1
|
Sun C, Xie F, Zhang H, Feng L, Wang Y, Huang C, Cui Z, Luo C, Zhang L, Wang Q. Paclitaxel/Luteolin Coloaded Dual-Functional Liposomes for Esophageal Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2411930. [PMID: 40265971 DOI: 10.1002/advs.202411930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 04/01/2025] [Indexed: 04/24/2025]
Abstract
Combination therapy integrating chemotherapeutic agents with natural bioactive ingredients represents an attractive strategy for esophageal squamous cell carcinoma (ESCC) treatment, yet achieving tumor-specific co-delivery remains a critical challenge. Herein, we report that the combination of luteolin (LUT) and paclitaxel (PTX) exerts a remarkable synergy in ESCC treatment, while concurrently alleviating PTX-induced hepatotoxicity; EA2 aptamer has been identified for its exceptional specificity and strong affinity toward Catenin Alpha 1 protein (CTNNA1) in ESCC cells. Leveraging this specificity, nanosized EA2-modified pH-sensitive liposomes (EA2-PSL-PTX/LUT) are successfully developed with effective co-loading, controlled release, and good biostability. EA2-PSL-PTX/LUT exhibits stimuli-triggered release in the acidic tumor microenvironment and facilitates specific cellular uptake and endosomal escape in ESCC cells. In vivo imaging confirms precise tumor localization, deep tumor penetration, and prolonged retention of the nanocarrier. In vitro and in vivo findings validate that the nanocarrier potentiates synergistic inhibitions of PTX and LUT. Notably, EA2-PSL-PTX/LUT significantly activates the tumor microenvironment by promoting dendritic cell maturation and T cell infiltration. And the immunosuppressive microenvironment has been remodeled by decreasing myeloid-derived suppressor cells and regulatory T cell accumulation. This study provides a strategy for precise delivery of combinational chemotherapeutic drugs for ESCC targeted therapy.
Collapse
Affiliation(s)
- Congyong Sun
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Fei Xie
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Huiyun Zhang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224003, China
| | - Lulu Feng
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Yuting Wang
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Chaofan Huang
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Zhizhen Cui
- Department of Acute Infectious Disease Control and Prevention, Huai'an Center for Disease Control and Prevention, Huai'an, Jiangsu, 223003, China
| | - Chao Luo
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Li Zhang
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Qilong Wang
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| |
Collapse
|
2
|
Raj M, Meena A, Seth R, Mathur A, Luqman S. An update on nanoformulations with FDA approved drugs for female reproductive cancer. J Microencapsul 2025:1-34. [PMID: 40114400 DOI: 10.1080/02652048.2025.2474457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/26/2025] [Indexed: 03/22/2025]
Abstract
Female reproductive cancers, including ovarian, cervical, breast, gestational trophoblastic and endometrial cancer, present significant challenges in therapy and patient prognosis. Conventional chemotherapy often lacks selectivity, leading to systemic toxicity and reduced treatment efficacy. Nanotechnology has emerged as a promising approach to improve drug delivery and therapeutic outcomes. Encapsulation of FDA-approved drugs within nanocarriers such as liposomes, polymeric nanoparticles, and lipid nanoparticles enables controlled drug release, reduces off-target effects, and enhances drug accumulation at tumor sites. This targeted delivery minimizes damage to healthy tissues and improves patient survival rates. Additionally, nanoformulations facilitate combination therapy, overcoming drug resistance and maximizing therapeutic efficacy. Despite promising results, challenges like scalability, reproducibility, and regulatory approvals hinder widespread clinical applications. Developing personalized nanoformulations tailored to individual patient profiles offers potential for precision cancer therapy. This study explores the role of nanoformulations in enhancing the therapeutic potential of FDA-approved drugs for treating female reproductive cancers.
Collapse
Affiliation(s)
- Mahima Raj
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Richa Seth
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anurag Mathur
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Li T, Wang W, Liu W, Sun M, Wang Q, Li Z, Hao J, Yu Y. Macrophage membrane coated functionalized nanoparticles for targeted drug delivery and neural function repair in cerebral ischemia-reperfusion injury. Int J Pharm 2025; 672:125329. [PMID: 39923885 DOI: 10.1016/j.ijpharm.2025.125329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Vascular dementia (VD) is the second leading cause of cognitive impairment after Alzheimer's disease, posing a heavy burden to families and society. The majority of causes of VD are vascular diseases such as stroke, with ischemic stroke accounting for a large proportion. After ischemia-reperfusion, factors such as mitochondrial damage and increased xanthine oxidase lead to excessive production of reactive oxygen species (ROS) at the ischemic site, further exacerbating brain injury. Therefore, developing effective ROS scavengers is crucial. Polydopamine has become one of the widely used surface functionalized materials in recent years, due to its excellent biocompatibility and antioxidant properties. This paper proposed a macrophage membrane disguised polydopamine (PDA) nanoplatform for loading the neuroprotective drug puerarin (PUE). The as made PUE@PDA@CMs (PPCs) nanoplatforms can significantly and effectively clear ROS, alleviate oxidative microenvironment, and protect neurons from oxidative stress damage. The macrophage membranes modification enables PPCs to respond to lymphocyte recruitment at the site of cerebral ischemia-reperfusion injury, thereby targeting and aggregating to the injury site. In a mouse model of vascular dementia, PPCs treatment significantly reduced neuronal apoptosis and provided significant cognitive and memory function recovery, providing new strategies and prospects for the treatment of central nervous system diseases.
Collapse
Affiliation(s)
- Ting Li
- China Rehabilitation Science Institute, China Rehabilitation Research Center Beijing China; Beijing Key Laboratory of Neural Injury and Rehabilitation Beijing China
| | - Wenzhu Wang
- China Rehabilitation Science Institute, China Rehabilitation Research Center Beijing China; Beijing Key Laboratory of Neural Injury and Rehabilitation Beijing China; Wenzhou Medical University Zhejiang China
| | - Weijin Liu
- China Rehabilitation Science Institute, China Rehabilitation Research Center Beijing China; Beijing Key Laboratory of Neural Injury and Rehabilitation Beijing China
| | - Mingming Sun
- China Rehabilitation Science Institute, China Rehabilitation Research Center Beijing China; Beijing Key Laboratory of Neural Injury and Rehabilitation Beijing China
| | - Qiuying Wang
- China Rehabilitation Science Institute, China Rehabilitation Research Center Beijing China; Beijing Key Laboratory of Neural Injury and Rehabilitation Beijing China
| | - Zihan Li
- China Rehabilitation Science Institute, China Rehabilitation Research Center Beijing China; Beijing Key Laboratory of Neural Injury and Rehabilitation Beijing China
| | - Jie Hao
- China Rehabilitation Science Institute, China Rehabilitation Research Center Beijing China; Beijing Key Laboratory of Neural Injury and Rehabilitation Beijing China
| | - Yan Yu
- China Rehabilitation Science Institute, China Rehabilitation Research Center Beijing China; School of Rehabilitation Capital Medical University Beijing China; Beijing Key Laboratory of Neural Injury and Rehabilitation Beijing China; Center of Neural Injury and Repair Beijing Institute for Brain Disorders Beijing China.
| |
Collapse
|
4
|
Lv P, Hu Y, Ding L, Xiang W. Puerarin triggers sensitivity to ferroptosis in glioblastoma cells by activating SIRT3/NCOA4-dependent autophagy. Int Immunopharmacol 2025; 149:114246. [PMID: 39929095 DOI: 10.1016/j.intimp.2025.114246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/22/2025]
Abstract
SIRT3 has been found to involve in the tumorigenesis and progression of glioblastoma, and it is reported that puerarin can inhibit the growth of glioblastoma cells. Therefore, we aimed to investigate the biological function of SIRT3 in autophagy and ferroptosis in glioblastoma cells and study the effects of puerarin on ferroptosis and SIRT3/NCOA4-dependent autophagy in cancer cells. The results showed that overexpression of SIRT3 significantly promoted ferroptosis sensitization by reducing cell viability and GSH/GSSH ratio and increasing ROS levels, whereas knockout of SIRT3 significantly triggered cell viability and GSH/GSSH ratio and decreasing ROS levels in U87MG cells (P < 0.05). Moreover, overexpression of SIRT3 significantly also promoted the ratio of LC3-Ⅱ/Ⅰ and upregulated NCOA4 and Fe2+ levels, but downregulated the expression of p62 and FTH (P < 0.05); while knockout of SIRT3 has the opposite effects. Besides, autophagy inhibitor antagonized the effects of SIRT3 overexpression on the expression of autophagy-associated proteins and Fe2+ levels. Additionally, knockout of NCOA4 significantly increased cell viability and GSH/GSSH ratio and reduced ROS levels in RSL3-treated cells overexpressing SIRT3. Puerarin treatment significantly upregulated the levels of ROS, Fe2+, SIRT3, NCOA4, and the ratio of LC3-Ⅱ/Ⅰ, but downregulated the levels of cell viability, GSH/GSSH ratio, p62, and FTH in U87MG cells (all P < 0.05). Autophagy inhibitor, SIRT3 or NCOA4 deletion significantly reduced the effects of puerarin on the autophagy-dependent ferroptosis in U87MG cells (all P < 0.05). SIRT3 drives sensitivity to ferroptosis by activating NCOA4-mediated autophagy, and we proposed puerarin, a promising therapeutic drug for glioblastoma.
Collapse
Affiliation(s)
- Peng Lv
- Department of Neurosurgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China; Department of Neurosurgery Suizhou Central Hospital Hubei University of Medicine Suizhou Hubei China
| | - Yueyun Hu
- Department of Neurosurgery Wuhan No 8 Hospital Wuhan China
| | - Lei Ding
- General Hospital of the Yangtze River Shipping Wuhan Brain Hospital Wuhan China.
| | - Wei Xiang
- Department of Neurosurgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.
| |
Collapse
|
5
|
Liao T, Chen X, Qiu F, Zhang X, Wu F, Zhao Z, Xu M, Chen M, Shen JW, Shen Q, Ji J. Regulation of cancer-associated fibroblasts for enhanced cancer immunotherapy using advanced functional nanomedicines: an updated review. J Nanobiotechnology 2025; 23:166. [PMID: 40038745 PMCID: PMC11877876 DOI: 10.1186/s12951-025-03217-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
The tumor microenvironment (TME) is a complex and dynamic ecosystem that plays a critical role in cancer progression. It comprises various cell types, including immune cells, tumor cells, and stromal cells. Among these, cancer-associated fibroblasts (CAFs) represent a heterogeneous population with diverse origins, phenotypes, and functions. Activated CAFs secrete multiple factors that promote tumor growth, migration, angiogenesis, and contribute to chemoresistance. Additionally, CAFs secrete extracellular matrix (ECM) components, such as collagen, which form a physical barrier that hinders the penetration of chemotherapeutic and immunotherapeutic agents. This ECM also influences immune cell infiltration, impeding their ability to effectively target tumor cells. As a result, modulating the activity of CAFs has emerged as a promising strategy to enhance the efficacy of tumor immunotherapy. Nano-delivery systems, constructed from various nanomaterials with high targeting specificity and biocompatibility, offer a compelling approach to deliver therapeutic agents or immunomodulatory factors directly to CAFs. This modulation can alter CAF function, reduce their tumor-promoting effects, and thereby improve the outcomes of immunotherapy. This review provides an in-depth exploration of the origins, functions, and interactions of CAFs within the TME, particularly in the context of immune suppression. Furthermore, it discusses the potential applications of functional nanocarrifers in modulating CAFs and enhancing the effectiveness of tumor immunotherapy, highlighting the significant progress and potential of nanotechnology in this area.
Collapse
Affiliation(s)
- Tingting Liao
- School of Pharmacy, College of Pharmacy, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, 310015, Zhejiang, China
| | - Xiaoxiao Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, 289 Kuocang Road, Lishui, 323000, China
- Department of Radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Fengkai Qiu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, 289 Kuocang Road, Lishui, 323000, China
- Department of Radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Xinyu Zhang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, 289 Kuocang Road, Lishui, 323000, China
- Department of Radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, China
| | - Fazong Wu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, 289 Kuocang Road, Lishui, 323000, China
- Department of Radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Zhongwei Zhao
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, 289 Kuocang Road, Lishui, 323000, China
- Department of Radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Ming Xu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, 289 Kuocang Road, Lishui, 323000, China
- Department of Radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Minjiang Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, 289 Kuocang Road, Lishui, 323000, China
- Department of Radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, China
| | - Jia-Wei Shen
- School of Pharmacy, College of Pharmacy, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, 310015, Zhejiang, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Qiying Shen
- School of Pharmacy, College of Pharmacy, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, 310015, Zhejiang, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Jiansong Ji
- School of Pharmacy, College of Pharmacy, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, 310015, Zhejiang, China.
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, 289 Kuocang Road, Lishui, 323000, China.
- Department of Radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
| |
Collapse
|
6
|
Xu T, Han J, Wang N, Huan Z, Yao H, Ge X. The protective role of kakkalide in sepsis-induced intestinal barrier dysfunction via inhibition of NF-κB pathway activation. J Clin Biochem Nutr 2025; 76:139-147. [PMID: 40151402 PMCID: PMC11936737 DOI: 10.3164/jcbn.24-182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 11/16/2024] [Indexed: 03/29/2025] Open
Abstract
Sepsis, a systemic inflammatory response often triggered by infection, can lead to multi-organ failure, with the intestine being one of the most vulnerable organs. The nuclear factor kappa-B (NF-κB) pathway plays a crucial role in immune responses, inflammation, and cell survival, making it central to sepsis-induced intestinal damage. Kakkalide (KA), a bioactive compound known for its anti-inflammatory, cardiovascular, neuroprotective, and anti-diabetic properties, has potential therapeutic effects. However, its impact on sepsis-induced intestinal injury remains unclear. In this study, murine sepsis models were used both in vivo and in vitro to evaluate the protective effects of KA on intestinal histopathology, apoptosis, and inflammation. Results showed that KA significantly reduced intestinal damage and apoptosis, as evidenced by hematoxylin-eosin and TUNEL staining. KA also improved intestinal barrier integrity, as indicated by reduced diamine oxidase activity, d-lactic acid content, and fluorescein isothiocyanate intensity, along with increased expression of zonula occludens-1. Furthermore, KA alleviates inflammation by reducing the levels of tumor necrosis factor-α, interleukin-1β, prostaglandin E2, inducible nitric oxide synthase, and cyclooxygenase-2. Immunofluorescence and Western blot analysis revealed that KA inhibited the sepsis-induced phosphorylation of inhibitor-kappaBα and RelA (P65) and prevented P65's translocation to the nucleus. These findings were confirmed in lipopolysaccharide-induced Caco-2 cells, suggesting that KA protected the intestinal barrier during sepsis by suppressing the NF-κB pathway.
Collapse
Affiliation(s)
- Tongrong Xu
- Department of Critical Care Medicine, Changzhou No.2 People’s Hospital, Gehu Middle Road 68, Changzhou, Jiangsu, People’s Republic of China
| | - Jiahui Han
- Department of Emergency and Critical Care Medicine, Wuxi 9th People’s Hospital Affiliated to Soochow University, Liangxi Road 999, Wuxi, Jiangsu 214000, People’s Republic of China
| | - Nan Wang
- Department of Emergency and Critical Care Medicine, Wuxi 9th People’s Hospital Affiliated to Soochow University, Liangxi Road 999, Wuxi, Jiangsu 214000, People’s Republic of China
| | - Zhirong Huan
- Department of Emergency and Critical Care Medicine, Wuxi 9th People’s Hospital Affiliated to Soochow University, Liangxi Road 999, Wuxi, Jiangsu 214000, People’s Republic of China
| | - Hao Yao
- Department of Emergency and Critical Care Medicine, Wuxi 9th People’s Hospital Affiliated to Soochow University, Liangxi Road 999, Wuxi, Jiangsu 214000, People’s Republic of China
| | - Xin Ge
- Department of Emergency and Critical Care Medicine, Wuxi 9th People’s Hospital Affiliated to Soochow University, Liangxi Road 999, Wuxi, Jiangsu 214000, People’s Republic of China
- Orthopedic Institution of Wuxi City, Liangxi Road 999, Wuxi, Jiangsu 214000, People’s Republic of China
| |
Collapse
|
7
|
Bi T, Zhao Q, Wang T, Huang R, Liu B, Liu X, Wang Y, Sun Q, Yang Y, Liu Z. Disruption of Ferroptosis Inhibition and Immune Evasion with Tumor-Activatable Prodrug for Boosted Photodynamic/Chemotherapy Eradication of Drug-Resistant Tumors. Adv Healthc Mater 2025; 14:e2403473. [PMID: 39530628 DOI: 10.1002/adhm.202403473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Breast cancer is a malignant tumor that threatens the life and health of women worldwide. As the first-line chemotherapy drug for breast cancer, doxorubicin (DOX) can inhibit the synthesis of RNA and DNA, and it exhibits strong inhibitory activity against breast cancer. However, drug-induced systemic toxicity and drug resistance can occur with DOX treatment. In this work, TSPO protein is identified as a promising target for overcoming drug resistance and we designed a novel BT-DOX/PDP conjugate to solve these problems in drug chemotherapy. It is found that BT-DOX/PDP can effectively downregulate TSPO1 protein and sensitize MCF-7/Adr to DOX. Furthermore, due to its positive charge, BT-DOX/PDP is readily loaded into puerarin (PUE), the resulting BT-DOX/PDP@PUE exhibited minimal systemic toxicity but enhanced antitumor activity in animal models, as compared with BT-DOX/PDP. This study demonstrates the advantages of combined chemotherapy and photodynamic therapy in overcoming drug resistance, which may be applied in the design of other photodynamic therapy-based conjugates to enhance antitumor therapy.
Collapse
Affiliation(s)
- Tao Bi
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Qixin Zhao
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Ting Wang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Rui Huang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Bangguo Liu
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xinyue Liu
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yihuan Wang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Qin Sun
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yingcheng Yang
- Experimental Medicine Center, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zengjin Liu
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| |
Collapse
|
8
|
Chaudhary A, Patil P, Raina P, Kaul-Ghanekar R. Matairesinol repolarizes M2 macrophages to M1 phenotype to induce apoptosis in triple-negative breast cancer cells. Immunopharmacol Immunotoxicol 2024:1-15. [PMID: 39722605 DOI: 10.1080/08923973.2024.2425028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/27/2024] [Indexed: 12/28/2024]
Abstract
OBJECTIVE Triple-Negative Breast Cancer (TNBC), the most challenging subtype of Breast Cancer (BC), currently lacks targeted therapy, presenting a significant therapeutic gap in its management. Tumor Associated Macrophages (TAMs) play a significant role in TNBC progression and could be targeted by repolarizing them from M2 to M1 phenotype. Matairesinol (MAT), a plant lignan, has been shown to exhibit anticancer, anti-inflammatory and immunomodulatory activities. In this study, we explored how MAT-induced repolarization of THP-1-derived M2 macrophages towards the M1 phenotype, which could effectively target the TNBC cell line, MDA-MB-231. METHODS The differential expression of genes in THP-1-derived macrophages at mRNA levels was evaluated by RNAseq assay. An inverted microscope equipped with a CMOS camera was utilized to capture the morphological variations in THP-1 cells and THP-1-derived macrophages. Relative mRNA expression of M1 and M2 specific marker genes was quantified by qRT-PCR. Cell viability and induction of apoptosis were evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1 dye) assays, respectively. RESULTS MAT reduced the viability of M2a and M2d macrophages and repolarized them to M1 phenotype. Conditioned medium (CM) from MAT-treated M2a and M2d macrophages significantly reduced the viability of TNBC cells by apoptosis. CONCLUSION Targeting M2 macrophages is an important strategy to regulate cancer progression. Our study provides evidence that MAT may be a promising drug candidate for developing novel anti-TNBC therapy. However, further studies are warranted to thoroughly elucidate the molecular mechanism of action of MAT and evaluate its therapeutic potential in TNBC in vitro and in vivo models.
Collapse
Affiliation(s)
- Amol Chaudhary
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Prajakta Patil
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Prerna Raina
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
- Analytical Department (ADT), Lupin Limited, Pune, India
| | - Ruchika Kaul-Ghanekar
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
- Symbiosis Centre for Research and Innovation (SCRI); Symbiosis International Deemed University (SIU), Pune, India
- Cancer Research Lab, Symbiosis School of Biological Sciences (SSBS), Symbiosis International Deemed University (SIU), Pune, India
| |
Collapse
|
9
|
Raaijmakers KTPM, Adema GJ, Bussink J, Ansems M. Cancer-associated fibroblasts, tumor and radiotherapy: interactions in the tumor micro-environment. J Exp Clin Cancer Res 2024; 43:323. [PMID: 39696386 DOI: 10.1186/s13046-024-03251-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) represent a group of genotypically non-malignant stromal cells in the tumor micro-environment (TME) of solid tumors that encompasses up to 80% of the tumor volume. Even though the phenotypic diversity and plasticity of CAFs complicates research, it is well-established that CAFs can affect many aspects of tumor progression, including growth, invasion and therapy resistance. Although anti-tumorigenic properties of CAFs have been reported, the majority of research demonstrates a pro-tumorigenic role for CAFs via (in)direct signaling to cancer cells, immunomodulation and extracellular matrix (ECM) remodeling. Following harsh therapeutic approaches such as radio- and/or chemotherapy, CAFs do not die but rather become senescent. Upon conversion towards senescence, many pro-tumorigenic characteristics of CAFs are preserved or even amplified. Senescent CAFs continue to promote tumor cell therapy resistance, modulate the ECM, stimulate epithelial-to-mesenchymal transition (EMT) and induce immunosuppression. Consequently, CAFs play a significant role in tumor cell survival, relapse and potentially malignant transformation of surviving cancer cells following therapy. Modulating CAF functioning in the TME therefore is a critical area of research. Proposed strategies to enhance therapeutic efficacy include reverting senescent CAFs towards a quiescent phenotype or selectively targeting (non-)senescent CAFs. In this review, we discuss CAF functioning in the TME before and during therapy, with a strong focus on radiotherapy. In the future, CAF functioning in the therapeutic TME should be taken into account when designing treatment plans and new therapeutic approaches.
Collapse
Affiliation(s)
- Kris T P M Raaijmakers
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Gosse J Adema
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Johan Bussink
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marleen Ansems
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
10
|
Hu F, Hu T, He A, Yuan Y, Wang X, Zou C, Qiao Y, Xu H, Liu L, Wang Q, Liu J, Lai S, Huang H. Puerarin Protects Myocardium From Ischaemia/Reperfusion Injury by Inhibiting Ferroptosis Through Downregulation of VDAC1. J Cell Mol Med 2024; 28:e70313. [PMID: 39730981 DOI: 10.1111/jcmm.70313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/26/2024] [Accepted: 12/10/2024] [Indexed: 12/29/2024] Open
Abstract
Despite improvements in interventional techniques leading to faster myocardial reperfusion postmyocardial infarction, there has been a significant rise in the occurrence of myocardial ischaemia/reperfusion injury (MI/RI). A deeper understanding of the underlying mechanisms of MI/RI could offer a crucial approach to reducing myocardial damage and enhancing patient outcomes. This study examined the myocardial protective properties of puerarin (PUE) in the context of MI/RI using hypoxia/reoxygenation (H/R) or ischaemia/reperfusion (I/R) injury models were employed in H9c2 cells and C57BL/6 mice. Our findings demonstrate that pretreatment with PUE effectively mitigated cardiomyocyte ferroptosis, restored redox balance, preserved mitochondrial energy production and maintained mitochondrial function following MI/RI. Furthermore, these cardioprotective effects of PUE were found to be mediated by the downregulation of voltage-dependent anion channel 1 (VDAC1) protein. These data reveal a novel mechanism by which PUE inhibits MI/RI and reveal that this protective effect of PUE is dependent on the downregulation of VDAC1.
Collapse
Affiliation(s)
- Fajia Hu
- Institute of Cardiovascular Surgical Diseases, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Cardiovascular Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Tie Hu
- Institute of Cardiovascular Surgical Diseases, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Cardiovascular Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Andi He
- Institute of Cardiovascular Surgical Diseases, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yong Yuan
- Institute of Cardiovascular Surgical Diseases, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiuqi Wang
- Institute of Cardiovascular Surgical Diseases, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Chenchao Zou
- Institute of Cardiovascular Surgical Diseases, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yamei Qiao
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Huaihan Xu
- Department of Cardiovascular Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Lanxiang Liu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qun Wang
- Department of Cardiovascular Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jichun Liu
- Department of Cardiovascular Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Songqing Lai
- Institute of Cardiovascular Surgical Diseases, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Huang Huang
- Institute of Cardiovascular Surgical Diseases, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Cardiovascular Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
11
|
Santerre JP, Yang Y, Du Z, Wang W, Zhang X. Biomaterials' enhancement of immunotherapy for breast cancer by targeting functional cells in the tumor micro-environment. Front Immunol 2024; 15:1492323. [PMID: 39600709 PMCID: PMC11588700 DOI: 10.3389/fimmu.2024.1492323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Immunotherapy for breast cancer is now being considered clinically, and more recently, the number of investigations aimed specifically at nano-biomaterials-assisted immunotherapy for breast cancer treatment is growing. Alterations of the breast cancer micro-environment can play a critical role in anti-tumor immunity and cancer development, progression and metastasis. The improvement and rearrangement of tumor micro-environment (TME) may enhance the permeability of anti-tumor drugs. Therefore, targeting the TME is also an ideal and promising option during the selection of effective nano-biomaterial-based immuno-therapeutic strategies excepted for targeting intrinsic resistant mechanisms of the breast tumor. Although nano-biomaterials designed to specifically release loaded anti-tumor drugs in response to tumor hypoxia and low pH conditions have shown promises and the diversity of the TME components also supports a broad targeting potential for anti-tumor drug designs, yet the applications of nano-biomaterials for targeting immunosuppressive cells/immune cells in the TME for improving the breast cancer treating outcomes, have scarcely been addressed in a scientific review. This review provides a thorough discussion for the application of the different forms of nano-biomaterials, as carrier vehicles for breast cancer immunotherapy, targeting specific types of immune cells in the breast tumor microenvironment. In parallel, the paper provides a critical analysis of current advances/challenges with leading nano-biomaterial-mediated breast cancer immunotherapeutic strategies. The current review is timely and important to the cancer research field and will provide a critical tool for nano-biomaterial design and research groups pushing the clinical translation of new nano-biomaterial-based immuno-strategies targeting breast cancer TME, to further open new avenues for the understanding, prevention, diagnosis and treatment of breast cancer, as well as other cancer types.
Collapse
Affiliation(s)
- J. Paul Santerre
- The School of Basic Medicine, Binzhou Medical University, Yantai, Shandong, China
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Yangyang Yang
- The School of Basic Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Ziwei Du
- The School of Basic Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Wenshuang Wang
- Department of Gynecology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Xiaoqing Zhang
- The School of Basic Medicine, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
12
|
Sun X, Li D, Lv Y, Zhang M, Qiao D, Zhang Z, Ren H, Zhang Y, Yang Z, Gao J. Nanomaterials for the Diagnosis and Treatment of Triple-Negative Breast Cancer. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2019. [PMID: 39654400 DOI: 10.1002/wnan.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/13/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
In recent years, the diagnosis and treatment at the early stages significantly raise the survival rate of breast cancer patients. Moreover, antibody drugs pave the way toward precision target therapy. However, the treatment and survival of triple-negative breast cancer (TNBC) patients is still worrying, which needs further understanding and study. During the last several years, nanomaterials attracted extensive research interests in TNBC diagnosis and therapy. In this review, we summarize recent advances of nanomaterial-based strategies for diagnosing and treating TNBC. Specifically, treatments for TNBC utilizing nanomaterials are classified into monotherapy, combined therapy, and multimodal therapy based on the complexity of the treatment. Nanomaterials also offer the opportunity to integrating diagnosis with treatment, which are introduced and summarized in this review. By summarizing the design principles in detail, some insights into the challenges and opportunities are provided to inspire further research and clinical translation in this field. The scope of this review is to summarize the development of nanomaterials for diagnosis and treatment of TNBC, and to discuss future directions to improve the clinical outcome of TNBC patients.
Collapse
Affiliation(s)
- Xuan Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, People's Republic of China
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, People's Republic of China
| | - Dandan Li
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Yue Lv
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Mengnan Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Dianhe Qiao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Zuyuan Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Han Ren
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Ying Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| |
Collapse
|
13
|
Ashkarran AA, Lin Z, Rana J, Bumpers H, Sempere L, Mahmoudi M. Impact of Nanomedicine in Women's Metastatic Breast Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2301385. [PMID: 37269217 PMCID: PMC10693652 DOI: 10.1002/smll.202301385] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/16/2023] [Indexed: 06/04/2023]
Abstract
Metastatic breast cancer is responsible for 90% of mortalities among women suffering from various types of breast cancers. Traditional cancer treatments such as chemotherapy and radiation therapy can cause significant side effects and may not be effective in many cases. However, recent advances in nanomedicine have shown great promise in the treatment of metastatic breast cancer. For example, nanomedicine demonstrated robust capacity in detection of metastatic cancers at early stages (i.e., before the metastatic cells leave the initial tumor site), which gives clinicians a timely option to change their treatment process (for example, instead of endocrine therapy they may use chemotherapy). Here recent advances in nanomedicine technology in the identification and treatment of metastatic breast cancers are reviewed.
Collapse
Affiliation(s)
- Ali Akbar Ashkarran
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Zijin Lin
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Jatin Rana
- Division of Hematology and Oncology, Michigan State University, East Lansing, MI, 48824, USA
| | - Harvey Bumpers
- Department of Surgery, Michigan State University, East Lansing, MI, 48824, USA
| | - Lorenzo Sempere
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
- Connors Center for Women's Health & Gender Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
14
|
Torres Quintas S, Canha-Borges A, Oliveira MJ, Sarmento B, Castro F. Special Issue: Nanotherapeutics in Women's Health Emerging Nanotechnologies for Triple-Negative Breast Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2300666. [PMID: 36978237 DOI: 10.1002/smll.202300666] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Breast cancer appears as the major cause of cancer-related deaths in women, with more than 2 260 000 cases reported worldwide in 2020, resulting in 684 996 deaths. Triple-negative breast cancer (TNBC), characterized by the absence of estrogen, progesterone, and human epidermal growth factor type 2 receptors, represents ≈20% of all breast cancers. TNBC has a highly aggressive clinical course and is more prevalent in younger women. The standard therapy for advanced TNBC is chemotherapy, but responses are often short-lived, with high rate of relapse. The lack of therapeutic targets and the limited therapeutic options confer to individuals suffering from TNBC the poorest prognosis among breast cancer patients, remaining a major clinical challenge. In recent years, advances in cancer nanomedicine provided innovative therapeutic options, as nanoformulations play an important role in overcoming the shortcomings left by conventional therapies: payload degradation and its low solubility, stability, and circulating half-life, and difficulties regarding biodistribution due to physiological and biological barriers. In this integrative review, the recent advances in the nanomedicine field for TNBC treatment, including the novel nanoparticle-, exosome-, and hybrid-based therapeutic formulations are summarized and their drawbacks and challenges are discussed for future clinical applications.
Collapse
Affiliation(s)
- Sofia Torres Quintas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua Jorge de Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Ana Canha-Borges
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua Jorge de Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Maria José Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua Jorge de Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- IUCS-CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116, Gandra, Portugal
| | - Flávia Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
| |
Collapse
|
15
|
Guo J, Qu H, Huang Z, Xue Y. Puerarin Decreases the Expression of FUS-Dependent MAPK4 to Inhibit the Development of Triple-Negative Breast Cancer. Chem Biol Drug Des 2024; 104:e14617. [PMID: 39223105 DOI: 10.1111/cbdd.14617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Puerarin has been reported to have anticancer properties; however, its mechanism in regulating triple-negative breast cancer (TNBC) remains unclear. Cell function was assessed using a cell counting kit-8 assay, 5-ethynyl-2'-deoxyuridine assay, flow cytometry, and transwell assay. Additionally, the glucose assay kit, lactate assay kit, and ADP/ATP ratio assay kit were used to analyze glucose metabolism. mRNA and protein expression levels were analyzed using qRT-PCR and western blotting assays, respectively. The relationship between FUS RNA binding protein (FUS) and mitogen-activated protein kinase 4 (MAPK4) was determined using an RNA immunoprecipitation assay. TNBC cell malignancy in vitro was validated using a xenograft mouse model assay. Puerarin treatment or MAPK4 knockdown effectively inhibited TNBC cell proliferation, invasion, and glucose metabolism, and induced cell apoptosis. Additionally, puerarin treatment downregulated MAPK4 and FUS expression. Conversely, MAPK4 overexpression attenuated the effects of puerarin in TNBC cells. FUS stabilized MAPK4 mRNA expression in TNBC cells. Furthermore, puerarin decreased MAPK4 expression by downregulating FUS in TNBC cells. Finally, puerarin inhibited tumor formation in vivo. Puerarin inhibited TNBC development by decreasing the expression of FUS-dependent MAPK4, indicating that puerarin may serve as a promising therapeutic agent to hind TNBC.
Collapse
Affiliation(s)
- Jian Guo
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Huiheng Qu
- Department of General Surgery, Jiangnan University Medical Center, Wuxi, Jiangsu, China
| | - Zhigang Huang
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Yu Xue
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
16
|
Cai S, Gou Y, Chen Y, Hou X, Zhang J, Bi C, Gu P, Yang M, Zhang H, Zhong W, Yuan H. Luteolin exerts anti-tumour immunity in hepatocellular carcinoma by accelerating CD8 + T lymphocyte infiltration. J Cell Mol Med 2024; 28:e18535. [PMID: 39267250 PMCID: PMC11392827 DOI: 10.1111/jcmm.18535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 09/17/2024] Open
Abstract
Luteolin, a commonly used traditional Chinese medicine, has been utilized for several decades in the treatment of hepatocellular carcinoma (HCC). Previous research has demonstrated its anti-tumour efficacy, but its underlying mechanism remains unclear. This study aimed to assess the therapeutic effects of luteolin in H22 tumour-bearing mice. luteolin effectively inhibited the growth of solid tumours in a well-established mouse model of HCC. High-throughput sequencing revealed that luteolin treatment could enhance T-cell activation, cell chemotaxis and cytokine production. In addition, luteolin helped sustain a high ratio of CD8+ T lymphocytes in the spleen, peripheral blood and tumour tissues. The effects of luteolin on the phenotypic and functional changes in tumour-infiltrating CD8+ T lymphocytes were also investigated. Luteolin restored the cytotoxicity of tumour-infiltrating CD8+ T lymphocytes in H22 tumour-bearing mice. The CD8+ T lymphocytes exhibited intensified phenotype activation and increased production of granzyme B, IFN-γ and TNF-α in serum. The combined administration of luteolin and the PD-1 inhibitor enhanced the anti-tumour effects in H22 tumour-bearing mice. Luteolin could exert an anti-tumour immune response by inducing CD8+ T lymphocyte infiltration and enhance the anti-tumour effects of the PD-1 inhibitor on H22 tumour-bearing mice.
Collapse
Affiliation(s)
- Shijiao Cai
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Yidan Gou
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Yanyan Chen
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoran Hou
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Zhang
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Chongwen Bi
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng Gu
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Miao Yang
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Hanxu Zhang
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Weilong Zhong
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin, China
| | - Hengjie Yuan
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
17
|
Guo J, Zhao W, Xiao X, Liu S, Liu L, Zhang L, Li L, Li Z, Li Z, Xu M, Peng Q, Wang J, Wei Y, Jiang N. Reprogramming exosomes for immunity-remodeled photodynamic therapy against non-small cell lung cancer. Bioact Mater 2024; 39:206-223. [PMID: 38827172 PMCID: PMC11141154 DOI: 10.1016/j.bioactmat.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/11/2024] [Accepted: 05/16/2024] [Indexed: 06/04/2024] Open
Abstract
Traditional treatments against advanced non-small cell lung cancer (NSCLC) with high morbidity and mortality continue to be dissatisfactory. Given this situation, there is an urgent requirement for alternative modalities that provide lower invasiveness, superior clinical effectiveness, and minimal adverse effects. The combination of photodynamic therapy (PDT) and immunotherapy gradually become a promising approach for high-grade malignant NSCLC. Nevertheless, owing to the absence of precise drug delivery techniques as well as the hypoxic and immunosuppressive characteristics of the tumor microenvironment (TME), the efficacy of this combination therapy approach is less than ideal. In this study, we construct a novel nanoplatform that indocyanine green (ICG), a photosensitizer, loads into hollow manganese dioxide (MnO2) nanospheres (NPs) (ICG@MnO2), and then encapsulated in PD-L1 monoclonal antibodies (anti-PD-L1) reprogrammed exosomes (named ICG@MnO2@Exo-anti-PD-L1), to effectively modulate the TME to oppose NSCLC by the synergy of PDT and immunotherapy modalities. The ICG@MnO2@Exo-anti-PD-L1 NPs are precisely delivered to the tumor sites by targeting specially PD-L1 highly expressed cancer cells to controllably release anti-PD-L1 in the acidic TME, thereby activating T cell response. Subsequently, upon endocytic uptake by cancer cells, MnO2 catalyzes the conversion of H2O2 to O2, thereby alleviating tumor hypoxia. Meanwhile, ICG further utilizes O2 to produce singlet oxygen (1O2) to kill tumor cells under 808 nm near-infrared (NIR) irradiation. Furthermore, a high level of intratumoral H2O2 reduces MnO2 to Mn2+, which remodels the immune microenvironment by polarizing macrophages from M2 to M1, further driving T cells. Taken together, the current study suggests that the ICG@MnO2@Exo-anti-PD-L1 NPs could act as a novel drug delivery platform for achieving multimodal therapy in treating NSCLC.
Collapse
Affiliation(s)
- Jiao Guo
- School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, China
| | - Wei Zhao
- School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, China
| | - Xinyu Xiao
- School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, China
| | - Shanshan Liu
- Department of Plastic and Maxillofacial Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Liang Liu
- School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, China
| | - La Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lu Li
- School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, China
| | - Zhenghang Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhi Li
- Traditional Chinese Medicine Hospital of Bijie City, Guizhou province, 551700, China
| | - Mengxia Xu
- Traditional Chinese Medicine Hospital of Bijie City, Guizhou province, 551700, China
| | - Qiling Peng
- School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, China
- Bijie Municipal Health Bureau, Guizhou province, 551700, China
- Health Management Center, the Affiliated Hospital of Guizhou Medical University
| | - Jianwei Wang
- School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, China
| | - Yuxian Wei
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ning Jiang
- Department of Pathology, School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
18
|
Nie X, Liu S, Huang Q, Wu H, Zheng Q, Xu X, Li B, Ma G, Zhou X, Liu S, Gao W. The Inhibitory Impact of a Co-Assembly Gel with Natural Carrier-Free Binary Small Molecules, as Used in Traditional Chinese Medicine, on the Viability of SW1990 Cells. Gels 2024; 10:569. [PMID: 39330171 PMCID: PMC11431333 DOI: 10.3390/gels10090569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
Chinese herbs are a huge treasure trove of natural products and an important source of many active molecules. The theory of traditional Chinese medicine compatibility (TCMC) is widely applied in clinical practice, but its mechanism is still ambiguous. This study aims to open a new window for this predicament by studying the interaction between the main active ingredients from a drug pair. Carrier-free assembly of natural products improves the shortcomings of traditional nanodelivery systems and opens a new path for the development of new nanomaterials. The drug pair "Pueraria and Hedyotis diffusa" has been commonly used in clinical practice, with a predominant therapeutic effect. This study is devoted to the study of the binary small molecule co-assembly of the main active molecules from the drug pair. In this study, we introduce a carrier-free composite gel, formed by the co-assembly of puerarin (PUE) and deacetylasperulosidic acid (DAA) via non-covalent bonds including π-π packing, intermolecular hydrogen bonding, and C=O π interactions. With a strain point 7-fold higher than that of P gel, the P - D gel exhibited favorable rheological properties. The survival rate of SW1990 cells in the P - D group was only 21.39% when the concentration of administration reached 200 μM. It thus demonstrated activity in inhibiting SW1990 cells' survival, suggesting potential in combating pancreatic cancer. Furthermore, this research offers a valuable concept for enhancing the mechanical properties and bioactivity of hydrogel materials through the utilization of a multi-component natural small molecule co-assembly approach. More importantly, this provides new ideas and methods for the treatment of pancreatic cancer and the analysis of traditional Chinese medicine compatibility theory.
Collapse
Affiliation(s)
- Xueqiang Nie
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Sifan Liu
- Department of Pharmaceutical Science, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Qiongxue Huang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Haifeng Wu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Qingxia Zheng
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Xudong Xu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Bowen Li
- Department of Pathophysiology, Hebei University of Chinese Medicine, Shijiazhuang 050000, China
| | - Guoxu Ma
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Xiaolei Zhou
- Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Shuchen Liu
- Department of Pharmaceutical Science, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Weijuan Gao
- Department of Pathophysiology, Hebei University of Chinese Medicine, Shijiazhuang 050000, China
| |
Collapse
|
19
|
Dong T, Yang N, Qin J, Zhao C, Gao T, Ma H, Zhu C, Xu H. Tanshinone IIA Liposomes Treat Doxorubicin-Induced Glomerulonephritis by Modulating the Microenvironment of Fibrotic Kidneys. Mol Pharm 2024; 21:3281-3295. [PMID: 38848439 DOI: 10.1021/acs.molpharmaceut.4c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Renal fibrosis plays a key role in the pathogenesis of chronic kidney disease (CKD), in which the persistent high expression of transforming growth factor β1 (TGF-β1) and α-smooth muscle actin (α-SMA) contributes to the progression of CKD to renal failure. In order to improve the solubility, bioavailability, and targeting of tanshinone IIA (Tan IIA), a novel targeting material, aminoethyl anisamide-polyethylene glycol-1,2-distearoyl-sn-glycero-3-phosphate ethanolamine (AEAA-PEG-DSPE, APD) modified Tan IIA liposomes (APD-Tan IIA-L) was constructed. An animal model of glomerulonephritis induced by doxorubicin in BALB/c mice was established. APD-Tan IIA-L significantly decreased blood urea nitrogen and serum creatinine (SCr), and the consequences of renal tissue oxidative stress indicators showed that APD-Tan IIA-L downregulated malondialdehyde, upregulated superoxide dismutase, catalase, and glutathione peroxidase. Masson's trichrome staining showed that the deposition of collagen in the APD-Tan IIA-L group decreased significantly. The pro-fibrotic factors (fibronectin, collagen I, TGF-β1, and α-SMA) and epithelial-mesenchymal transition marker (N-cadherin) were significantly inhibited by APD-Tan IIA-L. By improving the microenvironment of fibrotic kidneys, APD-Tan IIA-L attenuated TGF-β1-induced excessive proliferation of fibroblasts and alleviated oxidative stress damage to the kidney, providing a new strategy for the clinical treatment of renal fibrosis.
Collapse
Affiliation(s)
- Tingjun Dong
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Ning Yang
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Jian Qin
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Chengcheng Zhao
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Tingyu Gao
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Hao Ma
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Caili Zhu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Huan Xu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| |
Collapse
|
20
|
Zhang J, Wu Y, Li Y, Li S, Liu J, Yang X, Xia G, Wang G. Natural products and derivatives for breast cancer treatment: From drug discovery to molecular mechanism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155600. [PMID: 38614043 DOI: 10.1016/j.phymed.2024.155600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/20/2024] [Accepted: 04/06/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Breast cancer stands as the most common malignancy among women globally and a leading cause of cancer-related mortality. Conventional treatments, such as surgery, hormone therapy, radiotherapy, chemotherapy, and small-molecule targeted therapy, often fall short of addressing the complexity and heterogeneity of certain breast cancer subtypes, leading to drug resistance and metastatic progression. Thus, the search for novel therapeutic targets and agents is imperative. Given their low toxicity and abundant variety, natural products and their derivatives are increasingly considered valuable sources for small-molecule anticancer drugs. PURPOSE This review aims to elucidate the pharmacological impacts and underlying mechanisms of active compounds found in select natural products and their derivatives, primarily focusing on breast cancer treatment. It intends to underscore the potential of these substances in combating breast cancer and guide future research directions for the development of natural product-based therapeutics. METHODS We conducted comprehensive searches in electronic databases such as PubMed, Web of Science, and Scopus until October 2023, using keywords such as 'breast cancer', 'natural products', 'derivatives', 'mechanism', 'signaling pathways', and various keyword combinations. RESULTS The review presents a spectrum of phytochemicals, including but not limited to flavonoids, polyphenols, and alkaloids, and examines their actions in various animal and cellular models of breast cancer. The anticancer effects of these natural products and derivatives are manifested through diverse mechanisms, including induction of cell death via apoptosis and autophagy, and suppression of tumor angiogenesis. CONCLUSION An increasing array of natural products and their derivatives are proving effective against breast cancer. Future therapeutic strategies can benefit from strategic enhancement of the anticancer properties of natural compounds, optimization for targeted action, improved bioavailability, and minimized side effects. The forthcoming research on natural products should prioritize these facets to maximize their therapeutic potential.
Collapse
Affiliation(s)
- Jing Zhang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Yongya Wu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Yanhong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China; Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Shutong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Jiaxi Liu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Xiao Yang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Guiyang Xia
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5, Ocean Warehouse, Dongcheng District, Beijing, 100700, China.
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China.
| |
Collapse
|
21
|
Cui P, Sheng Y, Wu C, He D. Puerarin modulates proliferation, inflammation and ECM metabolism in human nucleus pulposus mesenchymal stem cells via the lncRNA LINC01535. Heliyon 2024; 10:e33083. [PMID: 39021929 PMCID: PMC11253265 DOI: 10.1016/j.heliyon.2024.e33083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Background Intervertebral disc degeneration (IVDD) is a highly prevalent musculoskeletal disorder characterized by progressive destruction of the intervertebral disc, leading to chronic low back pain and disability. Emerging evidence suggests that dysregulation of ferroptosis, a recently discovered form of regulated cell death, participates in IVDD pathogenesis. Puerarin, a natural flavonoid compound from Pueraria lobata, has shown promise in modulating ferroptosis in various diseases. Methods Human nucleus pulposus-derived mesenchymal stem cells (NPMSCs) were isolated and identified by flow cytometry. We investigated the effects of puerarin on human NPMSCs and examined the underlying molecular mechanisms. Results Puerarin significantly promoted human NPMSC proliferation, as evidenced by the increased cell viability and colony formation ability. Furthermore, puerarin suppressed the expression of cyclooxygenase-2 and the proinflammatory cytokine interleukin-6 in NPMSCs, demonstrating the anti-inflammatory properties of the compound. Notably, puerarin attenuated ECM breakdown by downregulating the ECM-degrading enzymes MMP3, MMP13 and ADAMTS5, and it increased ECM component synthesis, including collagen type II and aggrecan, by NPMSCs. Moreover, puerarin inhibited ferroptosis in NPMSCs by modulating the expression of key ferroptosis-related genes, including ACSL4, PTGS2 and GPX4. Depletion of LINC01535 abolished the effects of puerarin on proliferation, inflammation and ECM metabolism, suggesting a key role of this lncRNA in mediating the effects of puerarin. Conclusion Our findings show that puerarin promotes the proliferation of human NPMSCs and ECM synthesis by these cells. Furthermore, puerarin inhibits inflammation and ECM degradation by suppressing ferroptosis via LINC01535. These results provide insights into the molecular mechanisms underlying the therapeutic effects of puerarin in IVDD. Targeting ferroptosis and its regulatory factors, such as LINC01535, may have therapeutic potential for the treatment of IDD and other degenerative disorders of the intervertebral disc. Further studies are needed to uncover the translational potential of puerarin and its downstream targets in preclinical and clinical applications.
Collapse
Affiliation(s)
- Penglei Cui
- Department of Spine Surgery, Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing, 100035, PR China
| | - Yueyang Sheng
- Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing, 100035, PR China
| | - Chengai Wu
- Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing, 100035, PR China
| | - Da He
- Department of Spine Surgery, Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing, 100035, PR China
| |
Collapse
|
22
|
Xie Y, Shen X, Xu F, Liang X. Research progress of nano-delivery systems for the active ingredients from traditional Chinese medicine. PHYTOCHEMICAL ANALYSIS : PCA 2024. [PMID: 38830775 DOI: 10.1002/pca.3381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 06/05/2024]
Abstract
INTRODUCTION Traditional Chinese medicine (TCM) has been used for thousands of years in China, characterizing with novel pharmacological mechanisms, low toxicity, and limited side effects. However, the application of TCM active ingredients is often hindered by their physical and chemical properties, including poor solubility, low bioavailability, short half-life, toxic side effects within therapeutic doses, and instability in biological environments. Consequently, an increasing number of researchers are directing their attention towards the discovery of nano-delivery systems for TCM to overcome these clinical challenges. OBJECTIVES This review aims to provide the latest knowledge and results concerning the studies on the nano-delivery systems for the active ingredients from TCM. MATERIALS AND METHODS Recent literature relating to nano-delivery systems for the active ingredients from TCM is summarized to provide a fundamental understanding of how such systems can enhance the application of phytochemicals. RESULTS The nano-delivery systems of six types of TCM monomers are summarized and categorized based on the skeletal structure of the natural compounds. These categories include terpenoids, flavonoids, alkaloids, quinones, polyphenols, and polysaccharides. The paper analyzes the characteristics, types, materials used, and the efficacy achieved by TCM-nano systems. Additionally, the advantages and disadvantages of nano-drug delivery systems for TCM are summarized in this paper. CONCLUSION Nano-delivery systems represent a promising approach to overcoming clinical obstacles stemming from the physical and chemical properties of TCM active ingredients, thereby enhancing their clinical efficacy.
Collapse
Affiliation(s)
- Yunyu Xie
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Xuelian Shen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Funeng Xu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People's Republic of China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, People's Republic of China
| |
Collapse
|
23
|
Peng Y, Yang Z, Li J, Liu S. Research progress on nanotechnology of traditional Chinese medicine to enhance the therapeutic effect of osteoarthritis. Drug Deliv Transl Res 2024; 14:1517-1534. [PMID: 38225521 DOI: 10.1007/s13346-024-01517-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2023] [Indexed: 01/17/2024]
Abstract
Osteoarthritis (OA) is a prevalent chronic condition that primarily impacts the articular cartilage and surrounding bone tissue, resulting in joint inflammation and structural deterioration. The etiology of OA is multifaceted and intricately linked to the oxidative stress response of joint tissue. Oxidative stress (OS) in OA leads to the creation of reactive oxygen species (ROS) and other oxidizing agents, resulting in detrimental effects on chondrocytes. This oxidative damage diminishes the flexibility and robustness of cartilage, thereby expediting the progression of joint deterioration. Therefore, the antioxidant effect is crucial in the treatment of OA. Currently, a considerable number of components found in traditional Chinese medicine (TCM) have been scientifically demonstrated to exhibit remarkable antioxidant and anti-inflammatory properties. Nevertheless, the utilization of this program is considerably constrained as a result of intrinsic deficiencies, notably stability concerns. The successful amalgamation of TCM components with nanotechnology has properly tackled these concerns and enhanced the efficacy of therapeutic results. The objective of this study is to delineate the antioxidant characteristics of nano-TCM and assess the current inventory of literature pertaining to the application of nano-TCM in the treatment of OA. In conclusion, this paper will now turn to the constraints and potential avenues for the advancement of nano-TCM within the realm of OA therapy.
Collapse
Affiliation(s)
- Yue Peng
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China
| | - Zhengshuang Yang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China
| | - Jinling Li
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China.
- Laboratory of Basic Medicine Center, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China.
| | - Sijia Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China.
| |
Collapse
|
24
|
Linde C, Chien YT, Chen Z, Mu Q. Nanoparticle-enhanced PD-1/PD-L1 targeted combination therapy for triple negative breast cancer. Front Oncol 2024; 14:1393492. [PMID: 38756653 PMCID: PMC11096478 DOI: 10.3389/fonc.2024.1393492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
Breast cancer with triple-negative subtype (TNBC) presents significant challenges with limited treatment options and a poorer prognosis than others. While PD-1/PD-L1 checkpoint inhibitors have shown promise, their efficacy in TNBC remains constrained. In recent years, nanoparticle (NP) technologies offer a novel approach to enhance cancer therapy by optimizing the tumor microenvironment and augmenting chemo- and immunotherapy effects in various preclinical and clinical settings. This review discusses recent investigations in NP strategies for improving PD-1/PD-L1 blockade-based combination therapy for TNBC. Those include single or multi-therapeutic NPs designed to enhance immunogenicity of the tumor, induce immunogenic cell death, and target immunosuppressive elements within the tumor microenvironment. The investigations also include NPs co-loaded with PD-L1 inhibitors and other therapeutic agents, leveraging targeted delivery and synergistic effects to maximize efficacy while minimizing systemic toxicity. Overall, NP approaches represent a promising avenue for enhancing PD-1/PD-L1 checkpoint blockade-based combination therapy in TNBC and encourage further developmental studies.
Collapse
Affiliation(s)
| | | | | | - Qingxin Mu
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States
| |
Collapse
|
25
|
Zhong J, Tang Y. Research progress on the role of reactive oxygen species in the initiation, development and treatment of breast cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 188:1-18. [PMID: 38387519 DOI: 10.1016/j.pbiomolbio.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
According to international cancer data, breast cancer (BC) is the leading type of cancer in women. Although significant progress has been made in treating BC, metastasis and drug resistance continue to be the primary causes of mortality for many patients. Reactive oxygen species (ROS) play a dual role in vivo: normal levels can maintain the body's normal physiological function; however, high levels of ROS below the toxicity threshold can lead to mtDNA damage, activation of proto-oncogenes, and inhibition of tumor suppressor genes, which are important causes of BC. Differences in the production and regulation of ROS in different BC subtypes have important implications for the development and treatment of BC. ROS can also serve as an important intracellular signal transduction factor by affecting the antioxidant system, activating MAPK and PI3K/AKT, and other signal pathways to regulate cell cycle and change the relationship between cells and the activity of metalloproteinases, which significantly impacts the metastasis of BC. Hypoxia in the BC microenvironment increases ROS production levels, thereby inducing the expression of hypoxia inducible factor-1α (HIF-1α) and forming "ROS- HIF-1α-ROS" cycle that exacerbates BC development. Many anti-BC therapies generate sufficient toxic ROS to promote cancer cell apoptosis, but because the basal level of ROS in BC cells exceeds that of normal cells, this leads to up-regulation of the antioxidant system, drug efflux, and apoptosis inhibition, rendering BC cells resistant to the drug. ROS crosstalks with tumor vessels and stromal cells in the microenvironment, increasing invasiveness and drug resistance in BC.
Collapse
Affiliation(s)
- Jing Zhong
- School of Public Health, Southwest Medical University, No.1, Section 1, Xianglin Road, Longmatan District, Luzhou City, Sichuan Province, China
| | - Yan Tang
- School of Public Health, Southwest Medical University, No.1, Section 1, Xianglin Road, Longmatan District, Luzhou City, Sichuan Province, China.
| |
Collapse
|
26
|
Xu S, Zheng S, Ma N, Zhang H, Shi J, Huang J, Luo N, Wang M, Xiong Y. Rhein potentiates doxorubicin in treating triple negative breast cancer by inhibiting cancer-associated fibroblasts. Biochem Pharmacol 2024; 223:116139. [PMID: 38499109 DOI: 10.1016/j.bcp.2024.116139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Cancer-associated fibroblasts (CAFs), one of the most abundant stromal cells in the tumor microenvironment, mediate desmoplastic responses. CAFs are major drivers for the failure of triple-negative breast cancer (TNBC) chemotherapy. It is well-documented that many traditional Chinese medicines (TCMs) exhibit potent anti-fibrotic effects based on their capacity to suppress the production of ECM proteins. Therefore, the combination of TCMs exhausting CAFs with chemotherapy is a potential regimen for treating TNBC. Here, TGF-β was used to induce the transformation of NIH/3T3 cells into CAFs for screening TCMs to inhibit tumor fibrosis. After screening 11 candidate TCMs for inhibiting CAFs using the TMS method, rhein (Rhe) was found to strongly inhibit the proliferation of CAFs. Therefore, Rhe was chosen as a representative TCM to inhibit CAFs in TNBC. A 4T1Fluc/CAFs tumor sphere resembling the TME in vivo was constructed to explore the feasibility of inhibiting CAFs to sensitize DOX in treating TNBC. It was found that CAFs apparently hindered the penetration of DOX into 4T1Fluc/CAFs tumor spheres and decreased the the sensitivity of 4T1Fluc cells to DOX, while Rhe significantly restored the sensitivity of 4T1Fluc cells to DOX by inhibiting the proliferation of CAFs. Consistent with in vitro results, Rhe reversed the abnormal activation of CAFs and diminished the accumulation of collagen in 4T1Fluc mouse xenograft models. This removal of stromal barrier facilitated the antitumor efficacy of DOX. Altogether, this study demonstrated for the first time that Rhe could inhibit tumor tissue fibrosis and synergize DOX to treat TNBC.
Collapse
Affiliation(s)
- Shujun Xu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuang Zheng
- Taizhou Traditional Chinese Medicine Hospital, Taizhou, China
| | - Ninghui Ma
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongyan Zhang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingbin Shi
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingyi Huang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ninghchao Luo
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Menglin Wang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Yang Xiong
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
27
|
Liu J, Xu J, Jia L, Zhou Y, Fu Q, Wang Y, Mu D, Wang D, Li N, Hou Y. Pterostilbene nanoemulsion promotes Nrf2 signaling pathway to downregulate oxidative stress for treating Alzheimer's disease. Int J Pharm 2024; 655:124002. [PMID: 38492898 DOI: 10.1016/j.ijpharm.2024.124002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Pterostilbene, a stilbene compound, demonstrates neuroprotective effects through its antioxidant and anti-inflammatory properties. However, pterostilbene exhibits low bioavailability. We developed a pterostilbene nanoemulsion with better release stability and particle size. Behavioral tests, including the Y maze, new object recognition, and water maze, revealed that the pterostilbene nanoemulsion demonstrated a more significant effect on improving learning and memory function than pterostilbene. Immunofluorescence analysis revealed that pterostilbene nanoemulsion was more potent in safeguarding hippocampal neurons and inhibiting apoptosis and oxidative stress than pterostilbene. Further results from the Western blot and quantitative reverse transcription polymerase chain reaction indicated that the enhanced efficacy of pterostilbene nanoemulsion may be attributed to its stronger promotion of the nuclear factor erythroid 2-related factor 2 signaling pathway. Hence, enhanced drug delivery efficiency decreased dosage requirements and increased the bioavailability of pterostilbene, thereby potentially providing a safe, effective, and convenient treatment option for patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Jingyu Liu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110167, China
| | - Jikai Xu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110167, China
| | - Luan Jia
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanjun Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yichen Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110167, China
| | - Danyang Mu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110167, China
| | - Dequan Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110167, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yue Hou
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110167, China.
| |
Collapse
|
28
|
Tomar R, Das SS, Balaga VK, Tambe S, Sahoo J, Rath SK, Ruokolainen J, Kesari KK. Therapeutic Implications of Dietary Polyphenols-Loaded Nanoemulsions in Cancer Therapy. ACS APPLIED BIO MATERIALS 2024; 7:2036-2053. [PMID: 38525971 PMCID: PMC11530091 DOI: 10.1021/acsabm.3c01205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024]
Abstract
Cancer is one of the major causes of death worldwide, even the second foremost cause related to non-communicable diseases. Cancer cells typically possess several cellular and biological processes including, persistence, propagation, differentiation, cellular death, and expression of cellular-type specific functions. The molecular picture of carcinogenesis and progression is unwinding, and it appears to be a tangled combination of processes occurring within and between cancer cells and their surrounding tissue matrix. Polyphenols are plant secondary metabolites abundant in fruits, vegetables, cereals, and other natural plant sources. Natural polyphenols have implicated potential anticancer activity by various mechanisms involved in their antitumor action, including modulation of signaling pathways majorly related to cellular proliferation, differentiation, relocation, angiogenesis, metastatic processes, and cell death. The applications of polyphenols have been limited due to the hydrophobic nature and lower oral bioavailability that could be possibly overcome through encapsulating them into nanocarrier-mediated delivery systems, leading to improved anticancer activity. Nanoemulsions (NEs) possess diverse feasible properties, including greater surface area, modifiable surficial charge, higher half-life, site-specific targeting, and formulation imaging capability necessary to create a practical therapeutic impact, and have drawn increased attention in cancer therapy research. This review has summarized and discussed the basic concepts, classification, delivery approaches, and anticancer mechanism of various polyphenols and polyphenols-encapsulated nanoemulsions with improved cancer therapy.
Collapse
Affiliation(s)
- Ritu Tomar
- School
of Pharmaceutical and Population Health Informatics, DIT University, Dehradun, Uttarakhand 248009, India
| | - Sabya Sachi Das
- School
of Pharmaceutical and Population Health Informatics, DIT University, Dehradun, Uttarakhand 248009, India
| | - Venkata Krishna
Rao Balaga
- School
of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, Rajasthan 302017, India
| | - Srusti Tambe
- Department
of Pharmaceutical Science & Technology, Institute of Chemical Technology, Mumbai, Maharashtra 400019, India
| | - Jagannath Sahoo
- Shobhaben
Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’S
NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India
| | - Santosh Kumar Rath
- School
of Pharmaceutical and Population Health Informatics, DIT University, Dehradun, Uttarakhand 248009, India
| | - Janne Ruokolainen
- Department
of Applied Physics, School of Science, Aalto
University, Espoo 00076, Finland
| | - Kavindra Kumar Kesari
- Department
of Applied Physics, School of Science, Aalto
University, Espoo 00076, Finland
| |
Collapse
|
29
|
Huang Y, Fan H, Ti H. Tumor microenvironment reprogramming by nanomedicine to enhance the effect of tumor immunotherapy. Asian J Pharm Sci 2024; 19:100902. [PMID: 38595331 PMCID: PMC11002556 DOI: 10.1016/j.ajps.2024.100902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/22/2023] [Accepted: 01/16/2024] [Indexed: 04/11/2024] Open
Abstract
With the rapid development of the fields of tumor biology and immunology, tumor immunotherapy has been used in clinical practice and has demonstrated significant therapeutic potential, particularly for treating tumors that do not respond to standard treatment options. Despite its advances, immunotherapy still has limitations, such as poor clinical response rates and differences in individual patient responses, largely because tumor tissues have strong immunosuppressive microenvironments. Many tumors have a tumor microenvironment (TME) that is characterized by hypoxia, low pH, and substantial numbers of immunosuppressive cells, and these are the main factors limiting the efficacy of antitumor immunotherapy. The TME is crucial to the occurrence, growth, and metastasis of tumors. Therefore, numerous studies have been devoted to improving the effects of immunotherapy by remodeling the TME. Effective regulation of the TME and reversal of immunosuppressive conditions are effective strategies for improving tumor immunotherapy. The use of multidrug combinations to improve the TME is an efficient way to enhance antitumor immune efficacy. However, the inability to effectively target drugs decreases therapeutic effects and causes toxic side effects. Nanodrug delivery carriers have the advantageous ability to enhance drug bioavailability and improve drug targeting. Importantly, they can also regulate the TME and deliver large or small therapeutic molecules to decrease the inhibitory effect of the TME on immune cells. Therefore, nanomedicine has great potential for reprogramming immunosuppressive microenvironments and represents a new immunotherapeutic strategy. Therefore, this article reviews strategies for improving the TME and summarizes research on synergistic nanomedicine approaches that enhance the efficacy of tumor immunotherapy.
Collapse
Affiliation(s)
- Yu Huang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hui Fan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Huihui Ti
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Province Precise Medicine Big Date of Traditional Chinese Medicine Engineering Technology Research Center, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
30
|
Li P, Xie Y, Wang J, Bao C, Duan J, Liu Y, Luo Q, Xu J, Ren Y, Jiang M, Li J, Guo H, Zhao H, Wang G, Liang Y, Lu W. Gene engineered exosome reverses T cell exhaustion in cancer immunotherapy. Bioact Mater 2024; 34:466-481. [PMID: 38292412 PMCID: PMC10825617 DOI: 10.1016/j.bioactmat.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/23/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Cancer patients by immune checkpoint therapy have achieved long-term remission, with no recurrence of clinical symptoms of cancer for many years. Nevertheless, more than half of cancer patients are not responsive to this therapy due to immune exhaustion. Here, we report a novel gene engineered exosome which is rationally designed by engineering PD1 gene and simultaneously enveloping an immune adjuvant imiquimod (PD1-Imi Exo) for boosting response of cancer immune checkpoint blockage therapy. The results showed that PD1-Imi Exo had a vesicular round shape (approximately 139 nm), revealed a significant targeting and a strong binding effect with both cancer cell and dendritic cell, and demonstrated a remarkable therapeutic efficacy in the melanoma-bearing mice and in the breast cancer-bearing mice. The mechanism was associated with two facts that PD1-Imi Exo blocked the binding of CD8+ T cell with cancer cell, displaying a PD1/PDL1 immune checkpoint blockage effect, and that imiquimod released from PD1-Imi Exo promoted the maturation of immature dendritic cell, exhibiting a reversing effect on the immune exhaustion through activating and restoring function of CD8+ T cell. In conclusion, the gene engineered exosome could be used for reversing T cell exhaustion in cancer immunotherapy. This study also offers a promising new strategy for enhancing PD1/PDL1 therapeutic efficacy, preventing tumor recurrence or metastasis after surgery by rebuilding the patients' immunity, thus consolidating the overall prognosis.
Collapse
Affiliation(s)
- Peishan Li
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ying Xie
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jinling Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chunjie Bao
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jialun Duan
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yixuan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Qian Luo
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jiarui Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yuxin Ren
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Min Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jianwei Li
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Haitao Guo
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Huihui Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Guiling Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yanqin Liang
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Beijing Institute of Collaborative Innovation, Beijing, 100044, China
| | - Wanliang Lu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
31
|
Shang Q, Liu W, Leslie F, Yang J, Guo M, Sun M, Zhang G, Zhang Q, Wang F. Nano-formulated delivery of active ingredients from traditional Chinese herbal medicines for cancer immunotherapy. Acta Pharm Sin B 2024; 14:1525-1541. [PMID: 38572106 PMCID: PMC10985040 DOI: 10.1016/j.apsb.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/15/2023] [Accepted: 12/12/2023] [Indexed: 04/05/2024] Open
Abstract
Cancer immunotherapy has garnered promise in tumor progression, invasion, and metastasis through establishing durable and memorable immunological activity. However, low response rates, adverse side effects, and high costs compromise the additional benefits for patients treated with current chemical and biological agents. Chinese herbal medicines (CHMs) are a potential treasure trove of natural medicines and are gaining momentum in cancer immunomodulation with multi-component, multi-target, and multi-pathway characteristics. The active ingredient extracted from CHMs benefit generalized patients through modulating immune response mechanisms. Additionally, the introduction of nanotechnology has greatly improved the pharmacological qualities of active ingredients through increasing the hydrophilicity, stability, permeability, and targeting characteristics, further enhancing anti-cancer immunity. In this review, we summarize the mechanism of active ingredients for cancer immunomodulation, highlight nano-formulated deliveries of active ingredients for cancer immunotherapy, and provide insights into the future applications in the emerging field of nano-formulated active ingredients of CHMs.
Collapse
Affiliation(s)
- Qi Shang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wandong Liu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou 310053, China
| | - Faith Leslie
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, the Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jiapei Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingmei Guo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingjiao Sun
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, the Johns Hopkins University, Baltimore, MD 21218, USA
| | - Guangji Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou 310053, China
- Traditional Chinese Medicine “Preventing Disease” Wisdom Health Project Research Center of Zhejiang, Hangzhou 310053, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Feihu Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
32
|
Püsküllüoğlu M, Michalak I. The therapeutic potential of natural metabolites in targeting endocrine-independent HER-2-negative breast cancer. Front Pharmacol 2024; 15:1349242. [PMID: 38500769 PMCID: PMC10944949 DOI: 10.3389/fphar.2024.1349242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/16/2024] [Indexed: 03/20/2024] Open
Abstract
Breast cancer (BC) is a heterogenous disease, with prognosis and treatment options depending on Estrogen, Progesterone receptor, and Human Epidermal Growth Factor Receptor-2 (HER-2) status. HER-2 negative, endocrine-independent BC presents a significant clinical challenge with limited treatment options. To date, promising strategies like immune checkpoint inhibitors have not yielded breakthroughs in patient prognosis. Despite being considered archaic, agents derived from natural sources, mainly plants, remain backbone of current treatment. In this context, we critically analyze novel naturally-derived drug candidates, elucidate their intricate mechanisms of action, and evaluate their pre-clinical in vitro and in vivo activity in endocrine-independent HER-2 negative BC. Since pre-clinical research success often does not directly correlate with drug approval, we focus on ongoing clinical trials to uncover current trends. Finally, we demonstrate the potential of combining cutting-edge technologies, such as antibody-drug conjugates or nanomedicine, with naturally-derived agents, offering new opportunities that utilize both traditional cytotoxic agents and new metabolites.
Collapse
Affiliation(s)
- Mirosława Püsküllüoğlu
- Department of Clinical Oncology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Izabela Michalak
- Wrocław University of Science and Technology, Faculty of Chemistry, Department of Advanced Material Technologies, Wrocław, Poland
| |
Collapse
|
33
|
Freag MS, Mohammed MT, Kulkarni A, Emam HE, Maremanda KP, Elzoghby AO. Modulating tumoral exosomes and fibroblast phenotype using nanoliposomes augments cancer immunotherapy. SCIENCE ADVANCES 2024; 10:eadk3074. [PMID: 38416824 PMCID: PMC10901379 DOI: 10.1126/sciadv.adk3074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/25/2024] [Indexed: 03/01/2024]
Abstract
Cancer cells program fibroblasts into cancer associated fibroblasts (CAFs) in a two-step manner. First, cancer cells secrete exosomes to program quiescent fibroblasts into activated CAFs. Second, cancer cells maintain the CAF phenotype via activation of signal transduction pathways. We rationalized that inhibiting this two-step process can normalize CAFs into quiescent fibroblasts and augment the efficacy of immunotherapy. We show that cancer cell-targeted nanoliposomes that inhibit sequential steps of exosome biogenesis and release from lung cancer cells block the differentiation of lung fibroblasts into CAFs. In parallel, we demonstrate that CAF-targeted nanoliposomes that block two distinct nodes in fibroblast growth factor receptor (FGFR)-Wnt/β-catenin signaling pathway can reverse activate CAFs into quiescent fibroblasts. Co-administration of both nanoliposomes significantly improves the infiltration of cytotoxic T cells and enhances the antitumor efficacy of αPD-L1 in immunocompetent lung cancer-bearing mice. Simultaneously blocking the tumoral exosome-mediated activation of fibroblasts and FGFR-Wnt/β-catenin signaling constitutes a promising approach to augment immunotherapy.
Collapse
Affiliation(s)
- May S. Freag
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Investigative Toxicology, Drug Safety Research and Evaluation, Takeda Pharmaceuticals, Cambridge, MA, USA
| | - Mostafa T. Mohammed
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Anatomical and Clinical Pathology Department, Tufts Medical Center, Boston, MA, USA
| | - Arpita Kulkarni
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Hagar E. Emam
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Krishna P. Maremanda
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Ahmed O. Elzoghby
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
34
|
Ma YY, Zhang GJ, Liu PF, Liu Y, Ding JC, Xu H, Hao L, Pan D, Wang HL, Wang JK, Xu P, Shi ZD, Pang K. Comprehensive Genomic Analysis of Puerarin in Inhibiting Bladder Urothelial Carcinoma Cell Proliferation and Migration. Recent Pat Anticancer Drug Discov 2024; 19:516-529. [PMID: 37694778 PMCID: PMC11348475 DOI: 10.2174/1574892819666230908110107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/04/2023] [Accepted: 06/19/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Bladder urothelial carcinoma (BUC) ranks second in the incidence of urogenital system tumors, and the treatment of BUC needs to be improved. Puerarin, a traditional Chinese medicine (TCM), has been shown to have various effects such as anti-cancer effects, the promotion of angiogenesis, and anti-inflammation. This study investigates the effects of puerarin on BUC and its molecular mechanisms. METHODS Through GeneChip experiments, we obtained differentially expressed genes (DEGs) and analyzed these DEGs using the Ingenuity® Pathway Analysis (IPA®), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway enrichment analyses. The Cell Counting Kit 8 (CCK8) assay was used to verify the inhibitory effect of puerarin on the proliferation of BUC T24 cells. String combined with Cytoscape® was used to create the Protein-Protein Interaction (PPI) network, and the MCC algorithm in cytoHubba plugin was used to screen key genes. Gene Set Enrichment Analysis (GSEA®) was used to verify the correlation between key genes and cell proliferation. RESULTS A total of 1617 DEGs were obtained by GeneChip. Based on the DEGs, the IPA® and pathway enrichment analysis showed they were mainly enriched in cancer cell proliferation and migration. CCK8 experiments proved that puerarin inhibited the proliferation of BUC T24 cells, and its IC50 at 48 hours was 218μmol/L. Through PPI and related algorithms, 7 key genes were obtained: ITGA1, LAMA3, LAMB3, LAMA4, PAK2, DMD, and UTRN. GSEA showed that these key genes were highly correlated with BUC cell proliferation. Survival curves showed that ITGA1 upregulation was associated with poor prognosis of BUC patients. CONCLUSION Our findings support the potential antitumor activity of puerarin in BUC. To the best of our knowledge, bioinformatics investigation suggests that puerarin demonstrates anticancer mechanisms via the upregulation of ITGA1, LAMA3 and 4, LAMB3, PAK2, DMD, and UTRN, all of which are involved in the proliferation and migration of bladder urothelial cancer cells.
Collapse
Affiliation(s)
- Yu-Yang Ma
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical College, No.199, South Jiefang Road, Xuzhou, Jiangsu, China
- Department of Urology, Graduate School, Bengbu Medical College, Building 1, Administration Building, 2600 Donghai Avenue, Bengbu City, Anhui Province, China
| | - Ge-jin Zhang
- Department of Urology, Suqian Zhongwu Hospital. No. 3786, Development Avenue, Suqian Economic and Technological Development Zone, Suqian, China
| | - Peng-fei Liu
- Jiangsu Provincial Key Laboratory of Educational Big Data Science and Engineering, Jiangsu Normal University, 101 Shanghai Road, Tongshan, Xuzhou, 221116, China
- School of Mathematics and Statistics and Research Institute of Mathematical Sciences (RIMS), Jiangsu Normal University, 101 Shanghai Road, Tongshan, Xuzhou, 221116, China
| | - Ying Liu
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical College. No.199, South Jiefang Road, Xuzhou, Jiangsu, China
| | - Ji-cun Ding
- Department of Burn and Plastic Surgery, Xuzhou First People's Hospital, No. 269, Daxue Road, Tongshan District, Xuzhou, Jiangsu, China
| | - Hao Xu
- Department of Urology, Graduate School, Bengbu Medical College, Building 1, Administration Building, 2600 Donghai Avenue, Bengbu City, Anhui Province, China
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical College, No.199, South Jiefang Road, Xuzhou, Jiangsu, China
| | - Deng Pan
- Department of Urology, Graduate School, Bengbu Medical College, Building 1, Administration Building, 2600 Donghai Avenue, Bengbu City, Anhui Province, China
| | - Hai-luo Wang
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical College, No.199, South Jiefang Road, Xuzhou, Jiangsu, China
| | - Jing-kai Wang
- Graduate School, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province, 212013, China
| | - Peng Xu
- Graduate School, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province, 212013, China
| | - Zhen-Duo Shi
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical College, No.199, South Jiefang Road, Xuzhou, Jiangsu, China
- Department of Urology, Graduate School, Bengbu Medical College, Building 1, Administration Building, 2600 Donghai Avenue, Bengbu City, Anhui Province, China
| | - Kun Pang
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical College, No.199, South Jiefang Road, Xuzhou, Jiangsu, China
- Department of Urology, Graduate School, Bengbu Medical College, Building 1, Administration Building, 2600 Donghai Avenue, Bengbu City, Anhui Province, China
| |
Collapse
|
35
|
Sharma P, Otto M. Multifunctional nanocomposites modulating the tumor microenvironment for enhanced cancer immunotherapy. Bioact Mater 2024; 31:440-462. [PMID: 37701452 PMCID: PMC10494322 DOI: 10.1016/j.bioactmat.2023.08.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/09/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023] Open
Abstract
Cancer immunotherapy has gained momentum for treating malignant tumors over the past decade. Checkpoint blockade and chimeric antigen receptor cell therapy (CAR-T) have shown considerable potency against liquid and solid cancers. However, the tumor microenvironment (TME) is highly immunosuppressive and hampers the effect of currently available cancer immunotherapies on overall treatment outcomes. Advancements in the design and engineering of nanomaterials have opened new avenues to modulate the TME. Progress in the current nanocomposite technology can overcome immunosuppression and trigger robust immunotherapeutic responses by integrating synergistic functions of different molecules. We will review recent advancements in nanomedical applications and discuss specifically designed nanocomposites modulating the TME for cancer immunotherapy. In addition, we provide information on the current landscape of clinical-stage nanocomposites for cancer immunotherapy.
Collapse
Affiliation(s)
- Prashant Sharma
- Department of Child Health, University of Arizona College of Medicine-Phoenix, ABC1 Building, 425 N 5th Street, Phoenix, AZ, 85004, USA
| | - Mario Otto
- Department of Child Health, University of Arizona College of Medicine-Phoenix, ABC1 Building, 425 N 5th Street, Phoenix, AZ, 85004, USA
- Center for Cancer and Blood Disorders (CCBD), Phoenix Children's, 1919 E Thomas Rd, Phoenix, AZ, 85016, USA
| |
Collapse
|
36
|
Zhang W, Wang J, Liu C, Li Y, Sun C, Wu J, Wu Q. Crosstalk and plasticity driving between cancer-associated fibroblasts and tumor microenvironment: significance of breast cancer metastasis. J Transl Med 2023; 21:827. [PMID: 37978384 PMCID: PMC10657029 DOI: 10.1186/s12967-023-04714-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are the most abundant stromal cell population in breast tumors. A functionally diverse population of CAFs increases the dynamic complexity of the tumor microenvironment (TME). The intertwined network of the TME facilitates the interaction between activated CAFs and breast cancer cells, which can lead to the proliferation and invasion of breast cells. Considering the special transmission function of CAFs, the aim of this review is to summarize and highlight the crosstalk between CAFs and breast cancer cells in the TME as well as the relationship between CAFs and extracellular matrix (ECM), soluble cytokines, and other stromal cells in the metastatic state. The crosstalk between cancer-associated fibroblasts and tumor microenvironment also provides a plastic therapeutic target for breast cancer metastasis. In the course of the study, the inhibitory effects of different natural compounds on targeting CAFs and the advantages of different drug combinations were summarized. CAFs are also widely used in the diagnosis and treatment of breast cancer. The cumulative research on this phenomenon supports the establishment of a targeted immune microenvironment as a possible breakthrough in the prevention of invasive metastasis of breast cancer.
Collapse
Affiliation(s)
- Wenfeng Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, and Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, 261000, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jia Wang
- State Key Laboratory of Quality Research in Chinese Medicine, and Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, 261000, China
| | - Ye Li
- State Key Laboratory of Quality Research in Chinese Medicine, and Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China
| | - Changgang Sun
- State Key Laboratory of Quality Research in Chinese Medicine, and Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China.
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, 261000, China.
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261000, China.
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicine, and Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China.
| |
Collapse
|
37
|
Luo K, Yang L, Yan C, Zhao Y, Li Q, Liu X, Xie L, Sun Q, Li X. A Dual-Targeting Liposome Enhances Triple-Negative Breast Cancer Chemoimmunotherapy through Inducing Immunogenic Cell Death and Inhibiting STAT3 Activation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302834. [PMID: 37264710 DOI: 10.1002/smll.202302834] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/16/2023] [Indexed: 06/03/2023]
Abstract
Immunotherapy gains increasing focus in treating triple-negative breast cancer (TNBC), while its efficacy is greatly restricted owing to low tumor immunogenicity and immunosuppressive tumor microenvironment (ITM). Herein, a LyP-1 and chondroitin sulfate (CS) dual-modified liposome co-loaded with paclitaxel (PTX) and cryptotanshinone (CTS), namely CS/LyP-1-PC Lip, is engineered for TNBC chemoimmunotherapy via induction of immunogenic cell death (ICD) and inhibition of signal transducer and activator of transcript-3 (STAT3) activation. CS/LyP-1-PC Lip enhances cellular uptake through p32 and CD44 dual receptor-mediated endocytosis. Within the tumor, the CS layer is continuously detached by hyaluronidase to release drugs. Subsequently, CTS sensitizes the cytotoxicity of PTX to 4T1 tumor cells. PTX induces ICD of tumor cells and facilitates infiltration of cytotoxic T lymphocyte to provoke immune response. Meanwhile, the concomitant delivery of CTS inhibits STAT3 activation to decrease infiltration of regulatory T cell, M2-type tumor-associated macrophage, and myeloid-derived suppressor cell, thus reversing ITM. Markedly, the dual-targeting liposome shows superior anti-tumor efficacy in subcutaneous TNBC mice and significant lung metastasis suppression in tumor metastasis model. Overall, this work offers a feasible combination regimen and a promising nanoplatform for the development of TNBC chemoimmunotherapy.
Collapse
Affiliation(s)
- Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lu Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuxin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiuxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Long Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiang Sun
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
38
|
Chen G. Molecular basis of breast cancer with comorbid depression and the mechanistic insights of Xiaoyaosan in treating breast cancer-associated depression. Medicine (Baltimore) 2023; 102:e35157. [PMID: 37747031 PMCID: PMC10519572 DOI: 10.1097/md.0000000000035157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/25/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Depression and breast cancer (BC) have been found to have a shared genetic basis, multiple loci of effect, and a presumed causal relationship. The treatment of BC combined with depression poses significant challenges. This study aims to use bioinformatics and network pharmacology to explore the molecular basis of BC combined with depression and to elucidate the potential mechanisms of Xiaoyaosan (XYS) in treating this disease. The molecular background of BC complicated with depression was discovered via data mining and bioinformatics. The molecular mechanism of XYS in the treatment of BC with depression was investigated by network pharmacology. The binding affinity between targets and active compounds was evaluated by molecular docking. The impact of XYS on the gene and protein expression of matrix metallopeptidase 9 (MMP9) in microglial cells was assessed using RT-quantitative PCR and western blot analysis, respectively. Differential expression analysis was conducted to identify genes associated with BC, revealing that 2958 genes were involved, with 277 of these genes also being related to depression. XYS was found to contain 173 active compounds and 342 targets, with 44 of these targets being involved in regulating the progression of BC and depression. Enrichment analysis was performed to identify pathways associated with these targets, revealing that they were related to cell proliferation, catalytic activity, cell communication, and interleukin-18 signaling and LXR/RXR activation. Network analysis was conducted to identify key targets of Xiaoyaosan in treating BC combined with depression, with EGF, interleukin 6, epidermal growth factor receptor, and peroxisome proliferator activated receptor gamma being identified as important targets. Molecular docking was also performed to assess the binding affinity between key targets and active compounds, with puerarin showing the strongest affinity for MMP9. In microglial cells, XYS significantly enhances the gene and protein expression of MMP9. This study elucidated the pharmacological mechanism of co-treatment for BC patients complicated with depression and the pharmacological mechanism of XYS against BC plus depression.
Collapse
Affiliation(s)
- Gang Chen
- Department of Breast Surgery, Hangzhou Fuyang Women and Children Hospital, Hangzhou, China
| |
Collapse
|
39
|
Guo D, Ji X, Xie H, Ma J, Xu C, Zhou Y, Chen N, Wang H, Fan C, Song H. Targeted Reprogramming of Vitamin B 3 Metabolism as a Nanotherapeutic Strategy towards Chemoresistant Cancers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301257. [PMID: 37262365 DOI: 10.1002/adma.202301257] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/07/2023] [Indexed: 06/03/2023]
Abstract
Cancer-associated fibroblasts (CAFs) promote cancer stem cell (CSC)-mediated chemoresistance and immunosuppressive tumor microenvironment. However, direct depletion of CAFs may increase cancer invasiveness and metastasis. As a generalized strategy against chemoresistant cancers, Gemini-like homotypic targeting nanoparticles (NPs) are designed for two-pronged CAF transformation and cancer cell elimination. The CAF-targeted NPs couple vitamin B3 metabolic reprogramming to epigenetic modulation of secreted pro-stemness and immunosuppressive factors, thereby diminishing CSC and suppressive immune cell populations to enhance cancer cell drug susceptibility and cytotoxic T cell infiltration. In mouse models of breast, liver, pancreatic and colorectal cancers that are resistant to their respective first-line chemotherapeutics, a single dose of hydrogel co-delivering the Gemini-like NPs can rehabilitate chemosensitivity, induce immune activation, and achieve tumor regression. Moreover, it stimulates robust T cell memory for long-term protection against tumor rechallenge. This study thus represents an innovative approach with broad applicability for overcoming cancer chemoresistance.
Collapse
Affiliation(s)
- Daoxia Guo
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaoyuan Ji
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hui Xie
- College of Chemistry and Materials Science, The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Jia Ma
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chunchen Xu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yanfeng Zhou
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Nan Chen
- College of Chemistry and Materials Science, The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiyun Song
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
40
|
Zhang K, Zhu J, Wang R, Zhu W, Zhang Z, Gong L, Feng F, Liu W, Han L, Qu W. Mitochondria-Anchoring Self-assembled Nanoparticles for Multi-Path Energy Depletion: A "Nano Bomb" in Chemo-co-Starvation Therapy. Int J Pharm 2023:123180. [PMID: 37364784 DOI: 10.1016/j.ijpharm.2023.123180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/09/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
As the main systemic treatment for triple-negative breast cancer (TNBC), the bleak medical prognosis of chemotherapy resulted in impaired life quality by tumor recurrence and metastasis. The feasible cancer starvation therapy could inhibit tumor progression by blocking energy supplements, however, the mono-therapeutic modality showed limited curing efficacy due to heterogeneity and abnormal energy metabolism of TNBC. Thus, the development of a synergistic nano-therapeutic modality involving different anti-tumor mechanisms to simultaneously transport medicines to the organelle where metabolism took place, might remarkably improve curing efficacy, targeting ability, and bio-safety. Herein, the hybrid BLG@TPGS NPs were prepared by doping multi-path energy inhibitors Berberine (BBR) and Lonidamine (LND) as well as the chemotherapeutic agent Gambogic acid (GA). Our research indicated that Nanobomb\mathord{-} BLG@TPGS NPs inherited the mitochondria targeting ability from BBR to accumulate precisely at the "energy factory" mitochondria, and then induce starvation therapy to efficiently eradicated cancer cells by coordinately powered off tumor cells via a "three-prone strategy" to cut off mitochondrial respiration, glycolysis, and glutamine metabolism. The inhibition of tumor proliferation and migration was enlarged by the synergistic combination with chemotherapy. Besides, apoptosis via mitochondria pathway and mitochondria fragmentation supported the hypothesis that NPs eliminated MDA-MB-231 cells by violently attacking MDA-MB-231 cells and especially the mitochondria. In summary, this synergistic chemo-co-starvation nanomedicine proposed an innovative site-specific targeting strategy for improved tumor treatment and decreased toxicity to normal tissues, which provided an option for clinical TNBC-sensitive treatment.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiaxin Zhu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Ruyi Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Wanfang Zhu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Zhongtao Zhang
- Tumor Precise Intervention and Translational Medicine Laboratory, The affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Liangping Gong
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China; Nanjing Medical University, Nanjing, 211198, China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 211198, China
| | - Lingfei Han
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
41
|
Lauriola A, Davalli P, Marverti G, Santi S, Caporali A, D'Arca D. Targeting the Interplay of Independent Cellular Pathways and Immunity: A Challenge in Cancer Immunotherapy. Cancers (Basel) 2023; 15:cancers15113009. [PMID: 37296972 DOI: 10.3390/cancers15113009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/19/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
Immunotherapy is a cancer treatment that exploits the capacity of the body's immune system to prevent, control, and remove cancer. Immunotherapy has revolutionized cancer treatment and significantly improved patient outcomes for several tumor types. However, most patients have not benefited from such therapies yet. Within the field of cancer immunotherapy, an expansion of the combination strategy that targets independent cellular pathways that can work synergistically is predicted. Here, we review some consequences of tumor cell death and increased immune system engagement in the modulation of oxidative stress and ubiquitin ligase pathways. We also indicate combinations of cancer immunotherapies and immunomodulatory targets. Additionally, we discuss imaging techniques, which are crucial for monitoring tumor responses during treatment and the immunotherapy side effects. Finally, the major outstanding questions are also presented, and directions for future research are described.
Collapse
Affiliation(s)
- Angela Lauriola
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Pierpaola Davalli
- Department of Biomedical, Metabolic and Neural Sciences, Via G. Campi 287, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Gaetano Marverti
- Department of Biomedical, Metabolic and Neural Sciences, Via G. Campi 287, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Spartaco Santi
- Consiglio Nazionale delle Ricerche (CNR) Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", 40136 Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Andrea Caporali
- BHF Centre for Cardiovascular Science, University of Edinburgh, Scotland EH4 2XU, UK
| | - Domenico D'Arca
- Department of Biomedical, Metabolic and Neural Sciences, Via G. Campi 287, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
42
|
Deng K, Yu Y, Zhao Y, Li J, Li K, Zhao H, Wu M, Huang S. Tumor-targeted AIE polymeric micelles mediated immunogenic sonodynamic therapy inhibits cancer growth and metastasis. NANOSCALE 2023; 15:8006-8018. [PMID: 37067275 DOI: 10.1039/d3nr00473b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Aggregation-induced emission luminogens (AIEgens) exhibit potent sonosensitivity in nanocarriers compared with conventional organic sonosensitizers owing to the strong fluorescence emission in the aggregated state. However, the premature drug leakage and ineffective tumor targeting of current AIE nanosonosensitizers critically restrict their clinical applications. Here, an AIEgen-based sonosensitizer (AIE/Biotin-M) with excellent sonosensitivity was developed by assembling salicylaldazine-based amphiphilic polymers (AIE-1) and 4T1 tumor-targeting amphiphilic polymers (DSPE-PEG-Biotin) for the effective delivery of salicylaldazine to 4T1 tumor tissues, aiming to mediate immunogenic SDT. In vitro, AIE/Biotin-M were highly stable and generated plentiful singlet oxygen (1O2) under ultrasound (US) irradiation. After AIE/Biotin-M targeted accumulation in the tumor, upon US irradiation, the generation of 1O2 not only led to cancer cell death, but also elicited a systemically immune response by causing the immunogenic cell death (ICD) of cancer cells. In addition to mediating SDT, AIE/Biotin-M could chelate and reduce Fe3+, Cu2+ and Zn2+ by salicylaldazine for inhibiting neovascularization in tumor tissues. Ultimately, AIE/Biotin-M systemically inhibited tumor growth and metastasis upon US irradiation. This study presents a facile approach to the development of AIE nanosonosensitizers for cancer SDT.
Collapse
Affiliation(s)
- Kai Deng
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Yifeng Yu
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yong Zhao
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jiami Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Kunheng Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Hongyang Zhao
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Meng Wu
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.
| | - Shiwen Huang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China
| |
Collapse
|
43
|
Sun Y, Lyu B, Yang C, He B, Zhang H, Wang X, Zhang Q, Dai W. An enzyme-responsive and transformable PD-L1 blocking peptide-photosensitizer conjugate enables efficient photothermal immunotherapy for breast cancer. Bioact Mater 2023; 22:47-59. [PMID: 36203955 PMCID: PMC9519467 DOI: 10.1016/j.bioactmat.2022.08.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/02/2022] [Accepted: 08/15/2022] [Indexed: 12/07/2022] Open
Abstract
Mild photothermal therapy combined with immune checkpoint blockade has received increasing attention for the treatment of advanced or metastatic cancers due to its good therapeutic efficacy. However, it remains a challenge to facilely integrate the two therapies and make it potential for clinical translation. This work designed a peptide-photosensitizer conjugate (PPC), which consisted of a PD-L1 antagonist peptide (CVRARTR), an MMP-2 specific cleavable sequence, a self-assembling motif, and the photosensitizer Purpurin 18. The single-component PPC can self-assemble into nanospheres which is suitable for intravenous injection. The PPC nanosphere is cleaved by MMP-2 when it accumulates in tumor sites, thereby initiating the cancer-specific release of the antagonist peptide. Simultaneously, the nanospheres gradually transform into co-assembled nanofibers, which promotes the retention of the remaining parts within the tumor. In vivo studies demonstrated that PPC nanospheres under laser irradiation promote the infiltration of cytotoxic T lymphocytes and maturation of DCs, which sensitize 4T1 tumor cells to immune checkpoint blockade therapy. Therefore, PPC nanospheres inhibit tumor growth efficiently both in situ and distally and blocked the formation of lung metastases. The present study provides a simple and efficient integrated strategy for breast cancer photoimmunotherapy. A peptide-photosensitizer conjugate (PPC) with self-assembled ability. Self-assembled PPC realized enzyme-responsive PD-L1 blocking peptide release. Shape transformation from nanospheres to co-assembled nanofibers. Efficient integrated strategy for breast cancer photoimmunotherapy.
Collapse
Affiliation(s)
- Yanan Sun
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, 050017, China
| | - Bochen Lyu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Chang Yang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Corresponding author.
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Corresponding author.
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Corresponding author.
| |
Collapse
|
44
|
Geng S, Xiang T, Zhang Y, Guo P, Zhang H, Zhang Z, Gu M, Zhang K, Song H, Shi J, Liu J. Safe engineering of cancer-associated fibroblasts enhances checkpoint blockade immunotherapy. J Control Release 2023; 356:272-287. [PMID: 36870541 DOI: 10.1016/j.jconrel.2023.02.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Abundant cancer-associated fibroblasts (CAFs) in highly fibrotic breast cancer constitute an immunosuppressive barrier for T cell activity and are closely related to the failure of immune checkpoint blockade therapy (ICB). Inspired by the similar antigen-processing capacity of CAFs to professional antigen-presenting cells (APCs), a "turning foes to friends" strategy is proposed by in situ engineering immune-suppressed CAFs into immune-activated APCs for improving response rates of ICB. To achieve safe and specific CAFs engineering in vivo, a thermochromic spatiotemporal photo-controlled gene expression nanosystem was developed by self-assembly of molten eutectic mixture, chitosan andfusion plasmid. After photoactivatable gene expression, CAFs could be engineered as APCs via co-stimulatory molecule (CD86) expression, which effectively induced activation and proliferation of antigen-specific CD8 + T cells. Meanwhile, engineered CAFs could also secrete PD-L1 trap protein in situ for ICB, avoiding potential autoimmune-like disorders caused by "off-target" effects of clinically applied PD-L1 antibody. The study demonstrated that the designed nanosystem could efficiently engineer CAFs, significantly enhance the percentages of CD8+ T cells (4-folds), result in about 85% tumor inhibition rate and 83.3% survival rate at 60 days in highly fibrotic breast cancer, further inducing long-term immune memory effects and effectively inhibiting lung metastasis.
Collapse
Affiliation(s)
- Shizhen Geng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tingting Xiang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yunya Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Pengke Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hongling Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, China
| | - Mengchao Gu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Haiwei Song
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore 138673, Singapore.
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China.
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China.
| |
Collapse
|
45
|
Emerging Trends in Nano-Driven Immunotherapy for Treatment of Cancer. Vaccines (Basel) 2023; 11:vaccines11020458. [PMID: 36851335 PMCID: PMC9968063 DOI: 10.3390/vaccines11020458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Despite advancements in the development of anticancer medications and therapies, cancer still has the greatest fatality rate due to a dismal prognosis. Traditional cancer therapies include chemotherapy, radiotherapy, and targeted therapy. The conventional treatments have a number of shortcomings, such as a lack of selectivity, non-specific cytotoxicity, suboptimal drug delivery to tumour locations, and multi-drug resistance, which results in a less potent/ineffective therapeutic outcome. Cancer immunotherapy is an emerging and promising strategy to elicit a pronounced immune response against cancer. Immunotherapy stimulates the immune system with cancer-specific antigens or immune checkpoint inhibitors to overcome the immune suppressive tumour microenvironment and kill the cancer cells. However, delivery of the antigen or immune checkpoint inhibitors and activation of the immune response need to circumvent the issues pertaining to short lifetimes and effect times, as well as adverse effects associated with off-targeting, suboptimal, or hyperactivation of the immune system. Additional challenges posed by the tumour suppressive microenvironment are less tumour immunogenicity and the inhibition of effector T cells. The evolution of nanotechnology in recent years has paved the way for improving treatment efficacy by facilitating site-specific and sustained delivery of the therapeutic moiety to elicit a robust immune response. The amenability of nanoparticles towards surface functionalization and tuneable physicochemical properties, size, shape, and surfaces charge have been successfully harnessed for immunotherapy, as well as combination therapy, against cancer. In this review, we have summarized the recent advancements made in choosing different nanomaterial combinations and their modifications made to enable their interaction with different molecular and cellular targets for efficient immunotherapy. This review also highlights recent trends in immunotherapy strategies to be used independently, as well as in combination, for the destruction of cancer cells, as well as prevent metastasis and recurrence.
Collapse
|
46
|
Wang D. Progress in the study of ferroptosis in cancer treatment: State-of-the-Art. Chem Biol Interact 2023; 371:110348. [PMID: 36646403 DOI: 10.1016/j.cbi.2023.110348] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023]
Abstract
As a regulatory cell death mode defined in recent years, Ferroptosis is mainly characterized by increased intracellular free iron and the accumulation of lipid peroxides. Ferroptosis is closely related to iron ion metabolism, lipid metabolism, and amino acid metabolism. Cancer is the second leading cause of death worldwide, and effective removal of tumour cells while protecting normal cells is the key to tumour treatment. The continuous development and refinement of molecular mechanisms related to ferroptosis have shown promising applications in tumour therapy. There is increasing evidence that triggering ferroptosis in tumour cells is expected to be a new therapeutic strategy for tumour treatment.
Collapse
Affiliation(s)
- Dong Wang
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
47
|
Miao L, Ma H, Dong T, Zhao C, Gao T, Wu T, Xu H, Zhang J. Ginsenoside Rg3 liposomes regulate tumor microenvironment for the treatment of triple negative breast cancer. Drug Dev Ind Pharm 2023; 49:139-148. [PMID: 36881020 DOI: 10.1080/03639045.2023.2188078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
OBJECTIVE To improve the solubility and targeting of Ginsenoside Rg3 (G-Rg3), in the current study, we constructed a novel targeting functional material folic acid -poly(2-ethyl-2-oxazoline)-cholesteryl methyl carbonate (FA-PEOz-CHMC, FPC) modified G-Rg3 liposomes (FPC-Rg3-L). METHODS FPC was synthesized by using folic acid (FA) as a targeted head coupling with acid-activated poly(2-ethyl-2-oxazoline)-cholesteryl methyl carbonate. The inhibitory effects of the G-Rg3 preparations on mouse breast cancer cells (4T1) were investigated by CCK-8 assay. Paraffin sections of female BALB/c mice viscera were taken for hematoxylin-eosin (H&E) staining after continuous tail vein injection of G-Rg3 preparations. BALB/c mice bearing triple-negative breast cancer (TNBC) were used as animal models to investigate the inhibition of G-Rg3 preparations on tumor growth and improving quality of life. Transforming growth factor-β1 (TGF-β1) and α-smooth muscular actin (α-SMA) were used to investigate the expression of two fibrosis factors in tumor tissues by western blotting. RESULTS Compared with G-Rg3 solution (Rg3-S) and Rg3-L, FPC-Rg3-L had a significant inhibitory effect on 4T1 cells (p < .01), and the half maximal inhibitory concentration (IC50) of FPC-Rg3-L was significantly lower (p < .01). The H&E results showed that the injection of FPC-Rg3-L and Rg3-S did not cause damage to the organs of mice. Compared with the control group, tumor growth was significantly inhibited in mice treated with FPC-Rg3-L and G-Rg3 solutions (p < .01). CONCLUSIONS This study presents a new and safe treatment for TNBC, reduces the toxic and side effects of the drug, and provides a reference for the efficient use of Chinese herbal medicine components.
Collapse
Affiliation(s)
- Linan Miao
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, People's Republic of China
| | - Hao Ma
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, People's Republic of China
| | - Tingjun Dong
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, People's Republic of China
| | - Chengcheng Zhao
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, People's Republic of China
| | - Tingyu Gao
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, People's Republic of China
| | - Tianyi Wu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, People's Republic of China
| | - Huan Xu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, People's Republic of China
| | - Jing Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, People's Republic of China
| |
Collapse
|
48
|
Zeng X, Chen B, Wang L, Sun Y, Jin Z, Liu X, Ouyang L, Liao Y. Chitosan@Puerarin hydrogel for accelerated wound healing in diabetic subjects by miR-29ab1 mediated inflammatory axis suppression. Bioact Mater 2023; 19:653-665. [PMID: 35600974 PMCID: PMC9109129 DOI: 10.1016/j.bioactmat.2022.04.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
Wound healing is one of the major global health concerns in patients with diabetes. Overactivation of pro-inflammatory M1 macrophages is associated with delayed wound healing in diabetes. miR-29ab1 plays a critical role in diabetes-related macrophage inflammation. Hence, inhibition of inflammation and regulation of miR-29 expression have been implicated as new points for skin wound healing. In this study, the traditional Chinese medicine, puerarin, was introduced to construct an injectable and self-healing chitosan@puerarin (C@P) hydrogel. The C@P hydrogel promoted diabetic wound healing and accelerated angiogenesis, which were related to the inhibition of the miR-29 mediated inflammation response. Compared to healthy subjects, miR-29a and miR-29b1 were ectopically increased in the skin wound of the diabetic model, accompanied by upregulated M1-polarization, and elevated levels of IL-1β and TNF-α. Further evaluations by miR-29ab1 knockout mice exhibited superior wound healing and attenuated inflammation. The present results suggested that miR-29ab1 is essential for diabetic wound healing by regulating the inflammatory response. Suppression of miR-29ab1 by the C@P hydrogel has the potential for improving medical approaches for wound repair. A chitosan based hydrogel containing puerarin was constructed for promoting diabetic wound healing. Chitosan@Puerarin hydrogel accelerated skin repair through inhibiting M1-polarization and reducing IL-1β and TNF-α. miR-29 a/b1 was found to be ectopic increased in the skin-wound of diabetic model. miR-29 a/b1 was inhibited by Chitosan@Puerarin in diabetic wound healing.
Collapse
|
49
|
Zhang Q, Wang X, Kuang G, Zhao Y. Pt(IV) prodrug initiated microparticles from microfluidics for tumor chemo-, photothermal and photodynamic combination therapy. Bioact Mater 2022; 24:185-196. [PMID: 36606251 PMCID: PMC9804016 DOI: 10.1016/j.bioactmat.2022.12.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Multimodal treatment modalities hold great potential for cancer therapy, thus current efforts are focusing on the development of more effective and practical synergistic therapeutic platforms. Herein, we present a novel trans, trans,trans-[Pt(N3)2(OH)2(py)2] (Pt(IV)) prodrug-initiated hydrogel microparticles (MICG-Pt) with indocyanine green (ICG) encapsulation by microfluidics for efficiently synergistic chemo-, photothermal (PTT) and photodynamic therapy (PDT). The employed Pt(IV) could not only serves as an initiator to generate azidyl radical (N3 •) for photo-polymerization of methacrylate gelatin (GelMA) matrix, but also be reduced to high cytotoxic platinum(II) (Pt(II)) species for tumor chemotherapy. The laden ICG with highly photothermal heating ability and intrinsic reactive oxygen species (ROS) productivity endows the MICG-Pt with effective PTT/PDT performances upon near-infrared (NIR) light irradiation. In addition, benefiting from the production of oxygen during the photo-activation process of Pt(IV), the PDT efficacy of ICG-laden MICG-Pt could be further enhanced. Based on these advantages, we have demonstrated that the MICG-Pt could significantly eliminate cancer cells in vitro, and remarkably suppressed the tumor growth in vivo via synergistic chemotherapy, PTT, and PDT. These results indicate that such Pt(IV)-initiated hydrogel microparticles are ideal candidates of multimodal treatment platforms, holding great prospects for cancer therapy.
Collapse
Affiliation(s)
- Qingfei Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Xiaocheng Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Gaizhen Kuang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China,Corresponding author. Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
50
|
Nanomodulation and nanotherapeutics of tumor-microenvironment. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|