1
|
Deng S, Yang Y, He S, Chen Z, Xia X, Zhang T, Yin Q, Liu T, Wu D, Pan K, Xu Y. FlaA N/C attenuates radiation-induced lung injury by promoting NAIP/NLRC4/ASC inflammasome autophagy and inhibiting pyroptosis. J Transl Med 2025; 23:237. [PMID: 40016828 PMCID: PMC11869748 DOI: 10.1186/s12967-025-06257-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/17/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Radiation-induced lung injury (RILI) is the most common complication experienced by patients with thoracic tumors after radiotherapy. Among patients receiving thoracic tumor radiotherapy, 14.6-37.2% develop RILI. RILI is characterized by an acute inflammatory response; however, the exact mechanism remains unclear and an ideal drug is still lacking. In this study, we investigated the protective effects of flagellin A with linked C- and N-terminal ends (FlaA N/C) against the development of RILI. METHODS Mice and bronchial epithelial cells were exposed to radiation (15 Gy) after FlaA N/C treatment. Lung injury, bronchial epithelial cell injury, and RILI were assessed by histological evaluation in vivo and cell viability and cell death detection in vitro. Pyroptosis was assessed by western blotting (WB), immunofluorescence (IF), and immunohistochemistry (IHC). To explore the molecular mechanisms by which FlaA N/C inhibits RILI, conditional Beclin 1 (Beclin1+/-) and NLR family CARD domain-containing protein 4 (Nlrc4)-knockout (Nlrc4-/-) mice were generated. An autophagy inhibitor was used for in vitro cell assays, and pyroptosis indicators were detected. Data were analyzed using one-way analysis of variance. RESULTS FlaA N/C attenuated radiation-induced lung tissue damage, pro-inflammatory cytokine release, and pyroptosis in vivo and cell viability, cell death, and pyroptosis in vitro. Mechanistically, FlaA N/C activated the neuronal apoptosis inhibitory protein (NAIP)/NLRC4/apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) inflammasome, which was then degraded during Beclin 1-mediated autophagy. Deletion of the FlaA N/C D0 domain reversed the inhibitory effect of FlaA N/C on radiation-induced pyroptosis in vivo and in vitro. Similarly, Nlrc4-knockout in vivo or inhibition of autophagy in vitro eliminated the protective effects of FlaA N/C against radiation-induced pyroptosis. CONCLUSIONS These results indicate that FlaA N/C attenuates RILI by promoting NAIP/NLRC4/ASC inflammasome autophagy and inhibiting pyroptosis. This study provides a potential approach for RILI intervention.
Collapse
Affiliation(s)
- Shihua Deng
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Road, Chengdu, Sichuan, 610500, People's Republic of China
| | - Yueyan Yang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Road, Chengdu, Sichuan, 610500, People's Republic of China
| | - Shuang He
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Road, Chengdu, Sichuan, 610500, People's Republic of China
| | - Zixin Chen
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Road, Chengdu, Sichuan, 610500, People's Republic of China
| | - Xun Xia
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Road, Chengdu, Sichuan, 610500, People's Republic of China
| | - Ting Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Road, Chengdu, Sichuan, 610500, People's Republic of China
| | - Qing Yin
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Road, Chengdu, Sichuan, 610500, People's Republic of China
| | - Teng Liu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Road, Chengdu, Sichuan, 610500, People's Republic of China
| | - Dongming Wu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China.
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Road, Chengdu, Sichuan, 610500, People's Republic of China.
| | - Kejian Pan
- Chengdu Medical College, No. 783, Xindu Road, Chengdu, Sichuan, 610500, People's Republic of China.
| | - Ying Xu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China.
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Road, Chengdu, Sichuan, 610500, People's Republic of China.
- Sichuan Clinical Research Center for Radiation and Therapy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China.
| |
Collapse
|
2
|
Yan HX, Zhang YZ, Niu YQ, Wang YW, Liu LH, Tang YP, Huang JM, Leung ELH. Investigating the interaction between calcium signaling and ferroptosis for novel cancer treatment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 137:156377. [PMID: 39798340 DOI: 10.1016/j.phymed.2025.156377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/02/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Drug resistance in cancer is steadily rising, making the development of new therapeutic targets increasingly critical for improving treatment outcomes. PURPOSE The mutual regulation of ions is essential for cell growth. Based on this concept, ion interference strategies offer a highly effective approach for cancer treatment. Calcium ions (Ca2+), as major second messengers, are closely associated with ion exchange and homeostasis. Disruptions in this balance can lead to cell death. However, while iron ions are also crucial, the connection between Ca2+and iron-induced cell death (ferroptosis) has not been well established. Therefore, this study suggests that Ca2+ may play a role in the induction of ferroptosis, presenting a novel and efficient target for cancer therapy. STUDY DESIGN PubMed, Google Scholar, and Web of Science databases were systematically searched for articles published in the past 15 years on the mechanisms of calcium ion-induced ferroptosis in cancer and related drugs. RESULTS The analysis highlights how Ca2+regulate ferroptosis. The mechanisms by which Ca2+influence ferroptosis are summarized based on existing literature, and relevant drugs that act on Ca2+/ferroptosis axis are outlined. CONCLUSION Ca2+ regulate ferroptosis primarily through the modulation of reactive oxygen species (ROS) and glutathione (GSH) levels, a mechanism that applies to a wide range of cancer cells as well as paracancerous and normal cells in cancer treatment. Furthermore, plant-derived active compounds exhibit potent anticancer properties and often act on the Ca2+/ferroptosis axis. These natural compounds could play a significant role in the development of new cancer treatment strategies.
Collapse
Affiliation(s)
- Hao-Xin Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), PR China
| | - Yi-Zhong Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), PR China
| | - Yu-Qing Niu
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau (SAR), China. MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), PR China
| | - Yu-Wei Wang
- Key Laboratory of Shanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shanxi University of Chinese Medicine, Xianyang 712046, Shanxi Province, PR China
| | - Li-Hua Liu
- Economics and Management Yanbian University, Yanji, PR China
| | - Yu-Ping Tang
- Key Laboratory of Shanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shanxi University of Chinese Medicine, Xianyang 712046, Shanxi Province, PR China.
| | - Ju-Min Huang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau (SAR), China. MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), PR China.
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau (SAR), China. MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), PR China.
| |
Collapse
|
3
|
Tu Y, Li Y, Qu G, Ning Y, Li B, Li G, Wu M, Li S, Huang Y. A Review of Basic Fibroblast Growth Factor Delivery Strategies and Applications in Regenerative Medicine. J Biomed Mater Res A 2025; 113:e37834. [PMID: 39740125 DOI: 10.1002/jbm.a.37834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 01/02/2025]
Abstract
Basic fibroblast growth factor (bFGF) is a significant member of the fibroblast growth factor (FGF) family. The bFGF has a three-dimensional structure comprising 12 reverse parallel β-folds. This structure facilitates tissue wound repair, angiogenesis, bone formation, cartilage repair, and nerve regeneration. Consequently, it has garnered significant attention from scholars both domestically and internationally. However, the instability and degradation properties of bFGF in vivo have limited its clinical application. Significant interest has arisen in the development of novel bFGF delivery systems that can address the shortcomings of bFGF and enhance its bioavailability by controlling the release amount, timing, and location. This article offers a comprehensive overview of the research and recent advances in various bFGF delivery systems, including hydrogels, liposomes, microspheres, and nanoparticles. Subsequently, the applications of bFGF pharmaceutical preparations in various fields are described. Finally, the current clinical applications of bFGF drug formulations and those in clinical trials are discussed, along with their clinical translation and future trends.
Collapse
Affiliation(s)
- Yuhan Tu
- Department of Pharmacy, Yueqing Third People's Hospital, Wenzhou, China
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Yang Li
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Gaoer Qu
- Department of Pharmacy, Yueqing Third People's Hospital, Wenzhou, China
| | - Yangyang Ning
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Bin Li
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Guoben Li
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Min Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Shijun Li
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Yangge Huang
- Department of Pharmacy, Yueqing Third People's Hospital, Wenzhou, China
| |
Collapse
|
4
|
Niu RZ, Xu HY, Tian H, Zhang D, He CY, Li XL, Li YY, He J. Single-cell transcriptome unveils unique transcriptomic signatures of human organ-specific endothelial cells. Basic Res Cardiol 2024; 119:973-999. [PMID: 39508863 DOI: 10.1007/s00395-024-01087-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024]
Abstract
The heterogeneity of endothelial cells (ECs) across human tissues remains incompletely inventoried. We constructed an atlas of > 210,000 ECs derived from 38 regions across 24 human tissues. Our analysis reveals significant differences in transcriptome, phenotype, metabolism and transcriptional regulation among ECs from various tissues. Notably, arterial, venous, and lymphatic ECs shared more common markers in multiple tissues than capillary ECs, which exhibited higher heterogeneity. This diversity in capillary ECs suggests their greater potential as targets for drug development. ECs from different tissues and vascular beds were found to be associated with specific diseases. Importantly, tissue specificity of EC senescence is more determined by somatic site than by tissue type (e.g. subcutaneus adipose tissue and visceral adipose tissue). Additionally, sex-specific differences in brain EC senescence were observed. Our EC atlas offers valuble resoursce for identifying EC subclusters in single-cell datasets from body tissues or organoids, facilitating the screen of tissue-specific targeted therapies, and serving as a powerful tool for future discoveries.
Collapse
Affiliation(s)
- Rui-Ze Niu
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Kunming Medical University, No.374 Dianmian Road, Wuhua District, Kunming, Yunnan, China
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, China
| | - Hong-Yan Xu
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Kunming Medical University, No.374 Dianmian Road, Wuhua District, Kunming, Yunnan, China
| | - Hui Tian
- Department of Radiation Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Dan Zhang
- Department of Dermatology and Venereology, The First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Kunming, Yunnan, China
| | - Chun-Yu He
- Institute of Medicine and Nursing, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiao-Lan Li
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Kunming Medical University, No.374 Dianmian Road, Wuhua District, Kunming, Yunnan, China.
| | - Yu-Ye Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Kunming, Yunnan, China.
| | - Juan He
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Kunming Medical University, No.374 Dianmian Road, Wuhua District, Kunming, Yunnan, China.
| |
Collapse
|
5
|
Cui D, Guo W, Chang J, Fan S, Bai X, Li L, Yang C, Wang C, Li M, Fei J. Polydopamine-coated polycaprolactone/carbon nanotube fibrous scaffolds loaded with basic fibroblast growth factor for wound healing. Mater Today Bio 2024; 28:101190. [PMID: 39221197 PMCID: PMC11364907 DOI: 10.1016/j.mtbio.2024.101190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/18/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Image 1.
Collapse
Affiliation(s)
- Dapeng Cui
- Hepatobiliary Surgery Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, 075000, China
| | - Wei Guo
- Emergency Department, Peking University People's Hospital, Beijing, 100044, China
| | - Jing Chang
- Trauma Medicine Center, National Center for Trauma Medicine, Key Laboratory of Trauma and Neural Regeneration (Peking University, Ministry of Education), Peking University People's Hospital, Beijing, 100044, China
| | - Shuang Fan
- Hepatobiliary Surgery Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, 075000, China
| | - Xiaochen Bai
- Hepatobiliary Surgery Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, 075000, China
| | - Lei Li
- Hepatobiliary Surgery Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, 075000, China
| | - Chen Yang
- Hepatobiliary Surgery Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, 075000, China
| | - Chuanlin Wang
- Trauma Medicine Center, National Center for Trauma Medicine, Key Laboratory of Trauma and Neural Regeneration (Peking University, Ministry of Education), Peking University People's Hospital, Beijing, 100044, China
| | - Ming Li
- Trauma Medicine Center, National Center for Trauma Medicine, Key Laboratory of Trauma and Neural Regeneration (Peking University, Ministry of Education), Peking University People's Hospital, Beijing, 100044, China
| | - Jiandong Fei
- Hepatobiliary Surgery Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, 075000, China
| |
Collapse
|
6
|
Cheng F, Wang J, Wang R, Pan R, Cui Z, Wang L, Wang L, Yang X. FGF2 promotes the proliferation of injured granulosa cells in premature ovarian failure via Hippo-YAP signaling pathway. Mol Cell Endocrinol 2024; 589:112248. [PMID: 38663484 DOI: 10.1016/j.mce.2024.112248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/24/2024] [Accepted: 04/06/2024] [Indexed: 05/03/2024]
Abstract
Young women undergoing anticancer treatment are at risk of premature ovarian failure (POF). Endometrial-derived stem cells (EnSCs) have demonstrated significant therapeutic potential for treating ovarian insufficiency, although the underlying mechanisms remain to be fully understood. This study aims to further investigate the therapeutic effects of EnSCs, particularly through the paracrine action of fibroblast growth factor 2 (FGF2), on POF. The findings show that exogenous FGF2 enhances the survival of ovarian granulosa cells damaged by cisplatin. FGF2 stimulates the proliferation of these damaged cells by suppressing the Hippo signaling pathway and activating YAP expression. In vivo experiments also revealed that FGF2 treatment significantly improves ovarian reserve and endocrine function in mice with POF. These results suggest that FGF2 can boost the proliferative capacity of damaged ovarian granulosa cells through the Hippo-YAP signaling pathway, providing a theoretical foundation for using EnSCs and FGF2 in clinical treatments for POF.
Collapse
Affiliation(s)
- Feiyan Cheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Jingyuan Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Rongli Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Rumeng Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Zhiwei Cui
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Lijun Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Lihui Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Xinyuan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
7
|
Man J, Shen Y, Song Y, Yang K, Pei P, Hu L. Biomaterials-mediated radiation-induced diseases treatment and radiation protection. J Control Release 2024; 370:318-338. [PMID: 38692438 DOI: 10.1016/j.jconrel.2024.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/31/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
In recent years, the intersection of the academic and medical domains has increasingly spotlighted the utilization of biomaterials in radioactive disease treatment and radiation protection. Biomaterials, distinguished from conventional molecular pharmaceuticals, offer a suite of advantages in addressing radiological conditions. These include their superior biological activity, chemical stability, exceptional histocompatibility, and targeted delivery capabilities. This review comprehensively delineates the therapeutic mechanisms employed by various biomaterials in treating radiological afflictions impacting the skin, lungs, gastrointestinal tract, and hematopoietic systems. Significantly, these nanomaterials function not only as efficient drug delivery vehicles but also as protective agents against radiation, mitigating its detrimental effects on the human body. Notably, the strategic amalgamation of specific biomaterials with particular pharmacological agents can lead to a synergistic therapeutic outcome, opening new avenues in the treatment of radiation- induced diseases. However, despite their broad potential applications, the biosafety and clinical efficacy of these biomaterials still require in-depth research and investigation. Ultimately, this review aims to not only bridge the current knowledge gaps in the application of biomaterials for radiation-induced diseases but also to inspire future innovations and research directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Jianping Man
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yanhua Shen
- Experimental Animal Centre of Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215005, China
| | - Yujie Song
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Pei Pei
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China..
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China..
| |
Collapse
|
8
|
Gu Z, Sun M, Liu J, Huang Q, Wang Y, Liao J, Shu T, Tao M, Mao G, Pei Z, Meng W, Zhang X, Wei Y, Zhang S, Li S, Xiao K, Lu Y, Xu Q. Endothelium-Derived Engineered Extracellular Vesicles Protect the Pulmonary Endothelial Barrier in Acute Lung Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306156. [PMID: 38062916 PMCID: PMC10853733 DOI: 10.1002/advs.202306156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/17/2023] [Indexed: 02/10/2024]
Abstract
Acute lung injury (ALI) is a severe respiratory disease with a high mortality rate. The integrity of the pulmonary endothelial barrier influences the development and prognosis of ALI. Therefore, it has become an important target for ALI treatment. Extracellular vesicles (EVs) are promising nanotherapeutic agents against ALI. Herein, endothelium-derived engineered extracellular vesicles (eEVs) that deliver microRNA-125b-5p (miRNA-125b) to lung tissues exerting a protective effect on endothelial barrier integrity are reported. eEVs that are modified with lung microvascular endothelial cell-targeting peptides (LET) exhibit a prolonged retention time in lung tissues and targeted lung microvascular endothelial cells in vivo and in vitro. To improve the efficacy of the EVs, miRNA-125b is loaded into EVs. Finally, LET-EVs-miRNA-125b is constructed. The results show that compared to the EVs, miRNA-125b, and EVs-miRNA-125b, LET-EVs-miRNA-125b exhibit the most significant treatment efficacy in ALI. Moreover, LET-EVs-miRNA-125b is found to have an important protective effect on endothelial barrier integrity by inhibiting cell apoptosis, promoting angiogenesis, and protecting intercellular junctions. Sequencing analysis reveals that LET-EVs-miRNA-125b downregulates early growth response-1 (EGR1) levels, which may be a potential mechanism of action. Taken together, these findings suggest that LET-EVs-miRNA-125b can treat ALI by protecting the endothelial barrier integrity.
Collapse
Affiliation(s)
- Zhengyan Gu
- Lab of Toxicology and PharmacologyFaculty of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
- Department of Pharmaceutical SciencesSchool of PharmacyNaval Medical UniversityShanghai200433P. R. China
| | - Mingxue Sun
- Lab of Toxicology and PharmacologyFaculty of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Jihao Liu
- Lab of Toxicology and PharmacologyFaculty of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Qi Huang
- School of Traditional Chinese Materia MedicaShenyang Pharmaceutical UniversityShenyang110006P. R. China
| | - Yunqin Wang
- Lab of Toxicology and PharmacologyFaculty of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Jun Liao
- Department of Pharmaceutical SciencesSchool of PharmacyNaval Medical UniversityShanghai200433P. R. China
- School of MedicineShanghai UniversityShanghai200444P. R. China
| | - Tingbin Shu
- Lab of Toxicology and PharmacologyFaculty of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Min Tao
- Lab of Toxicology and PharmacologyFaculty of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Guanchao Mao
- Lab of Toxicology and PharmacologyFaculty of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Zhipeng Pei
- Lab of Toxicology and PharmacologyFaculty of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Wenqi Meng
- Lab of Toxicology and PharmacologyFaculty of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Xinkang Zhang
- Lab of Toxicology and PharmacologyFaculty of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Youheng Wei
- State Key Laboratory of Genetic EngineeringInstitute of GeneticsFudan UniversityShanghai200433P. R. China
| | - Shanshan Zhang
- Lab of Toxicology and PharmacologyFaculty of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Songling Li
- Lab of Toxicology and PharmacologyFaculty of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Kai Xiao
- Lab of Toxicology and PharmacologyFaculty of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
- Marine Biomedical Science and Technology Innovation Platform of Lingang Special AreaShanghai200433P. R. China
| | - Ying Lu
- Department of Pharmaceutical SciencesSchool of PharmacyNaval Medical UniversityShanghai200433P. R. China
| | - Qingqiang Xu
- Lab of Toxicology and PharmacologyFaculty of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
- Basic Medical Center for Pulmonary DiseaseFaculty of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| |
Collapse
|
9
|
Wang L, Feng M, Zhao Y, Chen B, Zhao Y, Dai J. Biomimetic scaffold-based stem cell transplantation promotes lung regeneration. Bioeng Transl Med 2023; 8:e10535. [PMID: 37476061 PMCID: PMC10354774 DOI: 10.1002/btm2.10535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/04/2023] [Accepted: 04/16/2023] [Indexed: 07/22/2023] Open
Abstract
Therapeutic options are limited for severe lung injury and disease as the spontaneous regeneration of functional alveolar is terminated owing to the weakness of the inherent stem cells and the dyscrasia of the niche. Umbilical cord mesenchymal-derived stem cells (UC-MSCs) have been applied to clinical trials to promote lung repair through stem cell niche restruction. However, the application of UC-MSCs is hampered by the effectiveness of cell transplantation with few cells homing to the injury sites and poor retention, survival, and proliferation in vivo. In this study, we constructed an artificial three-dimensional (3D) biomimetic scaffold-based MSCs implant to establish a beneficial regeneration niche for endogenous stem cells in situ lung regeneration. The therapeutic potential of 3D biomimetic scaffold-based MSCs implants was evaluated by 3D culture in vitro. And RNA sequencing (RNA-Seq) was mapped to explore the gene expression involved in the niche improvement. Next, a model of partial lung resection was established in rats, and the implants were implanted into the operative region. Effects of the implants on rat resected lung injury repair were detected. The results revealed that UC-MSCs loaded on biomimetic scaffolds exerted strong paracrine effects and some UC-MSCs migrated to the lung from scaffolds and had long-term retention to suppress inflammation and fibrosis in residual lungs and promoted vascular endothelial cells and alveolar type II epithelial cells to enter the scaffolds. Then, under the guidance of the ECM-mimicking structures of scaffolds and the stimulation of the remaining UC-MSCs, vascular and alveolar-like structures were formed in the scaffold region. Moreover, the general morphology of the operative lung was also restored. Taken together, the artificial 3D biomimetic scaffold-based MSCs implants induce in situ lung regeneration and recovery after lung destruction, providing a promising direction for tissue engineering and stem cell strategies in lung regeneration.
Collapse
Affiliation(s)
- Linjie Wang
- Center for Disease Control and Prevention of People's Liberation ArmyBeijingChina
| | - Meng Feng
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative MedicineArmy Medical University, Third Military Medical UniversityChongqingChina
| | - Yazhen Zhao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative MedicineArmy Medical University, Third Military Medical UniversityChongqingChina
| | - Bing Chen
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
10
|
Wu J, Lai Y, Wang K, Lai M, Jiang L, Xu Z, Shi J, Gao W. Therapeutic potential of recombinant human basic fibroblast growth factor on postoperative patients with chronic rhinosinusitis with nasal polyps. Clin Otolaryngol 2023; 48:294-304. [PMID: 35810356 DOI: 10.1111/coa.13955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/31/2022] [Accepted: 06/12/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To explore the effect of intranasal administration of recombinant human basic fibroblast growth factor (rh-bFGF) on postoperative chronic rhinosinusitis with nasal polyps (CRSwNP) patients. DESIGN A prospective, randomised, controlled, single-blinded trial. SETTING AND PARTICIPANTS Seventy-five hospitalised patients who met the criteria of primary bilateral CRSwNP were enrolled from March 2020 to January 2021. MAIN OUTCOME MEASURES Visual analogue scale, 22-item Sino-Nasal Outcome Test, Lund-Kennedy (L-K) system and scanning electron microscopy and quantitative real-time polymerase chain reaction. RESULTS Seventy-five patients with CRSwNP were randomly assigned to three groups, and 72 patients completed the 1-month medication regimen and 1-year follow-up. Rh-bFGF nasal-spray and drop application reduced general nasal VAS scores within 2 weeks after endoscopic sinus surgery (ESS) compared to the control group. In contrast, only rh-bFGF nasal-drops reduced SNOT-22 scores at 2 weeks and 1 year compared with the control group. A significant reduction in the endoscopic L-K score was observed in the rh-bFGF nasal-spray and drop group compared with the control group. This is primarily because rh-bFGF promotes cilia growth in the nasal mucosal epithelium after the operation, as illustrated by scanning electron microscopy and expression of CP110, Tap73 and Foxj1 mRNA. For eosinophilic CRSwNP, the general VAS score of rh-bFGF nasal-drops was more obviously reduced compared to the control group after ESS. A similar trend was observed for L-K score. CONCLUSIONS Rh-bFGF nasal-drops and sprays can quickly and effectively relieve postoperative symptoms and improve long-term prognosis of patients with CRSwNP. Moreover, rh-bFGF nasal-drops is also an effective method for postoperative patients with eosinophilic CRSwNP.
Collapse
Affiliation(s)
- Jian Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Yinyan Lai
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Kanghua Wang
- Department of Otorhinolaryngology, The Seventh Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Ming Lai
- Department of Otorhinolaryngology, Clifford Hospital, Guangzhou, China
| | - Lijie Jiang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Zhaofeng Xu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Jianbo Shi
- Department of Otorhinolaryngology-Head and Neck Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China.,Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Wenxiang Gao
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Zhou J, Chen X, Chen Q, Pan B, Lou J, Jia Z, Du Y, Xu W, Zhang L, Feng X, Jin L, Shi M, Li X, Huang Z, Sun J. Novel Muscle-Homing Peptide FGF1 Conjugate Based on AlphaFold for Type 2 Diabetes Mellitus. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6397-6410. [PMID: 36625595 DOI: 10.1021/acsami.2c18461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Drugs for metabolic diseases usually require systemic administration and act on multiple tissues, which may produce some unpredictable side effects. There have been many successful studies on targeted drugs, especially antitumor drugs. However, there is still little research on metabolic disease drugs targeting specific tissues. Fibroblast growth factor 1 (FGF1) is a potential therapy for type 2 diabetes (T2D) without the risk of hypoglycemia. However, the major impediment to the clinical application of FGF1 is its mitogenic potential. We previously engineered an FGF1 variant (named FGF1ΔHBS) to tune down its mitogenic activity via reducing the heparin-binding ability. However, other notable side effects still remained, including severe appetite inhibition, pathogenic loss of body weight, and increase in fatality rate. In this study, we used AlphaFold2 and PyMOL visualization tools to construct a novel FGF1ΔHBS conjugate fused with skeletal muscle-targeted (MT) peptide through a flexible peptide linker termed MT-FGF1ΔHBS. We found that MT-FGF1ΔHBS specifically homed to skeletal muscle tissue after systemic administration and induced a potent glucose-lowering effect in T2D mice without hypoglycemia. Mechanistically, MT-FGF1ΔHBS elicits the glucose-lowering effect via AMPK activation to promote the GLUT4 expression and translocation in skeletal muscle cells. Notably, compared with native FGF1ΔHBS, MT-FGF1ΔHBS had minimal effects on food intake and body weight and did not induce any hyperplasia in major tissues of both T2D and normal mice, indicating that this muscle-homing protein may be a promising candidate for T2D treatment. Our targeted peptide strategy based on computer-aided structure prediction in this study could be effectively applied for delivering agents to functional tissues to treat metabolic or other diseases, offering enhanced efficacy and reducing systemic off-target side effects.
Collapse
Affiliation(s)
- Jie Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang 325035, China
| | - Xinwei Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang 325035, China
| | - Qiong Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang 325035, China
| | - Beibing Pan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang 325035, China
| | - Jiaxin Lou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang 325035, China
| | - Zhenyu Jia
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang 325035, China
| | - Yali Du
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang 325035, China
| | - Wenxin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang 325035, China
| | - Lu Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang 325035, China
| | - Xin Feng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang 325035, China
| | - Lingwei Jin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325035, China
| | - Mengru Shi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang 325035, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang 325035, China
| | - Zhifeng Huang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang 325035, China
| | - Jian Sun
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang 325035, China
| |
Collapse
|
12
|
Wang X, Hou X, Zhao Y, Zhao R, Dai J, Dai H, Wang C. The early and late intervention effects of collagen-binding FGF2 on elastase-induced lung injury. Biomed Pharmacother 2023; 158:114147. [PMID: 36584430 DOI: 10.1016/j.biopha.2022.114147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/05/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) has high morbidity and mortality, with no effective treatment at present. Emphysema, a major component of COPD, is a leading cause of human death worldwide. Fibroblast growth factor 2 (FGF2) is implicated in the pathogenesis of pulmonary emphysema and may play an important role in the lung repair process after injury, but concerns remain with respect to its effectiveness. OBJECTIVE In the present work, we sought to determine how the timing (early and late intervention) of sustained-release FGF2 system administration impacted its effectiveness on a porcine pancreatic elastase (PPE)-induced lung injury mouse model. METHODS To examine the early intervention efficiency of collagen-binding FGF2 (CBD-FGF2), mice received intratracheally nebulized CBD-FGF2 with concurrent intratracheal injection of PPE. To explore the late intervention effect, CBD-FGF2 was intratracheally aerosolized after PPE administration, and lungs were collected after CBD-FGF2 treatment for subsequent analysis. RESULT In response to PPE, mice had significantly increased alveolar diameter, collagen deposition and expression of inflammatory factors and decreased lung function indices and expression of alveolar epithelium markers. Our results indicate that CBD-FGF2 administration was able to prevent and repair elastase-induced lung injury partly through the suppression of the inflammatory response and recovery of the alveolar epithelium. The early use of CBD-FGF2 for the prevention of PPE-induced emphysema showed better results than late therapeutic administration against established emphysema. CONCLUSION These data provide insight regarding the prospective role of a drug-based option (CBD-FGF2) for preventing and curing emphysema.
Collapse
Affiliation(s)
- Xin Wang
- Beijing University of Chinese Medicine, Beijing 100029, China; Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Peking Union Medical College, Beijing 100029, China
| | - Xianglin Hou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ruiming Zhao
- Beijing University of Chinese Medicine, Beijing 100029, China; Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Peking Union Medical College, Beijing 100029, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Peking Union Medical College, Beijing 100029, China; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China.
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Peking Union Medical College, Beijing 100029, China; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China.
| |
Collapse
|
13
|
Wang L, Yao S, Huang F, Lv H, Liu D, Gao T, Wang B, Zhou Z, Cao C, Zhu Q, Weng Q, Zhao G, Hu Y. The UCMSC-bFGF/Scaffold System Accelerates the Healing of the Uterine Full-Thickness Injury. Tissue Eng Part A 2023; 29:112-125. [PMID: 36305369 DOI: 10.1089/ten.tea.2022.0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Severe uterine injury is a major cause of endometrial scar formation and female infertility. At present, the methods for accelerating injured uterine healing are still lacking. Genetic engineering modification of mesenchymal stem cells (MSCs) has been shown great promise in preclinical studies on regeneration. Here, we constructed a type of umbilical cord MSCs (UC-MSCs) with overexpressed basic fibroblast growth factor (UCMSC-bFGF) and investigated the effects of the UCMSC-bFGF/scaffold on functional regeneration of the full-thickness defect uterus of the rat model. At days 7, 14, and 30 after treatments, the rats were killed and the injured uterus was observed. The structural and functional change of uterine was assessed by hematoxylin and eosin staining, immunohistochemical staining, and fertility experiment. The UCMSC-bFGF/scaffold group exhibited anti-inflammatory effect, and the number of CD45+ cell in the UCMSC-bFGF/scaffold group was significantly less than that in UC-MSCs/scaffold group and scaffold group, but higher than sham-operated group at day 7 postmending. At day 14, the UCMSC-bFGF/scaffold group exhibited dramatically proangiogenesis efficacy compared with UC-MSCs/scaffold group and scaffold group. At day 30, the endometrial thickness, structure of myometrium, and blood vessels in the UCMSC-bFGF/scaffold were better than those of the UC-MSCs/scaffold group and scaffold group, even close to sham-operated group. Implantation rate at injury region postoperation 30 days in the UCMSC-bFGF/scaffold group (8/16) was significantly higher than that in UC-MSCs/scaffold group (1/16) and scaffold group (0/16). Taken together, the UCMSC-bFGF/scaffold system suppressed local inflammation, promoted angiogenesis, and accelerated regeneration of the defected uterine wall, and thereby greatly shortened the healing time of the injured uterus. Impact statement In this study, we used umbilical cord mesenchymal stem cells (UC-MSCs) with stably overexpressed basic fibroblast growth factor (UCMSC-bFGF) to repair the full-thickness defect uterine wall of the rat model and found that the UCMSC-bFGF/scaffold system suppressed early acute inflammation after uterus injury, promoted angiogenesis, and accelerated regeneration of the injured uterine wall.
Collapse
Affiliation(s)
- Limin Wang
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Graduate School of Peking Union Medical College, Nanjing, China
| | - Simin Yao
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Feifei Huang
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Haining Lv
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Dan Liu
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Tianyun Gao
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Bin Wang
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhenhua Zhou
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Chenrui Cao
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Qi Zhu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Graduate School of Peking Union Medical College, Nanjing, China
| | - Qiao Weng
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Guangfeng Zhao
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yali Hu
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
14
|
Baicalin Ameliorates Radiation-Induced Lung Injury by Inhibiting the CysLTs/CysLT1 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2765354. [PMID: 35783527 PMCID: PMC9249482 DOI: 10.1155/2022/2765354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022]
Abstract
Objective Radiation-induced lung injury (RILI) is a common complication of radiotherapy for thoracic tumors. This study investigated the alleviating effect of baicalin (BA) on RILI and its possible mechanism. Methods RILI model was established by chest irradiation (IR) of C57BL/6 mice for 16 weeks. Different concentrations of BA were administered, and dexamethasone (DXM) was used as a positive control. Then, the lung pathological changes were observed by HE and Masson staining. The levels of TGF-β, TNF-α, IL-1β, IL-6, CysLT, LTC4, and LTE4 were measured by ELISA. The CysLT1 expression was detected by qPCR, immunohistochemistry, and western blot. Type II AEC cells were pretreated with LTD-4 to establish the RILI cell model and intervened with different concentrations of BA. Then, the collagen I protein level was measured by ELISA. The CysLT1 and α-SMA expression were detected by qPCR, immunofluorescence, and western blot. Results BA could effectively improve lung histopathological changes and pulmonary fibrosis. In vivo, BA could inhibit the levels of TGF-β, TNF-α, IL-1β, and IL-6 and reduce the levels of CysLT, LTC4, and LTE4. In vitro, different concentrations of LTD4 could reduce the viability of type II AEC cells, which could be reversed by the administration of different concentrations of BA. In addition, BA could reduce CysLT1 mRNA, as well as CysLT1 and α-SMA protein levels in vitro and in vivo. Conclusion BA attenuated lung inflammation and pulmonary fibrosis by inhibiting the CysLTs/CysLT1 pathway, thereby protecting against RILI.
Collapse
|
15
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
16
|
Zhou X, Bao WA, Zhu X, Lin J, Fan JF, Yang Y, Du XH, Wang YZ. 3,3'-Diindolylmethane attenuates inflammation and fibrosis in radiation-induced lung injury by regulating NF-κB/TGF-β/Smad signaling pathways. Exp Lung Res 2022; 48:103-113. [PMID: 35594367 DOI: 10.1080/01902148.2022.2052208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE This study aims to investigate the protective effect of 3,3'-diindolylmethane (DIM) on the radiation-induced lung injury (RILI) model and to explore its possible mechanism. Methods: A mouse model of RILI was established by thoracic irradiation, and dexamethasone was used as a positive drug to investigate the effect of DIM on RILI mice. Lung histopathology was analyzed by HE staining and Masson staining. Then the levels of inflammatory cytokines (TGF-β, TNF-α, IL-1β, and IL-6), inflammatory cell counts, and activity of MPO were detected. The expression of TGFβ1/Smad signaling pathway-related proteins was determined by immunohistochemistry. qPCR was used to analyze the mRNA expression levels of inflammatory factors, α‑SMA and COL1A1. The expression of COX-2, NF-κB, IκBα, PI3K, and Akt proteins was assessed by Western blot. Results: Histopathological staining of lung tissues showed that DIM administration alleviated the pulmonary inflammation and fibrosis caused by RILI. Moreover, the content of inflammatory factors such as IL-1β and IL-6, the expression of NF-κB pathway-related proteins, and the counts of inflammatory cells were inhibited in lung tissue, indicating that DIM can inhibit the NF-κB pathway to reduce inflammation. In addition, DIM could down-regulate the mRNA levels of α-SMA, COL1A1, and downregulate TGFβ1, Smad3, and p-Smad2/3 in lung tissues. Conclusion: Our study confirms that DIM has the potential to treat RILI in vivo by inhibiting fibrotic and inflammatory responses in lung tissue through the TGFβ/Smad and NF-κB dual pathways, respectively.
Collapse
Affiliation(s)
- Xia Zhou
- Department of Radiation Therapy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang Province, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang Province, China
| | - Wu-An Bao
- Department of Radiation Therapy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang Province, China
| | - Xiang Zhu
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang Province, China
| | - Juan Lin
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang Province, China
| | - Ju-Fen Fan
- Department of Radiation Therapy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang Province, China
| | - Yang Yang
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang Province, China
| | - Xiang-Hui Du
- Department of Radiation Therapy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang Province, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang Province, China
| | - Yue-Zhen Wang
- Department of Radiation Therapy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang Province, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang Province, China
| |
Collapse
|
17
|
Song S, Hou X, Zhang W, Liu X, Wang W, Wang X, Cao W, Xia Y, Chen W, Shi C. Specific bFGF targeting of KIM-1 in ischemic kidneys protects against renal ischemia reperfusion injury in rats. Regen Biomater 2022; 9:rbac029. [PMID: 35615568 PMCID: PMC9127338 DOI: 10.1093/rb/rbac029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/03/2022] [Accepted: 04/17/2022] [Indexed: 11/14/2022] Open
Abstract
Renal ischemia-reperfusion (I/R) injury is one of the major causes of acute kidney injury. However, there is still no effective treatment for this disease. Basic fibroblast growth factor (bFGF) has been reported to be beneficial for recovery from ischemic diseases. It is vital to increase the local concentration and reduce the diffusion of bFGF in vivo for renal I/R injury therapy. A targeted growth factor delivery system that responds to specific biological signals in the regenerative environment to guide release has been highlighted in tissue repair. In the present study, a specific peptide was fused with bFGF and called bFGF-kidney injury targeting (KIT-bFGF), and this compound specifically targeted kidney injury molecule-1 both in hypoxic renal HK-2 cells in vitro and ischemic kidneys in vivo after intravenous injection. When administered to rat models of renal I/R injury, KIT-bFGF attenuated renal tubule damage and fibrosis, and promoted functional recovery compared to the effects of native bFGF and the control. We also investigated the mechanism by which KIT-bFGF activated the ERK1/2 and Akt signaling pathways to significantly reduce apoptosis and protect against ischemic injury in the kidney. These results demonstrated that targeted delivery of KIT-bFGF could be an effective strategy for the treatment of renal I/R injury.
Collapse
Affiliation(s)
- Siqi Song
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xianglin Hou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weiwei Zhang
- Department of Nephrology, Army Medical Center of PLA, Army Medical University, Chongqing, 400038, China
| | - Xinyu Liu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Wei Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiaoya Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Wenxuan Cao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Yujun Xia
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Wei Chen
- Department of Urology, Xinqiao Hospital, Army Medical University, Chongqing, 400038, China
| | - Chunying Shi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
18
|
Dolivo DM. Anti-fibrotic effects of pharmacologic FGF-2: a review of recent literature. J Mol Med (Berl) 2022; 100:847-860. [PMID: 35484303 DOI: 10.1007/s00109-022-02194-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/09/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023]
Abstract
Fibrosis is a process of pathological tissue repair that replaces damaged, formerly functional tissue with a non-functional, collagen-rich scar. Complications of fibrotic pathologies, which can arise in numerous organs and from numerous conditions, result in nearly half of deaths in the developed world. Despite this, therapies that target fibrosis at its mechanistic roots are still notably lacking. The ubiquity of the occurrence of fibrosis in myriad organs emphasizes the fact that there are shared mechanisms underlying fibrotic conditions, which may serve as common therapeutic targets for multiple fibrotic diseases of varied organs. Thus, study of the basic science of fibrosis and of anti-fibrotic modalities is critical to therapeutic development and may have potential to translate across organs and disease states. Fibroblast growth factor 2 (FGF-2) is a broadly studied member of the fibroblast growth factors, a family of multipotent cytokines implicated in diverse cellular and tissue processes, which has previously been recognized for its anti-fibrotic potential. However, the mechanisms underlying this potential are not fully understood, nor is the potential for its use to ameliorate fibrosis in diverse pathologies and tissues. Presented here is a review of recent literature that sheds further light on these questions, with the hopes of inspiring further research into the mechanisms underlying the anti-fibrotic activities of FGF-2, as well as the disease conditions for which pharmacologic FGF-2 might be a useful option in the future.
Collapse
|
19
|
Ghomi ER, Khosravi F, Neisiany RE, Shakiba M, Zare M, Lakshminarayanan R, Chellappan V, Abdouss M, Ramakrishna S. Advances in electrospinning of aligned nanofiber scaffolds used for wound dressings. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Su R, Zhang Y, Zhang J, Wang H, Luo Y, Chan HF, Tao Y, Chen Z, Li M. Nanomedicine to advance the treatment of bacteria-induced acute lung injury. J Mater Chem B 2021; 9:9100-9115. [PMID: 34672317 DOI: 10.1039/d1tb01770e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacteria-induced acute lung injury (ALI) is associated with a high mortality rate due to the lack of an effective treatment. Patients often rely on supportive care such as low tidal volume ventilation to alleviate the symptoms. Nanomedicine has recently received much attention owing to its premium benefits of delivering drugs in a sustainable and controllable manner while minimizing the potential side effects. It can effectively improve the prognosis of bacteria-induced ALI through targeted delivery of drugs, regulation of multiple inflammatory pathways, and combating antibiotic resistance. Hence, in this review, we first discuss the pathogenesis of ALI and its potential therapeutics. In particular, the state-of-the-art nanomedicines for the treatment of bacteria-induced ALI are highlighted, including their administration routes, in vivo distribution, and clearance. Furthermore, the available bacteria-induced ALI animal models are also summarized. In the end, future perspectives of nanomedicine for ALI treatment are proposed.
Collapse
Affiliation(s)
- Ruonan Su
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China. .,Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yu Zhang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca 14853, USA
| | - Jiabin Zhang
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Haixia Wang
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China. .,Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yun Luo
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yu Tao
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China. .,Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Zhuanggui Chen
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Mingqiang Li
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China. .,Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China
| |
Collapse
|
21
|
Guo XW, Zhang H, Huang JQ, Wang SN, Lu Y, Cheng B, Dong SH, Wang YY, Li FS, Li YW. PIEZO1 Ion Channel Mediates Ionizing Radiation-Induced Pulmonary Endothelial Cell Ferroptosis via Ca 2+/Calpain/VE-Cadherin Signaling. Front Mol Biosci 2021; 8:725274. [PMID: 34568428 PMCID: PMC8458942 DOI: 10.3389/fmolb.2021.725274] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/20/2021] [Indexed: 12/23/2022] Open
Abstract
Pulmonary endothelial cell dysfunction plays an important role in ionizing radiation (IR)-induced lung injury. Whether pulmonary endothelial cell ferroptosis occurs after IR and what are the underlying mechanisms remain elusive. Here, we demonstrate that 15-Gy IR induced ferroptosis characterized by lethal accumulation of reactive oxygen species (ROS), lipid peroxidation, mitochondria shrinkage, and decreased glutathione peroxidase 4 (GPX4) and SLC7A11 expression in pulmonary endothelial cells. The phenomena could be mimicked by Yoda1, a specific activator of mechanosensitive calcium channel PIEZO1. PIEZO1 protein expression was upregulated by IR in vivo and in vitro. The increased PIEZO1 expression after IR was accompanied with increased calcium influx and increased calpain activity. The effects of radiation on lung endothelial cell ferroptosis was partly reversed by inhibition of PIEZO1 activity using the selective inhibitor GsMTx4 or inhibition of downstreaming Ca2+/calpain signaling using PD151746. Both IR and activation of PIEZO1 led to increased degradation of VE-cadherin, while PD151746 blocked these effects. VE-cadherin knockdown by specific siRNA causes ferroptosis-like phenomena with increased ROS and lipid peroxidation in the lung endothelial cells. Overexpression of VE-cadherin partly recused the ferroptosis caused by IR or PIEZO1 activation as supported by decreased ROS production, lipid peroxidation and mitochondria shrinkage compared to IR or PIEZO1 activation alone. In summary, our study reveals a previously unrecognized role of PIEZO1 in modulating ferroptosis, providing a new target for future mitigation of radiation-induced lung injury.
Collapse
Affiliation(s)
- Xue-Wei Guo
- The Postgraduate Training Base of Jinzhou Medical University (The PLA Rocket Force Characteristic Medical Center), Beijing, China.,Department of Anesthesiology, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Hao Zhang
- Department of Anesthesiology, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Jia-Qi Huang
- The Postgraduate Training Base of Jinzhou Medical University (The PLA Rocket Force Characteristic Medical Center), Beijing, China.,Department of Anesthesiology, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Si-Nian Wang
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yan Lu
- Department of Neurology, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Bo Cheng
- Department of Pathology, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Su-He Dong
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Ying-Ying Wang
- Department of Anesthesiology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Feng-Sheng Li
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yong-Wang Li
- Department of Anesthesiology, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| |
Collapse
|
22
|
Yang L, Zhou F, Zheng D, Wang D, Li X, Zhao C, Huang X. FGF/FGFR signaling: From lung development to respiratory diseases. Cytokine Growth Factor Rev 2021; 62:94-104. [PMID: 34593304 DOI: 10.1016/j.cytogfr.2021.09.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/31/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023]
Abstract
The fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) signaling system regulates a variety of biological processes, including embryogenesis, angiogenesis, wound repair, tissue homeostasis, and cancer. It exerts these regulatory functions by controlling proliferation, differentiation, migration, survival, and metabolism of target cells. The morphological structure of the lung is a complex tree-like network for effective oxygen exchange, and the airway terminates in the middle and distal ends of many alveoli. FGF/FGFR signaling plays an important role in the pathophysiology of lung development and pathogenesis of various human respiratory diseases. Here, we mainly review recent advances in FGF/FGFR signaling during human lung development and respiratory diseases, including lung cancer, acute lung injury (ALI), pulmonary arterial hypertension (PAH), chronic obstructive pulmonary disease (COPD), asthma, and pulmonary fibrosis.
Collapse
Affiliation(s)
- Lehe Yang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Feng Zhou
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Dandan Zheng
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Dandan Wang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China.
| | - Chengguang Zhao
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China.
| | - Xiaoying Huang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
23
|
Lei X, Du L, Yu W, Wang Y, Ma N, Qu B. GSTP1 as a novel target in radiation induced lung injury. J Transl Med 2021; 19:297. [PMID: 34238333 PMCID: PMC8268607 DOI: 10.1186/s12967-021-02978-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/04/2021] [Indexed: 12/14/2022] Open
Abstract
The glutathione S-transferase P1(GSTP1) is an isoenzyme in the glutathione-S transferases (GSTs) enzyme system, which is the most abundant GSTs expressed in adult lungs. Recent research shows that GSTP1 is closely related to the regulation of cell oxidative stress, inhibition of cell apoptosis and promotion of cytotoxic metabolism. Interestingly, there is evidence that GSTP1 single nucleotide polymorphisms (SNP) 105Ile/Val related to the risk of radiation induced lung injury (RILI) development, which strongly suggests that GSTP1 is closely associated with the occurrence and development of RILI. In this review, we discuss our understanding of the role of GSTP1 in RILI and its possible mechanism.
Collapse
Affiliation(s)
- Xiao Lei
- Department of Radiation Oncology, The Fifth Medical Center of the Chinese PLA General Hospital , Beijing, China
| | - Lehui Du
- Department of Radiation Oncology, The Fifth Medical Center of the Chinese PLA General Hospital , Beijing, China
| | - Wei Yu
- Department of Radiation Oncology, The Fifth Medical Center of the Chinese PLA General Hospital , Beijing, China
| | - Yao Wang
- Department of Radiation Oncology, The Fifth Medical Center of the Chinese PLA General Hospital , Beijing, China
| | - Na Ma
- Department of Radiation Oncology, The Fifth Medical Center of the Chinese PLA General Hospital , Beijing, China
| | - Baolin Qu
- Department of Radiation Oncology, The Fifth Medical Center of the Chinese PLA General Hospital , Beijing, China.
| |
Collapse
|
24
|
Sun F, Lu Y, Wang Z, Shi H. Vascularization strategies for tissue engineering for tracheal reconstruction. Regen Med 2021; 16:549-566. [PMID: 34114475 DOI: 10.2217/rme-2020-0091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Tissue engineering technology provides effective alternative treatments for tracheal reconstruction. The formation of a functional microvascular network is essential to support cell metabolism and ensure the long-term survival of grafts. Although several tracheal replacement therapy strategies have been developed in the past, the critical significance of the formation of microvascular networks in 3D scaffolds has not attracted sufficient attention. Here, we review key technologies and related factors of microvascular network construction in tissue-engineered trachea and explore optimized preparation processes of vascularized functional tissues for clinical applications.
Collapse
Affiliation(s)
- Fei Sun
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese & Western Medicine for Prevention & Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Yi Lu
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese & Western Medicine for Prevention & Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Zhihao Wang
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese & Western Medicine for Prevention & Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Hongcan Shi
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese & Western Medicine for Prevention & Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| |
Collapse
|
25
|
Li C, Li S, Du K, Li P, Qiu B, Ding W. On-Chip Replication of Extremely Early-Stage Tumor Behavior. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19768-19777. [PMID: 33877794 DOI: 10.1021/acsami.1c03740] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Cancer is a multistep progressive disease that generally involves tumor growth, invasion, and metastasis. It is crucial to understand tumor progression for tumor diagnosis and therapy. However, tumor progression at an extremely early stage (EES) is barely demonstrated because EES tumors are too small to be detected by imaging. Herein, we, for the first time, replicated tumor progression at the EES on a microfluidic chip and uncovered the tumor behaviors affected by the tumor microenvironment. To mimic the progression of a single solid tumor at the EES, a HeLa cell spheroid was seeded and cultured on the chip, and a microvascular network was developed to integrate the microphysiological contexts around the tumor. We revealed not only the growth patterns and cell behaviors of tumor spheroids of different sizes under angiogenesis and fibroblast conditions but also the effect of tumor progression on peritumoral angiogenesis. We found that smaller tumors were more aggressive and that endotheliocytes and fibroblasts significantly accelerated both the proliferation and migration of tumor cells. In addition, we also first present the dynamic epithelial-mesenchymal transition process of tumor cells and the formation of vasculogenic mimicry at the EES. This work can provide insights for understanding tumor progression at the EES and offer new ideas for tumor therapy.
Collapse
Affiliation(s)
- Chengpan Li
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei 230027, China
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, China
| | - Shibo Li
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei 230027, China
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, China
| | - Kun Du
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei 230027, China
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, China
| | - Ping Li
- Chinese Integrative Medicine Oncology Department, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Bensheng Qiu
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei 230027, China
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, China
| | - Weiping Ding
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei 230027, China
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
26
|
Wang S, Li J, He Y, Ran Y, Lu B, Gao J, Shu C, Li J, Zhao Y, Zhang X, Hao Y. Protective effect of melatonin entrapped PLGA nanoparticles on radiation-induced lung injury through the miR-21/TGF-β1/Smad3 pathway. Int J Pharm 2021; 602:120584. [PMID: 33887395 DOI: 10.1016/j.ijpharm.2021.120584] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/18/2021] [Accepted: 04/04/2021] [Indexed: 01/04/2023]
Abstract
Radiation-induced lung injury (RILI) is a complication commonly found in victims suffering from nuclear accidents and patients treated with chest tumor radiotherapy, and drugs are limited for effective prevention and treatment. Melatonin (MET) has an anti-radiation effect, but its metabolic period in the body is short. In order to prolong the metabolism period of MET, we prepared MET entrapped poly (lactic-co-glycolic acid) nanoparticles (MET/PLGANPS) for the treatment of RILI. As a result, the release rate of MET/PLGANPS in vitro was lower than MET, with stable physical properties, and it caused no changes in histopathology and biochemical indicators. After 2 weeks and 16 weeks of irradiation with the dose of 15 Gy, MET and MET/PLGANPS could reduce the expression of caspase-3 proteins, inflammatory factors, TGF-β1 and Smad3 to alleviate radiation-induced lung injury. MET/PLGANPS showed better therapeutic effect on RILI than MET. In addition, we also found that high expression of miR-21 could increase the expression levels of TGF-β1, and inhibit the protective effect of MET/PLGANPS. In conclusion, MET/PLGANPS may alleviate RILI by inhibiting the miR-21/TGF-β1/Smad3 pathway, which would provide a new target for the treatment of radiation-induced lung injury.
Collapse
Affiliation(s)
- Shuang Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Juan Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Yingjuan He
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Yonghong Ran
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Binghui Lu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Jining Gao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Chang Shu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Jie Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Yazhen Zhao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Xin Zhang
- Chongqing Normal University, No.37, Middle University Road, Shapingba District, Chongqing 401331, China
| | - Yuhui Hao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing 400038, China.
| |
Collapse
|
27
|
Zhang Y, Bai Y, Bai J, Li L, Gao L, Wang F. Targeting Soluble Epoxide Hydrolase with TPPU Alleviates Irradiation‐Induced Hyposalivation in Mice via Preventing Apoptosis and Microcirculation Disturbance. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yaoyang Zhang
- School of Stomatology Dalian Medical University No.9 West Section Lvshun South Road Dalian Liaoning Province 116044 P. R. China
| | - Yuwen Bai
- School of Stomatology Dalian Medical University No.9 West Section Lvshun South Road Dalian Liaoning Province 116044 P. R. China
| | - Jie Bai
- School of Stomatology Dalian Medical University No.9 West Section Lvshun South Road Dalian Liaoning Province 116044 P. R. China
| | - Lijun Li
- School of Stomatology Dalian Medical University No.9 West Section Lvshun South Road Dalian Liaoning Province 116044 P. R. China
| | - Lu Gao
- School of Stomatology Dalian Medical University No.9 West Section Lvshun South Road Dalian Liaoning Province 116044 P. R. China
| | - Fu Wang
- School of Stomatology Dalian Medical University No.9 West Section Lvshun South Road Dalian Liaoning Province 116044 P. R. China
| |
Collapse
|
28
|
Chen W, Wu D, Jin Y, Li Q, Liu Y, Qiao X, Zhang J, Dong G, Li Z, Li T, Yang Y. Pre-protective effect of polysaccharides purified from Hericium erinaceus against ethanol-induced gastric mucosal injury in rats. Int J Biol Macromol 2020; 159:948-956. [PMID: 32450327 DOI: 10.1016/j.ijbiomac.2020.05.163] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022]
Abstract
The β-glucan H6PC20 (Mw: 2390 kDa) and α-heteropolysaccharide HPB-3 (Mw: 15 kDa) were purified from the fruiting body of Hericium erinaceus according to the previous methods. Their gastroprotective activities and corresponding structure-activity relationship were studied in the ethanol-induced gastric ulcer model of rats. After intragastric administrated with H6PC20 and HPB-3 for 14 days, macroscopic and histological evaluation of gastric mucosa was improved significantly. The defense and repair factors (EGF, bFGF and PGE2) were increased, meanwhile, the inflammatory cytokines (IL-1β and TNF-α) and MDA were reduced. These results indicated that H6PC20 and HPB-3 presented gastroprotective activities with the mechanism of activating repair and defense system, decreasing the inflammatory response and alleviating the oxidative injury. Furthermore, the structure-activity relationship showed that the macromolecular β-glucan was better for repair and defense system, while the low weight molecular α-heteropolysaccharide focused on the anti-inflammatory effect. The polysaccharides purified from H. erinaceus can be developed as a potential gastroprotective ingredient for applications in pharmaceutical field.
Collapse
Affiliation(s)
- Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Yueling Jin
- Shanghai University of Medicine & Health Sciences, Shanghai, 200237, PR China
| | - Qiaozhen Li
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Yanfang Liu
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Xuxin Qiao
- Shanghai University of Medicine & Health Sciences, Shanghai, 200237, PR China
| | - Jingsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Guochao Dong
- Shanghai University of Medicine & Health Sciences, Shanghai, 200237, PR China
| | - Zhengpeng Li
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Tingting Li
- Shanghai University of Medicine & Health Sciences, Shanghai, 200237, PR China.
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China.
| |
Collapse
|
29
|
Bolte C, Kalin TV, Kalinichenko VV. Molecular, cellular, and bioengineering approaches to stimulate lung regeneration after injury. Semin Cell Dev Biol 2020; 100:101-108. [PMID: 31669132 DOI: 10.1016/j.semcdb.2019.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/07/2019] [Accepted: 10/14/2019] [Indexed: 01/03/2023]
Abstract
The lung is susceptible to damage from a variety of sources throughout development and in adulthood. As a result, the lung has great capacities for repair and regeneration, directed by precisely controlled sequences of molecular and signaling pathways. Impairments or alterations in these signaling events can have deleterious effects on lung structure and function, ultimately leading to chronic lung disorders. When lung injury is too severe for the normal pathways to repair, or if those pathways do not function properly, lung regenerative medicine is needed to restore adequate structure and function. Great progress has been made in recent years in the number of regenerative techniques and their efficacy. This review will address recent progress in lung regenerative medicine focusing on pharmacotherapy including the expanding role of nanotechnology, stem cell-based therapies, and bioengineering techniques. The use of these techniques individually and collectively has the potential to significantly improve morbidity and mortality associated with congenital and acquired lung disorders.
Collapse
Affiliation(s)
- Craig Bolte
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, United States.
| | - Tanya V Kalin
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, United States
| | - Vladimir V Kalinichenko
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, United States.
| |
Collapse
|
30
|
Hu J, Song Y, Zhang C, Huang W, Chen A, He H, Zhang S, Chen Y, Tu C, Liu J, Xuan X, Chang Y, Zheng J, Wu J. Highly Aligned Electrospun Collagen/Polycaprolactone Surgical Sutures with Sustained Release of Growth Factors for Wound Regeneration. ACS APPLIED BIO MATERIALS 2020; 3:965-976. [DOI: 10.1021/acsabm.9b01000] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jinyu Hu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yi Song
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Cuiyun Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Wen Huang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Anqi Chen
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Huacheng He
- College of Chemistry and Materials Engineering Wenzhou University, Wenzhou, Zhejiang 325027, P.R. China
| | - Susu Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yanxin Chen
- College of Chemistry and Materials Engineering Wenzhou University, Wenzhou, Zhejiang 325027, P.R. China
| | - Chaodong Tu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jianhui Liu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Xuan Xuan
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P. R. China
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering Chung Yuan Christian University, Chung-Li, Taoyuan 320, Taiwan
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering The University of Akron, Akron, Ohio 44325, United States
| | - Jiang Wu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
31
|
bFGF overexpression adipose derived mesenchymal stem cells improved the survival of pulmonary arterial endothelial cells via PI3k/Akt signaling pathway. Int J Biochem Cell Biol 2019; 113:87-94. [PMID: 31200125 DOI: 10.1016/j.biocel.2019.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 01/04/2023]
Abstract
Pulmonary arterial hypertension (PAH) is characterized as pulmonary arterial endothelial dysfunction and endothelial cells over proliferation, therefore, the repair of pulmonary arterial endothelial cells has been a common goal in treating PAH. In the present study, human adipose derived mesenchymal stem cells (ASCs) were transfected with bFGF lentiviral vector and co-cultured with monocrotaline pyrrole treated human pulmonary arterial endothelial cells (HPAECs). The results showed that bFGF-ASCs improved the proliferation, viability and decreased the apoptosis of HPAECs, besides, improved PAH was observed in PAH rat models. Western blot analysis showed that the PI3k and p-Akt protein expression level increased in HPAECs, suggesting the activation of the PI3k/Akt signaling pathway. With the administration of LY294002, the bFGF induced HPAECs survival and PI3k/Akt signaling activation were successfully blocked. The present study demonstrated that bFGF transfected ASCs improved the survival of HPAECs by activating the PI3k/Akt pathway.
Collapse
|
32
|
Effects of diabetic foot infection on vascular and immune function in the lower limbs. Int J Diabetes Dev Ctries 2019. [DOI: 10.1007/s13410-019-00750-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|