1
|
Liang Z, Gao H, Ren Q, Li X, Ma Y, Xue C, Sun B. Suspension stability of aluminum-based adjuvants. NANOSCALE 2025. [PMID: 40338162 DOI: 10.1039/d5nr00699f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Aluminum hydroxyphosphate (AAHP) and aluminum oxyhydroxide (AlOOH) are widely used adjuvants in human vaccines. However, vaccines formulated with aluminum-based adjuvants often exist as suspensions that can experience phase separation, spontaneous aggregation, layering, and settling, potentially compromising their immunogenic efficacy. Despite their widespread use, research into the suspension stability of aluminum-based adjuvants remains limited. In this study, we synthesized a series of aluminum hydroxyphosphate and AlOOH nanoparticles and systematically evaluated their suspension stabilities under various conditions. Our findings reveal that for aluminum hydroxyphosphate, particle size and ζ potential are the primary determinants of suspension stability, aligning with DLVO theory and Stokes' law. For AlOOH, the suspension stability is governed by a combination of factors, including particle size, ζ potential, surface free energy (SFE) and hydrophobicity. Notably, the commercial adjuvant Alhydrogel® exhibited low suspension stability compared to our synthesized AlOOH nanoparticles, a result attributed to its high SFE. Furthermore, under specific formulation conditions, aluminum-based adjuvants with enhanced suspension stability improved the suspension stability of their corresponding adjuvant-antigen complexes. This study provides a foundation for optimizing the suspension stability of aluminum-based adjuvants and offers valuable insights for their rational design and transportation in vaccine development.
Collapse
Affiliation(s)
- Zhihui Liang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China.
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
- Department of Biomedical Engineering, The Chinese University of Hong, Kong, Shatin, New Territories, Hong Kong SAR
| | - Hongyang Gao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China.
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Qian Ren
- MOE Key Laboratory Bio-Intelligent Manufacturing, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China.
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Xin Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China.
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Yubin Ma
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China.
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Changying Xue
- MOE Key Laboratory Bio-Intelligent Manufacturing, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China.
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China.
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| |
Collapse
|
2
|
Li Z, Chen P, Qu A, Sun M, Xu L, Xu C, Hu S, Kuang H. Opportunities and Challenges for Nanomaterials as Vaccine Adjuvants. SMALL METHODS 2025:e2402059. [PMID: 40277301 DOI: 10.1002/smtd.202402059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/29/2025] [Indexed: 04/26/2025]
Abstract
Adjuvants, as a critical component of vaccines, are capable of eliciting more robust and sustained immune responses. Nanomaterials have shown unique advantages and broad application prospects in adjuvant development due to their high adjustability and distinctive physicochemical properties. This review focuses on nanoadjuvants and their immunological mechanisms. First, various types of adjuvants are introduced with an emphasis on metal and metal oxide nanoparticles, coordination polymers, liposomes, polymer nanoparticles, and other inorganic nanoparticles that can serve as vaccine adjuvants. Second, this review describes the current status of the clinical applications of nanoadjuvants. Next, the mechanisms of action for nanoadjuvants have been thoroughly elucidated, including the depot effect, NLRP3 inflammasome activation, targeting C-type lectin receptors, activation of toll-like receptors, and activation of the cGAS-STING signaling pathway. Finally, the challenges and opportunities associated with the development of nanoadjuvants have also been addressed.
Collapse
Affiliation(s)
- Zongda Li
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Panpan Chen
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Aihua Qu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Shudong Hu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
3
|
Di Meola L, Pasqui D, Tigli C, Luckham S, Colomba S, Paludi M, Denis M, Palmese A, Stranges D, Marcelli A, Moriconi A, Meppen M, Pergola C. New High-Throughput Method for Aluminum Content Determination in Vaccine Formulations. Vaccines (Basel) 2025; 13:105. [PMID: 40006652 PMCID: PMC11861868 DOI: 10.3390/vaccines13020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
OBJECTIVE This manuscript describes an innovative, non-destructive, high-throughput method for the quantification of aluminum hydroxide in aluminum-adjuvanted vaccines, eliminating the need of reagents and providing real-time results. The method is based on a spectrophotometric principle, and several model proteins were studied and tested with the aim to simulate the behavior of aluminum-adjuvanted antigens. METHODS As a proof of concept, the MenB vaccine was used, and the titration of aluminum hydroxide (AH) with ethylenediaminetetraacetic acid (EDTA) was used as an orthogonal reference, as it is one of the current release methods for the content determination of aluminum-hydroxide-adjuvanted vaccine drug products (DPs). The factors influencing the spectrophotometric analysis, such as different plate 96/well containers, variation in the sedimentation of the suspension due to component addition errors during formulation, and batch-to-batch variation were studied to assess the method's robustness. Five concentration levels (ranging from 2.0 to 4.0 mg/mL AH) with two different batches of aluminum hydroxide were each measured with independent preparations performed by three different operators, for a total of four sessions/operator and 20 formulations/session. An in-depth statistical study was carried out with generated data to assess the precision (in terms of intermediate precision and repeatability), accuracy, linearity, and specificity of the method. RESULTS The novel spectrophotometric method and the official release one (potentiometric) yielded comparable results, demonstrating the potential of this new method as a release test for AH-adjuvanted products. A simple calibration curve enabled the measurement of samples in a 96-well plate in just a few minutes. CONCLUSIONS We developed a novel method for Aluminum concentration determination in Aluminum-containing pharmaceutical products, like alum-adjuvanted vaccines. This method is fast, completely automatable, and as precise and accurate as already-in-place release methods.
Collapse
|
4
|
Oluwole SA, Weldu WD, Jayaraman K, Barnard KA, Agatemor C. Design Principles for Immunomodulatory Biomaterials. ACS APPLIED BIO MATERIALS 2024; 7:8059-8075. [PMID: 38922334 DOI: 10.1021/acsabm.4c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The immune system is imperative to the survival of all biological organisms. A functional immune system protects the organism by detecting and eliminating foreign and host aberrant molecules. Conversely, a dysfunctional immune system characterized by an overactive or weakened immune system causes life-threatening autoimmune or immunodeficiency diseases. Therefore, a critical need exists to develop technologies that regulate the immune system to ensure homeostasis or treat several diseases. Accumulating evidence shows that biomaterials─artificial materials (polymers, metals, ceramics, or engineered cells and tissues) that interact with biological systems─can trigger immune responses, offering a materials science-based strategy to modulate the immune system. This Review discusses the expanding frontiers of biomaterial-based immunomodulation, focusing on principles for designing these materials. This Review also presents examples of immunomodulatory biomaterials, which include polymers and metal- and carbon-based nanomaterials, capable of regulating the innate and adaptive immune systems.
Collapse
Affiliation(s)
- Samuel Abidemi Oluwole
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| | - Welday Desta Weldu
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| | - Keerthana Jayaraman
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| | - Kelsie Amanda Barnard
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| | - Christian Agatemor
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
- Department of Biology, University of Miami, Coral Gables, Florida 33124, United States
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, Florida 33136, United States
| |
Collapse
|
5
|
Li S, Wang Y, Li C, Zhou B, Zeng X, Zhu H. Supramolecular nanomedicine in the intelligent cancer therapy: recent advances and future. Front Pharmacol 2024; 15:1490139. [PMID: 39464634 PMCID: PMC11502448 DOI: 10.3389/fphar.2024.1490139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
In recent years, the incidence of cancer has been increasing year by year, and the burden of the disease and the economic burden caused by it has been worsening. Although chemotherapy, immunotherapy, targeted therapy and other therapeutic means continue to progress, they still inevitably have problems such as high toxicity and side effects, susceptibility to drug resistance, and high price. Photothermal therapy and photodynamic therapy have demonstrated considerable advantages in cancer imaging and treatment due to their minimally invasive and selective nature. However, their development has been constrained by challenges related to drug delivery. In recent times, drug delivery systems constructed based on supramolecular chemistry have been the subject of considerable interest, particularly in view of their compatibility with the high permeability and long retention effect of tumors. Furthermore, the advantage of dissociating the active ingredient under pH, light and other stimuli makes them unique in cancer therapy. This paper reviews the current status of supramolecular nanomedicines in cancer therapy, elucidating the challenges faced and providing a theoretical basis for the efficient and precise treatment of malignant tumors.
Collapse
Affiliation(s)
- Shuo Li
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yujiao Wang
- Division of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chao Li
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Binghao Zhou
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoxi Zeng
- Division of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Zhu
- Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Han J, Mao K, Yang YG, Sun T. Impact of inorganic/organic nanomaterials on the immune system for disease treatment. Biomater Sci 2024; 12:4903-4926. [PMID: 39190428 DOI: 10.1039/d4bm00853g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The study of nanomaterials' nature, function, and biocompatibility highlights their potential in drug delivery, imaging, diagnostics, and therapeutics. Advancements in nanotechnology have fostered the development and application of diverse nanomaterials. These materials facilitate drug delivery and influence the immune system directly. Yet, understanding of their impact on the immune system is incomplete, underscoring the need to select materials to achieve desired outcomes carefully. In this review, we outline and summarize the distinctive characteristics and effector functions of inorganic nanomaterials and organic materials in inducing immune responses. We highlight the role and advantages of nanomaterial-induced immune responses in the treatment of immune-related diseases. Finally, we briefly discuss the current challenges and future opportunities for disease treatment and clinical translation of these nanomaterials.
Collapse
Affiliation(s)
- Jing Han
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Kuirong Mao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Gogoi H, Mani R, Bhatnagar R. Re-inventing traditional aluminum-based adjuvants: Insight into a century of advancements. Int Rev Immunol 2024; 44:58-81. [PMID: 39310923 DOI: 10.1080/08830185.2024.2404095] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 06/01/2023] [Accepted: 08/31/2024] [Indexed: 02/22/2025]
Abstract
Aluminum salt-based adjuvants like alum, alhydrogel and Adju-Phos are by far the most favored clinically approved vaccine adjuvants. They have demonstrated excellent safety profile and currently used in vaccines against diphtheria, tetanus, pertussis, hepatitis B, anthrax etc. These vaccinations cause minimal side effects like local inflammation at the injection site. Aluminum salt-based adjuvants primarily stimulate CD4+ T cells and B cell mediated Th2 immune response leading to generate a robust antibody response. In this review article, we have compiled the role of physio-chemical role of the two commonly used aluminum salt-based adjuvants alhydrogel and Adju-Phos, and the effect of surface properties, buffer composition, and adjuvant dosage on the immune response. After being studied for almost a century, researchers have come up with various mechanism by which these aluminum adjuvants activate the immune system. Firstly, we have covered the initial works of Glenny and his "repository effect" which paved the work for his successors to explore the involvement of cytokines, chemokines, recruitment of innate immune cells, enhanced antigen uptake by antigen presenting cells, and formation of NLRP3 inflammasome complex in mediating the immune response. It has been reported that aluminum adjuvants activate multiple immunological pathways which synergistically activates the immune system. We later discuss the recent developments in nanotechnology-based preparations of next generation aluminum based adjuvants which has enabled precise size control and morphology of the traditional aluminum adjuvants thereby manipulating the immune response as per our desire.
Collapse
Affiliation(s)
- Himanshu Gogoi
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, India
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, Faridabad, Haryana, India
| | - Rajesh Mani
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Department of Microbiology, Immunology and Molecular Genetics, University Kentucky College of Medicine, Lexington, KY, USA
| | - Rakesh Bhatnagar
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, India
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
8
|
Liu H, Chen H, Yang Z, Wen Z, Gao Z, Liu Z, Liu L, Chen Y. Precision Nanovaccines for Potent Vaccination. JACS AU 2024; 4:2792-2810. [PMID: 39211600 PMCID: PMC11350730 DOI: 10.1021/jacsau.4c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
Compared with traditional vaccines, nanoparticulate vaccines are especially suitable for delivering antigens of proteins, peptides, and nucleic acids and facilitating lymph node targeting. Moreover, apart from improving pharmacokinetics and safety, nanoparticulate vaccines assist antigens and molecular adjuvants in crossing biological barriers, targeting immune organs and antigen-presenting cells (APC), controlled release, and cross-presentation. However, the process that stimulates and orchestrates the immune response is complicated, involving spatiotemporal interactions of multiple cell types, including APCs, B cells, T cells, and macrophages. The performance of nanoparticulate vaccines also depends on the microenvironments of the target organs or tissues in different populations. Therefore, it is necessary to develop precise nanoparticulate vaccines that accurately regulate vaccine immune response beyond simply improving pharmacokinetics. This Perspective summarizes and highlights the role of nanoparticulate vaccines with precise size, shape, surface charge, and spatial management of antigen or adjuvant for a precision vaccination in regulating the distribution, targeting, and immune response. It also discusses the importance of the rational design of nanoparticulate vaccines based on the anatomical and immunological microstructure of the target tissues. Moreover, the target delivery and controlled release of nanovaccines should be taken into consideration in designing vaccines for achieving precise immune responses. Additionally, it shows that the nanovaccines remodel the suppressed tumor environment and modulate various immune cell responses which are also essential.
Collapse
Affiliation(s)
- Hong Liu
- College
of Chemistry and Molecular Science, Henan
University, Zhengzhou 450046, China
- Translational
Medical Center of Huaihe Hospital, Henan
University, Kaifeng 475004, China
| | - Haolin Chen
- School
of Materials Science and Engineering, Key Laboratory for Polymeric
Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Zeyu Yang
- School
of Materials Science and Engineering, Key Laboratory for Polymeric
Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhenfu Wen
- School
of Materials Science and Engineering, Key Laboratory for Polymeric
Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhan Gao
- School
of Materials Science and Engineering, Key Laboratory for Polymeric
Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhijia Liu
- School
of Materials Science and Engineering, Key Laboratory for Polymeric
Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Lixin Liu
- School
of Materials Science and Engineering, Key Laboratory for Polymeric
Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Yongming Chen
- College
of Chemistry and Molecular Science, Henan
University, Zhengzhou 450046, China
- State
Key Laboratory of Antiviral Drugs, Henan
University, Zhengzhou 450046, China
- School
of Materials Science and Engineering, Key Laboratory for Polymeric
Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
9
|
Yao Z, Liang Z, Li M, Wang H, Ma Y, Guo Y, Chen C, Xue C, Sun B. Aluminum oxyhydroxide-Poly(I:C) combination adjuvant with balanced immunostimulatory potentials for prophylactic vaccines. J Control Release 2024; 372:482-493. [PMID: 38914205 DOI: 10.1016/j.jconrel.2024.06.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/20/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
The development of high-purity antigens promotes the urgent need of novel adjuvant with the capability to trigger high levels of immune response. Polyinosinic-polycytidylic (Poly(I:C)) is a synthetic double-stranded RNA (dsRNA) that can engage Toll-like receptor 3 (TLR3) to initiate immune responses. However, the Poly(I:C)-induced toxicity and inefficient delivery prevent its applications. In our study, combination adjuvants are formulated by aluminum oxyhydroxide nanorods (AlOOH NRs) and Poly(I:C), named Al-Poly(I:C), and the covalent interaction between the two components is further demonstrated. Al-Poly(I:C) mediates enhanced humoral and cellular immune responses in three antigen models, i.e., HBsAg virus-like particles (VLPs), human papilloma virus (HPV) VLPs and varicella-zoster virus (VZV) glycoprotein E (gE). Further mechanistic studies demonstrate that the dose and molecular weight (MW) of Poly(I:C) determine the physicochemical properties and adjuvanticity of the Al-Poly(I:C) combination adjuvants. Al-Poly(I:C) with higher Poly(I:C) dose promotes antigen-bearing dendritic cells (DCs) recruitment and B cells proliferation in lymph nodes. Al-Poly(I:C) formulated with higher MW Poly(I:C) induces higher activation of helper T cells, B cells, and CTLs. This study demonstrates that Al-Poly(I:C) potentiates the humoral and cellular responses in vaccine formulations. It offers insights for adjuvant design to meet the formulation requirements in both prophylactic and therapeutic vaccines.
Collapse
Affiliation(s)
- Zhiying Yao
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Zhihui Liang
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Min Li
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Huiyang Wang
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Yubin Ma
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Yiyang Guo
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Chen Chen
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; MOE Key Laboratory Bio-Intelligent Manufacturing, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Changying Xue
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; MOE Key Laboratory Bio-Intelligent Manufacturing, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Bingbing Sun
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China.
| |
Collapse
|
10
|
Li M, Yao Z, Wang H, Ma Y, Yang W, Guo Y, Yu G, Shi W, Zhang N, Xu M, Li X, Zhao J, Zhang Y, Xue C, Sun B. Silicon or Calcium Doping Coordinates the Immunostimulatory Effects of Aluminum Oxyhydroxide Nanoadjuvants in Prophylactic Vaccines. ACS NANO 2024; 18:16878-16894. [PMID: 38899978 DOI: 10.1021/acsnano.4c02685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Aluminum salts still remain as the most popular adjuvants in marketed human prophylactic vaccines due to their capability to trigger humoral immune responses with a good safety record. However, insufficient induction of cellular immune responses limits their further applications. In this study, we prepare a library of silicon (Si)- or calcium (Ca)-doped aluminum oxyhydroxide (AlOOH) nanoadjuvants. They exhibit well-controlled physicochemical properties, and the dopants are homogeneously distributed in nanoadjuvants. By using Hepatitis B surface antigen (HBsAg) as the model antigen, doped AlOOH nanoadjuvants mediate higher antigen uptake and promote lysosome escape of HBsAg through lysosomal rupture induced by the dissolution of the dopant in the lysosomes in bone marrow-derived dendritic cells (BMDCs). Additionally, doped nanoadjuvants trigger higher antigen accumulation and immune cell activation in draining lymph nodes. In HBsAg and varicella-zoster virus glycoprotein E (gE) vaccination models, doped nanoadjuvants induce high IgG titer, activations of CD4+ and CD8+ T cells, cytotoxic T lymphocytes, and generations of effector memory T cells. Doping of aluminum salt-based adjuvants with biological safety profiles and immunostimulating capability is a potential strategy to mediate robust humoral and cellular immunity. It potentiates the applications of engineered adjuvants in the development of vaccines with coordinated immune responses.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Zhiying Yao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Huiyang Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yubin Ma
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Wenqi Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yiyang Guo
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Ge Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Wendi Shi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Ning Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Muzhe Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Xin Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Jiashu Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yue Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Changying Xue
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
11
|
Liang Z, Bao H, Yao Z, Li M, Chen C, Zhang L, Wang H, Guo Y, Ma Y, Yang X, Yu G, Zhang J, Xue C, Sun B, Mao C. The orientation of CpG conjugation on aluminum oxyhydroxide nanoparticles determines the immunostimulatory effects of combination adjuvants. Biomaterials 2024; 308:122569. [PMID: 38626556 DOI: 10.1016/j.biomaterials.2024.122569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 04/18/2024]
Abstract
In subunit vaccines, aluminum salts (Alum) are commonly used as adjuvants, but with limited cellular immune responses. To overcome this limitation, CpG oligodeoxynucleotides (ODNs) have been used in combination with Alum. However, current combined usage of Alum and CpG is limited to linear mixtures, and the underlying interaction mechanism between CpG and Alum is not well understood. Thus, we propose to chemically conjugate Alum nanoparticles and CpG (with 5' or 3' end exposed) to design combination adjuvants. Our study demonstrates that compared to the 3'-end exposure, the 5'-end exposure of CpG in combination adjuvants (Al-CpG-5') enhances the activation of bone-marrow derived dendritic cells (BMDCs) and promotes Th1 and Th2 cytokine secretion. We used the SARS-CoV-2 receptor binding domain (RBD) and hepatitis B surface antigen (HBsAg) as model antigens to demonstrate that Al-CpG-5' enhanced antigen-specific antibody production and upregulated cytotoxic T lymphocyte markers. Additionally, Al-CpG-5' allows for coordinated adaptive immune responses even at lower doses of both CpG ODNs and HBsAg antigens, and enhances lymph node transport of antigens and activation of dendritic cells, promoting Tfh cell differentiation and B cell activation. Our novel Alum-CPG strategy points the way towards broadening the use of nanoadjuvants for both prophylactic and therapeutic vaccines.
Collapse
Affiliation(s)
- Zhihui Liang
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China; Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China
| | - Hang Bao
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Zhiying Yao
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Min Li
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Chen Chen
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Lei Zhang
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Huiyang Wang
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Yiyang Guo
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Yubin Ma
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Xuecheng Yang
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Ge Yu
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Jiancheng Zhang
- AIM Honesty Biopharmaceutical Co., Ltd, Dalian, 116100, PR China
| | - Changying Xue
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China.
| | - Bingbing Sun
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China.
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China.
| |
Collapse
|
12
|
Chen C, Xue C, Jiang J, Bi S, Hu Z, Yu G, Sun B, Mao C. Neurotoxicity Profiling of Aluminum Salt-Based Nanoparticles as Adjuvants for Therapeutic Cancer Vaccine. J Pharmacol Exp Ther 2024; 390:45-52. [PMID: 38272670 DOI: 10.1124/jpet.123.002031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Therapeutic vaccines containing aluminum adjuvants have been widely used in the treatment of tumors due to their powerful immune-enhancing effects. However, the neurotoxicity of aluminum adjuvants with different physicochemical properties has not been completely elucidated. In this study, a library of engineered aluminum oxyhydroxide (EAO) and aluminum hydroxyphosphate (EAHP) nanoparticles was synthesized to determine their neurotoxicity in vitro. It was demonstrated that the surface charge of EAHPs and size of EAOs did not affect the cytotoxicity in N9, bEnd.3, and HT22 cells; however, soluble aluminum ions trigger the cytotoxicity in three different cell lines. Moreover, soluble aluminum ions induce apoptosis in N9 cells, and further mechanistic studies demonstrated that this apoptosis was mediated by mitochondrial reactive oxygen species generation and mitochondrial membrane potential loss. This study identifies the safety profile of aluminum-containing salts adjuvants in the nervous system during therapeutic vaccine use, and provides novel design strategies for their safer applications. SIGNIFICANCE STATEMENT: In this study, it was demonstrated that engineered aluminum oxyhydroxide and aluminum hydroxyphosphate nanoparticles did not induce cytotoxicity in N9, bEnd.3, and HT22 cells. In comparation, soluble aluminum ions triggered significant cytotoxicity in three different cell lines, indicating that the form in which aluminum is presenting may play a crucial role in its safety. Moreover, apoptosis induced by soluble aluminum ions was dependent on mitochondrial damage. This study confirms the safety of engineered aluminum adjuvants in vaccine formulations.
Collapse
Affiliation(s)
- Chen Chen
- State Key Laboratory of Fine Chemicals (C.C., J.J., S.B., Z.H., G.Y., B.S.), School of Bioengineering (C.C., C.X.), School of Chemical Engineering (J.J., S.B., Z.H., G.Y., B.S.), and Frontiers Science Center for Smart Materials Oriented Chemical Engineering (C.C., J.J., S.B., Z.H., G.Y., B.S.), Dalian University of Technology, Dalian, China; and Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China (C.M.)
| | - Changying Xue
- State Key Laboratory of Fine Chemicals (C.C., J.J., S.B., Z.H., G.Y., B.S.), School of Bioengineering (C.C., C.X.), School of Chemical Engineering (J.J., S.B., Z.H., G.Y., B.S.), and Frontiers Science Center for Smart Materials Oriented Chemical Engineering (C.C., J.J., S.B., Z.H., G.Y., B.S.), Dalian University of Technology, Dalian, China; and Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China (C.M.)
| | - Jiaxuan Jiang
- State Key Laboratory of Fine Chemicals (C.C., J.J., S.B., Z.H., G.Y., B.S.), School of Bioengineering (C.C., C.X.), School of Chemical Engineering (J.J., S.B., Z.H., G.Y., B.S.), and Frontiers Science Center for Smart Materials Oriented Chemical Engineering (C.C., J.J., S.B., Z.H., G.Y., B.S.), Dalian University of Technology, Dalian, China; and Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China (C.M.)
| | - Shisheng Bi
- State Key Laboratory of Fine Chemicals (C.C., J.J., S.B., Z.H., G.Y., B.S.), School of Bioengineering (C.C., C.X.), School of Chemical Engineering (J.J., S.B., Z.H., G.Y., B.S.), and Frontiers Science Center for Smart Materials Oriented Chemical Engineering (C.C., J.J., S.B., Z.H., G.Y., B.S.), Dalian University of Technology, Dalian, China; and Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China (C.M.)
| | - Zurui Hu
- State Key Laboratory of Fine Chemicals (C.C., J.J., S.B., Z.H., G.Y., B.S.), School of Bioengineering (C.C., C.X.), School of Chemical Engineering (J.J., S.B., Z.H., G.Y., B.S.), and Frontiers Science Center for Smart Materials Oriented Chemical Engineering (C.C., J.J., S.B., Z.H., G.Y., B.S.), Dalian University of Technology, Dalian, China; and Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China (C.M.)
| | - Ge Yu
- State Key Laboratory of Fine Chemicals (C.C., J.J., S.B., Z.H., G.Y., B.S.), School of Bioengineering (C.C., C.X.), School of Chemical Engineering (J.J., S.B., Z.H., G.Y., B.S.), and Frontiers Science Center for Smart Materials Oriented Chemical Engineering (C.C., J.J., S.B., Z.H., G.Y., B.S.), Dalian University of Technology, Dalian, China; and Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China (C.M.)
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals (C.C., J.J., S.B., Z.H., G.Y., B.S.), School of Bioengineering (C.C., C.X.), School of Chemical Engineering (J.J., S.B., Z.H., G.Y., B.S.), and Frontiers Science Center for Smart Materials Oriented Chemical Engineering (C.C., J.J., S.B., Z.H., G.Y., B.S.), Dalian University of Technology, Dalian, China; and Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China (C.M.)
| | - Chuanbin Mao
- State Key Laboratory of Fine Chemicals (C.C., J.J., S.B., Z.H., G.Y., B.S.), School of Bioengineering (C.C., C.X.), School of Chemical Engineering (J.J., S.B., Z.H., G.Y., B.S.), and Frontiers Science Center for Smart Materials Oriented Chemical Engineering (C.C., J.J., S.B., Z.H., G.Y., B.S.), Dalian University of Technology, Dalian, China; and Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China (C.M.)
| |
Collapse
|
13
|
Cui Y, Ho M, Hu Y, Shi Y. Vaccine adjuvants: current status, research and development, licensing, and future opportunities. J Mater Chem B 2024; 12:4118-4137. [PMID: 38591323 PMCID: PMC11180427 DOI: 10.1039/d3tb02861e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Vaccines represent one of the most significant inventions in human history and have revolutionized global health. Generally, a vaccine functions by triggering the innate immune response and stimulating antigen-presenting cells, leading to a defensive adaptive immune response against a specific pathogen's antigen. As a key element, adjuvants are chemical materials often employed as additives to increase a vaccine's efficacy and immunogenicity. For over 90 years, adjuvants have been essential components in many human vaccines, improving their efficacy by enhancing, modulating, and prolonging the immune response. Here, we provide a timely and comprehensive review of the historical development and the current status of adjuvants, covering their classification, mechanisms of action, and roles in different vaccines. Additionally, we perform systematic analysis of the current licensing processes and highlights notable examples from clinical trials involving vaccine adjuvants. Looking ahead, we anticipate future trends in the field, including the development of new adjuvant formulations, the creation of innovative adjuvants, and their integration into the broader scope of systems vaccinology and vaccine delivery. The article posits that a deeper understanding of biochemistry, materials science, and vaccine immunology is crucial for advancing vaccine technology. Such advancements are expected to lead to the future development of more effective vaccines, capable of combating emerging infectious diseases and enhancing public health.
Collapse
Affiliation(s)
- Ying Cui
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA.
| | - Megan Ho
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Yongjie Hu
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA.
| | - Yuan Shi
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
14
|
Zhong L, Hu Q, Zhan Q, Zhao M, Zhao L. Oat protein isolate- Pleurotus ostreatus β-glucan conjugate nanoparticles bound to β-carotene effectively alleviate immunosuppression by regulating gut microbiota. Food Funct 2024; 15:1867-1883. [PMID: 38236028 DOI: 10.1039/d3fo05158g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Individuals with immune disorders cannot establish an adequate defense to pathogens, leading to gut microbiota dysbiosis. β-Carotene can regulate immune response, but its bioavailability in vivo is very low. Herein, we developed a glycosylated oat protein-based nanoparticle to improve the application of β-carotene for mitigating cyclophosphamide-induced immunosuppression and gut microbiota imbalance in mice. The results showed that the nanoparticles facilitated a conversion of β-carotene to retinol or retinyl palmitate into the systemic circulation, leading to an increased bioavailability of β-carotene. The encapsulated β-carotene bolstered humoral immunity by elevating immunoglobulin levels, augmenting splenic T lymphocyte subpopulations, and increasing splenic cytokine concentrations in immunosuppressed mice. This effect was accompanied by the alleviation of pathological features observed in the spleen. In addition, the encapsulated β-carotene restored the abnormal gut microbiota associated with immunosuppression, including Erysipelotrichaceae, Akkermansia, Bifidobacterium and Roseburia. This study suggested that nanoparticles loaded with β-carotene have great potential for therapeutic intervention in human immune disorders by specifically targeting the gut microbiota.
Collapse
Affiliation(s)
- Lei Zhong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Qiuhui Hu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, P.R. China.
| | - Qiping Zhan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| |
Collapse
|
15
|
Sun B, Li M, Yao Z, Yu G, Ma Y. Advances in Vaccine Adjuvants: Nanomaterials and Small Molecules. Handb Exp Pharmacol 2024; 284:113-132. [PMID: 37059911 DOI: 10.1007/164_2023_652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Adjuvants have been extensively and essentially formulated in subunits and certain inactivated vaccines for enhancing and prolonging protective immunity against infections and diseases. According to the types of infectious diseases and the required immunity, adjuvants with various acting mechanisms have been designed and applied in human vaccines. In this chapter, we introduce the advances in vaccine adjuvants based on nanomaterials and small molecules. By reviewing the immune mechanisms induced by adjuvants with different characteristics, we aim to establish structure-activity relationships between the physicochemical properties of adjuvants and their immunostimulating capability for the development of adjuvants for more effective preventative and therapeutic vaccines.
Collapse
Affiliation(s)
- Bingbing Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering and Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, China.
| | - Min Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering and Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Zhiying Yao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering and Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Ge Yu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering and Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Yubin Ma
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering and Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
16
|
Gao X, Wang X, Li S, Saif Ur Rahman M, Xu S, Liu Y. Nanovaccines for Advancing Long-Lasting Immunity against Infectious Diseases. ACS NANO 2023; 17:24514-24538. [PMID: 38055649 DOI: 10.1021/acsnano.3c07741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Infectious diseases, particularly life-threatening pathogens such as small pox and influenza, have substantial implications on public health and global economies. Vaccination is a key approach to combat existing and emerging pathogens. Immunological memory is an essential characteristic used to evaluate vaccine efficacy and durability and the basis for the long-term effects of vaccines in protecting against future infections; however, optimizing the potency, improving the quality, and enhancing the durability of immune responses remains challenging and a focus for research involving investigation of nanovaccine technologies. In this review, we describe how nanovaccines can address the challenges for conventional vaccines in stimulating adaptive immune memory responses to protect against reinfection. We discuss protein and nonprotein nanoparticles as useful antigen platforms, including those with highly ordered and repetitive antigen array presentation to enhance immunogenicity through cross-linking with multiple B cell receptors, and with a focus on antigen properties. In addition, we describe how nanoadjuvants can improve immune responses by providing enhanced access to lymph nodes, lymphnode targeting, germinal center retention, and long-lasting immune response generation. Nanotechnology has the advantage to facilitate vaccine induction of long-lasting immunity against infectious diseases, now and in the future.
Collapse
Affiliation(s)
- Xinglong Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xinlian Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Shilin Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | | | - Shanshan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P.R. China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China
| |
Collapse
|
17
|
Siram K, Lathrop SK, Abdelwahab WM, Tee R, Davison CJ, Partlow HA, Evans JT, Burkhart DJ. Co-Delivery of Novel Synthetic TLR4 and TLR7/8 Ligands Adsorbed to Aluminum Salts Promotes Th1-Mediated Immunity against Poorly Immunogenic SARS-CoV-2 RBD. Vaccines (Basel) 2023; 12:21. [PMID: 38250834 PMCID: PMC10818338 DOI: 10.3390/vaccines12010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Despite the availability of effective vaccines against COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread worldwide, pressing the need for new vaccines with improved breadth and durability. We developed an adjuvanted subunit vaccine against SARS-CoV-2 using the recombinant receptor-binding domain (RBD) of spikes with synthetic adjuvants targeting TLR7/8 (INI-4001) and TLR4 (INI-2002), co-delivered with aluminum hydroxide (AH) or aluminum phosphate (AP). The formulations were characterized for the quantities of RBD, INI-4001, and INI-2002 adsorbed onto the respective aluminum salts. Results indicated that at pH 6, the uncharged RBD (5.73 ± 4.2 mV) did not efficiently adsorb to the positively charged AH (22.68 ± 7.01 mV), whereas it adsorbed efficiently to the negatively charged AP (-31.87 ± 0.33 mV). Alternatively, pre-adsorption of the TLR ligands to AH converted it to a negatively charged particle, allowing for the efficient adsorption of RBD. RBD could also be directly adsorbed to AH at a pH of 8.1, which changed the charge of the RBD to negative. INI-4001 and INI-2002 efficiently to AH. Following vaccination in C57BL/6 mice, both aluminum salts promoted Th2-mediated immunity when used as the sole adjuvant. Co-delivery with TLR4 and/or TLR7/8 ligands efficiently promoted a switch to Th1-mediated immunity instead. Measurements of viral neutralization by serum antibodies demonstrated that the addition of TLR ligands to alum also greatly improved the neutralizing antibody response. These results indicate that the addition of a TLR7/8 and/or TLR4 agonist to a subunit vaccine containing RBD antigen and alum is a promising strategy for driving a Th1 response and neutralizing antibody titers targeting SARS-CoV-2.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - David J. Burkhart
- Center for Translational Medicine, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA; (K.S.); (S.K.L.); (W.M.A.); (R.T.); (C.J.D.); (H.A.P.); (J.T.E.)
| |
Collapse
|
18
|
Laera D, HogenEsch H, O'Hagan DT. Aluminum Adjuvants-'Back to the Future'. Pharmaceutics 2023; 15:1884. [PMID: 37514070 PMCID: PMC10383759 DOI: 10.3390/pharmaceutics15071884] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Aluminum-based adjuvants will continue to be a key component of currently approved and next generation vaccines, including important combination vaccines. The widespread use of aluminum adjuvants is due to their excellent safety profile, which has been established through the use of hundreds of millions of doses in humans over many years. In addition, they are inexpensive, readily available, and are well known and generally accepted by regulatory agencies. Moreover, they offer a very flexible platform, to which many vaccine components can be adsorbed, enabling the preparation of liquid formulations, which typically have a long shelf life under refrigerated conditions. Nevertheless, despite their extensive use, they are perceived as relatively 'weak' vaccine adjuvants. Hence, there have been many attempts to improve their performance, which typically involves co-delivery of immune potentiators, including Toll-like receptor (TLR) agonists. This approach has allowed for the development of improved aluminum adjuvants for inclusion in licensed vaccines against HPV, HBV, and COVID-19, with others likely to follow. This review summarizes the various aluminum salts that are used in vaccines and highlights how they are prepared. We focus on the analytical challenges that remain to allowing the creation of well-characterized formulations, particularly those involving multiple antigens. In addition, we highlight how aluminum is being used to create the next generation of improved adjuvants through the adsorption and delivery of various TLR agonists.
Collapse
Affiliation(s)
- Donatello Laera
- Technical Research & Development, Drug Product, GSK, 53100 Siena, Italy
- Global Manufacturing Division, Corporate Industrial Analytics, Chiesi Pharmaceuticals, 43122 Parma, Italy
| | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA
| | | |
Collapse
|
19
|
Filipić B, Pantelić I, Nikolić I, Majhen D, Stojić-Vukanić Z, Savić S, Krajišnik D. Nanoparticle-Based Adjuvants and Delivery Systems for Modern Vaccines. Vaccines (Basel) 2023; 11:1172. [PMID: 37514991 PMCID: PMC10385383 DOI: 10.3390/vaccines11071172] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Ever since the development of the first vaccine, vaccination has had the great impact on global health, leading to the decrease in the burden of numerous infectious diseases. However, there is a constant need to improve existing vaccines and develop new vaccination strategies and vaccine platforms that induce a broader immune response compared to traditional vaccines. Modern vaccines tend to rely on certain nanotechnology platforms but are still expected to be readily available and easy for large-scale manufacturing and to induce a durable immune response. In this review, we present an overview of the most promising nanoadjuvants and nanoparticulate delivery systems and discuss their benefits from tehchnological and immunological standpoints as well as their objective drawbacks and possible side effects. The presented nano alums, silica and clay nanoparticles, nanoemulsions, adenoviral-vectored systems, adeno-associated viral vectors, vesicular stomatitis viral vectors, lentiviral vectors, virus-like particles (including bacteriophage-based ones) and virosomes indicate that vaccine developers can now choose different adjuvants and/or delivery systems as per the requirement, specific to combatting different infectious diseases.
Collapse
Affiliation(s)
- Brankica Filipić
- Department of Microbiology and Immunology, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia
| | - Ivana Pantelić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia
| | - Ines Nikolić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia
- Section of Pharmaceutical Sciences, University of Geneva, 1206 Geneva, Switzerland
| | - Dragomira Majhen
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia
| | - Snežana Savić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia
| | - Danina Krajišnik
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia
| |
Collapse
|
20
|
Zhang T, He P, Guo D, Chen K, Hu Z, Zou Y. Research Progress of Aluminum Phosphate Adjuvants and Their Action Mechanisms. Pharmaceutics 2023; 15:1756. [PMID: 37376204 DOI: 10.3390/pharmaceutics15061756] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Although hundreds of different adjuvants have been tried, aluminum-containing adjuvants are by far the most widely used currently. It is worth mentioning that although aluminum-containing adjuvants have been commonly applied in vaccine production, their acting mechanism remains not completely clear. Thus far, researchers have proposed the following mechanisms: (1) depot effect, (2) phagocytosis, (3) activation of pro-inflammatory signaling pathway NLRP3, (4) host cell DNA release, and other mechanisms of action. Having an overview on recent studies to increase our comprehension on the mechanisms by which aluminum-containing adjuvants adsorb antigens and the effects of adsorption on antigen stability and immune response has become a mainstream research trend. Aluminum-containing adjuvants can enhance immune response through a variety of molecular pathways, but there are still significant challenges in designing effective immune-stimulating vaccine delivery systems with aluminum-containing adjuvants. At present, studies on the acting mechanism of aluminum-containing adjuvants mainly focus on aluminum hydroxide adjuvants. This review will take aluminum phosphate as a representative to discuss the immune stimulation mechanism of aluminum phosphate adjuvants and the differences between aluminum phosphate adjuvants and aluminum hydroxide adjuvants, as well as the research progress on the improvement of aluminum phosphate adjuvants (including the improvement of the adjuvant formula, nano-aluminum phosphate adjuvants and a first-grade composite adjuvant containing aluminum phosphate). Based on such related knowledge, determining optimal formulation to develop effective and safe aluminium-containing adjuvants for different vaccines will become more substantiated.
Collapse
Affiliation(s)
- Ting Zhang
- Sinovac Biotech Sciences Co., Ltd., Beijing 102601, China
| | - Peng He
- Division of Hepatitis Virus & Enterovirus Vaccines, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing 102619, China
| | - Dejia Guo
- Sinovac Life Sciences Co., Ltd., Beijing 102601, China
| | - Kaixi Chen
- Sinovac Life Sciences Co., Ltd., Beijing 102601, China
| | - Zhongyu Hu
- Division of Hepatitis Virus & Enterovirus Vaccines, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing 102619, China
| | - Yening Zou
- Sinovac Life Sciences Co., Ltd., Beijing 102601, China
| |
Collapse
|
21
|
Wang Z, You T, Cai C, Su Q, Cheng J, Xiao J, Duan X. Biomimetic Gold Nanostructure with a Virus-like Topological Surface for Enhanced Antigen Cross-Presentation and Antitumor Immune Response. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36897565 DOI: 10.1021/acsami.2c21028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The internalization of antigens by dendritic cells (DCs) is the initial critical step for vaccines to activate the immune response; however, the systemic delivery of antigens into DCs is hampered by various technical challenges. Here we show that a virus-like gold nanostructure (AuNV) can effectively bind to and be internalized by DCs due to its biomimetic topological morphology, thereby significantly promoting the maturation of DCs and the cross-presentation of the model antigen ovalbumin (OVA). In vivo experiments demonstrate that AuNV efficiently delivers OVA to draining lymph nodes and significantly inhibits the growth of MC38-OVA tumors, generating a ∼80% decrease in tumor volume. Mechanistic studies reveal that the AuNV-OVA vaccine induces a remarkable increase in the rate of maturation of DCs, OVA presentation, and CD4+ and CD8+ T lymphocyte populations in both lymph node and tumor and an obvious decrease in myeloid-derived suppressor cells and regulatory T cell populations in spleen. The good biocompatibility, strong adjuvant activity, enhanced uptake of DCs, and improved T cell activation make AuNV a promising antigen delivery platform for vaccine development.
Collapse
Affiliation(s)
- Zhenyu Wang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tingting You
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chengyuan Cai
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qianyi Su
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jinmei Cheng
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jisheng Xiao
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University; Department of Pharmacy, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Xiaopin Duan
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
22
|
Li H, Luo Q, Zhang H, Ma X, Gu Z, Gong Q, Luo K. Nanomedicine embraces cancer radio-immunotherapy: mechanism, design, recent advances, and clinical translation. Chem Soc Rev 2023; 52:47-96. [PMID: 36427082 DOI: 10.1039/d2cs00437b] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cancer radio-immunotherapy, integrating external/internal radiation therapy with immuno-oncology treatments, emerges in the current management of cancer. A growing number of pre-clinical studies and clinical trials have recently validated the synergistic antitumor effect of radio-immunotherapy, far beyond the "abscopal effect", but it suffers from a low response rate and toxicity issues. To this end, nanomedicines with an optimized design have been introduced to improve cancer radio-immunotherapy. Specifically, these nanomedicines are elegantly prepared by incorporating tumor antigens, immuno- or radio-regulators, or biomarker-specific imaging agents into the corresponding optimized nanoformulations. Moreover, they contribute to inducing various biological effects, such as generating in situ vaccination, promoting immunogenic cell death, overcoming radiation resistance, reversing immunosuppression, as well as pre-stratifying patients and assessing therapeutic response or therapy-induced toxicity. Overall, this review aims to provide a comprehensive landscape of nanomedicine-assisted radio-immunotherapy. The underlying working principles and the corresponding design strategies for these nanomedicines are elaborated by following the concept of "from bench to clinic". Their state-of-the-art applications, concerns over their clinical translation, along with perspectives are covered.
Collapse
Affiliation(s)
- Haonan Li
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China.
| | - Qiang Luo
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China.
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA 91711, USA
| | - Xuelei Ma
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China.
| | - Zhongwei Gu
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China.
| | - Qiyong Gong
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China. .,Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Kui Luo
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China. .,Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| |
Collapse
|
23
|
Lu Y, Liu G. Nano alum: A new solution to the new challenge. Hum Vaccin Immunother 2022; 18:2060667. [PMID: 35471916 PMCID: PMC9897648 DOI: 10.1080/21645515.2022.2060667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alum adjuvant has always been the first choice when designing a vaccine. Conventional aluminum adjuvant includes aluminum hydroxide, aluminum phosphate, and amorphous aluminum hydroxyphosphate (AAHS), which could effectively induce the humoral, and to a lesser extent, cellular immune responses. Their safety is widely accepted for a variety of vaccines. However, conventional alum adjuvant is not an ideal choice for a vaccine antigen with poor immunogenicity, especially the subunit vaccine in which cellular response is highly demanded. The outbreak of COVID-19 requires a delicately designed vaccine without the antibody-dependent enhancement (ADE) effect to ensure the safety. A sufficiently powerful adjuvant that can induce both Th1 and Th2 immune responses is necessary to reduce the risk of ADE. These circumstances all bring new challenges to the conventional alum adjuvant. However, turning conventional microscale alum adjuvant into nanoscale is a new solution to these problems. Nanoscale alum owns a higher surface volume ratio, can absorb much more antigens, and promote the ability to stimulate the antigen-presenting cells (APCs) via different mechanisms. In this review, the exceptional performance of nano alum adjuvant and their preparation methods will be discussed. The potential safety concern of nano alum is also addressed. Based on the different mechanisms, the potential application of nano alum will also be introduced.
Collapse
Affiliation(s)
- Yang Lu
- Shanghai Zerun Bio, Shanghai, PRC,CONTACT Yang Lu Shanghai Zerun Bio, 1690 Zhangheng Rd, Pudong New District, Shanghai, PRC
| | - Ge Liu
- Shanghai Zerun Bio, Shanghai, PRC
| |
Collapse
|
24
|
Liao X, Liu Y, Zheng J, Zhao X, Cui L, Hu S, Xia T, Si S. Diverse Pathways of Engineered Nanoparticle-Induced NLRP3 Inflammasome Activation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3908. [PMID: 36364684 PMCID: PMC9656364 DOI: 10.3390/nano12213908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
With the rapid development of engineered nanomaterials (ENMs) in biomedical applications, their biocompatibility and cytotoxicity need to be evaluated properly. Recently, it has been demonstrated that inflammasome activation may be a vital contributing factor for the development of biological responses induced by ENMs. Among the inflammasome family, NLRP3 inflammasome has received the most attention because it directly interacts with ENMs to cause the inflammatory effects. However, the pathways that link ENMs to NLRP3 inflammasome have not been thoroughly summarized. Thus, we reviewed recent findings on the role of major ENMs properties in modulating NLRP3 inflammasome activation, both in vitro and in vivo, to provide a better understanding of the underlying mechanisms. In addition, the interactions between ENMs and NLRP3 inflammasome activation are summarized, which may advance our understanding of safer designs of nanomaterials and ENM-induced adverse health effects.
Collapse
Affiliation(s)
- Xin Liao
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yudong Liu
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xinyuan Zhao
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Li Cui
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shen Hu
- School of Dentistry and California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Tian Xia
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Shanshan Si
- Department of Oral Emergency, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
25
|
Self-assembled flagella protein nanofibers induce enhanced mucosal immunity. Biomaterials 2022; 288:121733. [PMID: 36038418 DOI: 10.1016/j.biomaterials.2022.121733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 12/28/2022]
Abstract
Nanofibers are potential vaccines or adjuvants for vaccination at the mucosal interface. However, how their lengths affect the mucosal immunity is not well understood. Using length-tunable flagella (self-assembled from a protein termed flagellin) as model protein nanofibers, we studied the mechanisms of their interaction with mucosal interface to induce immune responses length-dependently. Briefly, through tuning flagellin assembly, length-controlled protein nanofibers were prepared. The shorter nanofibers exhibited more pronounced toll-like receptor 5 (TLR5) and inflammasomes activation accompanied by pyroptosis, as a result of cellular uptake, lysosomal damage, and mitochondrial reactive oxygen species generation. Accordingly, the shorter nanofibers elevated the IgA level in mucosal secretions and enhanced the serum IgG level in ovalbumin-based intranasal vaccinations. These mucosal and systematic antibody responses were correlated with the mucus penetration capacity of the nanofibers. Intranasal administration of vaccines (human papillomavirus type 16 peptides) adjuvanted with shorter nanofibers significantly elicited cytotoxic T lymphocyte responses, strongly inhibiting tumor growth and improving survival rates in a TC-1 cervical cancer model. This work suggests that length-dependent immune responses of nanofibers can be elucidated for designing nanofibrous vaccines and adjuvants for both infectious diseases and cancer.
Collapse
|
26
|
Li M, Liang Z, Chen C, Yu G, Yao Z, Guo Y, Zhang L, Bao H, Fu D, Yang X, Wang H, Xue C, Sun B. Virus-Like Particle-Templated Silica-Adjuvanted Nanovaccines with Enhanced Humoral and Cellular Immunity. ACS NANO 2022; 16:10482-10495. [PMID: 35763693 DOI: 10.1021/acsnano.2c01283] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Virus-like particles (VLPs) are self-assembled viral proteins that represent a superior form of antigens in vaccine formulations. To enhance immunogenicity, adjuvants, especially the aluminum salts (Alum), are essentially formulated in VLP vaccines. However, Alum only induce biased humoral immune responses that limits further applications of VLP-based vaccines. To stimulate more balanced immunity, we, herein, develop a one-step strategy of using VLPs as the biotemplates to synthesize raspberry-like silica-adjuvanted VLP@Silica nanovaccines. Hepatitis B surface antigen (HBsAg) VLPs and human papillomavirus type 18 (HPV 18) VLPs are selected as model templates. Circular dichroism (CD) and affinity analyses demonstrate that HBsAg VLPs in the nanovaccines maintain their secondary structure and immunogenicity, respectively. VLP@Silica promote silica dissolution-induced lysosomal escape and cytosolic delivery of antigens, and enhance the secretion of both Th1 and Th2 type cytokines in murine bone marrow-derived dendritic cells (BMDCs). Additionally, they could improve antigen trafficking and mediate DC activation in draining lymph nodes (DLNs). Vaccination study demonstrate that both HBsAg VLP@Silica and HPV 18 VLP@Silica nanovaccines induce enhanced antigen-specific antibody productions and T-cell mediated adaptive immune responses. This design strategy can utilize VLPs derived from a diversity of viruses or their variants as templates to construct both prophylactic and therapeutic vaccines with improved immunogenicity.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Zhihui Liang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Chen Chen
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Ge Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Zhiying Yao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Yiyang Guo
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Lei Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Hang Bao
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Duo Fu
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Xuecheng Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Huiyang Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Changying Xue
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| |
Collapse
|
27
|
Bi S, Li M, Liang Z, Li G, Yu G, Zhang J, Chen C, Yang C, Xue C, Zuo YY, Sun B. Self-assembled aluminum oxyhydroxide nanorices with superior suspension stability for vaccine adjuvant. J Colloid Interface Sci 2022; 627:238-246. [PMID: 35849857 DOI: 10.1016/j.jcis.2022.07.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/18/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022]
Abstract
The suspension stability of aluminum-based adjuvant (Alum) plays an important role in determining the Alum-antigen interaction and vaccine efficacy. Inclusion of excipients has been shown to stabilize antigens in vaccine formulations. However, there is no mechanistic study to tune the characteristics of Alum for improved suspension stability. Herein, a library of self-assembled rice-shaped aluminum oxyhydroxide nanoadjuvants i.e., nanorices (NRs), was synthesized through intrinsically controlled crystallization and atomic coupling-mediated aggregations. The NRs exhibited superior suspension stability in both water and a saline buffer. After adsorbing hepatitis B surface antigen (HBsAg) virus-like particles (VLPs), human papillomavirus virus (HPV) VLPs, or bovine serum albumin, NR-antigen complexes exhibited less sedimentation. Further mechanistic study demonstrated that the improved suspension stability was due to intraparticle aggregations that led to the reduction of the surface free energy. By using HBsAg in a murine vaccination model, NRs with higher aspect ratios elicited more potent humoral immune responses. Our study demonstrated that engineered control of particle aggregation provides a novel material design strategy to improve suspension stability for a diversity of biomedical applications.
Collapse
Affiliation(s)
- Shisheng Bi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Min Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Zhihui Liang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Guangle Li
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, United States
| | - Ge Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Jiarui Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Chen Chen
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Cheng Yang
- School of Chemistry, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Changying Xue
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, United States
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China.
| |
Collapse
|
28
|
Engineering the hydroxyl content on aluminum oxyhydroxide nanorod for elucidating the antigen adsorption behavior. NPJ Vaccines 2022; 7:62. [PMID: 35739192 PMCID: PMC9226065 DOI: 10.1038/s41541-022-00495-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
The interaction between the aluminum salt-based adjuvants and the antigen in the vaccine formulation is one of the determining factors affecting the immuno-potentiation effect of vaccines. However, it is not clear how the intrinsic properties of the adjuvants could affect this interaction, which limits to benefit the improvement of existing adjuvants and further formulation of new vaccines. Here, we engineered aluminum oxyhydroxide (AlOOH) nanorods and used a variety of antigens including hepatitis B surface antigen (HBsAg), SARS-CoV-2 spike protein receptor-binding domain (RBD), bovine serum albumin (BSA) and ovalbumin (OVA) to identify the key physicochemical properties of adjuvant that determine the antigen adsorption at the nano-bio interface between selected antigen and AlOOH nanorod adjuvant. By using various physicochemical and biophysical characterization methods, it was demonstrated that the surface hydroxyl contents of AlOOH nanorods affected the adsorptive strength of the antigen and their specific surface area determined the adsorptive capacity of the antigen. In addition, surface hydroxyl contents had an impact on the stability of the adsorbed antigen. By engineering the key intrinsic characteristics of aluminum-based adjuvants, the antigen adsorption behavior with the aluminum adjuvant could be regulated. This will facilitate the design of vaccine formulations to optimize the adsorption and stability of the antigen in vaccine.
Collapse
|
29
|
Mechanistic elucidation of freezing-induced surface decomposition of aluminum oxyhydroxide adjuvant. iScience 2022; 25:104456. [PMID: 35874920 PMCID: PMC9301878 DOI: 10.1016/j.isci.2022.104456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/27/2022] [Accepted: 05/14/2022] [Indexed: 11/25/2022] Open
Abstract
The freezing-induced aggregation of aluminum-based (Alum) adjuvants has been considered as the most important cause of reduced vaccine potency. However, the intrinsic properties that determine the functionality of Alum after freezing have not been elucidated. In this study, we used engineered aluminum oxyhydroxide nanoparticles (AlOOH NPs) and demonstrated that cryogenic freezing led to the mechanical pressure-mediated reduction of surface hydroxyl. The sugar-based surfactant, octyl glucoside (OG), was demonstrated to shield AlOOH NPs from the freezing-induced loss of hydroxyl content and the aggregation through the reduction of recrystallization-induced mechanical stress. As a result, the antigenic adsorption property of frozen AlOOH NPs could be effectively protected. When hepatitis B surface antigen (HBsAg) was adjuvanted with OG-protected frozen AlOOH NPs in mice, the loss of immunogenicity was inhibited. These findings provide insights into the freezing-induced surface decomposition of Alum and can be translated to design of protectants to improve the stability of vaccines. The freezing stress led to the destruction of surface hydroxyl group on AlOOH NPs Octyl glucoside protected AlOOH NPs from freezing-induced surface decomposition Octyl glucoside protected vaccines from freezing-induced loss of immunogenicity
Collapse
|
30
|
Nazarizadeh A, Staudacher AH, Wittwer NL, Turnbull T, Brown MP, Kempson I. Aluminium Nanoparticles as Efficient Adjuvants Compared to Their Microparticle Counterparts: Current Progress and Perspectives. Int J Mol Sci 2022; 23:4707. [PMID: 35563097 PMCID: PMC9101817 DOI: 10.3390/ijms23094707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
Aluminium (Al) compounds are used as adjuvants in human and veterinary prophylactic vaccines due to their improved tolerability compared to other adjuvants. These Al-based adjuvants form microparticles (MPs) of heterogeneous sizes ranging from ~0.5 to 10 µm and generally induce type 2 (Th2)-biased immune responses. However, recent literature indicates that moving from micron dimension particles toward the nanoscale can modify the adjuvanticity of Al towards type 1 (Th1) responses, which can potentially be exploited for the development of vaccines for which Th1 immunity is crucial. Specifically, in the context of cancer treatments, Al nanoparticles (Al-NPs) can induce a more balanced (Th1/Th2), robust, and durable immune response associated with an increased number of cytotoxic T cells compared to Al-MPs, which are more favourable for stimulating an oncolytic response. In this review, we compare the adjuvant properties of Al-NPs to those of Al-MPs in the context of infectious disease vaccines and cancer immunotherapy and provide perspectives for future research.
Collapse
Affiliation(s)
- Ali Nazarizadeh
- Future Industries Institute, University of South Australia, Adelaide, SA 5095, Australia; (A.N.); (T.T.)
| | - Alexander H. Staudacher
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia; (A.H.S.); (N.L.W.); (M.P.B.)
- School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
| | - Nicole L. Wittwer
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia; (A.H.S.); (N.L.W.); (M.P.B.)
| | - Tyron Turnbull
- Future Industries Institute, University of South Australia, Adelaide, SA 5095, Australia; (A.N.); (T.T.)
| | - Michael P. Brown
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia; (A.H.S.); (N.L.W.); (M.P.B.)
- School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Ivan Kempson
- Future Industries Institute, University of South Australia, Adelaide, SA 5095, Australia; (A.N.); (T.T.)
| |
Collapse
|
31
|
Liang Z, Wang X, Yu G, Li M, Shi S, Bao H, Chen C, Fu D, Ma W, Xue C, Sun B. Mechanistic understanding of the aspect ratio-dependent adjuvanticity of engineered aluminum oxyhydroxide nanorods in prophylactic vaccines. NANO TODAY 2022; 43:101445. [PMID: 35261619 PMCID: PMC8896059 DOI: 10.1016/j.nantod.2022.101445] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/14/2022] [Accepted: 02/20/2022] [Indexed: 05/06/2023]
Abstract
Aluminum oxyhydroxide (AlOOH) adjuvants are widely used in human vaccines. However, the interaction mechanisms at the material-bio interface, and further understandings on physicochemical property-dependent modulation of the immune responses still remain uncertain. Herein, a library of AlOOH nanorods with well-defined aspect ratios is designed to explore the mechanisms of adjuvanticity. The aspect ratios of AlOOH nanorods were demonstrated to be intrinsically modulated by the hydroxide supersaturation level during crystal growth, leading to the differences in surface free energy (SFE). As a result, higher aspect ratio AlOOH nanoadjuvants with lower SFE exhibited more hydrophobic surface, resulting in more membrane depolarization, cellular uptake and dendritic cell (DC) activation. By using hepatitis B surface antigen (HBsAg) virus-like particles (VLPs) or SARS-CoV-2 spike protein receptor-binding domain (RBD) as model antigens, AlOOH nanorods with higher aspect ratio were determined to elicit more potent humoral immune responses, which could be attributed to the enhanced DC activation and the efficient antigen trafficking to the draining lymph nodes. Our findings highlight the critical role of aspect ratio of AlOOH nanorods in modulating adjuvanticity, and further provide a design strategy for engineered nanoadjuvants for prophylactic vaccines.
Collapse
Affiliation(s)
- Zhihui Liang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Xin Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Ge Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Min Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Shuting Shi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Hang Bao
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Chen Chen
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Duo Fu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Wei Ma
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Changying Xue
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| |
Collapse
|
32
|
The consequences of particle uptake on immune cells. Trends Pharmacol Sci 2022; 43:305-320. [DOI: 10.1016/j.tips.2022.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/11/2022]
|
33
|
Zhang L, Liang Z, Chen C, Yang X, Fu D, Bao H, Li M, Shi S, Yu G, Zhang Y, Zhang C, Zhang W, Xue C, Sun B. Engineered Hydroxyapatite Nanoadjuvants with Controlled Shape and Aspect Ratios Reveal Their Immunomodulatory Potentials. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59662-59672. [PMID: 34894655 DOI: 10.1021/acsami.1c17804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydroxyapatite (HAP) has been formulated as adjuvants in vaccines for human use. However, the optimal properties required for HAP nanoparticles to elicit adjuvanticity and the underlying immunopotentiation mechanisms have not been fully elucidated. Herein, a library of HAP nanorods and nanospheres was synthesized to explore the effect of the particle shape and aspect ratio on the immune responses in vitro and adjuvanticity in vivo. It was demonstrated that long aspect ratio HAP nanorods induced a higher degree of cell membrane depolarization and subsequent uptake, and the internalized particles elicited cathepsin B release and mitochondrial reactive oxygen species generation, which further led to pro-inflammatory responses. Furthermore, the physicochemical property-dependent immunostimulation capacities were correlated with their humoral responses in a murine hepatitis B surface antigen immunization model, with long aspect ratio HAP nanorods inducing higher antigen-specific antibody productions. Importantly, HAP nanorods significantly up-regulated the IFN-γ secretion and CD107α expression on CD8+ T cells in immunized mice. Further mechanistic studies demonstrated that HAP nanorods with defined properties exerted immunomodulatory effects by enhanced antigen persistence and immune cell recruitments. Our study provides a rational design strategy for engineered nanomaterial-based vaccine adjuvants.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Zhihui Liang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Chen Chen
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Xuecheng Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Duo Fu
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Hang Bao
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Min Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Shuting Shi
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Ge Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Yixuan Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Caiqiao Zhang
- NCPC Genetech Biotechnology Co., Ltd., Shijiazhuang 050035, P. R. China
| | - Weiting Zhang
- NCPC Genetech Biotechnology Co., Ltd., Shijiazhuang 050035, P. R. China
| | - Changying Xue
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| |
Collapse
|
34
|
Shi Y, Zhu ML, Wu Q, Huang Y, Xu XL, Chen W. The Potential of Drug Delivery Nanosystems for Sepsis Treatment. J Inflamm Res 2021; 14:7065-7077. [PMID: 34984019 PMCID: PMC8702780 DOI: 10.2147/jir.s339113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/08/2021] [Indexed: 12/19/2022] Open
Abstract
Sepsis is a major immune response disorder caused by infection, with very high incidence and mortality rates. In the clinic, sepsis and its complications are mainly controlled and treated with antibiotics, anti-inflammatory, and antioxidant drugs. However, these treatments have some shortcomings, such as rapid metabolism and severe side effects. The emergence of drug delivery nanosystems can significantly improve tissue permeability, prolong drugs' circulation time, and reduce side effects. In this paper, we reviewed recent drug delivery nanosystems designed for sepsis treatment based on their mechanisms (anti-bacterial, anti-inflammatory, and antioxidant). Although great progress has been made recently, clinical practice transformation is still very difficult. Therefore, we also discussed key obstacles, including tissue distribution, overcoming bacterial resistance, and single treatment modes. Finally, a rigorous optimization of drug delivery nanosystems is expected to present great potential for sepsis therapy.
Collapse
Affiliation(s)
- Yi Shi
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People’s Republic of China
| | - Meng-Lu Zhu
- Department of Pharmacy, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, 310006, People’s Republic of China
| | - Qian Wu
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People’s Republic of China
| | - Yi Huang
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People’s Republic of China
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310004, People’s Republic of China
| | - Wei Chen
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People’s Republic of China
| |
Collapse
|
35
|
Pan L, Li B, Chen J, Zhang H, Wang X, Shou J, Yang D, Yan X. Nanotechnology-Based Weapons to Combat Human Papillomavirus Infection Associated Diseases. Front Chem 2021; 9:798727. [PMID: 34869242 PMCID: PMC8635520 DOI: 10.3389/fchem.2021.798727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Persistent human papillomavirus (HPV) infection will eventually lead to clinical problems, varying from verrucous lesions to malignancies like cervical cancer, oral cancer, anus cancer, and so on. To address the aforementioned problems, nanotechnology-based strategies have been applied to detect the virus, prevent the interaction between virus and mammalian cells, and treat the virus-infected cells, due mainly to the unique physicochemical properties of nanoparticles. In this regard, many nanotechnology-based chemotherapies, gene therapy, vaccination, or combination therapy have been developed. In this Minireview, we outline the pathogenesis of HPV infection and the recent advances in nanotechnology-based weapons that can be applied in combating HPV-associated diseases.
Collapse
Affiliation(s)
- Luyao Pan
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bingxin Li
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiahua Chen
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haofeng Zhang
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xi Wang
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiahui Shou
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dejun Yang
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Xiaojian Yan
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|