei Qian
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| |
Collapse
|
20
|
Arıcı Ş, Kamali AR, Ege D. CMC/Gel/GO 3D-printed cardiac patches: GO and CMC improve flexibility and promote H9C2 cell proliferation, while EDC/NHS enhances stability. Biofabrication 2024; 17:015025. [PMID: 39496201 DOI: 10.1088/1758-5090/ad8e87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/04/2024] [Indexed: 11/06/2024]
Abstract
In this research, carboxymethyl cellulose (CMC)/gelatin (Gel)/graphene oxide (GO)-based scaffolds were produced by using extrusion-based 3D printing for cardiac tissue regeneration. Rheological studies were conducted to evaluate the printability of CMC/Gel/GO inks, which revealed that CMC increased viscosity and enhanced printability. The 3D-printed cardiac patches were crosslinked with N-(3-dimethylaminopropyl)-n'-ethylcarbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS) (100:20 mM, 50:10 mM, 25:5 mM) and then characterized by mechanical analysis, electrical conductivity testing, contact angle measurements and degradation studies. Subsequently, cell culture studies were conducted to evaluate the viability of H9C2 cardiomyoblast cells by using the Alamar Blue assay and fluorescence imaging. A high concentration of EDC/NHS (100:20 mM) led to the stability of the patches; however, it drastically reduced the flexibility of the scaffolds. Conversely, a concentration of 25:5 mM resulted in flexible but unstable scaffolds in phosphate buffer saline solution. The suitable EDC/NHS concentration was found to be 50:10 mM, as it produced flexible, stable, and stiff cardiac scaffolds with high ultimate tensile strength. Mechanical characterization revealed that % strain at break of C15/G7.5/GO1 exhibited a remarkable increase of 61.03% compared to C15/G7.5 samples. The improvement of flexibility was attributed to the hydrogen bonding between CMC, Gel and GO. The electrical conductivity of 3D printed CMC/Gel/GO cardiac patches was 7.0 × 10-3S cm-1, demonstrating suitability for mimicking the desired electrical conductivity of human myocardium. The incorporation of 1 wt% of GO and addition of CMC concentration from 7.5 wt% to 15 wt% significantly enhanced relative % cell viability. Overall, although this research is at its infancy, CMC/Gel/GO cardiac patches have potential to improve the physiological function of cardiac tissue.
Collapse
Affiliation(s)
- Şule Arıcı
- Institute of Biomedical Engineering, Boğaziçi University, Rasathane Cd. Kandilli Campus, Kandilli Mah., 34684 Istanbul, Turkey
| | - Ali Reza Kamali
- Energy and Environmental Materials Research Centre (E2MC), School of Metallurgy, Northeastern University, 110819 Shenyang, People's Republic of China
| | - Duygu Ege
- Institute of Biomedical Engineering, Boğaziçi University, Rasathane Cd. Kandilli Campus, Kandilli Mah., 34684 Istanbul, Turkey
| |
Collapse
|
21
|
Inal MS, Avci H, Hassan S, Darcan C, Shin SR, Akpek A. Advances in xenogeneic donor decellularized organs: A review on studies with sheep and porcine-derived heart valves. Bioeng Transl Med 2024; 9:e10695. [PMID: 39545084 PMCID: PMC11558188 DOI: 10.1002/btm2.10695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/31/2024] [Accepted: 06/24/2024] [Indexed: 11/17/2024] Open
Abstract
Heart valve replacement surgeries are performed on patients suffering from abnormal heart valve function. In these operations, the problematic tissue is replaced with mechanical valves or with bioprosthetics that are being developed. The thrombotic effect of mechanical valves, reflecting the need for lifelong use of anticoagulation drugs, and the short-lived nature of biological valves make these two types of valves problematic. In addition, they cannot adapt to the somatic growth of young patients. Although decellularized scaffolds have shown some promise, a successful translation has so far evaded. Although decellularized porcine xenografts have been extensively studied in the literature, they have several disadvantages, such as a propensity for calcification in the implant model, a risk of porcine endogenous retrovirus (PERV) infection, and a high xenoantigen density. As seen in clinical data, it is clear that there are biocompatibility problems in almost all studies. However, since decellularized sheep heart valves have not been tried in the clinic, a large data pool could not be established. This review compares and contrasts decellularized porcine and sheep xenografts for heart valve tissue engineering. It reveals that decellularized sheep heart valves can be an alternative to pigs in terms of biocompatibility. In addition, it highlights the potential advantages of bioinks derived from the decellularized extracellular matrix in 3D bioprinting technology, emphasizing that they can be a new alternative for the application. We also outline the future prospects of using sheep xenografts for heart valve tissue engineering.
Collapse
Affiliation(s)
- Muslum Suleyman Inal
- Department of Molecular Biology and GeneticsBilecik Seyh Edebali UniversityBilecikTurkey
| | - Huseyin Avci
- Translational Medicine Research and Clinical Center, Cellular Therapy and Stem Cell Production Application and Research CenterEskisehir Osmangazi UniversityTurkey
| | - Shabir Hassan
- Department of BiologyKhalifa UniversityAbu DhabiUnited Arab Emirates
| | - Cihan Darcan
- Department of Molecular Biology and GeneticsBilecik Seyh Edebali UniversityBilecikTurkey
| | - Su Ryon Shin
- Harvard Medical SchoolBrigham and Women's HospitalBostonMassachusettsUSA
| | - Ali Akpek
- Department of Biomedical EngineeringYildiz Technical UniversityTurkey
| |
Collapse
|
22
|
Wang X, Zhang D, Singh YP, Yeo M, Deng G, Lai J, Chen F, Ozbolat IT, Yu Y. Progress in Organ Bioprinting for Regenerative Medicine. ENGINEERING 2024; 42:121-142. [DOI: 10.1016/j.eng.2024.04.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
23
|
Hwang B, Korsnick L, Shen M, Jin L, Singh Y, Abdalla M, Bauser-Heaton H, Serpooshan V. FSTL-1 loaded 3D bioprinted vascular patch regenerates the ischemic heart tissue. iScience 2024; 27:110770. [PMID: 39398249 PMCID: PMC11466656 DOI: 10.1016/j.isci.2024.110770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/07/2024] [Accepted: 08/15/2024] [Indexed: 10/15/2024] Open
Abstract
Cardiac patch strategies are developed as a promising approach to regenerate the injured heart after myocardial infarction (MI). This study integrated 3D bioprinting and cardioprotective paracrine signaling to fabricate vascular patch devices containing endothelial cells (ECs) and the regenerative follistatin-like 1 (FSTL1) peptide. Engineered patch supported the 3D culture of ECs in both static and dynamic culture, forming a uniform endothelium on the printed channels. Implantation of vascular patch onto a rat model of acute MI resulted in significant reduction of scar formation, left ventricle dilation, and wall thinning, as well as enhanced ejection fraction. Furthermore, increased vascularization and proliferation of cardiomyocytes were observed in hearts treated with patches. These findings highlight the remarkable capacity of 3D bioprinted vascular patch to augment the endogenous regenerative capacity of mammalian heart, together with the exogenous cardioprotective function, to serve as a robust therapeutic device to treat acute MI.
Collapse
Affiliation(s)
- Boeun Hwang
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, USA
| | - Lauren Korsnick
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, USA
| | - Ming Shen
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Linqi Jin
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, USA
| | - Yamini Singh
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, USA
| | - Mostafa Abdalla
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, USA
| | - Holly Bauser-Heaton
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children’s Healthcare of Atlanta, Atlanta, GA, USA
- Sibley Heart Center at Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Vahid Serpooshan
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children’s Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
24
|
Li C, An N, Song Q, Hu Y, Yin W, Wang Q, Le Y, Pan W, Yan X, Wang Y, Liu J. Enhancing organoid culture: harnessing the potential of decellularized extracellular matrix hydrogels for mimicking microenvironments. J Biomed Sci 2024; 31:96. [PMID: 39334251 PMCID: PMC11429032 DOI: 10.1186/s12929-024-01086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Over the past decade, organoids have emerged as a prevalent and promising research tool, mirroring the physiological architecture of the human body. However, as the field advances, the traditional use of animal or tumor-derived extracellular matrix (ECM) as scaffolds has become increasingly inadequate. This shift has led to a focus on developing synthetic scaffolds, particularly hydrogels, that more accurately mimic three-dimensional (3D) tissue structures and dynamics in vitro. The ECM-cell interaction is crucial for organoid growth, necessitating hydrogels that meet organoid-specific requirements through modifiable physical and compositional properties. Advanced composite hydrogels have been engineered to more effectively replicate in vivo conditions, offering a more accurate representation of human organs compared to traditional matrices. This review explores the evolution and current uses of decellularized ECM scaffolds, emphasizing the application of decellularized ECM hydrogels in organoid culture. It also explores the fabrication of composite hydrogels and the prospects for their future use in organoid systems.
Collapse
Affiliation(s)
- Chen Li
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
| | - Ni An
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Clinical Translational Science Center, Tsinghua University, Beijing, 102218, China
| | - Qingru Song
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Clinical Translational Science Center, Tsinghua University, Beijing, 102218, China
| | - Yuelei Hu
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China
| | - Wenzhen Yin
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Clinical Translational Science Center, Tsinghua University, Beijing, 102218, China
| | - Qi Wang
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China
| | - Yinpeng Le
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
- School of Materials Science and Engineering, Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wenting Pan
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
| | - Xinlong Yan
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Yunfang Wang
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China.
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Clinical Translational Science Center, Tsinghua University, Beijing, 102218, China.
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China.
| | - Juan Liu
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China.
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
25
|
Heo SY, Kim TH, Kim SC, Oh GW, Heo SJ, Jung WK. Therapeutic Effect of Decellularized Extracellular Matrix from Fish Skin for Accelerating Skin Regeneration. Mar Drugs 2024; 22:437. [PMID: 39452845 PMCID: PMC11509389 DOI: 10.3390/md22100437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
A cellular matrix derived from natural tissue functions as a highly biocompatible and versatile material for wound healing application. It provides a complex and highly organized environment with biological molecules and physical stimuli. Recently, various kinds of tissue/organ decellularized extracellular matrixes (dECMs) from bovine and porcine have been used as biomedical applications to support tissue regeneration but inherit religious restrictions and the risk of disease transmission to humans. Marine fish-derived dECMs are seen as attractive alternatives due to their similarity to mammalian physiology, reduced biological risks, and fewer religious restrictions. The aim of this study was to derive a decellularized matrix from the olive flounder (Paralichthys olivaceus) skin and evaluate its suitability as a wound healing application. Olive flounder skin was treated with a series of chemical treatments to remove cellular components. Decellularized fish skin (dFS) was confirmed to be successful in decellularization by evaluating the DNA content (2.84%). The dFS was characterized and evaluated in vivo to assess its biological activities. The mouse wound defect model was used to evaluate the in vivo performance of the dFS compared with that of the decellularized porcine skin (dPS). The resultant dFS was shown to enhance wound healing compared with the no-treatment group and dPS. This study suggests that dFS has potential for skin regeneration application.
Collapse
Affiliation(s)
- Seong-Yeong Heo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (S.-Y.H.)
- Department of Marine Technology & Convergence Engineering (Marine Biotechnology), University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Tae-Hee Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
| | - Se-Chang Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
| | - Gun-Woo Oh
- National Marine Biodiversity Institute of Korea (MABIK), Seochun 33662, Republic of Korea
| | - Soo-Jin Heo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (S.-Y.H.)
- Department of Marine Technology & Convergence Engineering (Marine Biotechnology), University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Won-Kyo Jung
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
26
|
Watanabe T, Hatayama N, Guo M, Yuhara S, Shinoka T. Bridging the Gap: Advances and Challenges in Heart Regeneration from In Vitro to In Vivo Applications. Bioengineering (Basel) 2024; 11:954. [PMID: 39451329 PMCID: PMC11505552 DOI: 10.3390/bioengineering11100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 10/26/2024] Open
Abstract
Cardiovascular diseases, particularly ischemic heart disease, area leading cause of morbidity and mortality worldwide. Myocardial infarction (MI) results in extensive cardiomyocyte loss, inflammation, extracellular matrix (ECM) degradation, fibrosis, and ultimately, adverse ventricular remodeling associated with impaired heart function. While heart transplantation is the only definitive treatment for end-stage heart failure, donor organ scarcity necessitates the development of alternative therapies. In such cases, methods to promote endogenous tissue regeneration by stimulating growth factor secretion and vascular formation alone are insufficient. Techniques for the creation and transplantation of viable tissues are therefore highly sought after. Approaches to cardiac regeneration range from stem cell injections to epicardial patches and interposition grafts. While numerous preclinical trials have demonstrated the positive effects of tissue transplantation on vasculogenesis and functional recovery, long-term graft survival in large animal models is rare. Adequate vascularization is essential for the survival of transplanted tissues, yet pre-formed microvasculature often fails to achieve sufficient engraftment. Recent studies report success in enhancing cell survival rates in vitro via tissue perfusion. However, the transition of these techniques to in vivo models remains challenging, especially in large animals. This review aims to highlight the evolution of cardiac patch and stem cell therapies for the treatment of cardiovascular disease, identify discrepancies between in vitro and in vivo studies, and discuss critical factors for establishing effective myocardial tissue regeneration in vivo.
Collapse
Affiliation(s)
- Tatsuya Watanabe
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.W.); (M.G.); (S.Y.)
| | - Naoyuki Hatayama
- Department of Anatomy, Aichi Medical University, Nagakute 480-1195, Japan;
| | - Marissa Guo
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.W.); (M.G.); (S.Y.)
- Department of Surgery, Ohio State University, Columbus, OH 43210, USA
| | - Satoshi Yuhara
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.W.); (M.G.); (S.Y.)
| | - Toshiharu Shinoka
- Department of Surgery, Ohio State University, Columbus, OH 43210, USA
- Department of Cardiothoracic Surgery, The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| |
Collapse
|
27
|
Lee SH, Li Z, Zhang EY, Kim DH, Huang Z, Lee SJ, Kang HW, Burdick JA, Mauck RL, Heo SC. Precision Repair of Zone-Specific Meniscal Injuries Using a Tunable Extracellular Matrix-Based Hydrogel System. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612723. [PMID: 39345590 PMCID: PMC11429709 DOI: 10.1101/2024.09.12.612723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Meniscus injuries present significant therapeutic challenges due to their limited self-healing capacity and diverse biological and mechanical properties across meniscal tissue. Conventional repair strategies neglect to replicate the complex zonal characteristics within the meniscus, resulting in suboptimal outcomes. In this study, we introduce an innovative, age- and stiffness-tunable meniscus decellularized extracellular matrix (DEM)-based hydrogel system designed for precision repair of heterogeneous, zonal-dependent meniscus injuries. By synthesizing age-dependent DEM hydrogels, we identified distinct cellular responses: fetal bovine meniscus-derived DEM promoted chondrogenic differentiation, while adult meniscus-derived DEM supported fibrochondrogenic phenotypes. The incorporation of methacrylate hyaluronic acid (MeHA) further refined the mechanical properties and injectability of the DEM-based hydrogels. The combination of age-dependent DEM with MeHA allowed for precise stiffness tuning, influencing cell differentiation and closely mimicking native tissue environments. In vivo tests confirmed the biocompatibility of hydrogels and their integration with native meniscus tissues. Furthermore, advanced 3D bioprinting techniques enabled the fabrication of hybrid hydrogels with biomaterial and mechanical gradients, effectively emulating the zonal properties of meniscus tissue and enhancing cell integration. This study represents a significant advancement in meniscus tissue engineering, providing a promising platform for customized regenerative therapies across a range of heterogeneous fibrous connective tissues.
Collapse
Affiliation(s)
- Se-Hwan Lee
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Zizhao Li
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Ellen Y. Zhang
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Dong Hwa Kim
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Ziqi Huang
- Biofunctional Materials, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, PR China
| | - Sang Jin Lee
- Biofunctional Materials, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, PR China
| | - Hyun-Wook Kang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jason A. Burdick
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, United States
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, United States
| | - Robert L. Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, United States
- Translational Musculoskeletal Research Center, Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA 19104, United States
| | - Su Chin Heo
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, United States
- Translational Musculoskeletal Research Center, Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA 19104, United States
| |
Collapse
|
28
|
Hwang DG, Kang W, Park SM, Jang J. Biohybrid printing approaches for cardiac pathophysiological studies. Biosens Bioelectron 2024; 260:116420. [PMID: 38805890 DOI: 10.1016/j.bios.2024.116420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Bioengineered hearts, which include single cardiomyocytes, engineered heart tissue, and chamber-like models, generate various biosignals, such as contractility, electrophysiological, and volume-pressure dynamic signals. Monitoring changes in these signals is crucial for understanding the mechanisms of disease progression and developing potential treatments. However, current methodologies face challenges in the continuous monitoring of bioengineered hearts over extended periods and typically require sacrificing the sample post-experiment, thereby limiting in-depth analysis. Thus, a biohybrid system consisting of living and nonliving components was developed. This system primarily features heart tissue alongside nonliving elements designed to support or comprehend its functionality. Biohybrid printing technology has simplified the creation of such systems and facilitated the development of various functional biohybrid systems capable of measuring or even regulating multiple functions, such as pacemakers, which demonstrates its versatility and potential applications. The future of biohybrid printing appears promising, with the ongoing exploration of its capabilities and potential directions for advancement.
Collapse
Affiliation(s)
- Dong Gyu Hwang
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, 37563, Republic of Korea
| | - Wonok Kang
- Department of Convergence IT Engineering (POSTECH), Pohang, 37666, Republic of Korea
| | - Sung-Min Park
- Department of Convergence IT Engineering (POSTECH), Pohang, 37666, Republic of Korea; Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37666, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37666, Republic of Korea; Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Jinah Jang
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, 37563, Republic of Korea; Department of Convergence IT Engineering (POSTECH), Pohang, 37666, Republic of Korea; Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37666, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37666, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
29
|
Nasr B, Lareyre F, Guigo S, Bellenger K, Raffort J, Gouëffic Y. 3-Dimensional printing in vascular disease: From manufacturer to clinical use. Semin Vasc Surg 2024; 37:326-332. [PMID: 39277349 DOI: 10.1053/j.semvascsurg.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 09/17/2024]
Abstract
Three-dimensional (3D) printing has been used in medicine with applications in many different fields. 3D printing allows patient education, interventionalists training, preprocedural planning, and assists the interventionalist to improve treatment outcomes. 3D printing represents a potential advancement by allowing the printing of flexible vascular models. In this article, the authors report a clinical case using 3D printing to perform a physician-modified fenestrated endograft. An overview of 3D printing in vascular and endovascular surgery is provided, focusing on its potential applications for training, education, preprocedural planning, and current clinical applications.
Collapse
Affiliation(s)
- Bahaa Nasr
- Univ Brest, Institut National de la Santé et de la Recherche Médicale, IMT-Atlantique, UMR1011 LaTIM, Vascular and Endovascular Surgery Department, Centre Hospitalier Universitaire Cavale Blanche, Boulevard Tanguy Prigent, 29200 Brest, France.
| | - Fabien Lareyre
- Department of Vascular Surgery, Hospital of Antibes Juan-les-Pins, France; Université Côte d'Azur, Le Centre National De La Recherche Scientifique, UMR7370, LP2M, Nice, France; Fédération Hospitalo-Universitaire Plan&Go, Nice, France
| | - Samuel Guigo
- W.Print, Clinical Research and Innovation Department, Centre Hospitalier Universitaire Cavale Blanche, Brest, France
| | - Kevin Bellenger
- W.Print, Clinical Research and Innovation Department, Centre Hospitalier Universitaire Cavale Blanche, Brest, France
| | - Juliette Raffort
- Université Côte d'Azur, Le Centre National De La Recherche Scientifique, UMR7370, LP2M, Nice, France; Fédération Hospitalo-Universitaire Plan&Go, Nice, France; Clinical Chemistry Laboratory, University Hospital of Nice, France; Institute 3IA Côte d'Azur, Université Côte d'Azur, France
| | - Yann Gouëffic
- Groupe Hospitalier Paris St Joseph, Service de Chirurgie Vasculaire et Endovasculaire, F-75014
| |
Collapse
|
30
|
Ketabat F, Alcorn J, Kelly ME, Badea I, Chen X. Cardiac Tissue Engineering: A Journey from Scaffold Fabrication to In Vitro Characterization. SMALL SCIENCE 2024; 4:2400079. [PMID: 40212070 PMCID: PMC11935279 DOI: 10.1002/smsc.202400079] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/18/2024] [Indexed: 04/13/2025] Open
Abstract
Cardiac tissue engineering has been rapidly evolving with diverse applications, ranging from the repair of fibrotic tissue caused by "adverse remodeling," to the replacement of specific segments of heart tissue, and ultimately to the creation of a whole heart. The repair or replacement of cardiac tissue often involves the development of tissue scaffolds or constructs and the subsequent assessment of their performance and functionality. For this, the design and/or selection of biomaterials, and cell types, scaffold fabrication, and in vitro characterizations are the first starting points, yet critical, to ensure success in subsequent implantation in vivo. This highlights the importance of scaffold fabrication and in vitro experiments/characterization with protocols for cardiac tissue engineering. Yet, a comprehensive and critical review of these has not been established and documented. As inspired, herein, the latest development and advances in scaffold fabrication and in vitro characterization for cardiac tissue engineering are critically reviewed, with focus on biomaterials, cell types, additive manufacturing techniques for scaffold fabrication, and common in vitro characterization techniques or methods. This article would be of benefit to the ones who are working on cardiac tissue engineering by providing insights into the scaffold fabrication and in vitro investigations.
Collapse
Affiliation(s)
- Farinaz Ketabat
- Division of Biomedical EngineeringUniversity of Saskatchewan57 Campus DriveSaskatoonS7N 5A9Canada
| | - Jane Alcorn
- College of Pharmacy and NutritionUniversity of Saskatchewan107 Wiggins RoadSaskatoonS7N 5E5SaskatchewanCanada
| | - Michael E. Kelly
- Division of Biomedical EngineeringUniversity of Saskatchewan57 Campus DriveSaskatoonS7N 5A9Canada
- Department of Surgery, College of MedicineUniversity of Saskatchewan107 Wiggins RoadSaskatoonS7N 5E5Canada
| | - Ildiko Badea
- College of Pharmacy and NutritionUniversity of Saskatchewan107 Wiggins RoadSaskatoonS7N 5E5SaskatchewanCanada
| | - Xiongbiao Chen
- Division of Biomedical EngineeringUniversity of Saskatchewan57 Campus DriveSaskatoonS7N 5A9Canada
- Department of Mechanical EngineeringUniversity of Saskatchewan57 Campus DriveSaskatoonS7N 5A9Canada
| |
Collapse
|
31
|
Yang X, Zhao Y, Liu W, Gao Z, Wang C, Wang C, Li S, Zhang X. Single-cell transcriptomics reveals neural stem cell trans-differentiation and cell subpopulations in whole heart decellularized extracellular matrix. BIOPHYSICS REPORTS 2024; 10:241-253. [PMID: 39281200 PMCID: PMC11399890 DOI: 10.52601/bpr.2024.240011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/16/2024] [Indexed: 09/18/2024] Open
Abstract
The whole heart decellularized extracellular matrix (ECM) has become a promising scaffold material for cardiac tissue engineering. Our previous research has shown that the whole heart acellular matrix possesses the memory function regulating neural stem cells (NSCs) trans-differentiating to cardiac lineage cells. However, the cell subpopulations and phenotypes in the trans-differentiation of NSCs have not been clearly identified. Here, we performed single-cell RNA sequencing and identified 2,765 cells in the recellularized heart with NSCs revealing the cellular diversity of cardiac and neural lineage, confirming NSCs were capable of trans-differentiating into the cardiac lineage while maintaining the original ability to differentiate into the neural lineage. Notably, the trans-differentiated heart-like cells have dual signatures of neuroectoderm and cardiac mesoderm. This study unveils an in-depth mechanism underlying the trans-differentiation of NSCs and provides a new opportunity and theoretical basis for cardiac regeneration.
Collapse
Affiliation(s)
- Xiaoning Yang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Yuwei Zhao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Wei Liu
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Zhongbao Gao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Chunlan Wang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Changyong Wang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Siwei Li
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiao Zhang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| |
Collapse
|
32
|
Zhidu S, Ying T, Rui J, Chao Z. Translational potential of mesenchymal stem cells in regenerative therapies for human diseases: challenges and opportunities. Stem Cell Res Ther 2024; 15:266. [PMID: 39183341 PMCID: PMC11346273 DOI: 10.1186/s13287-024-03885-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
Advances in stem cell technology offer new possibilities for patients with untreated diseases and disorders. Stem cell-based therapy, which includes multipotent mesenchymal stem cells (MSCs), has recently become important in regenerative therapies. MSCs are multipotent progenitor cells that possess the ability to undergo in vitro self-renewal and differentiate into various mesenchymal lineages. MSCs have demonstrated promise in several areas, such as tissue regeneration, immunological modulation, anti-inflammatory qualities, and wound healing. Additionally, the development of specific guidelines and quality control methods that ultimately result in the therapeutic application of MSCs has been made easier by recent advancements in the study of MSC biology. This review discusses the latest clinical uses of MSCs obtained from the umbilical cord (UC), bone marrow (BM), or adipose tissue (AT) in treating various human diseases such as pulmonary dysfunctions, neurological disorders, endocrine/metabolic diseases, skin burns, cardiovascular conditions, and reproductive disorders. Additionally, this review offers comprehensive information regarding the clinical application of targeted therapies utilizing MSCs. It also presents and examines the concept of MSC tissue origin and its potential impact on the function of MSCs in downstream applications. The ultimate aim of this research is to facilitate translational research into clinical applications in regenerative therapies.
Collapse
Affiliation(s)
- Song Zhidu
- Department of Ophthalmology, the Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun City, Jilin Province, China
| | - Tao Ying
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiang Rui
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhang Chao
- Department of Ophthalmology, the Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun City, Jilin Province, China.
| |
Collapse
|
33
|
Shi W, Zhang Z, Wang X. The Prospect of Hepatic Decellularized Extracellular Matrix as a Bioink for Liver 3D Bioprinting. Biomolecules 2024; 14:1019. [PMID: 39199406 PMCID: PMC11352484 DOI: 10.3390/biom14081019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
The incidence of liver diseases is high worldwide. Many factors can cause liver fibrosis, which in turn can lead to liver cirrhosis and even liver cancer. Due to the shortage of donor organs, immunosuppression, and other factors, only a few patients are able to undergo liver transplantation. Therefore, how to construct a bioartificial liver that can be transplanted has become a global research hotspot. With the rapid development of three-dimensional (3D) bioprinting in the field of tissue engineering and regenerative medicine, researchers have tried to use various 3D bioprinting technologies to construct bioartificial livers in vitro. In terms of the choice of bioinks, liver decellularized extracellular matrix (dECM) has many advantages over other materials for cell-laden hydrogel in 3D bioprinting. This review mainly summarizes the acquisition of liver dECM and its application in liver 3D bioprinting as a bioink with respect to availability, printability, and biocompatibility in many aspects and puts forward the current challenges and prospects.
Collapse
Affiliation(s)
- Wen Shi
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University, Shenyang 110122, China;
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhe Zhang
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110001, China;
| | - Xiaohong Wang
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University, Shenyang 110122, China;
| |
Collapse
|
34
|
Wang X, Chen Q, Li J, Tian W, Liu Z, Chen T. Recent adavances of functional modules for tooth regeneration. J Mater Chem B 2024; 12:7497-7518. [PMID: 39021127 DOI: 10.1039/d4tb01027b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Dental diseases, such as dental caries and periodontal disorders, constitute a major global health challenge, affecting millions worldwide and often resulting in tooth loss. Traditional dental treatments, though beneficial, typically cannot fully restore the natural functions and structures of teeth. This limitation has prompted growing interest in innovative strategies for tooth regeneration methods. Among these, the use of dental stem cells to generate functional tooth modules represents an emerging and promising approach in dental tissue engineering. These modules aim to closely replicate the intricate morphology and essential physiological functions of dental tissues. Recent advancements in regenerative research have not only enhanced the assembly techniques for these modules but also highlighted their therapeutic potential in addressing various dental diseases. In this review, we discuss the latest progress in the construction of functional tooth modules, especially on regenerating dental pulp, periodontal tissue, and tooth roots.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Qiuyu Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jiayi Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Zhi Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Tian Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
35
|
Hwang DG, Choi H, Yong U, Kim D, Kang W, Park SM, Jang J. Bioprinting-Assisted Tissue Assembly for Structural and Functional Modulation of Engineered Heart Tissue Mimicking Left Ventricular Myocardial Fiber Orientation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400364. [PMID: 38717016 DOI: 10.1002/adma.202400364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/16/2024] [Indexed: 05/21/2024]
Abstract
Left ventricular twist is influenced by the unique oriented structure of myocardial fibers. Replicating this intricate structural-functional relationship in an in vitro heart model remains challenging, mainly due to the difficulties in achieving a complex structure with synchrony between layers. This study introduces a novel approach through the utilization of bioprinting-assisted tissue assembly (BATA)-a synergistic integration of bioprinting and tissue assembly strategies. By flexibly manufacturing tissue modules and assembly platforms, BATA can create structures that traditional methods find difficult to achieve. This approach integrates engineered heart tissue (EHT) modules, each with intrinsic functional and structural characteristics, into a layered, multi-oriented tissue in a controlled manner. EHTs assembled in different orientations exhibit various contractile forces and electrical signal patterns. The BATA is capable of constructing complex myocardial fiber orientations within a chamber-like structure (MoCha). MoCha replicates the native cardiac architecture by exhibiting three layers and three alignment directions, and it reproduces the left ventricular twist by exhibiting synchronized contraction between layers and mimicking the native cardiac architecture. The potential of BATA extends to engineering tissues capable of constructing and functioning as complete organs on a large scale. This advancement holds the promise of realizing future organ-on-demand technology.
Collapse
Affiliation(s)
- Dong Gyu Hwang
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, 37563, Republic of Korea
| | - Hwanyong Choi
- Department of Mechanical Engineering, POSTECH, Pohang, 37666, Republic of Korea
| | - Uijung Yong
- Future IT Innovation Laboratory, POSTECH, Pohang, 37666, Republic of Korea
| | - Donghwan Kim
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, 37666, Republic of Korea
| | - Wonok Kang
- Department of Convergence IT engineering, POSTECH, Pohang, 37666, Republic of Korea
| | - Sung-Min Park
- Department of Mechanical Engineering, POSTECH, Pohang, 37666, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, 37666, Republic of Korea
- Department of Convergence IT engineering, POSTECH, Pohang, 37666, Republic of Korea
- Department of Electrical Engineering, POSTECH, Pohang, 37666, Republic of Korea
| | - Jinah Jang
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, 37563, Republic of Korea
- Department of Mechanical Engineering, POSTECH, Pohang, 37666, Republic of Korea
- Future IT Innovation Laboratory, POSTECH, Pohang, 37666, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, 37666, Republic of Korea
- Department of Convergence IT engineering, POSTECH, Pohang, 37666, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
36
|
Lian L, Xie M, Luo Z, Zhang Z, Maharjan S, Mu X, Garciamendez-Mijares CE, Kuang X, Sahoo JK, Tang G, Li G, Wang D, Guo J, González FZ, Abril Manjarrez Rivera V, Cai L, Mei X, Kaplan DL, Zhang YS. Rapid Volumetric Bioprinting of Decellularized Extracellular Matrix Bioinks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304846. [PMID: 38252896 PMCID: PMC11260906 DOI: 10.1002/adma.202304846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/28/2023] [Indexed: 01/24/2024]
Abstract
Decellularized extracellular matrix (dECM)-based hydrogels are widely applied to additive biomanufacturing strategies for relevant applications. The extracellular matrix components and growth factors of dECM play crucial roles in cell adhesion, growth, and differentiation. However, the generally poor mechanical properties and printability have remained as major limitations for dECM-based materials. In this study, heart-derived dECM (h-dECM) and meniscus-derived dECM (Ms-dECM) bioinks in their pristine, unmodified state supplemented with the photoinitiator system of tris(2,2-bipyridyl) dichlororuthenium(II) hexahydrate and sodium persulfate, demonstrate cytocompatibility with volumetric bioprinting processes. This recently developed bioprinting modality illuminates a dynamically evolving light pattern into a rotating volume of the bioink, and thus decouples the requirement of mechanical strengths of bioprinted hydrogel constructs with printability, allowing for the fabrication of sophisticated shapes and architectures with low-concentration dECM materials that set within tens of seconds. As exemplary applications, cardiac tissues are volumetrically bioprinted using the cardiomyocyte-laden h-dECM bioink showing favorable cell proliferation, expansion, spreading, biomarker expressions, and synchronized contractions; whereas the volumetrically bioprinted Ms-dECM meniscus structures embedded with human mesenchymal stem cells present appropriate chondrogenic differentiation outcomes. This study supplies expanded bioink libraries for volumetric bioprinting and broadens utilities of dECM toward tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Liming Lian
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Maobin Xie
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Zeyu Luo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Zhenrui Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Xuan Mu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Carlos Ezio Garciamendez-Mijares
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Xiao Kuang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jugal Kishore Sahoo
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Guosheng Tang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Gang Li
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Di Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jie Guo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Federico Zertuche González
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Victoria Abril Manjarrez Rivera
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ling Cai
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Xuan Mei
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| |
Collapse
|
37
|
Salih T, Caputo M, Ghorbel MT. Recent Advances in Hydrogel-Based 3D Bioprinting and Its Potential Application in the Treatment of Congenital Heart Disease. Biomolecules 2024; 14:861. [PMID: 39062575 PMCID: PMC11274841 DOI: 10.3390/biom14070861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Congenital heart disease (CHD) is the most common birth defect, requiring invasive surgery often before a child's first birthday. Current materials used during CHD surgery lack the ability to grow, remodel, and regenerate. To solve those limitations, 3D bioprinting is an emerging tool with the capability to create tailored constructs based on patients' own imaging data with the ability to grow and remodel once implanted in children with CHD. It has the potential to integrate multiple bioinks with several cell types and biomolecules within 3D-bioprinted constructs that exhibit good structural fidelity, stability, and mechanical integrity. This review gives an overview of CHD and recent advancements in 3D bioprinting technologies with potential use in the treatment of CHD. Moreover, the selection of appropriate biomaterials based on their chemical, physical, and biological properties that are further manipulated to suit their application are also discussed. An introduction to bioink formulations composed of various biomaterials with emphasis on multiple cell types and biomolecules is briefly overviewed. Vasculogenesis and angiogenesis of prefabricated 3D-bioprinted structures and novel 4D printing technology are also summarized. Finally, we discuss several restrictions and our perspective on future directions in 3D bioprinting technologies in the treatment of CHD.
Collapse
Affiliation(s)
- Tasneem Salih
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol BS2 8HW, UK; (T.S.); (M.C.)
| | - Massimo Caputo
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol BS2 8HW, UK; (T.S.); (M.C.)
- Cardiac Surgery, University Hospitals Bristol, NHS Foundation Trust, Bristol BS2 8HW, UK
| | - Mohamed T. Ghorbel
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol BS2 8HW, UK; (T.S.); (M.C.)
| |
Collapse
|
38
|
Luque GC, Picchio ML, Daou B, Lasa-Fernandez H, Criado-Gonzalez M, Querejeta R, Filgueiras-Ramas D, Prato M, Mecerreyes D, Ruiz-Cabello J, Alegret N. Printable Poly(3,4-ethylenedioxythiophene)-Based Conductive Patches for Cardiac Tissue Remodeling. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34467-34479. [PMID: 38936818 DOI: 10.1021/acsami.4c03784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Myocardial cardiopathy is one of the highest disease burdens worldwide. The damaged myocardium has little intrinsic repair ability, and as a result, the distorted muscle loses strength for contraction, producing arrhythmias and fainting, and entails a high risk of sudden death. Permanent implantable conductive hydrogels that can restore contraction strength and conductivity appear to be promising candidates for myocardium functional recovery. In this work, we present a printable cardiac hydrogel that can exert functional effects on networks of cardiac myocytes. The hydrogel matrix was designed from poly(vinyl alcohol) (PVA) dynamically cross-linked with gallic acid (GA) and the conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT). The resulting patches exhibited excellent electrical conductivity, elasticity, and mechanical and contractile strengths, which are critical parameters for reinforcing weakened cardiac contraction and impulse propagation. Furthermore, the PVA-GA/PEDOT blend is suitable for direct ink writing via a melting extrusion. As a proof of concept, we have proven the efficiency of the patches in propagating the electrical signal in adult mouse cardiomyocytes through in vitro recordings of intracellular Ca2+ transients during cell stimulation. Finally, the patches were implanted in healthy mouse hearts to demonstrate their accommodation and biocompatibility. Magnetic resonance imaging revealed that the implants did not affect the essential functional parameters after 2 weeks, thus showing great potential for treating cardiomyopathies.
Collapse
Affiliation(s)
- Gisela C Luque
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián 20014, Spain
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC) CONICET, Güemes 3450, Santa Fe 3000, Argentina
| | - Matías L Picchio
- POLYMAT University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, Donostia-San Sebastián 20018, Spain
| | - Bahaa Daou
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC) CONICET, Güemes 3450, Santa Fe 3000, Argentina
- IIS Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, Paseo Dr. Begiristain s/n, San Sebastian 20014, Spain
| | - Haizpea Lasa-Fernandez
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián 20014, Spain
| | - Miryam Criado-Gonzalez
- POLYMAT University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, Donostia-San Sebastián 20018, Spain
| | - Ramon Querejeta
- Servicio de Cardiología, Hospital Universitario Donostia, San Sebastián, Gipuzkoa 20014, España
| | - David Filgueiras-Ramas
- Centro Nacional de Investigaciones Cardiovasculares; CIBER de Enfermedades Cardiovasculares, Hospital Clínico Universitario San Carlos, Madrid 28029, Spain
| | - Maurizio Prato
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián 20014, Spain
- Department of Chemical and Pharmaceutical Sciences, INSTM Unit of Trieste, University of Trieste, Via L. Giorgieri 1, Trieste 34127, Italy
- Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain
| | - David Mecerreyes
- POLYMAT University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, Donostia-San Sebastián 20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain
| | - Jesús Ruiz-Cabello
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain
- Ciber Enfermedades Respiratorias (Ciberes), Madrid 28029, Spain
- NMR and Imaging in Biomedicine Group, Department of Chemistry in Pharmaceutical Sciences, Pharmacy School, University Complutense Madrid, Madrid 28040, Spain
| | - Nuria Alegret
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián 20014, Spain
- POLYMAT University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, Donostia-San Sebastián 20018, Spain
- IIS Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, Paseo Dr. Begiristain s/n, San Sebastian 20014, Spain
| |
Collapse
|
39
|
Li YB, Rukhlova M, Zhang D, Nhan J, Sodja C, Bedford E, St-Pierre JP, Jezierski A. Single-Step 3D Bioprinting of Alginate-Collagen Type I Hydrogel Fiber Rings to Promote Angiogenic Network Formation. Tissue Eng Part C Methods 2024; 30:289-306. [PMID: 38946589 DOI: 10.1089/ten.tec.2024.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
In the advent of tissue engineering and regenerative medicine, the demand for innovative approaches to biofabricate complex vascular structures is increasing. We describe a single-step 3D bioprinting method leveraging Aspect Biosystems RX1 technology, which integrates the crosslinking step at a flow-focusing junction, to biofabricate immortalized adult rat brain endothelial cell (SV-ARBEC)-encapsulated alginate-collagen type I hydrogel rings. This single-step biofabrication process involves the strategic layer-by-layer assembly of hydrogel rings, encapsulating SV-ARBECs in a spatially controlled manner while optimizing access to media and nutrients. The spatial arrangement of the SV-ARBECs within the rings promotes spontaneous angiogenic network formation and the constrained deposition of cells within the hydrogel matrix facilitates tissue-like organized vascular-like network development. This approach provides a platform that can be adapted to many different endothelial cell types and leveraged to better understand the mechanisms driving angiogenesis and vascular-network formation in 3D bioprinted constructs supporting the development of more complex tissue and disease models for advancing drug discovery, tissue engineering, and regenerative medicine applications.
Collapse
Affiliation(s)
- Ying Betty Li
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Canada
- Department of Systems and Computer Engineering, Faculty of Engineering and Design, Carleton University, Ottawa, Canada
| | - Marina Rukhlova
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Canada
| | - Dongling Zhang
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Canada
| | - Jordan Nhan
- Department of Chemical and Biological Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada
| | - Caroline Sodja
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Canada
| | | | - Jean-Philippe St-Pierre
- Department of Chemical and Biological Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada
| | - Anna Jezierski
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Canada
- Department of Chemical and Biological Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada
| |
Collapse
|
40
|
Patel R, Patel D. Injectable Hydrogels in Cardiovascular Tissue Engineering. Polymers (Basel) 2024; 16:1878. [PMID: 39000733 PMCID: PMC11244148 DOI: 10.3390/polym16131878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024] Open
Abstract
Heart problems are quite prevalent worldwide. Cardiomyocytes and stem cells are two examples of the cells and supporting matrix that are used in the integrated process of cardiac tissue regeneration. The objective is to create innovative materials that can effectively replace or repair damaged cardiac muscle. One of the most effective and appealing 3D/4D scaffolds for creating an appropriate milieu for damaged tissue growth and healing is hydrogel. In order to successfully regenerate heart tissue, bioactive and biocompatible hydrogels are required to preserve cells in the infarcted region and to bid support for the restoration of myocardial wall stress, cell survival and function. Heart tissue engineering uses a variety of hydrogels, such as natural or synthetic polymeric hydrogels. This article provides a quick overview of the various hydrogel types employed in cardiac tissue engineering. Their benefits and drawbacks are discussed. Hydrogel-based techniques for heart regeneration are also addressed, along with their clinical application and future in cardiac tissue engineering.
Collapse
Affiliation(s)
- Raj Patel
- Banas Medical College and Research Institute, Palanpur 385001, India;
| | - Dhruvi Patel
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
41
|
Liu T, Hao Y, Zhang Z, Zhou H, Peng S, Zhang D, Li K, Chen Y, Chen M. Advanced Cardiac Patches for the Treatment of Myocardial Infarction. Circulation 2024; 149:2002-2020. [PMID: 38885303 PMCID: PMC11191561 DOI: 10.1161/circulationaha.123.067097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Myocardial infarction is a cardiovascular disease characterized by a high incidence rate and mortality. It leads to various cardiac pathophysiological changes, including ischemia/reperfusion injury, inflammation, fibrosis, and ventricular remodeling, which ultimately result in heart failure and pose a significant threat to global health. Although clinical reperfusion therapies and conventional pharmacological interventions improve emergency survival rates and short-term prognoses, they are still limited in providing long-lasting improvements in cardiac function or reversing pathological progression. Recently, cardiac patches have gained considerable attention as a promising therapy for myocardial infarction. These patches consist of scaffolds or loaded therapeutic agents that provide mechanical reinforcement, synchronous electrical conduction, and localized delivery within the infarct zone to promote cardiac restoration. This review elucidates the pathophysiological progression from myocardial infarction to heart failure, highlighting therapeutic targets and various cardiac patches. The review considers the primary scaffold materials, including synthetic, natural, and conductive materials, and the prevalent fabrication techniques and optimal properties of the patch, as well as advanced delivery strategies. Last, the current limitations and prospects of cardiac patch research are considered, with the goal of shedding light on innovative products poised for clinical application.
Collapse
Affiliation(s)
- Tailuo Liu
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases (T.L., Y.H., H.Z., S.P., D.Z., Y.C., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
- Department of Cardiology (T.L., S.P., D.Z., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, PR China (T.L., K.L., Y.C.)
| | - Ying Hao
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases (T.L., Y.H., H.Z., S.P., D.Z., Y.C., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| | - Zixuan Zhang
- West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, PR China (Z.Z.)
| | - Hao Zhou
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases (T.L., Y.H., H.Z., S.P., D.Z., Y.C., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| | - Shiqin Peng
- Department of Cardiology (T.L., S.P., D.Z., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| | - Dingyi Zhang
- Department of Cardiology (T.L., S.P., D.Z., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| | - Ka Li
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, PR China (T.L., K.L., Y.C.)
| | - Yuwen Chen
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, PR China (T.L., K.L., Y.C.)
| | - Mao Chen
- Department of Cardiology (T.L., S.P., D.Z., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| |
Collapse
|
42
|
Rostamani H, Fakhraei O, Zamirinadaf N, Mahjour M. An overview of nasal cartilage bioprinting: from bench to bedside. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1273-1320. [PMID: 38441976 DOI: 10.1080/09205063.2024.2321636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 02/08/2024] [Indexed: 03/07/2024]
Abstract
Nasal cartilage diseases and injuries are known as significant challenges in reconstructive medicine, affecting a substantial number of individuals worldwide. In recent years, the advent of three-dimensional (3D) bioprinting has emerged as a promising approach for nasal cartilage reconstruction, offering potential breakthroughs in the field of regenerative medicine. This paper provides an overview of the methods and challenges associated with 3D bioprinting technologies in the procedure of reconstructing nasal cartilage tissue. The process of 3D bioprinting entails generating a digital 3D model using biomedical imaging techniques and computer-aided design to integrate both internal and external scaffold features. Then, bioinks which consist of biomaterials, cell types, and bioactive chemicals, are applied to facilitate the precise layer-by-layer bioprinting of tissue-engineered scaffolds. After undergoing in vitro and in vivo experiments, this process results in the development of the physiologically functional integrity of the tissue. The advantages of 3D bioprinting encompass the ability to customize scaffold design, enabling the precise incorporation of pore shape, size, and porosity, as well as the utilization of patient-specific cells to enhance compatibility. However, various challenges should be considered, including the optimization of biomaterials, ensuring adequate cell viability and differentiation, achieving seamless integration with the host tissue, and navigating regulatory attention. Although numerous studies have demonstrated the potential of 3D bioprinting in the rebuilding of such soft tissues, this paper covers various aspects of the bioprinted tissues to provide insights for the future development of repair techniques appropriate for clinical use.
Collapse
Affiliation(s)
- Hosein Rostamani
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Omid Fakhraei
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Niloufar Zamirinadaf
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mehran Mahjour
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
43
|
Lee J, Lee SG, Kim BS, Park S, Sundaram MN, Kim BG, Kim CY, Hwang NS. Paintable Decellularized-ECM Hydrogel for Preventing Cardiac Tissue Damage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307353. [PMID: 38502886 DOI: 10.1002/advs.202307353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/07/2024] [Indexed: 03/21/2024]
Abstract
The tissue-specific heart decellularized extracellular matrix (hdECM) demonstrates a variety of therapeutic advantages, including fibrosis reduction and angiogenesis. Consequently, recent research for myocardial infarction (MI) therapy has utilized hdECM with various delivery techniques, such as injection or patch implantation. In this study, a novel approach for hdECM delivery using a wet adhesive paintable hydrogel is proposed. The hdECM-containing paintable hydrogel (pdHA_t) is simply applied, with no theoretical limit to the size or shape, making it highly beneficial for scale-up. Additionally, pdHA_t exhibits robust adhesion to the epicardium, with a minimal swelling ratio and sufficient adhesion strength for MI treatment when applied to the rat MI model. Moreover, the adhesiveness of pdHA_t can be easily washed off to prevent undesired adhesion with nearby organs, such as the rib cages and lungs, which can result in stenosis. During the 28 days of in vivo analysis, the pdHA_t not only facilitates functional regeneration by reducing ventricular wall thinning but also promotes neo-vascularization in the MI region. In conclusion, the pdHA_t presents a promising strategy for MI treatment and cardiac tissue regeneration, offering the potential for improved patient outcomes and enhanced cardiac function post-MI.
Collapse
Affiliation(s)
- Jaewoo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Seul-Gi Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Beom-Seok Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 151-742, Republic of Korea
- Research Division, EGC Therapeutics, Seoul, 08790, Republic of Korea
| | - Shinhye Park
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, 143-701, Republic of Korea
| | - M Nivedhitha Sundaram
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Byung-Gee Kim
- Research Division, EGC Therapeutics, Seoul, 08790, Republic of Korea
- Institute of Molecular Biology and Genetics, Institute for Sustainable Development (ISD), Seoul National University, Seoul, 08826, Republic of Korea
- Bio-MAX/N-Bio, Institute of BioEngineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - C-Yoon Kim
- College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 151-742, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 151-742, Republic of Korea
- Bio-MAX/N-Bio, Institute of BioEngineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
44
|
Zheng Z, Tang W, Li Y, Ai Y, Tu Z, Yang J, Fan C. Advancing cardiac regeneration through 3D bioprinting: methods, applications, and future directions. Heart Fail Rev 2024; 29:599-613. [PMID: 37943420 DOI: 10.1007/s10741-023-10367-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/29/2023] [Indexed: 11/10/2023]
Abstract
Cardiovascular diseases (CVDs) represent a paramount global mortality concern, and their prevalence is on a relentless ascent. Despite the effectiveness of contemporary medical interventions in mitigating CVD-related fatality rates and complications, their efficacy remains curtailed by an array of limitations. These include the suboptimal efficiency of direct cell injection and an inherent disequilibrium between the demand and availability of heart transplantations. Consequently, the imperative to formulate innovative strategies for cardiac regeneration therapy becomes unmistakable. Within this context, 3D bioprinting technology emerges as a vanguard contender, occupying a pivotal niche in the realm of tissue engineering and regenerative medicine. This state-of-the-art methodology holds the potential to fabricate intricate heart tissues endowed with multifaceted structures and functionalities, thereby engendering substantial promise. By harnessing the prowess of 3D bioprinting, it becomes plausible to synthesize functional cardiac architectures seamlessly enmeshed with the host tissue, affording a viable avenue for the restitution of infarcted domains and, by extension, mitigating the onerous yoke of CVDs. In this review, we encapsulate the myriad applications of 3D bioprinting technology in the domain of heart tissue regeneration. Furthermore, we usher in the latest advancements in printing methodologies and bioinks, culminating in an exploration of the extant challenges and the vista of possibilities inherent to a diverse array of approaches.
Collapse
Affiliation(s)
- Zilong Zheng
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Weijie Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Yichen Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Yinze Ai
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Zhi Tu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Jinfu Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China.
| |
Collapse
|
45
|
Tang G, Li Z, Ding C, Zhao J, Xing X, Sun Y, Qiu X, Wang L. A cigarette filter-derived biomimetic cardiac niche for myocardial infarction repair. Bioact Mater 2024; 35:362-381. [PMID: 38379697 PMCID: PMC10876615 DOI: 10.1016/j.bioactmat.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
Cell implantation offers an appealing avenue for heart repair after myocardial infarction (MI). Nevertheless, the implanted cells are subjected to the aberrant myocardial niche, which inhibits cell survival and maturation, posing significant challenges to the ultimate therapeutic outcome. The functional cardiac patches (CPs) have been proved to construct an elastic conductive, antioxidative, and angiogenic microenvironment for rectifying the aberrant microenvironment of the infarcted myocardium. More importantly, inducing implanted cardiomyocytes (CMs) adapted to the anisotropic arrangement of myocardial tissue by bioengineered structural cues within CPs are more conducive to MI repair. Herein, a functional Cig/(TA-Cu) CP served as biomimetic cardiac niche was fabricated based on structural anisotropic cigarette filter by modifying with tannic acid (TA)-chelated Cu2+ (TA-Cu complex) via a green method. This CP possessed microstructural anisotropy, electrical conductivity and mechanical properties similar to natural myocardium, which could promote elongation, orientation, maturation, and functionalization of CMs. Besides, the Cig/(TA-Cu) CP could efficiently scavenge reactive oxygen species, reduce CM apoptosis, ultimately facilitating myocardial electrical integration, promoting vascular regeneration and improving cardiac function. Together, our study introduces a functional CP that integrates multimodal cues to create a biomimetic cardiac niche and provides an effective strategy for cardiac repair.
Collapse
Affiliation(s)
- Guofeng Tang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Zhentao Li
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
- Thoracic and Cardiovascular Surgery, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523058, PR China
| | - Chengbin Ding
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Jiang Zhao
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Xianglong Xing
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Yan Sun
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Xiaozhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
- School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Leyu Wang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| |
Collapse
|
46
|
Klak M, Rachalewski M, Filip A, Dobrzański T, Berman A, Wszoła M. Bioprinting of Perfusable, Biocompatible Vessel-like Channels with dECM-Based Bioinks and Living Cells. Bioengineering (Basel) 2024; 11:439. [PMID: 38790306 PMCID: PMC11117567 DOI: 10.3390/bioengineering11050439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/14/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
There is a growing interest in the production of bioinks that on the one hand, are biocompatible and, on the other hand, have mechanical properties that allow for the production of stable constructs that can survive for a long time after transplantation. While the selection of the right material is crucial for bioprinting, there is another equally important issue that is currently being extensively researched-the incorporation of the vascular system into the fabricated scaffolds. Therefore, in the following manuscript, we present the results of research on bioink with unique physico-chemical and biological properties. In this article, two methods of seeding cells were tested using bioink B and seeding after bioprinting the whole model. After 2, 5, 8, or 24 h of incubation, the flow medium was used in the tested systems. At the end of the experimental trial, for each time variant, the canals were stored in formaldehyde, and immunohistochemical staining was performed to examine the presence of cells on the canal walls and roof. Cells adhered to both ways of fiber arrangement; however, a parallel bioprint with the 5 h incubation and the intermediate plating of cells resulted in better adhesion efficiency. For this test variant, the percentage of cells that adhered was at least 20% higher than in the other analyzed variants. In addition, it was for this variant that the lowest percentage of viable cells was found that were washed out of the tested model. Importantly, hematoxylin and eosin staining showed that after 8 days of culture, the cells were evenly distributed throughout the canal roof. Our study clearly shows that neovascularization-promoting cells effectively adhere to ECM-based pancreatic bioink. Summarizing the presented results, it was demonstrated that the proposed bioink compositions can be used for bioprinting bionic organs with a vascular system formed by endothelial cells and fibroblasts.
Collapse
Affiliation(s)
- Marta Klak
- Foundation of Research and Science Development, 01-242 Warsaw, Poland or (M.W.)
- Polbionica sp. z o.o., 01-242 Warsaw, Poland
| | - Michał Rachalewski
- Foundation of Research and Science Development, 01-242 Warsaw, Poland or (M.W.)
| | - Anna Filip
- Foundation of Research and Science Development, 01-242 Warsaw, Poland or (M.W.)
| | | | | | - Michał Wszoła
- Foundation of Research and Science Development, 01-242 Warsaw, Poland or (M.W.)
- Polbionica sp. z o.o., 01-242 Warsaw, Poland
| |
Collapse
|
47
|
Das S, Jegadeesan JT, Basu B. Gelatin Methacryloyl (GelMA)-Based Biomaterial Inks: Process Science for 3D/4D Printing and Current Status. Biomacromolecules 2024; 25:2156-2221. [PMID: 38507816 DOI: 10.1021/acs.biomac.3c01271] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Tissue engineering for injured tissue replacement and regeneration has been a subject of investigation over the last 30 years, and there has been considerable interest in using additive manufacturing to achieve these goals. Despite such efforts, many key questions remain unanswered, particularly in the area of biomaterial selection for these applications as well as quantitative understanding of the process science. The strategic utilization of biological macromolecules provides a versatile approach to meet diverse requirements in 3D printing, such as printability, buildability, and biocompatibility. These molecules play a pivotal role in both physical and chemical cross-linking processes throughout the biofabrication, contributing significantly to the overall success of the 3D printing process. Among the several bioprintable materials, gelatin methacryloyl (GelMA) has been widely utilized for diverse tissue engineering applications, with some degree of success. In this context, this review will discuss the key bioengineering approaches to identify the gelation and cross-linking strategies that are appropriate to control the rheology, printability, and buildability of biomaterial inks. This review will focus on the GelMA as the structural (scaffold) biomaterial for different tissues and as a potential carrier vehicle for the transport of living cells as well as their maintenance and viability in the physiological system. Recognizing the importance of printability toward shape fidelity and biophysical properties, a major focus in this review has been to discuss the qualitative and quantitative impact of the key factors, including microrheological, viscoelastic, gelation, shear thinning properties of biomaterial inks, and printing parameters, in particular, reference to 3D extrusion printing of GelMA-based biomaterial inks. Specifically, we emphasize the different possibilities to regulate mechanical, swelling, biodegradation, and cellular functionalities of GelMA-based bio(material) inks, by hybridization techniques, including different synthetic and natural biopolymers, inorganic nanofillers, and microcarriers. At the close, the potential possibility of the integration of experimental data sets and artificial intelligence/machine learning approaches is emphasized to predict the printability, shape fidelity, or biophysical properties of GelMA bio(material) inks for clinically relevant tissues.
Collapse
Affiliation(s)
- Soumitra Das
- Materials Research Centre, Indian Institute of Science, Bangalore, India 560012
| | | | - Bikramjit Basu
- Materials Research Centre, Indian Institute of Science, Bangalore, India 560012
| |
Collapse
|
48
|
Noro J, Vilaça-Faria H, Reis RL, Pirraco RP. Extracellular matrix-derived materials for tissue engineering and regenerative medicine: A journey from isolation to characterization and application. Bioact Mater 2024; 34:494-519. [PMID: 38298755 PMCID: PMC10827697 DOI: 10.1016/j.bioactmat.2024.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
Biomaterial choice is an essential step during the development tissue engineering and regenerative medicine (TERM) applications. The selected biomaterial must present properties allowing the physiological-like recapitulation of several processes that lead to the reestablishment of homeostatic tissue or organ function. Biomaterials derived from the extracellular matrix (ECM) present many such properties and their use in the field has been steadily increasing. Considering this growing importance, it becomes imperative to provide a comprehensive overview of ECM biomaterials, encompassing their sourcing, processing, and integration into TERM applications. This review compiles the main strategies used to isolate and process ECM-derived biomaterials as well as different techniques used for its characterization, namely biochemical and chemical, physical, morphological, and biological. Lastly, some of their applications in the TERM field are explored and discussed.
Collapse
Affiliation(s)
- Jennifer Noro
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Helena Vilaça-Faria
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rogério P. Pirraco
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
49
|
Loukelis K, Koutsomarkos N, Mikos AG, Chatzinikolaidou M. Advances in 3D bioprinting for regenerative medicine applications. Regen Biomater 2024; 11:rbae033. [PMID: 38845855 PMCID: PMC11153344 DOI: 10.1093/rb/rbae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/13/2024] [Accepted: 03/17/2024] [Indexed: 06/09/2024] Open
Abstract
Biofabrication techniques allow for the construction of biocompatible and biofunctional structures composed from biomaterials, cells and biomolecules. Bioprinting is an emerging 3D printing method which utilizes biomaterial-based mixtures with cells and other biological constituents into printable suspensions known as bioinks. Coupled with automated design protocols and based on different modes for droplet deposition, 3D bioprinters are able to fabricate hydrogel-based objects with specific architecture and geometrical properties, providing the necessary environment that promotes cell growth and directs cell differentiation towards application-related lineages. For the preparation of such bioinks, various water-soluble biomaterials have been employed, including natural and synthetic biopolymers, and inorganic materials. Bioprinted constructs are considered to be one of the most promising avenues in regenerative medicine due to their native organ biomimicry. For a successful application, the bioprinted constructs should meet particular criteria such as optimal biological response, mechanical properties similar to the target tissue, high levels of reproducibility and printing fidelity, but also increased upscaling capability. In this review, we highlight the most recent advances in bioprinting, focusing on the regeneration of various tissues including bone, cartilage, cardiovascular, neural, skin and other organs such as liver, kidney, pancreas and lungs. We discuss the rapidly developing co-culture bioprinting systems used to resemble the complexity of tissues and organs and the crosstalk between various cell populations towards regeneration. Moreover, we report on the basic physical principles governing 3D bioprinting, and the ideal bioink properties based on the biomaterials' regenerative potential. We examine and critically discuss the present status of 3D bioprinting regarding its applicability and current limitations that need to be overcome to establish it at the forefront of artificial organ production and transplantation.
Collapse
Affiliation(s)
- Konstantinos Loukelis
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
| | - Nikos Koutsomarkos
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Maria Chatzinikolaidou
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), Heraklion 70013, Greece
| |
Collapse
|
50
|
Laowpanitchakorn P, Zeng J, Piantino M, Uchida K, Katsuyama M, Matsusaki M. Biofabrication of engineered blood vessels for biomedical applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2330339. [PMID: 38633881 PMCID: PMC11022926 DOI: 10.1080/14686996.2024.2330339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/10/2024] [Indexed: 04/19/2024]
Abstract
To successfully engineer large-sized tissues, establishing vascular structures is essential for providing oxygen, nutrients, growth factors and cells to prevent necrosis at the core of the tissue. The diameter scale of the biofabricated vasculatures should range from 100 to 1,000 µm to support the mm-size tissue while being controllably aligned and spaced within the diffusion limit of oxygen. In this review, insights regarding biofabrication considerations and techniques for engineered blood vessels will be presented. Initially, polymers of natural and synthetic origins can be selected, modified, and combined with each other to support maturation of vascular tissue while also being biocompatible. After they are shaped into scaffold structures by different fabrication techniques, surface properties such as physical topography, stiffness, and surface chemistry play a major role in the endothelialization process after transplantation. Furthermore, biological cues such as growth factors (GFs) and endothelial cells (ECs) can be incorporated into the fabricated structures. As variously reported, fabrication techniques, especially 3D printing by extrusion and 3D printing by photopolymerization, allow the construction of vessels at a high resolution with diameters in the desired range. Strategies to fabricate of stable tubular structures with defined channels will also be discussed. This paper provides an overview of the many advances in blood vessel engineering and combinations of different fabrication techniques up to the present time.
Collapse
Affiliation(s)
| | - Jinfeng Zeng
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Marie Piantino
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- The Consortium for Future Innovation by Cultured Meat, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Kentaro Uchida
- Materials Solution Department, Product Analysis Center, Panasonic Holdings Corporation, Kadoma, Osaka, Japan
| | - Misa Katsuyama
- Materials Solution Department, Product Analysis Center, Panasonic Holdings Corporation, Kadoma, Osaka, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- The Consortium for Future Innovation by Cultured Meat, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| |
Collapse
|